

Mr. Steven Nightingale, P.E. Manager, Permit Section Bureau of Land Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62794

Subject:West Fenceline P-93 Dissolved Phase Benzene Investigation
Shell Oil Products US/ConocoPhillips Company
WRB Refining LLC Wood River Refinery, Roxana, Illinois

Dear Mr. Nightingale:

INTRODUCTION AND OBJECTIVES

Shell Oil Products U.S. (SOPUS) with the cooperation of ConocoPhillips Company (ConocoPhillips) conducted a subsurface investigation at and outside of the WRB Refining LLC Wood River Refinery (WRR) in Roxana, Illinois. WRB, formed January 1, 2007, is a 50/50 joint venture between ConocoPhillips (COP) and EnCana US Refineries LLC. The facility is owned by WRB and operated by COP employees. The subsurface investigation was conducted to gather information in the area of monitoring well P-93. Beginning in 2005, increased benzene concentrations in groundwater have been observed in some of the P-93 monitoring wells (i.e., P-93A and P-93B) located near the west fenceline of the refinery North Property.

URS Corporation (URS), on behalf of SOPUS, performed a subsurface investigation in 2006 to help gather information on the extent of benzene impacts. The subsurface investigation focused on the area between a historical release site and the west fenceline of the WRR. The benzene release occurred on January 30, 1986, from an underground pipeline located just northwest of the Route 111 and Rand Avenue intersection (**Figure 1**). At the time of the release, product at the surface was recovered to the extent possible. Shortly after the release, the line was abandoned in place and relocated aboveground. This report summarizes the results of this investigation.

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 2 of 9

INVESTIGATION PROCEDURES

The field investigation was performed in accordance with the West Fenceline P-93 Dissolved Phase Work Plan developed for this project. In addition, URS standard operating procedures and SOPUS' and COP's protocols were followed. The field investigation was conducted during multiple mobilizations between March 1st and April 12th, 2006. A dynamic investigation approach was used, in that various technologies were used to assess the extent of benzene impacts, and the results of prior work focused the efforts of subsequent work. The technologies utilized were groundwater sampling of existing wells, Cone Penetrometer Testing (CPT)/Membrane Interface Probe (MIP), and groundwater profiling,

Groundwater Sampling

Existing monitoring wells in the area of well P-93A (e.g., P-57, P-58, P-66, P-73, P-75, P-93A and P-93B) were sampled to assess dissolved benzene concentrations in groundwater. Monitoring well locations are shown on **Figure 2**.

Prior to sampling, product levels (if present), water levels and total depths were measured using an electronic interface probe and recorded on groundwater sampling forms and in the site logbook. This information is summarized in **Table 1**. Light non-aqueous phase liquid (LNAPL) was observed in two monitoring wells, P-73 and P-75, at thicknesses of 1.48 and 1.04 feet, respectively. Based on historical gauging information, these wells typically contain NAPL which appears characteristic of refined mixtures and not benzene. A similar LNAPL thickness was noted in monitoring well P-73 at the time of sampling, LNAPL was not observed in monitoring well P-75 at the time of sampling. Based on COP monitoring information, groundwater flow in the area investigated is generally to the east towards pumping centers located at the WRR.

Groundwater samples were collected with a submersible pump (i.e., Super Twister[®]) after a minimum of three well volumes were removed. Field measurements (e.g. pH, conductivity, and temperature) were recorded on groundwater sampling sheets (**Attachment A**) and are also included on **Table 1**. The collected groundwater samples were analyzed for volatile organic compounds (VOCs) via USEPA SW-846 Method 8260B.

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 3 of 9

Each sample container was labeled with a sample identification number, site name, sampler's initials, date and time of sample collection, preservative, and the parameters to be analyzed. Field personnel also recorded the sample description/location, required analysis, date and time of sample collection, type and matrix of samples, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the Chain-of-Custody (COC) form at the time of sampling. COC forms are included in **Attachment B**.

Cone Penetrometer Testing/Membrane Interface Probe

Nine CPT/MIP probes, designated (P-93-01 through P-93-02 and P-93-04 through P-93-10), were completed to gain information on the geology of the area and to gather information on the extent of dissolved phase hydrocarbons in groundwater. A probe was not able to be completed at P-93-03 due to poor site conditions. The CPT technology is used to gather information on the geology, while the MIP is used to gather information on petroleum impacts. The probes were completed to depths ranging from approximately 43 to 71 feet (bgs) by Fugro Geosciences, Inc. of Houston, Texas. CPT/MIP locations can be viewed in **Figure 3**. CPT/MIP probes were advanced through sand-filled boreholes which were previously cleared of potential subsurface utilities using an air-knife.

CPT probes were completed by hydraulically pushing a cone, equipped with a pore pressure transducer, through the soil at a consistent rate of 2 cm/sec. The cone has a tip cross sectional area of 15 cm² and a friction sleeve area of 200 cm². Measurements were collected for resistance to penetration, sleeve friction and pore pressure once per second during advancement of each boring. These measurements provided soil property data, which were converted to a stratigraphic profile for each boring. The results of the CPT probes are provided in **Table 2** and CPT Logs can be viewed in **Attachment C**.

The MIP probe was advanced at each location through the length of the boring using conventional hydraulic pressure. The probe continuously collected conductivity, speed, and temperature readings as the probe was advanced. At one foot intervals the MIP probe was stopped and heated to 80 to 125 degrees Celsius. In turn, the residual hydrocarbons in the material surrounding the probe were heated, causing them to partition through a permeable membrane on the probe. The VOCs entered a stream of carrier gas and were delivered to three gas chromatograph (GC) detectors at the surface for processing. The three detectors used were a flame-ionization detector (FID), photoionization detector (PID), and electron capture detector

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 4 of 9

(ECD). The FID detector was used preferentially to the PID and ECD as it provides a better response to hydrocarbons. The results of the MIP probes (in Volts) are provided in **Table 2** and MIP Logs are also included in **Attachment C**.

Upon completion, each probe hole was backfilled with high solids bentonite grout via the tremmie method and the surface was returned to its original condition.

Groundwater Profiling

Groundwater profiling was performed to obtain groundwater samples from various depths at six locations (i.e., P-93-02, P-93-03, P-93-05, P-93-06, P-93-09 and P-93-11). Groundwater profile locations are shown in **Figure 2**. Locations and sample depths for groundwater profiling were selected based on the results of the MIP work. Groundwater profiling was performed by Roberts Environmental Drilling, Inc. of Millstadt, Illinois. Groundwater profiling probes were advanced through sand-filled boreholes which were previously cleared of potential subsurface utilities using an air-knife.

Groundwater profiling was conducted using a four foot long, mill-slotted sampler advanced using direct push techniques (e.g., Geoprobe[®]). As mentioned above, sampling depths were chosen based on the results of the CPT/MIP work. The first sample depth was chosen based on where groundwater was first encountered. This sample depth ranged from 40 to 52 feet bgs. The second sample depth was primarily based on the highest MIP result below the water table, or if the MIP did not extend deep enough into the water table, approximately 15 feet below the top of the water table. The second sample depth ranged from 58 to 66 feet bgs.

Once the sampler was advanced to the predetermined depth, the water level was measured using an electronic interface probe and recorded on a groundwater sampling form. Free-phase LNAPL was not observed during groundwater profiling. Dedicated polyethylene tubing equipped with a ball and check valve system was placed down into the slotted portion of the sampler and set at approximately the middle of the screened interval (2 feet from the bottom of the screen). The tubing was then connected through a Waterra[®] pump to a flow-through cell. Groundwater samples were collected after a minimum of three tubing volumes were removed. Field measurements (e.g., pH, conductivity, and temperature) were measured and recorded on

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 5 of 9

groundwater sampling sheets included in **Attachment A**. The collected groundwater samples were analyzed for VOCs via USEPA SW-846 Method 8260B.

Samples were collected as described in the groundwater sampling section above. COC forms are included in **Attachment B**. A new section of tubing measured to the appropriate length was used at every sampling interval. Upon completion of each groundwater profiling probe, each borehole was filled with grout from the bottom up using the Geoprobe[®] rods as a tremmie pipe, and the surface was returned to its original condition.

Quality Assurance/Quality Control Sampling and Data Validation

Quality assurance and quality control (QA/QC) samples were collected in accordance with the work plan. The QA/QC samples and their collection frequencies, with respect to the number of investigative samples collected per environmental matrix, were as follows: equipment blanks – 10%; duplicates – 10% and matrix spike/matrix spike duplicates – 5%. One trip blank was included in each sample cooler. Analytical samples were shipped for overnight delivery to TestAmerica Analytical Testing Corporation in Nashville, Tennessee.

URS performed Level III and Level IV validation of the analytical data for quality and completeness, per the work plan. Data qualifiers were added, as appropriate, and are included on the data tables and with the analytical reports. Laboratory data packages are included in **Attachment D**, along with associated data validation forms.

Decontamination and Investigation-Derived Waste

Sampling equipment was decontaminated by washing with Alconox[®] or equivalent detergent wash and a distilled water rinse, prior to the collection of each analytical sample, between boring locations and prior to leaving the site. Field personnel wore disposable, chemical resistant gloves anytime environmental media or equipment were handled, to reduce personal exposure to potential chemical hazards. Clean gloves were also worn for the collection of groundwater samples.

Equipment decontamination fluids and purged groundwater were collected and discharged to the refinery wastewater treatment plant. Expendables and general municipal trash were properly managed by ConocoPhillips.

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 6 of 9

INVESTIGATION RESULTS

Nine CPT/MIP probes were completed to gain information on the geology of the area and to gather information on the extent of dissolved phase hydrocarbons in groundwater. The results of the CPT work indicated that approximately the upper 10 feet consists of fill, silts and/ or clays. These materials are underlain by sands that extend to bedrock. The results of the MIP investigation were utilized to select sample locations and depths for conducting groundwater profiling.

A total of 19 investigative groundwater samples and 3 duplicate samples were collected and analyzed for VOCs. Benzene results for groundwater samples collected from existing monitoring wells and from the groundwater profile locations are presented in the tables below.

	Benzene Results	s from Monitoring	y Well Sampling	
Monitoring Well	Sample ID	Sample Date	Result (mg/L)	Qualifiers
P-57	P5703030601	3/3/2006	177	
P-58	P5803020601	3/2/2006	409 (464, duplicate)	
P-66	P6603020601	3/2/2006	<0.0116	U
P-73	P7303020601	3/2/2006	22.4	
P-75	P7503030601	3/3/2006	2.78	
P-93A	P93A03030601	3/3/2006	506	
P-93B	P93B03030601	3/3/2006	370	

U= non detect at indicated reporting limit.

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 7 of 9

	Benzene Resul	ts from Groundw	ater Profiling	
Monitoring Well	Sample ID	Sample Date	Result (mg/L)	Qualifiers
P-93-02	P9302GWP43	4/5/2006	1,310	
1-30-02	P9302GWP59	4/5/2006	264	
P-93-03	P9303GWP40	4/6/2006	348	
1 00 00	P9303GWP59	4/7/2006	3.65	
P-03-05	P9305GWP45	4/7/2006	1,460	
1-30-00	P9305GWP58	4/7/2006	52.2	
P-93-06	P9306GWP50	4/7/2006	1,310	
1 00 00	P9306GWP62.5	4/10/2006	827	
P-03-00	P9309GWP52	4/11/2006	250	
1 00 00	P9309GWP66	4/11/2006	295 (569, duplicate)	
	P9311GWP41	4/5/2006	1,060	
P-93-11	P9311GWP59	4/6/2006	11.8 (13.1, duplicate)	

Note: The two digit number at the end of the sample ID denotes the sample depth below ground surface, e.g., P9302GWP43 denotes samples from location P93-02 from a depth of 43 feet.

The highest concentrations of benzene in groundwater were detected at groundwater profile locations P-93-02 (1,310 mg/L), P-93-05 (1,460 mg/L), P-93-06 (1,310 mg/L) and P-93-11 (1,060 mg/L). These four locations are located between the release site and the P-93 cluster located on the WRR (**Figure 2**). The highest concentrations of benzene were typically noted from the sample collected at the top of the water table; lower concentrations (1 to 2 orders of magnitude) were noted from the samples collected from approximately 12 to 19 feet below the top of the water table.

Groundwater samples collected from monitoring wells located on the WRR have benzene concentrations that range from 2.78 mg/L (P-75) to 506 mg/L (P-93A). Benzene concentrations for the two wells that contained LNAPL during the investigation were 22.4 mg/L (P-73) and 2.78 mg/L (P-75).

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 8 of 9

CONCLUSIONS AND RECOMMENDATIONS

The investigation was conducted in accordance with the work plan; implementation of the work plan provided information on the distribution of benzene in groundwater for the area between the release site and the west fenceline of the north property of the WRR.

The results of this investigation indicate the following conclusions:

- The subsurface conditions in the study area consist of approximately 10 feet of fill, overlying silty clay; the fill and silty clay is underlain by sand to the depths explored. Groundwater occurs in the sand unit at depths of approximately 40 to 52 feet bgs. Groundwater gauging information indicates flow towards the refinery's pumping centers.
- Benzene concentrations in groundwater are highest (e.g., 1,000-1,500 mg/L) between the release site and the P-93 well cluster. Benzene concentrations decrease by orders of magnitude with depth below the water table.

We will be pleased to meet with you to discuss the results of this submittal, and will contact you to schedule a meeting.

If you have any questions regarding this report or activities conducted, please do not hesitate to contact Herb Hand with SOPUS at 713.241.1491 (<u>herb.hand@shell.com</u>) or Bob Billman at 314.743.4108 (bob_billman@urscorp.com).

Very truly yours,

adams

Thomas J Adams Project Manger

fabet & Billion

Robert Billman Senior Project Manager

cc: Herb Hand, Shell Oil Products US Kevin Dyer, Shell Oil Products US Eric Petersen, ConocoPhillips Wood River Refinery

Attachments

Mr. Steven Nightingale, P.E. Illinois Environmental Protection Agency September 28, 2007 Page 9 of 9

List of Tables

Table 1	Groundwater Gauging and Field Parameter Results
Table 2	CPT/MIP Response Summary
List of Figures	
Figure 1	Release Site Location
Figure 2	Benzene Results in Groundwater
Figure 3	CPT/MIP Locations and MIP Results

List of Attachments

Attachment A	Groundwater Sampling Data Sheets
Attachment B	Chain of Custody Forms
Attachment C	CPT and MIP Logs
Attachment D	Laboratory Analytical Data

 TABLE 1

 GROUNDWATER GAUGING AND FIELD PARAMETER RESULTS

Monitoring Well ID	Sample ID	Sample Date	Sample Time	Depth to Product (ft btoc)	Depth to Water (ft btoc)	Total Depth (ft btoc)	рН	Specific Conductivity (mS/cm)	Temperature (F)
P-57	P5703030601	3/3/2006	1550		50.58	65.57	6.72	1218	55.76
P-58	P5803020601	3/2/2006	1550		48.62	64 77	6 78	3460	50.18
F-30	P5803020602	3/2/2000	1550		40.02	04.77	0.70	3400	59.10
P-66	P6603020601	3/2/2006	1040		40.41	56.89	6.58	1260	63.50
P-73	P7303020601	3/2/2006	1420	47.90	49.38	68.17	6.71	1170	60.98
P-75	P7503030601	3/3/2006	1030	50.51	51.55	67.92	6.45	1220	61.70
P-93A	P93A03030601	3/3/2006	1430		51.50	71.09	6.61	1022	62.60
P-93B	P93B03030601	3/3/2006	1545		50.41	76.52	7.09	1161	57.92
P-93C					50.44				
P-93D					50.34				

NOTES:

1) P-93C and P-93D were not sampled and a total depth measurement could not be taken because dedicated pumps obstructed access.

2) The gauging data (depth to product/water) was collected prior to purging and collection of field parameters.

3) btoc = below top of casing $\frac{1}{2}$

4) 02 at the end of a sample ID indicates a duplicate sample collected.

Location	Date Conducted	Stratum Encountered	Top of Stratum (ft bgs)	Bottom of Stratum (ft bgs)	End of Boring (ft bgs)	MIP Response Depth	MIP - Max PID Response (V)	MIP - Max FID Response (V)	MIP - Max ECD Response (V)
P-93-01	3/31/2006	Surface/fill material	0.0	14.5	43.00				
1 00 01	0/01/2000	Main Sand	14.5			37 - 41.5	5.2	1.6	0.04
P-93-02	4/1/2006	Surface/fill material	0.0	19.5	57.00				
1 30 02	4/1/2000	Main Sand	19.5		07.00	39.5 - 55.5	9.0	3.8	0.02
P-93-04	4/1/2006	Surface/fill material	0.0	11.0	70.00				
1-55-04	4/1/2000	Main Sand	11.0		70.00	53		1.6	0.045
P-03-05	4/1/2006	Surface/fill material	0.0	12.5	46 50				
F-93-03	4/1/2000	Main Sand	12.5		40.30	43.5 - 45	0.1	0.025	
P-03-06	4/2/2006	Surface/fill material	0.0	12.0	44 50				
1-90-00	4/2/2000	Main Sand	12.0		44.50	39.5 - 43	0.28	0.08	
P-93-07	3/31/2006	Surface/fill material	0.0	14.0	55 00	7.5 - 20.5		0.5	
1-90-07	3/31/2000	Main Sand	14.0		55.00	48.5 - 54	3.6	1.6	0.04
P.03.08	3/30/2006	Surface/fill material	0.0	11.0	54 50				
F-93-00	3/30/2000	Main Sand	11.0		54.50	48.5 - 53.5	2.7	0.9	
P.03.00	3/30/2006	Surface/fill material	0.0	13.5	71.00	31.5 - 33.5	0.06	0.35	0.02
F-93-09	3/30/2000	Main Sand	13.5		71.00	50 - 75	3.4	2.0	
		Surface/fill material	0.0	14.0		13.5 - 11.75		0.9	0.02
P-02-10	3/31/2006	Main Sand	14.0		46.00	12.5 - 16	0.1	0.7	0.01
F-93-10	3/31/2000				40.00	21 - 27.5		0.6	
						36 - 44	0.15	0.4	0.02

 Table 2

 CPT/MIP Response Summary

NOTES:

 P-93-07 through P-93-10 are located within the ConocoPhillips refinery and were air-knifed to a depth of 10 feet below the ground surface and backfilled with sand prior to CPT/MIP activities being done, therefore, if the break between strata is less than or close to the 10' bgs mark, it will be difficult to see on the CPT printouts. data, however, are unable to go as deep as the ROST activities.

2) P-93-03 could not be completed due to poor site conditions.

3) -- No Response Observed.

4) bgs = below ground surface

5) v = volts

CHKD. BY: b3

29

n at ? 6 RELEASE S

> 93-11 1,060 ppm at 41 ft bgs 11.8/13.1 ppm at

P-938

P-66

177 ppm T-5

P-57

10 ppT P-68 ft bgs DD

264 ppm at 59 ft bgs

Monitoring Well Sampling

		ш Б В В Ф Ф С С С С С С С С С С С С С С С С	ORP (mv)		
	nd .	Cell): <u>250</u> (olume) <u>750</u>	DO (II)BII)		
	, lin the ula	me of Flow Through (num Purge Volume ≓ Flow Through Cell V ent PID/FID Reading: bore PID/FID Reading	Turbidity (NTUS)	Meter ID: 1: 3 / 夏/0 6	1/0C
F	C. Dela cen	7. 2. 44 http://within ftbtoc Minin ftbtoc (3 x Ambi ftbtoc Wellt ftbtoc Wellt	Cond. (یسامه(cm) ری د در ای ۲۶	Water Quality I Date Calibrated	Analysis: Date Calibrateo
-ING DATA SHEE	LD PERSONNEL:	(سو اد مال مال م ک مسر (د مال ج ک مسر (د مال ج een Length are (4ft, Height) = Lepth - 2 ft =	Temp (°C) (*L) (ゼー) (オー)	<i>1</i> 47	
IDWATER SAMPI		راح م enth is (4 feet, APL Column Height) <u>=</u> Sumn Height and Scr pht + DNAPL Column Pump at: Total Well D	PH 212 03.60 6.47	1450 :: 0.07 941/m	2
AND STORY CROUN	61665	NAPL or DNAPL): Water AND Screen LL Screen Length + DNA Water AND Water Co X Water Column Heig neight is < 4 ft, Place	Odor	Time: 1-53-7	Time: (S
6 7	IMBER: J(J)	ight (do not include L Screen is > Depth to tal Well Depth – 0.5 (Screen is < Depth to tal Well Depth – (0.5) tal Well Depth – (0.5) und/or water column h	Color	Elapsed	Sample
	weather:	Water Column He If Depth to Top of Place Pump at: Tc If Depth to Top of Place Pump at: Tc Place Pump at: Tc	Depth to Water (ft)		عراجر
	0-93 W.F.	2 in the second	Time Luck Va Time 1450 1550	20	366 2411 + Chreck ,
	PROJECT NAME: DATE: MONITORING WELL	INITIAL DATA Well Diameter: Total Well Depth (btoc): Depth to Uwater (btoc): Depth to LNAPL/DNAP Depth to Top of Screel Screen Length:	Purkge DAIA Pump Type: bg/ Purge Volume 2.5 2.5 2.5	Start Time: 1 년 <u>(</u> Stop Time: 1 <u>1</u>	SAMPLING DATA Sample Date: 3 Sample Method: 4 COMMENTS:

4TA ter: Depth (btoc): <u>6⁴-71 tr</u> Depth (btoc): <u>4⁴-6² tr</u> APL/DNAPL (btoc): tr APL/DNAPL (btoc): tr p of Screen (btoc): tr tr tr tr	Water Column H If Depth to Top c Place Pump at: 1 If Depth to Top o Place Pump at: 1 If Screen Length	ieight (do not inclu of Screen is > Depti Total Weil Depth – (oral Weil Depth – (Total Weil Depth – (and/or water coluri	de LNAPL or DNAPL): h to Water AND Scree 0.5 (Screen Length + I th to Water AND Water (0.5 X Water Column H mn height is < 4 ft, Pla	1 Column Height 1 Column Height 1 Column Height and S 1 Column Height A 1 Column Hei	ا سر ا ک سر ا ک سر ا)=)=)=)= (4f) are (4f m Height) = L Depth - 2 ff =	$\frac{1}{1} \frac{1}{1} \frac{1}$	3 ペー いいして、「ころ」 うれたのは いいして、 しいして、 こので、 こので、 こので、 こので、 こので、 こので、 こので、 こので、 こので、 こので、 こので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいので、 しいのので、 しいののので、 しいのので、 しいのので、 しいののので、 しいのので、 しいのので、 しいののので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいのので、 しいののののので、 しいののののののので、 しいののののので、 しいのののののののののので、 しいのののののののののののののののののののののののののののののののののののの	Cell): <u>250</u> • Volume) <u>750</u> 9:	wda mda
DATA Super Turishys either Turishys olume Time Time Time Time Time Time Time	Depth to Water (ft)	Color	Ogo	PH 66-1	Temp (°C) 1.4. ダ	Cond. (umhos/cm) ユ.イレ ス. サビ	Turbidity (NTUs)	Od (li/bin)	d So (viii)
1520		Elap.	sed Time: 43-41 age Purge Rate (mL In	The Down	/mex	Water Qualit	y Meter ID: ted: 3/2/0る		
VG DATA te: 3/2/06 thod: 5-g.x f.w.s.h-x VTS:		Sam	ple Flow Rate:	C		Analysis: Date Calibra	LOC ted:		

	шda		ORP (mv)		
land	Cell): <u>250</u> e Volume) <u>750</u> ::		DO (mg/l)		
is lu that	- ک ، د الا سرد - الارد ک الارد imum Purge Volume - x Flow Through bient PID/FID Reading biore PID/FID Reading		Turbidity (NTUs)	Meter ID: d:3 <i>/2/0.6</i>	LOC Bit
ET Ci De Conci	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{100} \frac{1}{1} \frac{1}{1000} $		Cond. (umhosicm) 136 136 12-60	Mater Quality Date Calibrate	Analysis: Date Calibrate
PLING DATA SHE IELD PERSONNEL:) <u>=</u> breen Length are (4f nn Height) = II Depth - 2 ff =		Temp (cc) (c) (c) (c) (c) (c) (c) (c) (c) (c	min	
UNDWATER SAM	$\frac{\left \int_{0} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right $	l	Ha - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3+ 22	0
ьом песам с ко 176 (6 65	te LNAPL or DNAPL); to Water AND Screet .5 (Screen Length + E 1 to Water AND Water 1.5 X Water Column H 10 height is < 4 ft, Pla		Odor	ied Time: <u>fo</u> age Purge Rate (m L/n	ole Time: () ⁽
NUMBER:	Height (do not includ o of Screen is > Depth : Total Weil Depth – 0 o of Screen is < Depth : Total Weil Depth – ((Color	Elaps	Samp Samp
re (رئی project ود weather	in Water Column ft If Depth to Tor ft Place Pump at ft Place Pump at ft If Screen Leng	y t	Depth to Water (ft)		al dri
1-93 cu Er.	$\begin{array}{c} \mathcal{I} \\ \text{toc}; & \mathcal{I} \\ \text{toc}; & \mathcal{I} \\ \mathcal{I} \\ \mathcal{I} \\ \text{th} \\ \text{L} \\ \text{th} \\ \text{toc}; & \mathcal{I} \\ \text{toc}$	Super Twi	Time 1025 1025	010 22 10 32	sign trul
PROJECT NAME DATE:	INITIAL DATA Well Diameter: Total Well Depth (b Depth to Water (bto Depth to LNAPL/DN, Depth to Top of Scr Screen Length:	PURGE DATA Pump Type:	Purge Volume	Start Time:	SAMPLING DAT/ Sample Date: Sample Method: COMMENTS:

CT NAME: $\frac{1}{5}$ but $\frac{1}{2}$ but $\frac{1}{$
at Super Turber S: Free product

0

		ORP ORP	gallons
		DD (light)	urged: چ/ځ (م چ
	ID Reading: <u>0.7</u>	Turbidity (NTUs)	Total Volume P Calibrated on: UCC
51251665	Ambient PID/F gallons Wellbore PID/F lumes) LNAPL / DNAP	Cond. (umhos/cm) 115-5 113-4 127-0	Analysis:
CT NUMBER:	gallons (3 vo	Temp (°C) (°C) (°C) (°C) (°C)	lime:
PROJEC	11.56	PH 6.40 6.437 6.45	Elapsed Water Qu
	ons/Lin.Ft':	Odor	ple Time:
ارتیا المنط	Dep Min Col	Color	ge Stop Time:
Vost Fince	ک م ، ک ای ای ا	Depth to Water (ft)	
P-93 V 26 Any Symmetry L Dispersion	In. 6.7, 9, 5 mn: 17, 17, 11, inch well, 0.553 gallor	Time 1030 1026 4045	9 4.50 (gallons/min): 0.
PROJECT NAME: DATE: MEATHER: FIELD PERSONNEI MONITORING WEL	INITIAL DATA Well Diameter: Total Depth of Welt: Depth to Water: Height of Water Colu 1 0.163 gallons/ft for 2 PURGE DATA Purge Method: SA	Purge Volume (gals) 200 200	Start Time: Average Purge Rate

Groundwater Sampling Data Sheet

GROUNDWATER SAMPLING DATA SHEET

				00 (l)() (mv)	le la
			FID Reading: FID Reading: PL	Turbidity [(MTUs) (MTUs) (m	Total Volume Purged: / Calibrated on: 37
	21501665		Ambient PID/ gallons Wellbore PID/ olumes) LNAPL / DNA	Cond. (µmhos/cm) (ロ・フフ (ロ・フク (ロ・ノ	Analysis:
G DATA SHEET	JECT NUMBER:		gallons (3 vc	Temp (°C) (6. K (6. K	ad Time: $\Im \Gamma_{\pi}$ Quality Meter ID: \Box
VATER SAMPLIN	PROJ		- 3.19	E 60 20	
GROUNDV			allons/Lin.Ftt: ol. Of Water Column: in. Purge Volume: epth to Top of Screen	Oder	1 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 1 1 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
	r.	dauf	°>≥ ā	Color	Purge Stop Time: Well Volumes Purged
	W. Fouceli	acie - 1- 1-	ر , ر م جر 14 <u>, 54</u> gallons/ft for 4-inch wel	Depth to Water (ft)	- <u>6</u> . <u>6</u> .
(ME: 12-93	WELL ID: D.	Jn. 71 Nell: 71 Column: 52 Ltor 2 Inch well, 0.653	rtime ۲۷۱۵ ۱۷۹۵ ۱۹۹۵ ۲۹۹۵	1355 Rate (gallons/min): DATA 3(2)(2) 1: 1)しの他 145/11
	PROJECT NA	WEATHER: FIELD PERSO MONITORING	INITIAL DATA Well Diameter: Total Depth of V Depth to Water Height of Water 1 0.163 gallons/fh PURGE DAT, Purge Method:	Purge Volume (gals) シェジン シュジン	Start Time: 1 Average Purge Purge Sampling Method Sample Date: COMMENTS: COMMENTS:

PROJECT NAME: DATE: 3/3/64 WEATHER: 6-2 FIELD PERSONNEL: MONITORING WELL	<1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	W. Foucele	re		PROJE		71291665			
INITIAL DATA Well Diameter: Total Depth of Well: Depth to Water: Height of Water Column 1 0.163 gallons/ft for 2 in PURGE DATA		S No. (1 ons/ft for 4-inch well s ft.	~~~	allons/Lin.Ft' <u>:</u> ol. Of Water Column: lin. Purge Volume: epth to Top of Screen	- 4.26 12:32	gallons (3 vo	Ambient PID Ambient PID Wellbore PID LINAPL / DNA	FID Reading: FID Reading: PL		
Purge Volume (gals) インズ インズ	Time 1531 1541	Depth to Water (ft)	Color	Odor	на 01.9 20.7 20.7	Temp (°C) イン・クノ	Cond. (µmhos/cm) (2うえ (206	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
Start Time: / S)-C) Average Purge Rate (ga	> allons/min): C	× ۵	urge Stop Time:	/ hS1	Elapsec	Time: $2/m$ uality Meter ID:		Total Volume F Calibrated on:	urged: (2, 7 <i>J</i> - 3/3/02	gallons
SAMPLING DATA Sampting Method: Sample Date: 3/ COMMENTS:	3/06		Ø	ample Time: (Š	rt.		Analysis:	COC		

Groundwater Sampling Data Sheet

GROUNDWATER SAMPLING DATA SHEET

Groundwater Profile Sampling

(btoc):	1 4 2	Water Column If Depth to Top Place Pump at: If Depth to Top Place Pump at: If Screen Lengt Depth to	Height (do not include of Screen is > Depth - 0.4 Total Well Depth - 0.4 of Screen is < Depth Total Well Depth - (0. h and/or water colum	e LNAPL or DNAPL):_ to Water AND Screen 5 (Screen Length + D 6 Water AND Water 5.X Water Column H 1 height is < 4 ft, Plac	Lenth is (4 feet, NAPL Column Height) column Height and So sight + DNAPL Column ee Pump at: Total Well	= creen Length are < 4ft h Height) = Depth - 2 ft =	th btoc V th btoc V th btoc V th btoc V Cond.	olume of Flow Through Inimum Purge Volume (3 x Flow Through Cell mblent PID/FID Readin fellbore PID/FID Readin	n Cell); <u>250</u> 750 is 1 Volume) <u>750 22</u> g: 0.0 g: 0.0 b: 0	So mL ppm ppm ppm	
M 258		Water (ft)	Color brown 11. brown 17. brown	Odor Nove hone	рн 6.65 6.63 6.63	19.73 18.55 18.55 18.55	(umhos/cm) 0.13 0.13 0.13	Act mesured	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(m) - 434 - 434 - 424 - 42 - 42	5
-4-4	310 3 25		Elaps Avera	ed Time: ge Purge Rate (mL/m	15 mily		Water Qua Date Calib	lity Meter ID: <u>Hori</u> rated: <u>4/5/06</u>	re-n ed		
TA 15/26 20m of	tubly of	the of	Samp Samp	ile Flow Rate:		4	Analysis: Date Calib	VOCS ated:			•

Ş

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

PROJECT NAM DATE: 4 MONITORING W	E: <u>P-13 Nest Fonce</u> /5/06 /ELL ID: <u>P-93-</u>	WEATHER 03 MEATHER	. NUMBER: 2150	.0L		IELD PERSONNEL:	M. Carbett	REDT.	J. Crank	
INITIAL DATA Well Diameter: Total Well Dapth (Depth to Water (bt Depth to LNAPUD Depth to Top of S, Screen Length: つイたとトールのー PURGE DATA Pump Type:	btoc): <u>Sa 69 h</u> oc): <u>12 66 h</u> NAPL (btoc): <u>60 h</u> Sf f Vátera	Water Column If Depth to Tor Place Pump at If Depth to Top Place Pump at If Screen Leng	l Height (do not includ o of Screen is > Depth :: Total Weil Depth – 0. • of Screen is < Depth : Total Weil Depth – (0. th and/or water columi	e LNAPL or DNAPL):_ to Water AND Screen 5 (Screen Length + D) to Water AND Water 5 X Water Column Hc 5 X Water is < 4 ft, Plac	Lenth is (4 feet, NAPL Column Height Column Height and S sight + DNAPL Colum se Pump at: Total Wei)=) creen Length are < 4ft, in Height) = I Depth • 2 ft =	ft btoc Volu Mini ft btoc Volu Mini ft btoc Veli ft btoc Veli	tme of Flow Through mum Purge Volume x Flow Through Cell dent PID/FID Readin bore PID/FID Readin	cell): 260 750 Volume) <u>260</u> 205	mqq
Purge Volume (ml) 2000 3000 3000	Time 1455 1505 1510	Depth to Water (ft)	Color Lt. Drown	Odor Nowe Science	PH 6.31 6.31 6.31 6.31	Temp (°C) (8.6) (8.63 (8.63 (5.46	Cond. (Jumhos/cm) (J. A) (Turbidity NTUS) 11 Arcred 11	00 (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	0RP (mv) 404 447 447
start Time:	455		Elapse	ed Time: ge Purge Rate (mLmi	15 mh n): 200		Water Quality t	Meter ID: <u>Horib</u>	-20-N	
SAMPLING DAT Sample Date: Sample Method: COMMENTS:	A 4/5/06 low flow	12 GNP 59	Sampl	le Time:	515 200 ml	Win	Analysis: Date Calibrate	1 VOCs (7	160)	

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

				OW FLOW GROI	UNDWATER SAM	PLING DATA SHE	ET			
PROJECT NAME DATE: MONITORING W	E: <u>P93 West Francel</u> /e/oc ELLID: <u>E93</u> -	IN PROJECT N WEATHER: -03	NUMBER: 2.57	60° . 0001		ELD PERSONNEL:	M Corbet	L, REDE-	T. Crowk B. Sul	(الدمع)
INITIAL DATA Well Diameter: Total Well Depth (Depth to Water (bk Depth to LNAPL/Dh Depth to Top of Sc Screen Length: うたうとと ペー ユ DLRGE DATA PUMP Type:	く bloc): <u> -116 -116 -116 -116 -116 -11 -11 </u>	Water Column H If Depth to Top o Ceplace Pump at: If Depth to Top o C Place Pump at: If Screen Length	teight (do not include of Screen is > Depth Total Well Depth – 0. of Screen is < Depth Total Well Depth – (0 i and/or water colum	 LNAPL or DNAPL); Water AND Screet (Screen Length + C (Screen Length + C Water AND Water Mater Column H height is < 4 ft, Pla 	1 Lenth is (4 feet, NAPL Column Height Column Height and S leight + DNAPL Colum ce Pump at: Total Weil)= creen Length are < 4ft n Height) = l Depth - 2 ft =	ft btoc ft btoc ft btoc ft btoc ft btoc	lume of Flow Through nimum Purge Volume X Flow Through Cell ibient PID/FID Readin ilbore PID/FID Readin	n Cell): 250 255 ===================================	
Purge Volume (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL)	Time 1555 1605	Depth to Water (ft)	color sl.cloudy i.	Odor 14 LT 14 LT	рн 6:92 6:97 6:97 6:97	Temp (°C) 16.66 16.82 17.19	Cond. (µmhos/cm) 0.16 0.14 0.14	Turbidity (NTUs)	Do (mg/l) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0RP (mv) - 155 - 172 - 176
Start Time: Stop Time: SAMPLING DAT	1550 1603 A		Elaps	ad Time:/ ge Purge Rate (mL/n	10: 200		Water Qualit Date Calibra	/ Meter ID: Hovi	1 - 22	
Sample Date: Sample Method: COMMENTS: Collecte	4 sample	P4307	Sampl	e Time: e Flow Rate:	1610 200 M	4. <i></i>	Analysis: Date Calibrat	ed: Vàcs (8	(090)	
			•							

.

			Ĺ	OW FLOW GROI	JNDWATER SAMF	'LING DATA SHE	티			
PROJECT NAMI DATE: MONITORING W	E: <u>P13 west Fancelin</u> <u>4/7/06</u> ELL ID: <u>F93-</u>	L PROJECT WEATHER	NUMBER: 215	61665.0000		ELD PERSONNEL:	M. Corbett	-(uxs), J	. Crank, B.S	chilling (KEDE)
INITIAL DATA Well Diameter: Total Well Dameter: Depth to UNAPUDI Depth to UNAPUDI Depth to Top of Si Screen Length: SfT שר ייך י	$\frac{<1}{1000}$ $\frac{<1}{1000}$ $\frac{<1}{1000}$ $\frac{<1}{10000}$ $\frac{<1}{10000}$ $\frac{<1}{100000}$ $\frac{<1}{100000}$ $\frac{<1}{1000000}$ $\frac{<1}{1000000}$ $\frac{<1}{10000000}$	Water Column If Depth to Top Place Pump at: If Depth to Top Place Pump at: If Screen Lengt	Height (do not include of Screen is > Depth t Total Weil Depth – 0.5 of Screen is < Depth Total Weil Depth – (0.1 h and/or water column	LNAPL or DNAPL): o Water AND Screen 5 (Screen Length + D to Water AND Water 5 X Water Column H, 1 height is < 4 ft, Plac	Lenth is (4 feet, NAPL Column Height) Column Height and Sc eight + DNAPL Column a Pump at: Total Weil	=	ft btoc Min ft btoc ft btoc ft btoc We	ılume of Flow Throug nimum Purge Volum 3 x Flow Through Ce hölent PID/FID Readi ilbore PID/FID Readi	ah Cell): <u>250 757</u> e = il Volume) <u>260 23-5</u> ng: 0,0	
Purge Volume (mL)	- E E E E	Depth to Water (#)				Temp	Cond.	Turbidity	QQ	dan
0	0445	11) IA	Lolor	Odor	Ha	(c)	(mhos/cm)	(NTUS)	(I/6m)	(AE)
1000	0.850		Umoza-11	21.9~5	21.1	18.43	11.0	not measured	0.00	-235
2000	0855		_	11	2.18	10.8/	11.0	= =	00.00	-272
Das C	870V		-		7.19	18.05	0.11	1.	0.00	- 399
Start Time:	0845		Elapse	d Time: / 5	Mik		Water Ouslith	Mater ID. Une	(te-// . h	
Stop Time:	0960		Averag	te Purge Rate (mL/m	in): 200		Date Calibrat	ted: <u> </u>	700 60	
SAMPLING DAT	Ą									
Sample Date: Sample Method:	4/1/06 Iow Flow		Sample	e Time: 5 Flow Rate:	0405 - 11		Analysis: Date Calibrat	VOCS	(&260)	
COMMENTS:	ted sample 79	3036WP5	9	}		4				
*										
Υ.										

			_	OW FLOW GRO	UNDWATER SAM	PLING DATA SHE	ET			
PROJECT NAM DATE: MONITORING VI	E: Pq3 West Francel 9/2/00 VELL ID:	WEATHER	NUMBER: 215 : sunny,	61665.000	е -	IELD PERSONNEL:	M. Cottett	RENE-	J. Clank, B.S	ז-נעין <i>וו</i> וש
INITIAL DATA										
Well Diameter: Total Well Depth Depth to Water (bi Depth to LWAPL(bi Depth to Top of S Screen Length: Strick we	$\frac{\langle btoc \rangle \cdot \langle f g \rangle}{btoc \rangle \cdot \langle f g \rangle} $ in boc $\frac{\langle f g \rangle}{btoc \rangle \cdot \langle f \rangle} $ fr NAPL (btoc) $\frac{\langle f f \rangle}{f}$ fr creen (btoc) $\frac{\langle f f \rangle}{f}$ fr creen (btoc) $\frac{\langle f f \rangle}{f}$ fr	Water Column If Depth to Top Place Pump at: If Depth to Top Place Pump at: If Screen Lengt	Height (do not include of Screen Is > Depth Total Weil Depth - 0. of Screen Is < Depth Total Weil Depth - (0. Total Weil Depth - (0.	e LNAPL or DNAPL): to Water AND Screet 5 (Screen Length + D to Water AND Water 5 X Water Column H n height is < 4 ft, Pla	n Lenth is 〈4 feet, NAPL Column Height Column Height and S Ieight + DNAPL Colum ce Pump at: Total Wei) =	ft btoc V ft btoc V ft btoc M ft btoc W	olume of Flow Through Inlmum Purge Volume (3 x Flow Through Cell mbient PID/FID Readin ellbore PID/FID Readin	h Cell): <u>260 7.50</u> = 1 1 Volume) <u>759 2.8</u> 19: <u>5.0</u> 19:	men
PURGE DATA Pump Type:	Watera				١					
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	- Ha	Temp (°C)	Cond.		DO	ORP
9	9401		sl. cloudy	Ve5	6.66	20.78	A . /	(NIUS)	(mg/l)	(JM)
0002	(050		clear (, "(6.68	20.34	61.0	11	0.00	86-
3000	1055		1		6.69	62.2	7.0	=	0.00	$-\tilde{j}_3$
					89.0	19.63	61.0	,	0.00	~20
Start Time:	040		Elapse	ed Time: / 5	T min		Water Origi	hr Mater ID. Hari	20-11 20	
Stop Time:	1055		Avera	ge Purge Rate (mL/m	in): 200		Date Callbra	ted: $\frac{1}{\sqrt{7/c}}$	26 000	
SAMPLING DAI	ſA									
Sample Date: Sample Method:	40/1/06		Sampl	le Time: 'e Flow Rate:	1100		Analysis:	VOCA (8260)	
COMMENTS: Collect	id sample Pg	205 CWP44			and me for					
	-									
										-

.

	2		Ĺ	OW FLOW GROL	JNDWATER SAMI	PLING DATA SHE	티			
PROJECT NAM DATE: 24 MONITORING	E: 893 West Fonce 17/06 VELL ID: P293-	WEATHER	NUMBER: <u>2157</u> : <u>54497, 5</u>	<u>6 6 65.0000</u> 65°	е 	IELD PERSONNEL:	URS - M. (Corbett, RBD.	I-J. Crauk,	B. Schilly
INITIAL DATA Well Diameter: Total Well Depth Depth to Water (bi Depth to LWAPL/C Depth to Top of S Screen Lendrb:	く (btoc): <u>く</u> (btoc): <u>くう</u> (btoc): <u>よう、3</u> 4 (http: (btoc): <u>516</u> (t creen (btoc): <u>516</u> (t	Water Column F If Depth to Top Place Pump at: If Depth to Top at: Pace Pump at:	Height (do not include of Screen is > Depth 4 Total Weil Depth - 0.5 of Screen is < Depth - (0.1 Total Weil Depth - (0.1	r LNAPL or DNAPL). o Water AND Screen 5 (Screen Length + D) to Water AND Water 5 X Water Column H	Lenth is (4 feet, NAPL Column Height Column Height and S sight + DNAPL Colum) <u>= </u>	11 httoc	olume of Flow Through Iinlmum Purge Volume (3 x Flow Through Cel mbient PID/FID Readin <i>f</i> ellbore PID/FID Readir	h Cell): <u>280</u> 7 53 = 1 Volume) <u>750</u> 2-2- 19: 0.2	mu ppm
No strick PURGE DATA Pump Type:	up length . Watera		n and/of water column	1 neignt is < 4 tt, Plac	se Pump at: Total Wel	l Depth - 2 ft =	th btoc			
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	Ha	Temp	Cond.	Turbidity	o	ORP
0	1145		It. brown	لالا	6.77	21.57		not measured	(I/ɓɯ)	(mv) -/92
2000	1/55		11	11	6.19	20.02	0.11	3 3 5	00.0	-200
000C	1200		\$	1	18.9	20.32	61.0	11	0.00	~20C
Start Time: Stop Time:	1145	6	Elapse Averag	id Time: 3e Purge Rate (mL/m	15 MIN 11: 200		Water Qual Date Calibr	ity Meter ID: Han ated: 4/2/	26-1 Rd	
SAMPLING DA	ſĀ									
Sample Date: Sample Method:	4/7/0 L 10/4/0W		Samplı Samplı	e Time: e Flow Rate:	1205 200mL1	h in	Analysis: Date Calibr	VOCs C83 ated:	r6 0)	
comments: Collect	ed samples	P93056	WP58 , 8931	OSCWP58 M	2, P13 0	5 GWP58 MS1				

- 4

•

PROJECT NAME: 293 DATE: 4/7/06 MONITORING WELL ID:										
	West Feace	<i>lide</i> PROJECT I WEATHER: P ≠ 9 5 - 0	NUMBER:	750 1665.		FIELD PERSONNEL:	M. Con	bett-(URS),	J. Crank, B:	Shilling (REDI)
INITIAL DATA Well Diameter: Total Well Depth (btoc): <u>4</u> Depth to Water (btoc): <u>4</u> Depth to Top of Screen (bt Depth to Top of Screen (bt Screen Length: No 5 třck wp lengt PURGE DATA Pump Type: <u>1</u>	25-2-2 25-2-2 20::	Water Column F If Depth to Top (Place Pump at: If Depth to Top (Place Pump at: If Screen Length	<pre>4eight (do not includ of Screen is > Depth Total Well Depth - 0. of Screen is < Depth Total Well Depth - (0 Total Well Depth - (0 1 and/or water colum </pre>	e LNAPL or DNAPL) to Water AND Scree 5 (Screen Length + I to Water AND Watei 1.5 X Water Column F in height is < 4 ft, Pla	n Lenth is (4 feet, NAPL Column Heigh Column Height and Ieight + DNAPL Colu ce Pump at: Total We	t) = Screen Length are < 4ft, mn Height) = Ml Depth - 2 ft =	ft btoc V ft btoc A ft btoc M	olume of Flow Throug Inimum Purge Volum (3 x Flow Through Ce mbient PID/FID Readi fellbore PID/FID Readi	ah Cell):250 75 e = nil Volume) 260 7 7 ng: 0.0	mq pm pm pm
Purge Volume (mL)	lime	Depth to Water (#)	Color	Odor		Temp	Cond.	Turbidity	8	ORP
0 15	40	(1) mm4	sli elanda	245	H	() () ()	(mhos/cm)	(NTUs)	(l/gm)	(mv)
1000 15	45		1 1	2 11 2	6.68	22.20	C1.0	apt Measured	0-00	-102
21 0005	240		=		6.68	21.37	61.0	، ر	0.00	-122
				-	6.68	CL.DE	6.13	;	00.0	561-
Start Time: 154 /			Flane	ed Time.						
Stop Time: 155			Avera	ige Purge Rate (mL/r	11): 200		Water Quai Date Calibr	ity Meter ID: <u>No / 1</u> ated: <u> </u>	6 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
SAMPLING DATA										
Sample Date: <u>4</u> Sample Method:	17/06		Samp	le Time: le Flow Rate:	1600		Analysis:	200s	(3260)	
COMMENTS:		- 603			400 m	/••i7		ated:		
4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1	time in	1-1 -2	04 IW9 > 0							

Ą

				LOW FLOW GRC	UNDWATER SAN	MPLING DATA SHE	ET		×	
PROJECT NAME DATE: <u>4 //</u> MONITORING WE	: 193 Nest 0/0/0	Funchin PRC P-93-6	олест NUMBER: 21 АТНЕR: 5иллу	50.		FIELD PERSONNEL:	M. Corbett-(1	JRS), J. Corn	nk, B-Sihijlin	g(REDT)
INITIAL DATA Well Diameter: Total Well Depth (b Depth to Water (bso Depth to LNAPL'DN Depth to Top of Sci Screen Length:	A 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	in Water C they from the term they Place P	Column Height (do not inc ot Top of Screen is > Dej 'ump at: Total Well Depth i to Top of Screen is < De 'ump at: Total Well Depth 'n Length and/or water col	lude LNAPL or DNAPL) pth to Water AND Scree – 0.5 (Screen Length + i pth to Water AND Wate – (0.5 X Water Column H iumn height is < 4 ft, Pla	: In Lenth is (4 feet, DNAPL Column Heigh r Column Height and Height + DNAPL Colu	t)=(4f Screen Length are (4f mn Height) =	ft btoc	ilume of Flow Through Inlmum Purge Volume 3 x Flow Through Cel Inbore PID/FID Readin	n Cell): <u>260 7 5 7</u> 1 = 1 Volume) <u>260 2 285</u> 19: 0.0	mq Branching
PURGE DATA Pump Type:	Natera				`		1			
Purge Volume (mL)	Time 0 4 0 0	Depth t Water (f	to ft) Color	Odor	Ha	Temp (°C)	Cond. (µmhos/cm)	Turbidity (NTUs)	DO (ma/l)	ORP (mv)
1000	2060		Minec . J	465	6-23	17.09	0.17	not incasioned	0.00	-143
2000	0410				6.91	17:36	0.13	; ;	0.00	18/-
20022				=	6.93	17.30	61.0	17	0.00	- 209
Start Time: Stop Time:	0160		Av El	apsed Time: erage Purge Rate (mL/r	<mark>0915 mik</mark> nin): 200		Water Qualif Date Calibra	y Meter ID: <u>Hor'b</u> ted: <u>4/10/</u>	-55-V AQ	
SAMPLING DATA										
Sample Date: Sample Method:	4/10/6 10 410/6	200	Sa Sa	mple Time: mple Flow Rate:	17m00e 0860	4,12	Analysis: Date Calibra	<u>VDCS (8</u>	(0983	
COMMENTS:	ed sample	, P1306	GWP62.5				1			

į

DATA SUE ú I OW FLOW GROUNDWATER

.

LOW FLOW GROUNDWATER SAMPLING DATA & INME: P13 MAT Fracelity. PROJECT NUMBER: <u>JIGG (Lefe 1, 0000 2)</u> FIELD PERSONN and WELLID: <u>P13, 047 Fracelity.</u> PROJECT NUMBER: <u>JIGG (Lefe 1, 0000 2)</u> FIELD PERSONN and WELLID: <u>P13, 047 Fracelity.</u> To the second related LIAOL or DIAPY: <u>JIGG (Lefe 1, 0000 2)</u> and WELLID: <u>P13, 047 Fracelity.</u> To the second related LIAOL or DIAPY: <u>JIGG (Lefe 1, 0000 2)</u> and WELLID: <u>P13, 047 Fracelity.</u> To the second related LIAOL or DIAPY: <u>JIGG (Lefe 1, 0000 2)</u> and WELLID: <u>P13, 071 Barter 1, 0100 1, 0000 1, 0100 1, 000 1, 000 1, 0100 1, 000</u>	HEET EL: URS-M. Corbert REDI-J. Cank, B. Schilling	4ft bloc Volume of Flow Through Cell): 260 750 mL Minimum Purge Volume = (4ft, ft bloc (3 x Flow Through Cell Volume) 260 2-50 mL Ambient PID/FID Reading: 0.0 mL ft bloc Wellbore PID/FID Reading: 2.6 ppm	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Quality Meter ID: Horiba U-33 Date Calibrated: 4/11/06	Analysis: VOCs (名みんの) Date Calibrated:
LOW FLOW GR I NAME: P13 NAST Frace(NL PROJECT NUMBER: 3156, L665, 000 WEATHER: 31441, 750 ATA ATA ATA ATA ATA ATA ATA AT	OUNDWATER SAMPLING DATA SHEET やみ Field Personnel: <u>UR5- M</u> .	t): the first of the	pH Temp Cond. 6.65 20.98 0.455 6.29 21.81 0.13 6.79 21.81 0.13 6.79 21.81 0.13 6.79 21.81 0.13 6.79 21.81 0.13 6.79 21.40 0.13	<u> イン・ハート</u> Water Qi /min): ノチロ Date Cali	1500 Analysis 150 ML/Mit Date Call D
I NAME: P33 Mest Fenceli Historial Historial Historial ATA ATA ATA Ata Ata Ata Ata <	LOW FLOW GR <u>س</u> PROJECT NUMBER: <u>الحرد الورد من</u> wEATHER: عدم مربع 750	Water Column Height (do not include LNAPL or DNAPI 5ff Depth to Top of Screen is > Depth to Water AND Scre 3 Place Pump at: Total Well Depth – 0.5 (Screen Length + If Depth to Top of Screen is < Depth to Water AND water S Place Pump at: Total Well Depth – (0.5 X Water Column If Screen Length and/or water column height is < 4 ft, P	Depth to Color Odor Water (ft) Color Odor /t /t /t /n /t /t /t /t /t	Elapsed Time: Average Purge Rate (mL	Sample Time: Sample Flow Rate: 9309 GWP LoCo, P 9309 GWP 66
	r NAME: P <u>13 West F</u> unce(i) <u>1100/06 4/11/06</u> 21NG WELL ID: P-93-4	ATA ater: $< l$ in Deptih (Herc): 63 (tug); later (foroc): 50 , 23 (tag); VAPL/DNAPL (btoc): $-$ ft bg; up of Screen (btoc): 64 (tags gth: 4). ATA WATERA	Lume Time Time 1440	0/1/1	o Dala 1: 4/11/06 100: 10r Elan 15: 15: 15: 15: 16: 4: 5 amples P.

Ņ
DW FLOW GROUNDWATER SAMPLING DATA SHEET	1561665 FIELD PERSONNEL: M. Corbett (URS), J. Crank, B. Schilling (RED)	LNAPL or DNAPL): It bloc It bloc Volume of Flow Through Cell 1); 250 750 mL O Water AND Screen Length + DNAPL Column Height) = It bloc Minimum Purge Volume = (3 x Flow Through Cell Volume) <u>156</u> 750 mL Screen Length + DNAPL Column Height) = It bloc (3 x Flow Through Cell Volume) <u>156</u> 2350 mL Stwater AND Water Column Height = It bloc (3 x Flow Through Cell Volume) <u>156</u> 2350 mL Minimum Purge Column Height = It bloc Minimum Purge Volume) 0.0 0.0 ppm height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = It bloc Wellbore PID/FID Reading: 0.0 0 ppm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a Time: 15 min e Purge Rate (mL/min): みのの Date Calibrated: 1/5/0.0	Time:172.0Analysis: $VOCS$ (82.60)Flow Rate:200 m.L/m.MDate Calibrated:
LOW FLOW GROUNDWATER SAMPLING	21561665 FIELDF	not include LNAPL or DNAPL): s > Depth to Water AND Screen Lenth is (4 feet, Depth – 0.5 (Screen Length + DNAPL Column Height) <u>=</u> s < Depth to Water AND Water Column Height and Screen I Depth – (0.5 X Water Column Height + DNAPL Column Heig ther column height is < 4 ft, Place Pump at: Total Well Depth	or Odor pH Prown NOAC & C. C. PH I. C.	Elapsed Time: <u>/ / ア mi'n</u> Average Purge Rate (mL/min): みのの	Sample Flow Rate: 172.0 Sample Flow Rate: 200 m L/min
	E: <u>P93 West Fonceline</u> PROJECT NUMBER 15/00 WEATHER: VELLID: <u>F=43-0</u> P-93-11	く (btoc): 人人子子子 (btoc): 人人子子子 (bcc): 日本子子子 (bcc): 日本子子子子 (bcc): 日本子子子子子 (f Depth to Top of Screen NAPL (btoc): 子子子子 (f Depth to Top of Screen ft If Screen Length and/or w こ スチ	Time Depth to Cc 1705 Water (ft) Cc 1705 1705 Iff. cc	1700 1715 A	4/bd/06e four flow sample P9311GWP411
	PROJECT NAN DATE: 4 MONITORING	INITIAL DATA Well Diameter: Total Well Depth Depth to Water (t Depth to LWAPL) Depth to Top of Screen Length: Screen Length: DURGE DATA PUMP Type:	Purge Volume (ml) 000 3000 3000	Start Time: Stop Time: stop Time: SAMPLING DA	Comments:

	(EEDI), B. Schulling (RE	ll): <u>250 750 m</u> t ume) <u>750 m</u> t ppm 0.0 ppm	DO ORP (mgl) (mv) 0.07 -199 0.00 -322 0.00 -332	U-22	
	bett, J. Crack (olume of Flow Through Ce Inimum Purge Volume = (3 x Flow Through Cell Vol nbient PID/FID Reading: ellbore PID/FID Reading:	Turbidity (NTUs) wot measured 	y Meter ID: <u>Hor iba</u> Ied: <u>4/6/06</u>	10C 5 (8761
EET	: M. Corr	ft btoc V M ft ft btoc V ft ft btoc A ft ft btoc W	Cond. (Lumhos/cm) 0.18 0.12 0.11 0.11	Water Quali Date Calibra	Analysis: Date Calibra
PLING DATA SHI	IELD PERSONNEL	t) =(4) = _	Temp (°C) (7.28 (7.28 (7.28 17.54	.5	Y'N
JNDWATER SAM		l Lenth Is (4 feet, NAPL Column Heigh Column Height and S eight + DNAPL Colun ce Pump at: Total We	рн (6.93 (6.93 (6.93)	in): 200	0930 200 mL/. MC
OW FLOW GROI	60°	e LNAPL or DNAPL). to Water AND Screet 5 (Screen Length + D to Water AND Water .5 X Water Column H n height is < 4 ft, Pla	Odor Slight	ed Time: ge Purge Rate (mL/m	le Time: le Fiow Rate: 15, 73, 11, 0
	NUMBER: 215(Height (do not includ of Screen Is > Depth Total Well Depth – 0. of Screen is < Depth Total Well Depth – (0 h and/or water colum	Color <i>I</i> . <i>b</i> .	Elaps	Samp Samp <u>9 311 Gwł 57</u> 7
	Ac PROJECT WEATHER	n Water Column It If Depth to Top It Place Pump at: If Depth to Top If Place Pump at: If Screen Lengt	Depth to Water (ff)		1 16WP59 A
	P93 Not Furcel 06 LL ID: P93	000): 64 1:43.01 1:43.01 2:1.1400; 60 1:41 + 4 + 4 + 4	Time 0910 0915 0920 0935	010	4/6/06 low flow samples 8931
	PROJECT NAME: DATE: <u>7/6/</u> MONITORING WEI	INITIAL DATA Well Diameter: Total Well Depth (bt Depth to LNAPL/DN/ Depth to Top of Scr Screen Length: ダドンド ゼ炉 ニ ライ PURGE DATA Pump Type:	Purge Volume (ml.) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start Time: O Stop Time: 2.	Sample Date: Sample Method: COMMENTS: Collected

	ST AMERICA PURCHA	479	1	N 37204 PI	HONE 800	-765-0980	FAX# 61(-726-3404	_		~		She	0 II	Ē	npo	cts I	US C	Chair	of (Cust	ody F	tecord	
Ř	4 Enterprise Drive, Cedar Fails, IA 50613 03/08/06	17:00	<u> </u>		ß	I SN d(² roject	Manag	er to b	e Invo	ced:							NCIDEN		U.NO		DATE:	12/06	
ž	500 Trinky Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-5	571-6800				ENVERON	VIENTAL SE	RVICES		AME OF P	M TO BI	Ë	뵈	rte Hand	USOPU	ផ	8	7 2	4	8	0	PAGE:	ر ا س	1
	101 South Divie Drive, Dayton, OH 46439 Phone 800-572-9839					TECHNIC	IL SERVICE	ç		AME OF T	A TO BU							000			Ē	roice with		
9 : 3 C	80 Buech Parkway, Buffato Grove, IL 60089 Phone 947-609-776 40 Elucian Pairie Suite & Culmaria Scattare (C) 80217 Phone 31	16 19-503-001			e	RMT HOU:	STON		l												88	mpling ev moled the	ents for thi nuch the	s site,
8	LA channel brinte, saide ny contracto spinings, co aosovi r rinnie ra		1 I		回	Bill CON	SULTANT			J SHELL	MTES		TATE REIM	BURSEME	NT RATES						2	lowing da	tte:	1
	ATMAT COMPANY: URS	Corpon	tion				•		F	HIR ADOVER	d (Bireet a	d City):				ł								
ADDRE	1001 Highlande Pi		ve West;	Sulte 30(900 SC PROMICT CO	NTAOT (A.	ntral A	<u>enue, R</u>	(COYBIA	IL 6204				CONBULTAN	T PROJECT NO	2			
Ë	St. Lo	uis, MO	63110							SAMPLER NA	ME() (LAW	e Han	I (SOPU	SI	Ę	Adama	URB)			SOPUS	-West Fe	nceline P-	3 Project	
TELEM	HONE: 144428-0100 FAX. (Office) 431-429-0482 (office) 314-429-0482 (cell) 314-409-8480 (Traiher) 618-254-1812		E-WAIL	Jeff Adam	Ĕ	mas_Ada	me@urace	moo.qr																
۴D	NAROUND THAE (CALENDAR DAYS): TANDARD (10 DAY) 23 5 DAYS 23 20 AYS			Ö	M HOURS		NO ON	VEEDED						REC	UESTE	D ANA	YSIS #	more then	one method	l is tisted, cir	cia one			
TEMPE	ERATURE ON RECEIPT C*								Π											 		Cont	ainer PiD Rea	dings
5	PECIAL INSTRUCTIONS OR NOTES :																					<u> </u>	aboratory No	tea
2	vel 4 QC Deliverables																							
								ľ		12) 6590	(9	erstate						<u> </u>						
		SAN	MPLING			PRE	SERVATIVE			Port	108)													
	Field Sample Identification	DATE	TIME	MATH	<u>ਹੋ</u> ਤ	PH SONH	BO4 NON	I OTHER	NO. OF CONT.	LLH GHO AOC# MR	oya hai	1 9929 1 994												
	P66 03 0206 01	30/4/2	1010	0 6	\ ×		 		\sim	X												Ŵ	PCOY79	10-
	p7302070601		142	-	7				ş	X														د
	P5803020601		2531		×		~		Υ	×														2
	6 0302020 250		1522		<u>×</u>				3 .	×														2
	a p73030206 ES	7	1105	-	<u> </u>				2	×														2
	030706 01 TB								-	×												7		e
																						; 		
														<u> </u>									×	
							\vdash													-				
Rell				Receive	i by: (Signa	ture)													2		-	ime:		
Reilh	qualmed by: (Bigrature)			Receiver	d by: (Bigne	(ture)												40 10			F	ime:		
	anlikhed her (G).nonkitet.				hur (Rinne	14114															f	em.		Τ
	(antara a constants)				nifte) · da s			-	7	$\left(\right)$				Ì					3/2/b	S		9.R		
Diate	Insurriow: whith with final record. Greep to File. Yellow and Pink to Client									1												05/1/01	Revision]

(# 616-726-3404
HONE 800-765-0980 FA
STER CREIGHTON, NASHVILLE, TN 37204 F
A J 2690 FC
MERIC
EST A
سط

	SI AMERICA 12 2690 FOSTER CREIGHT D2 Commerce Drive, Waterburn, WI 53094 Phone 800-833-7034 Fenterorise Drive, Codar Falls, 1A 50613 Phone 313-277-2401	DN, NASHVTLLE, TN	37204 PHONE 800	-765-0980 FAX# 616-726-34 P US Project Mana	of to be i	nvolced:	Shell Oil Prod	ucts US Chain	Of Cus	stody Record	Г
י ג' י רח ו	500 Trinkly Bhd, Suite 106, Fort Worth, TX 76155 Phone 817-571	-6800		ENVIRONMENTAL SERVICES		OF PM TO BILL:	Herb Hand (SOPUS)		6 4 0	PAGE: D. of L	
* # :	01 South Dixte Drive, Dayton, CH 44439 Phone 800-572-9839 80 Busch Parkway, Buffalo Grove, IL 60089 Phone 847-808-7766 10 Elucar Parte Suite A Chimede Cartes Ch 20007 Phone 347-804	• • • • •		TECHNICAL SERVICES RMT HOUSTON		: OF TS TO BILL:		SAP or CRMT # (TSK	GRWD	Invoice with sampling events for this sit	
ដេដ	נט בואטון גרוידי, סטובר אי טטואפיט פאווויבט, עם סטפטי דווטוד עבי	1166-060		BILL CONSULTANT		HELL RATES	ATE REIMBURSEMENT RATES			sampled through the following date:	
ISNOC	LTART COMPANY: LIDE C	notection			9ITE A	DORESS (Street and City):			•		r-
DDR	Bit: 1001 Highlands Plaz	a Drive West; 5	Sulte 300		00	10 South Central Av	enue, Roxana, IL 62048 (cerr tel:	CONBULTANT P	PROJECT NO.:		
Ë	St. Louis	a, MO 63110			BAMP	Herb Hand LER NUME(B) (Phint):	(SOPUS) Jeff Adam	e (URS)	SOPUS-West	L Fenceline P-93 Project	×.
TELEP	IONE: 64X: 64X: 64X: 64X: 64X: 64X: 64X: 64X	EMALE	Jeff Adams The	mas_Adama@urscorp.com							
ا م آ	VAROUND TIME (CALENDAR DAYS): ANDARD (10 DAY) 2 S DAYS 3 DAYS	2 DAYS	🔲 24 HOURS	C RESULTS NEEDED ON WEEKEN	ę						ž
MP.	ERATURE ON RECEIPT C°										
ŝ	ECIAL INSTRUCTIONS OR NOTES :										
1	vel 4 QC Deliverables										
		SAME	PLING		ELD PARAMET	ERS	ſ				
335	Field Sample Identification	DATE	TIME	TEMPERATURE (F)	뵵	CONDUCTIVITY (00				
	P6603020601	3466	1040	63.5	6.58	1260 451	Ŧ				
	P73 U 3070601		1400	60.95	(1.9)	1170 25/0	5				
	PS& U3020601		1220	59.18	6.78	3460 4456	3		Þ		
	PSE03020602	T	ا کردم	53. (g	6.78	3460ms/					
							1				
							1				
							1				

ĩ NPC0653

TEST AME 03/09/06 17:00	HTON, NASHVILLE, FN /036	37204 PHONE	800-765-0980 FAX#	616-726-3404		Ø	She	II Oil Pi	roduct	s US CI	ain Of C	Custod	y Record
🔲 704 Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2	2401		SOP US Projet	ct Manager	to be Inv	olced:				INCIDENT	(SAE ONLY)	DATE	313106
14500 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 81.	7-571-6800			SERVICES	NAME OF	PM TO BILL:	Her	b Hand (SOPU	S) S	- C	4 8 4	PAGE	ہم ہ
3601 South Divide Drive, Dayton, OH 46439 Phone 800-572-983	6		TECHNICAL SERVI	CES								Involce	uith.
1380 Busch Parkway, Buffalo Grove, 11, 60089 Phone 847-808-7 1110 Elisten Park Science Science Concerns Concerns Concerns	766				NAME OF	18 10 BILL:				SAP OF CRM	T . (TS/CRWT)	samplir	ig events for this site
	1766-C6C-67/				E Ster	L RATES] STATE REIMB	URSEMENT RATES				sample followir	d through the ig date:
CONSULTANT COMPANY:					BITE ADOR	SS (Bireet and City]				
Ϋ́,	ts Corporation					ante Canto							
ADRESS: 1001 Highlands	Plaza Drive West; S	suite 300			PROJECT (SONTACT (Report to	I Avenue, KC	X8N8, IL 5204		8	WBULTANT PROJECT NO .:		
am: St.L	ouls. MO 63110				BAMPLER	Herb F VAME(8) (Prim):	land (SOPUS) Jef	Adams (URS		sopus	West Fencellr	e P-93 Project
TELEPHONE (office) 314-429-0100 FAX: (Office) 431-429-04 (cell) 314-409-4480 (Trailer) 618-254-15	82 E-MAIL	Jeff Adams	Thomas_Adama@una	corp.com	1								
TURNAROUND TIME (CALENDAR DAYS):	C 2 DAYS	24 H		s Needed N weekend				REQUESTE	D ANALYSI	S if more than one	method is listed, circ	le one	
TEMPERATURE ON RECEIPT C.													Container PID Readings
SPECIAL INSTRUCTIONS OR NOTES :								······································					or Laboratory Notes
Level 4 QC Deliverables													
) 560	autqa (
	SAMPLING		PRESERVATIV	ų	8 bor 8 bor	91-08					-		
Lie Field Sample Identification	DATE TIME	MATRIX	HCL HNO3 H2804 NO	NE OTHER	VOC - MAR) OFIC-HTT 9108 \ 0858							
m5 03 03 06 01	3/3/0 (0 A)	er.	×		×			 				\leq	10-623-01
P93403030601	0841	_	×		×			 					2
P436030601	15 45				×								M
P5703030601	1529		¥		×								7
PA34030306 MS	5(4)		×	~	X								2
P534030306 MSD	SEH1 7	4	↓		XZ								0
0303060278					×								ς
													4
Relinquièned by (Bignaure)		Received by: (S	gnature)			$\left \right\rangle$				Date:	14/0 6	П ^{те} Х	60
Reinquished by (Gignature)		Received by: (S	gnature)							Date:		Time:	
Relinquished by: (Signature)		Received by: (S	gnature)							Date:		Time:	
Andrew													

	EST AMERICA 2 2660 FOSTER CAEGH 502 Comments Diva, Westerburn, WI 35094 Phone 500-633-70	ITON, NASHVILLE, TN 3 236	7204 PHONE 800-76	15-0960 FAX# 616-726-34	Ŧ	s S	nell Oil Prod	ucts US C	hain Of Cu	istody Record	
Ô	04 Enterprise Drive, Cedar Falis, IA 50613 Phone 319-277-240	4	SOP	US Project Mana	ger to be in	volced:				DATE: 3/3/0C	Γ
Ô	4500 Trinity Bhd., Suite 106, Fort Worth, TX 76155 Phone 817-5	21-6800		VVIRONMENTAL SERVICES	NAME	OF PM TO BILL:	Herb Hand (SOPUS)	8 7 2	1 6 6 4 0	PAGE: 2 of 2	_
	1601 South Dide Drive, Daybor, CH 46439 Phone 800-572-9839		5	ECHNICAL SERVICES	NAME	of ts to Bill:		SAP-OFCR	MT# TS/CRMT	invoice with	1
10	130 Eliter Drive. Sulla A. Calorado Sorinas. CO 80307 Phone 71: 110 Eliter Drive. Sulla A. Calorado Sorinas. CO 80307 Phone 71:	9-593-9911		MT HOUSTON						sampling events for this emplad through the	Bite,
	à			ILL CONSULTANT	5		ELMBURSEMENT RATES			following date:	1
NO2	sultant company:				OV SUIS	CHEESE (bireet and City):					
	URS	Corporation			ş T	Courth Contrat Avenue	Dovene li 82048				
Ş.	ntsa: 1001 Highlanda Pi	aza Drive Weat; Si	ulte 300		MC	or contract (Report to):	, ruaning, it, usuru (Copy ta):		CONSULTANT PROJECT NO.		T
Ë,	St Loi	ule, MO 63110	-			Herb Hand (SO ER WME(8) (Print):	PUS) Jeff Adar	is (URS)	SOPUS-We	at Fenceline P-93 Project	
F	(Office) 314-428-0100 (Office) 314-429-0482 (Office) 314-429-048-0482 (Office) 314-429-048-0482 (Office) 314-429-0482 (Office) 314-429-0482 (Office) 314-429-0482 (Office) 314-429-048-0482 (Office) 314-429-048-048-048-048-048-048-048-048-048-048		if Adams Thon	Adama@urscorp.com	-						
۴ő	RVAROUND TIME (CALENDAR DAYS): Standard (10 Day) 🗾 5 Days 🛄 3 Days	2 DAYS	🗌 24 HOURS	C RESULTS NEEDED ON WEEKEN	<u>е</u>						
TEM	PERATURE ON RECEIPT C.										
<u></u>	IPECIAL INSTRUCTIONS OR NOTES :		-								
د. 	avel 4 QC Deliverables										
		SAMP	DND	Ē	ELD PARAMET	ERS					
333	Field Sample Identification	DATE	TIME	TEMPERATURE (F)	Æ	CONDUCTIVITY (see units below)					
	P7503030601	3/3/06	(030	61.7	6.45	rold with					
	P93403030601		1430	62.6	661	1022 nSlew					
	P33 B UZOSOGO 1		الكمك	57.92	7.09	1161 with					
	P5703030601	7	دككم	55.76	6.72	1212 mS/cm					
							,				
E							T				

~
X
5
Š.
5
Ē
5
-

TEST MULLING 17:00 TER CREIGHTON, NASHVILLE, TN 37204 PHONE 800-765-0980 FAX# 616-726-3404

Looler 1 of 1

Shell Oil Products US Chain Of Custody Record

Falls, IA 50613 Phone 319-277-2401 5, Fort Worth, TX 76155 Phone 817-571	6800			roject Man	ager to I	be invoi	Ced: M To Bi		Hart	Hand (SOPI IS)		3				DATE: 4-5-00	
e 817-571 72-9839	6800			ENTAL SERVICES		NAME OF P	M TO BIL		태	Hand (SOPUS)		9 7	7	6 6 3	4	PAGE: 1 of 1	
-808-7766 Phone 719-5	93-9911		LI TECHNICAL	SERVICES		NAME OF T	S TO BILI	Ľ				\$	or CRMT	*(TSICRUM)		/olce with mpling events for this s	itte,
				JLTANT		SHELL R	ATTES	C STA1	e reimbur	SEMENT RATES					2 2 2	mpled through the lowing date:	F
URS Cc	rporation					SITE ADDRESS	(Breat and UCS 1	CIN: FFENC	line 1	-93				-			Τ
ands Plaz	a Drive Weat; Sult	te 300			-4	Provect con	TACT (Repo	rt to):		ast Kang Aven opy to):	Tue; Han		2048 CONE	JULTANT PROJECT N	0: L	Jest Fenceline P.	62
St Loula	, MO 63110					BAMPLER NAN	Her AE(8) (Phm):	b Hand (SOPUS)	Jeff A	dams (U	IRS)	_		sopus)
9-0462 4-1512	E-MAIL: Jeff.	Adame T	homas Adams	Marscorp.com			Ř	۲ ۲	J J	bett						2	
ş	🗖 2 DAYS	24 HOUR	ະ [] ສ	ESULTS NEEDED	P.					REQUESTED	ANALY	SIS If more	o than one m	hethod is listed, c	Incle one		
						_	┝	E	F		╞─		-		E		
	Temp	Blar	ドロ	nclude	þ			20		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					container rub restaint or Laboratory Notes	<u>n</u>
						1 0925	15 	kda tovi									
	SAMPLING ATE TIME	MATRUX	PRESER	MATIVE MONE OTHER	NO. OF CONT.	NOC* MORPOG	Harris Cold Cold Closed Cold Cold Cold	Mei 4 CC Dell									
1/4	5/06 1330 h	later 2	~		m	×	/	×				-				NO 00 50-01	
1/1	5/06/15/5 14	later X			m	×		×									Ι.
14	5/06 1720 W	aterx			m	×	<u> </u>	×				 					1
4	5/04				1	×							-			, 2	
-																	
									·						 		
	• •																
	-			 							<u> </u>		-				
15/02	1745 Re	celved by: (Sign:	ature)								1		Date	4	₩ 		
ļ	å	oelved by: (Sign∉	ature)										Date:		1		
	Rec	elved by: (Signe	ture)										Date:				
							7	(Ì				1//	1.1		8, UN	
client.													2	977	-	Contraction DS/4/01 Revision	1

	2690 FOSTER CREIGHTON, NASHVILLE	; TN 37204 PHON	€ 800-765-0980 FAX# 616-72	-3404		S	hell Oil Proc	lucts US Ch	Jain Of Cu	stody Record	
Contemporate Drive, Cedar Falls, IA 50613	Phone 319-277-2401		SOP US Project Ma	nacar to b	a involce						Γ
14500 Trinity Blvd., Suite 106, Fort Worth, TX 76	3155 Phone 817-571-6800			E S	AME OF PM TO		Hoth Hond /2001 Ion			DATE: 4/7/00	
🔲 3601 South Dixie Drive, Dayton, OH 46439 Pi	hone 800-572-9839		TECHNICAL SERVICES	 				9 7 2 1	6 8 3 4	PAGE: of	
1380 Busch Parkway, Buffalo Grove, 1L 60089 1110 Elkton Drive, Sulta A. Colorado Soninos. CO	Phone 847-808-7766 3 80907 - Phone 719-603-0011			_ <u>z</u>	AME OF TS TC	· BILL:		SAP or CRM	# (TS/CRNT)	Invoice with sampling events for this s	je je
C Other					J SHELL RATE		KEIMBURSEMENT RATES			sampled through the following date:	
CONSULTANT COMPANY:	URS Corporation				TTE ADDRESS (Sire	43 West Fe	nceline				1
AUDHE88: 10	01 Highlands Plaza Drive We	st; Suite 300			SOPUS-I	(Report to):	170 East Rand Avenue	Hartford, IL 62048	BULTANT PROJECT NO.:	042 11/1+1 11	
CUTY:	St Louis MO 82110				ANDI FR NAME/RY	Herb Hand (SO	PUS) Jeff Adar	ns (URS)	SOPI	170 West tenceling	3
TELEPHONE (Office) 314-428-0100 (cell) 314-409-6460 (Tri (Tri	Tice) 431-429-0462	Jeff Adams	Thomas_Adame@urscorp.cc	Ę	Σ	ichael	Corbett	▲.	3	neonr	
LURINAROUND TIME (CALENDAR DAYS);	🗍 3 DAYS	YS 🗆 24 HC		ČEND ČEND		-	REQUESTED AN	ALYSIS If more than one n	nethod is listed, circle one		
TEMPERATURE ON RECEIPT C										Container DID Deedlare	Γ.
SPECIAL INSTRUCTIONS OR NOTES. Level 4 QC Delivera	ables Tew	p Blank	Included							or Laboratory Notes	
					(anute entables					
	SAMPLING		PRESERVATIVE		S108	Veik Wor				÷	
Field Sample Identifit	cation DATE TIM	E MATRIX	HCL HNO3 H2SO4 NONE OTH	NO. OF CONT.		9409 ¥ 640					
P43036WP59	1/2/06/040	S water	×	3		X		- - 	PD0934	-	T
P9305GWP45	4/2/06 1100	o water	X	3		×		40	13/06 23:59		4
893056WP58	50E1 99/1/h	r water	\mathbf{x}	3		×) 			
P9305 6WP58MS	50e1 90/L/h	r water		m		X					T a
7305 6NP58 MSL	sael ad/2/1/	- water	×	5		X					<u>ר</u> ג היי
TB04070603	4/7/66	water		<u>-</u>		X					, <u>,</u>
P9306 GWPSDEB	12/0/121	o water	X	~ M		X					- 4 - 4
P9306 6WP50	4/7/06 160	0 water	X	ろ ろ		X					و. - ح
					-					5	2
Religional Aur (Sitratura)										3	2
This cho	t 4/2/06 1730	. Received by: (S)	gneture)					Date:		. Time:	T
Relinquished by: (Signature)		Received by: (Si	gnature)					Date:		Time.	—
Relinquished by: (Signature)		Received by. (Si	jnature)								
							- MC	4	206	TIME. 0836	
US INTEO I JON: VVIIRE WITH THEI REPORT, GREEN TO FILE, YELOW	r and Pink to Cilent.									05/1/01 Revision	1

Cooler lof |

Föč	EST AMERICA 🖸 2690 FOSTER CREIGHTON, NASHVILLE, 602 commerce Drive, Watertown, WI 53094 Phone 800-833-7036 04 Emeridia Drive Codar Falls 14 styli 3 boxes 310-7723-2401	N 37204 PHONE 800-765-0980 FAX# 616-726-3404	Construction Shell Oil Produ	cts US Chain Of Custody Record
jċ	104 Ellespise urive, Leder rais, la 30013 Princie 319-2//-2401 4500 Trickiu Blud Suite 106 East Words TV 26155 Brunn 817-231-5600			DATE: 4/ /0/06
iΰ	601 South Divice Dayson, OH 46439 Phone 800-572-9839		NAME OF PM TO BILL: Herb Hand (SOPUS)	9 7 2 1 6 6 3 4 PAGE: L 0 L
ō	380 Busch Parkway, Buffalo Grove, IL 60089 Phone 847-808-7766		NAME OF TS TO BILL:	SAP OF CRMT # FBICRWITH Involce with
οı	110 Elkton Drive, Suite A, Colorado Springs, CO \$0907 Phone 719-593-9911			sampled through the
ŏ	bher 		2 SHELL RATES	following date:
	BULTART COMPANY: URS Corporation		FITE ADDRESS (Streed and OLIV): P 93 West Ferceline SOPHISE Party Statement 100 East Band Avanual 4	87002 11
CIIX CIIX	1001 Highlands Plaza Drive West	Suite 300	PROJECT CONTACT (Report to): (Copy to):	INVIA, IL OZUMA PROJECT NO.: 19.3 WEST PENCERIZE
	St. Louis, MO 63110		Herb Hand (SOPUS) Jeff Adams	
TELE	PIORE 314-429-0100 FAX: (Office) 431-429-0462 E-Mult. (call) 314-409-6460 (Trailer) 619-254-1512	Jeff Adams Thomas Adams@urscorp.com	Mike Condett	
₽Ö	NARROUND TIME (CALENDAR DAYS): TANDARD (10 DAY) 2 S DAYS 2 20 AYS 2 2 AYS	24 HOURS CREEDED ON WEEKEND	REQUESTED ANAL	/SIS if more than one method is listed, circle one
Ē.	JERATURE ON RECEIPT C ^o			Container PID Readings
<u>س</u> م	PECIAL INSTRUCTIONS OR NOTES : LEVEL 4 QC DELIVERABLES Tem	, Blank included		or Laboratory Notes
			verable))	
	SAMPLING	PRESERVATIVE	B015	
338	Field Sample Identification DATE TIME	MATRIX MATRIX HCL HNO3 H2804 NONE OTHER CO1	Tevel 4 GC 2520 (9012 1111-020 (9012 1111-020 (10 1111-020 (10 110-020 (10 110) (10 110-020 (10 110) (10 110-020 (10 110) (10 110	
	P9306 GWP62.5 4/10/04 092	water X	X	NPD1163
	TB04100604 Himbu	water	X	04/16/06 23:50
Relin	with the Cilit 4/10/06 1800	Received by: (Signeture)		Date:
Relln	quished by: (Signeture)	Received by: (Signature)		Date: Time:
Railing	litibad by Gorowina.			
	(ammaulio) - (a oourash	received by: (Signature)	M	Date: 4-11-06 7830
DISTR	BUTION: White with final report, Green to File, Yellow and Pink to Client.		X	OS(1/N1 Bavleton

Cooler 1 of 1

ゴな

TESTAMERICA 2549 FOR CARGENTON 7262 Commerce Drive, Waterburn, WI 33099 Phone 800-833-7036	NASHVILLE, Th	1 37204 PHO	VE 800-765-0	04/	17/06	23:59			hS (lell C	Dil Pr	oque	cts U	S C	ain Of	Cus	tody Record	
C 704 Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401			SOP U	S Projec	t Manag	er to be	involce	ij						CIDENT 4	(SAE ONE Y)		NATE OH / 11 /06	Γ
14500 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-571-6	00			ONMENTAL S	ERVICES	<u> </u>	AE OF PM 1	THE O		Herb Han	IN (SOPUS	 	6	~	8	4	PAGE: of	
3601 South Dicke Drive, Dayton, OH 46439 Phone 800-572-9839				ICAL SERVIC	ង												nvoice with	Γ
Li 1300 Busch Parkway, Buffalo Grove, IL 60089 Phone 847-808-7766	1 2001			OUSTON		¥	AE OF 13 1	0 BILL:					\$	Т 2 0			ampling events for this	, ĝ
				ONSULTANT			SHELL RATI		STATE RE	IMBURSEM	ENT RATES	 					ampled through the ollowing date:	
CONSULTANT COMPANY:							ADDRESS (Bti	aet and CIty);									0	
URS Con	poration							: : 1										
ADDRESS: 1001 Highlands Plaza	Drive West;	Suite 300				<u> </u>	SOPUS-	Rand P	onue	170 East	Rand Av	enue; Hai	rtford, IL	62048 8	VSULTANT PROJECT	.ON		T
cint: St. Loula.	MO 63110						APLER NAME(B	Herb H	Ind (SOP	(SU	Jeff	Adams (I	JRS)			SUPUS	Rand Avenue	1111
TELEPHONE. TELEPHONE. (Collice) 314-429-0100 (Collice) 314-408-9460 (Trailier) 618-254-1612	E-MAIL.	Jeff Adams	Thomas A	vdame@ursc	orp.com	1											6	
TURNARCUND TIME (CALENDAR DAYS): C STAMDARD (10 DAY) 2 S DAYS 3 DAYS	🗆 2 DAYS	н¥ 7	ours		NEEDED WEEKEND					RE N	QUESTE	D ANAL'	YSIS if mo	re than one	method is listed,	circle one		
TEMPERATURE ON RECEIPT C°																	Container PID Readin	
SPECIAL INSTRUCTIONS OR NOTES :															······		or Laboratory Notes	
Level 4 QU Deliverables								92	\$9434							<u> </u>		
	SAMPLING			PERMATINE	ſ	9828 P	(510	ntelok										
Field Sample Identification	TE TIME	MATRIX	HIG			رة المشاه مناطقة المطالبة مناطقة المطالبة	8) 0910-H41 99) 0910-H41	1 SLO8 / 0921	1.00 + 1949									
P1309 6-WP6 6	1/1 1500	3				M							-				1107 1 302- C	L
P7309 GUP 667 W	166 1500	3	5			> ~		-										
Pasog Gursz 1	Ww 1430	3	>			> M			5								<u>^0-</u>	
1304110605 vy	4/~	3	2			> _			5	-							P0-	
P1309 EWP SZER 04	10 1315	3	>			M	<u></u>										201	
											-							Γ
													-					Τ
							 											1
													-					Τ
										-						-	,	
Relinquished by: (Signarget		Received by: (Signature) NAS										-	Dete:	0/11/	-	time (830	1
Routgadiated by: (Signature)		Received by: (Signature)				5							Date:	+		rime.	1
Reinquished by: (Signature)		Received by: (Signature)		13		\downarrow							Date:		-F	ine:	T
			\bigcup	NN	M (M	Q	Z							7)2/0fe		Q is	
DISTRIBUTION: White with final report, Green to File, Yallow and Pink to Cilent.			ŀ	ß										+		1	05/1/01 Revision	1

NPD1302

00000 NACU [J] 2690 FOS TEST AMERICA

Ę

FUGRO GEOSCIENCES, INC.

6105 Rookin Houston, Texas 77074 Phone : 713-346-4000 Fax : 713-346-4002

June 5, 2006 Report Number: 0305-1830B

URS Corporation 1001 Highland Plaza Drive West Suite 300 St. Louis, MO 63110

Attn.: Mr. Eric Friedich

DATA REPORT CONE PENETRATION, RAPID OPTICAL SCREENING TOOL (ROST™) AND MEMBRANE INTERFACE PROBE (MIP) TESTING RELATED SERVICES CONOCO PHILLIPS REFINERY ROXANNA, ILLINOIS WORK ORDER NO. 21561665

Dear Mr. Friedich:

Fugro Geosciences (Fugro) is pleased to present this data report for Cone Penetration (CPT), Rapid Optical Screening Tool (ROST[™]) and Membrane Interface Probe (MIP) testing at the above-referenced site. These tests provided continuous characterization of stratigraphy, petroleum hydrocarbon distribution and chemical characteristics of soil at the testing locations. A description of the CPT, ROST[™] and MIP technologies follows. CPT, ROST[™] and MIP logs and electronic data CD are included as attachments.

Cone Penetration Testing

CPT was performed simultaneously with each ROST[™] sounding and yielded real-time stratigraphic data. CPT is a proven method for rapidly evaluating the physical characteristics of unconsolidated soils. It is based on the resistance to penetration of an electronically-instrumented cone which is continuously advanced into the subsurface. In accordance with ASTM Standard D5778-95, the cone was advanced at a rate of two centimeters per second with the driving force provided by hydraulic rams.

The CPT cone used at this site had an apex angle of 60 degrees with a base area of 15 square centimeters (cm^2) , and friction sleeve with a surface area of 200 cm². The standard geotechnical sensors within the cone measure tip resistance and sleeve friction in tons per square foot (TSF). The combined data from the tip resistance and sleeve friction form the basis of the soil classification (e.g., sand, silt, clay, etc.).

Soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

ROST[™] Testing

Fugro Geosciences' ROST[™] Laser-Induced Fluorescence system was used for this investigation to screen soils for petroleum hydrocarbon materials containing aromatic hydrocarbon constituents. The system consists of a tunable laser mounted in the CPT truck that is connected to a down-hole sensor. The down-hole sensor consists of a small diameter sapphire window mounted flush with the side of the cone penetrometer probe.

The laser and associated equipment transmit 50 pulses of light per second to the sensor through a fiber optic cable. The wavelength of the pulsed excitation light is tunable and can be set to wavelengths of 266 nanometers (nm) or to wavelengths between 280 and 300 nm. An excitation wavelength of 290 nm was used for each test during this project.

The laser light passes through the sapphire window and is absorbed by aromatic hydrocarbon molecules in contact with the window, as the probe is advanced. This addition of energy (photons) to the aromatic hydrocarbons causes them to fluoresce. A portion of the fluorescence emitted from any encountered aromatic constituents is returned through the sapphire window and conveyed by a second fiber optic cable to a detection system within the CPT rig. The emission data resulting from the pulsed laser light is averaged into one reading per one second interval (approximately one reading per 2 cm vertical interval) and is recorded continuously. ROST[™] may be operated in single or multi-wavelength mode, depending on project objectives. For this project, ROST[™] was operated in multi-wavelength mode (MWL).

Multi-Wavelength Mode (MWL). In MWL mode, several characteristics of the emitted fluorescence are measured and recorded simultaneously at four (4) specific wavelengths (340, 390, 440, and 490 nm). These four wavelengths represent the spectrum of fluorescence typically produced by aromatic hydrocarbons ranging from light fuels through heavy contaminants such as coal tar and creosote. The recorded data is then presented as a color graph of fluorescence intensity (the combined fluorescence of all four monitored wavelengths) versus depth (FVD).

On the FVD graph, each of the four monitored wavelengths is assigned a color. These colors are combined based on the proportional fluorescence intensity of each of the individual wavelengths. The combined color is then used on the FVD graph. Changes in color on the FVD graph typically represent changes in product type. Similarly, like colors on the FVD graph typically represent the same product, regardless of the total fluorescence intensity. Changes in the total fluorescence intensity typically indicate changes in contaminant concentration, with higher fluorescence intensities representing proportionally higher concentrations when compared to lower fluorescence intensities.

In addition to the FVD graph, depth specific waveforms are presented at four (4) selected depths throughout the sounding. These waveform graphs are presented to the right of the FVD graph on each plot. In the waveform graphs, the fluorescence intensity and duration of fluorescence of each of the monitored wavelengths is represented by an individual peak, starting at 340 nm and increasing in 50 nm wavelengths as you move to the right. The intensity of each wavelength is represented by the height of the peaks, and the duration of fluorescence is represented by the width of each peak. For general interpretation purposes, lighter aromatic hydrocarbon molecules will emit fluorescence at the shorter wavelengths, and heavier, longer chained hydrocarbons will emit fluorescence at the longer wavelengths. The presented waveforms can be compared to waveforms typical of common hydrocarbon products to determine the likely product type that has been encountered. Please note that the waveforms are available at every two centimeter interval throughout the entire sounding. Additional waveforms can be generated at any time during or after testing is complete.

Reference Solution. The fluorescence intensity of a reference solution placed on the sapphire window was measured immediately prior to conducting each test. This reference solution measurement serves two purposes. First, as a quality control check, the solution is used to ensure that the performance of the system is within specifications. Second, it allows for normalization of the data from

different test locations for variation in laser power, operating conditions, and monitored emission wavelength. The reference solution used for this project was the standard M1 reference, which is a proprietary PHC containing solution. M1 provides consistent fluorescence response across the portion of the spectrum analyzed by ROST and therefore, allows the fluorescence data collected to be consistently normalized to intensities recorded as a percentage of M1.

MIP Testing

For this investigation, the MIP was combined with CPT to screen soils for VOCs. The MIP system consists of a hydrophobic membrane that is surrounded by a heater block, Teflon tubing, and a series of detectors. By heating the area around the membrane, a pressure gradient is created. This pressure gradient pushes volatilized VOCs through the membrane where they are "swept" to the surface using an inert carrier gas. Once at the surface, the carrier gas and any VOCs that are present are fed directly into a series of detectors. This series of detectors includes

a PID, FID, and ECD. The responses from each of the detectors are then recorded. A brief description of each of the detectors follows.

The Photo Ionized Detector (PID) responds to all aromatics and molecules with carbon double bonds. The PID uses a 10.6eV lamp with a high voltage power supply. Sample laden carrier gas flows into the inlet and through a flow-through cell. When the sample molecules flow into the cell they are bombarded with UV light. Molecules with an ion potential lower than 10.6eV release an ion when struck by the photons. The ions are attracted to a collector electrode, and then sent to the amplifier to produce and analog signal. The PID is nondestructive, so the sample is routed through the PID to subsequent detectors.

The Flame lonized Detector (FID) responds to any molecule with a carbon-hydrogen bond. In the FID, the carrier gas effluent is mixed with hydrogen then routed through a stainless steel jet. The hydrogen mix supports a diffusion flame at the jet's tip, which ionizes the analyte molecules. Positive and negative ions are produced as each sample component is eluted into the flame. A collector electrode attracts the negative ions to the electrometer amplifier, producing an analog signal for the data system input. Because it uses a hydrogen diffusion flame to ionize compounds for analysis it destroys the sample in the process.

The Electron Capture Detector (ECD) detects electro-negative compounds, especially chlorinated, fluorinated or brominated molecules such as carbon tetrachloride, bromoform, PCBs and pesticides. The ECD detector consists of a sealed stainless steel cylinder containing radioactive nickel-63. When electro-negative components enter the cell, they immediately combine with some of the electrons, reducing the number remaining in the electron cloud. The detector electronics, which maintain a constant current through the electron cloud, are forced to pulse at a faster rate to compensate for the decreased number of free electrons. The pulse rate is converted to an analog output which is connected to the data system.

The collected sensor data is presented on plots for each CPT/MIP test. In addition to the plots, a disk containing the digital output from each of the detectors and from the CPT is provided.

LIMITATIONS OF ENVIRONMENTAL SUBSURFACE WORK

Fugro Geosciences' report is based upon our observations made during field work, the information provided to Fugro and the results of the ROST/CPT survey. Given the inherent limitation of environmental subsurface work, Fugro cannot guarantee that the site is free of hazardous or potentially hazardous materials or conditions or that latent or undiscovered conditions will not become evident in the future. Fugro's report was prepared in accordance with our proposal and the General Conditions agreed to between Fugro and Client and no warranties, representations, or certifications are made.

Fugro Geosciences, Inc. appreciates the opportunity to be of service to your organization. Please do not hesitate to contact us if we can be of further assistance. We look forward to working with you in the future.

Sincerely, FUGRO GEOSCIENCES, INC.

Recep Yilmaz

President

RY/mdt

Enclosure: - 1 CD

KEY TO SOIL BEHAVIOR TYPE

.. .

SAND AND SANDY SOIL

CLAY AND CLAYEY SOIL

SILT AND SILTY SOIL

1 BAR=100 kPA=1.02 KG/CM²

MODIFIED CAMPANELLA AND ROBERTSON SOIL BEHAVIOR CHART (1983)

fugro geosciences,inc.	
CPT No : P-93-08	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

fugro geosciences,inc.	
CPT No : P-93-08	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

ROST Fluorescence Response Data

Operator: GLENN
Fugro Job #: 0305-1830
Max fluorescence: 112.11% @ 64.23 ft
Final depth BGS: 70.02 ft

Fugro Geosciences, Inc., 6105 Rookin, Houston, TX 77074 (713) 346-4000 www.geo.fugro.com

fugro geosciences,inc.	
CPT No : P-93-01	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-31-2006

fugro geosciences,inc.	
CPT No : P-93-02	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 04-01-2006

fugro geosciences,inc.	
CPT No : P-93-02	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 04-01-2006

fugro geosciences,inc.	
CPT No : P-93-04	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 04-01-2006

fugro geosciences,inc.	
CPT No : P-93-04	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 04-01-2006

fugro geosciences,inc.	
CPT No : P-93-05	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 04-01-2006

fugro geosciences,inc.	
CPT No : P-93-06	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : JB
	DATE : 04-02-2006

fugro geosciences,inc.	
CPT No : P-93-07	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-31-2006

fugro geosciences,inc.	
CPT No : P-93-07	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-31-2006

fugro geosciences,inc.	
CPT No : P-93-08	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

fugro geosciences,inc.	
CPT No : P-93-08	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

fugro geosciences,inc.	
CPT No : P-93-09	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

PLATE: 1 of 2

fugro geosciences,inc.	
CPT No : P-93-09	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-30-2006

fugro geosciences,inc.	
CPT No : P-93-10	SITE : HARTFORD
JOB No : 0305-1830	CLIENT : URS CORP
CONE No : F7.5CKEW1303	OPERATOR : GJ
	DATE : 03-31-2006

West Fenceline Data Review

Laboratory SDG: NPC0479

Reviewer: Tony Sedlacek

Date Reviewed: 2/11/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P6603020601	P7303020601
P5803020601	P5803020602
P73030206EB	03020601TB

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that hexachlorobutadiene was detected in the method blank and benzene was detected in the equipment blank. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
P73030206EB	VOCs	Benzene	2.62	μg/L
6032146-BLK1	VOCs	Hexachlorobutadiene	1.71	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
P6603020601	VOCs	Benzene	11.6	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogat	e	Recovery	Criteria
N/A					

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	L.	Analyte	Quali	fication
N/A					

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analy	te	Qualification
N/A				

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
P5803020601	P5803020602

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
P5803020601	VOCs	5000
P5803020602	VOCs	5000

11.0 Additional Qualifications

Were additional qualifications applied?

No

April 26, 2006

P6603020601

P7303020601

P5803020601

P5803020602

P73030206EB

03020601TB

Client: URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn: Jeff Adams

SAMPLE IDENTIFICATION

LAB NUMBER

NPC0479-01 NPC0479-02 NPC0479-03 NPC0479-04 NPC0479-05 NPC0479-06

NPC0479 Work Order: Project Name: West Fenceline P-93 Project Project Nbr: SAP 340061 P/O Nbr: 97216640 Date Received: 03/03/06

> 03/02/06 10:40 03/02/06 14:20 03/02/06 15:50 03/02/06 15:50 03/02/06 11:05 03/02/06 00:01

COLLECTION DATE AND TIME

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Per enclosed Chain of Custody, "samples were properly preserved and received in good condition on 3/3/06. Analyses were extracted and performed within method required holding times following Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846)". Package was completed as a "Level IV".

Please note for QC batch 6032146: Hexachlorobutadiene was detected in the method prep blank above the MRL. P73030206EB was analyzed this method prep blank with no reported detection for Hexachlorobutadiene, therefore no data impact.

Please note for QC batch 6031174: The MRL for P5803020601 (NPC0479-03) and P5803020602 (NPC0479-04) was elevated due sample matrix interference. The % recovery for sec-Butylbenzene, Styrene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene in the matrix spike and matrix spike duplicate were outside laboratory acceptable QC limit biased low. The % recovery for Bromomethane in the matrix spike duplicate was outside acceptable QC limit biased high. The % RPD for sec-Butylbenzene and 1,2,4-Trimethylbenzene was outside laboratory acceptable QC limit. Please note the LCS for QC for this batch.

Organics: Unknown analyte concentrations were determined using the average response factor from the initial calibration curve for all analytes whose % RSD is less than or equal to 15. All other analyte concentrations were determined using linear regression analysis. Copies of curves for compounds with %RSD's greater than 15 are supplied.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980 ext 1256.

Illinois Certification Number: 001177

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

A. Arton

Glenn Lee Norton Data Package Coordinator

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

ANALYTICAL REPORT									
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0479-01 (1	 P6603020601 -	Groun	d Water) S	ampled: (03/02/06 10:4	 10			
Field Sampling Parameters									
nH	6 58		pH Units	NA	NA	1	03/02/06 10:40	EPA 150 1	6031459
Specific conductance	1260		uS/cm	NA	0.100	1	03/02/06 10:40	EPA 120 1	6031459
Temperature	63.5		°F	0.00	NA	1	03/02/06 10:40	EPA 170.1	6031459
Volatile Organic Compounds b	by EPA Method	8260B							
Acetone	ND		ug/L	5.91	50.0	1	03/06/06 19:42	SW846 8260B	6031391
Benzene	ND-H.OR	"u`'	ug/L	0.290	-1.00-011.6	1	03/06/06 19:42	SW846 8260B	6031391
Bromobenzene	ND		ug/L	0.470	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Bromochloromethane	ND		ug/L	0.420	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Bromodichloromethane	ND		ug/L	0.380	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Bromoform	ND		ug/L	0.500	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Bromomethane	ND		ug/L	0.600	1.00	1	03/06/06 19:42	SW846 8260B	6031391
2-Butanone	ND		ug/L	5.09	50.0	1	03/06/06 19:42	SW846 8260B	6031391
sec-Butylbenzene	18.1		ug/L	0.380	1.00	1	03/06/06 19:42	SW846 8260B	6031391
n-Butylbenzene	13.1		ug/L	0.460	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
tert-Butylbenzene	ND		ug/L	0.390	1.00	1 0	03/06/06 19:42	SW846 8260B	6031391
Carbon disulfide	ND		ug/L	0.310	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Chlorobenzene	ND		ug/L	0.320	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Chloroethane	ND		ug/L	0.500	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Chloroform	ND		ug/L	0.380	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Chloromethane	ND		ug/L	0.460	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Dibromomethane	ND		ug/L	0.570	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
cis-1.2-Dichloroethene	ND		ug/L	0.390	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 (03/06/06 19:42	SW846 8260B	6031391
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 (3/06/06 19:42	SW846 8260B	6031391
Ethylbenzene	ND		ug/L	0.340	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 ()3/06/06 19:42	SW846 8260B	6031391

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

		ANALYTICAL REPORT							
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPC0479-01 (P6603	020601 -	Ground	l Water) -	- cont. Sam	pled: 03/0	2/06 10:4	10		
Volatile Organic Compounds by EPA	A Method	8260B - d	cont.						
2-Hexanone	ND		ug/L	2.53	50.0	1	03/06/06 19:42	SW846 8260B	6031391
Isopropylbenzene	125		ug/L	0.340	1.00	1	03/06/06 19:42	SW846 8260B	6031391
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Methyl tert-Butyl Ether	107		ug/L	0.320	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Methylene Chloride	ND		ug/L	1.26	5.00	1	03/06/06 19:42	SW846 8260B	6031391
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/06/06 19:42	SW846 8260B	6031391
Naphthalene	3.31	J	ug/L	1.13	5.00	1	03/06/06 19:42	SW846 8260B	6031391
n-Propylbenzene	142		ug/L	0.370	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Styrene	ND		ug/L	0.390	1.00	1.	03/06/06 19:42	SW846 8260B	6031391
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Tetrachloroethene	ND		ug/L	0.390	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Toluene	1.99		ug/L	0.280	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	03/06/06 19:42	SW846 8260B	6031391
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	03/06/06 19:42	SW846 8260B	6031391
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Trichloroethene	ND		ug/L	0.450	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1	03/06/06 19:42	SW846 8260B	6031391
1,2,4-Trimethylbenzene	1.25		ug/L	0.340	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Vinyl chloride	ND		ug/L	0.430	1.00	1	03/06/06 19:42	SW846 8260B	6031391
Xylenes, total	1.85	J	ug/L	0.820	3.00	1	03/06/06 19:42	SW846 8260B	6031391
Surr: 1,2-Dichloroethane-d4 (70-130%)	91 %					1 (03/06/06 19:42	SW846 8260B	6031391
Surr: Dibromofluoromethane (79-122%)	103 %					, (13/06/06 19.42	SW846 8260B	6031391
Surr: Toluene-d8 (78-121%)	94 %					1 1	13/06/06 10-12	SW846 8260B	6031391
Surr: 4-Bromofluorobenzene (78-126%)	101 %					1 0)3/06/06 19:42	SW846 8260B	6031391

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

			ANALYT	ICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
	 803020601 -	Groun	– – – – – d Water) S	amnled: (13/02/06 14	4:20			
Field Sampling Parameters	00020001	Groun	u water, s	ampicar					
	671		pH Units	NA	NΔ	1	03/02/06 14.20	EPA 150 I	6031459
pri Specific conductance	1170		uS/cm	NA NA	0 100	1	03/02/06 14:20	EPA 120.1	6031459
Temperature	61.0		°F	0.00	NA	1	03/02/06 14:20	EPA 170 1	6031459
	01.0		_	0.00	1121		03/02/00 14.20	Difficult	0051157
Volatile Organic Compounds by I	EPA Method	8260B	~						
Acetone	ND		ug/L	5.91	50.0	1	03/06/06 20:07	SW846 8260B	6031391
Benzene	22400		ug/L	58.0	200	200	03/11/06 00:12	SW846 8260B	6032156
Bromobenzene	ND		ug/L	0.470	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Bromochloromethane	ND		ug/L	0.420	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Bromodichloromethane	ND		ug/L	0.380	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Bromoform	ND		ug/L	0.500	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Bromomethane	ND		ug/L	0.600	1.00	1 -	03/06/06 20:07	SW846 8260B	6031391
2-Butanone	ND		ug/L	5.09	50.0	1	03/06/06 20:07	SW846 8260B	6031391
sec-Butylbenzene	23.7		ug/L	0.380	1.00	1	03/06/06 20:07	SW846 8260B	6031391
n-Butylbenzene	ND		ug/L	0.460	1.00	1	03/06/06 20:07	SW846 8260B	6031391
tert-Butylbenzene	56.0		ug/L	0.390	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Carbon disulfide	ND		ug/L	0.310	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Carbon Tetrachloride	ND		ug/L	0.480	1.00	_ 1	03/06/06 20:07	SW846 8260B	6031391
Chlorobenzene	ND		ug/L	0.320	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Chlorodibromomethane	ND		ug/L	0.360	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Chloroethane	ND		ug/L	0.500	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Chloroform	0.890	J	ug/L	0.380	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Chloromethane	ND		ug/L	0.460	1.00	1	03/06/06 20:07	SW846 8260B	6031391
2-Chlorotoluene	ND		ug/L	0.270	1.00	1	03/06/06 20:07	SW846 8260B	6031391
4-Chlorotoluene	ND		ug/L	0.370	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1.2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1	03/06/06 20:07	SW846 8260B	6031391
1.2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	· 1	03/06/06 20:07	SW846 8260B	6031391
Dibromomethane	ND		ug/L	0.570	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1.4-Dichlorobenzene	ND		ug/L	0.460	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1.3-Dichlorobenzene	ND		ug/L	0.360	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1.2-Dichlorobenzene	ND		ug/L	0.370	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1 1-Dichloroethane	ND		ug/L	0.320	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1 2-Dichloroethane	ND		ug/L	5.60	20.0	20	03/10/06 23:47	SW846 8260B	6032156
cis-1 2-Dichloroethene	ND		ug/L	0 390	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1 1-Dichloroethene	ND		ug/L	0.450	1.00	1	03/06/06 20:07	SW846 8260B	6031391
trans-1 2-Dichloroethene	ND		ug/L	0 340	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1 3-Dichloropropage	ND		ug/L	0.630	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1.2-Dichloropropane	ND		ug/L	0.500	1.00	1	03/06/06 20:07	SW846 8260B	6031391
2.2-Dichloropropane	ND		ug/L	0.500	1.00	1	03/06/06 20:07	SW846 8260B	6031391
cis 1.3 Dichloropropene	ND		11g/L	0.000	1.00	1	03/06/06 20:07	SW846 8260B	6031391
trans_1_3-Dichloropropene			ug/L	0.490	1.00	1	03/06/06 20.07	SW846 8260B	6031391
1 1-Dichloropropene			ц <u>е</u> /Т.	0.510	1.00	1	03/06/06 20.07	SW846 8260B	6031391
r, r-Bioliloropropelle Ethylbanzena	1740		ц <u>е</u> /Г.	6 80	20.0	20	03/10/06 22.07	SW846 8760P	6032157
Luyiochlorobutadiene	1./4U ND		ug/I	0.00	1 00	1	03/10/00 23.4/	SW846 8760P	6031301
rickaulliologulaulelle	ND		~~ <u>~</u>	0.070	1.00	L	03/00/00 20:07	5 11 040 0200D	0051571

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis • Date/Time	e Method	Batch
Sample ID: NPC0479-02 (P730		Ground	d Water) ·	 - cont. Sam	pled: 03/0	2/06 14:	 20		
Volatile Organic Compounds by EP	A Method	8260B - (cont.						
2-Hexanone	ND		ug/L	2.53	50.0	1	03/06/06 20:07	SW846 8260B	6031391
Isopropylbenzene	88.0		ug/L	0.340	1.00	1	03/06/06 20:07	SW846 8260B	6031391
p-Isopropyltoluene	13.1		ug/L	0.340	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Methyl tert-Butyl Ether	40.0		ug/L	0.320	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Methylene Chloride	ND		ug/L	1.26	5.00	1	03/06/06 20:07	SW846 8260B	6031391
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/06/06 20:07	SW846 8260B	6031391
Naphthalene	250		ug/L	22.6	100	20	03/10/06 23:47	SW846 8260B	6032156
n-Propylbenzene	149		ug/L	0.370	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Styrene	ND		ug/L	0.390	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Tetrachloroethene	ND		ug/L	0.390	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Toluene	8500		ug/L	56.0	200	200	03/11/06 00:12	SW846 8260B	6032156
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	03/06/06 20:07	SW846 8260B	6031391
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	03/06/06 20:07	SW846 8260B	6031391
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Trichloroethene	ND		ug/L	0.450	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,3,5-Trimethylbenzene	155		ug/L	0.280	1.00	1	03/06/06 20:07	SW846 8260B	6031391
1,2,4-Trimethylbenzene	928		ug/L	6.80	20.0	20	03/10/06 23:47	SW846 8260B	6032156
Vinyl chloride	ND		ug/L	0.430	1.00	1	03/06/06 20:07	SW846 8260B	6031391
Xylenes, total	4530		ug/L	16.4	60.0	20	03/10/06 23:47	SW846 8260B	6032156
Surr: 1,2-Dichloroethane-d4 (70-130%)	88 %					1	03/06/06 20:07	SW846 8260B	6031391
Surr: 1,2-Dichloroethane-d4 (70-130%)	104 %					1	03/10/06 23-47	SW846 8260B	6032156
Surr: Dibromofluoromethane (79-122%)	107 %					1	03/06/06 20:07	SW846 8260B	6031391
Surr: Dibromofluoromethane (79-122%)	103.%					1	03/10/06 23:47	SW846 8260B	6032156
Surr: Toluene-d8 (78-121%)	100.%					1	03/06/06 20.47	SW846 8260B	6031391
Surr: Toluene-d8 (78-121%)	104 %					1	03/10/06 23:47	SW846 8260B	6032156
Surr: 4-Bromofluorobenzene (78-126%)	101 %	•				1	02/06/06 20:47	SW/846 8260D	6031391
Surr: 4-Bromofluorobenzene (78-126%)	101 70					1	03/00/00 20:07	SW040 0200D	6032156
5	104 %					1	03/10/06 23:47	SW840 8200B	0032130

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

ANALYTICAL REPORT									
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPC0479-03 (P:	5803020601 -	Groun	d Water) S	Sampled:	03/02/06 15	5:50			
Field Sampling Parameters									
pH	6.78		pH Units	NA	NA	Ŧ	03/02/06 15:50	EPA 150 1	6031450
Specific conductance	3460		uS/cm	NA	0.100	1	03/02/06 15:50	EPA 120 1	6031459
Temperature	59.2		°F	0.00	NA	ĩ	03/02/06 15:50	EPA 170.1	6031459
Volatile Organic Compounds by	EPA Method	8260B							
Acetone	ND	RL5	ug/L	29600	250000	5000	03/11/06 00:15	SW846 8260B	6031174
Benzene	409000	RL5	ug/L	1450	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Bromobenzene	ND	RL5	ug/L	2350	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Bromochloromethane	ND	RL5	ug/L	2100	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Bromodichloromethane	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Bromoform	ND	RL5	ug/L	2500	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Bromomethane	ND	RL5	ug/L	3000	5000	5000	03/11/06 09:15	SW846 8260B	6031174
2-Butanone	ND	RL5	ug/L	25400	250000	5000	03/11/06 09:15	SW846 8260B	6031174
sec-Butylbenzene	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:15	SW846 8260B	6031174
n-Butylbenzene	ND	RL5	ug/L	2300	5000	5000	03/11/06 09:15	SW846 8260B	6031174
tert-Butylbenzene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Carbon disulfide	ND	RL5	ug/L	1550	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Carbon Tetrachloride	ND	RL5	ug/L	2400	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Chlorobenzene	ND	RL5	ug/L	1600	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Chlorodibromomethane	ND	RL5	ug/L	1800	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Chloroethane	ND	RL5	ug/L	2500	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Chloroform	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Chloromethane	ND	RL5	ug/L	2300	5000	5000	03/11/06 09:15	SW846 8260B	6031174
2-Chlorotoluene	ND	RL5	ug/L	1350	5000	5000	03/11/06 09:15	SW846 8260B	6031174
4-Chlorotoluene	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,2-Dibromo-3-chloropropane	ND	RL5	ug/L	8200	25000	5000	03/11/06 09:15	SW846 8260B	6031174
1,2-Dibromoethane (EDB)	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Dibromomethane	ND	RL5	ug/L	2850	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,4-Dichlorobenzene	ND	RL5	ug/L	2300	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,3-Dichlorobenzene	ND	RL5	ug/L	1800	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,2-Dichlorobenzene	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:15	SW846 8260B	6031174
Dichlorodifluoromethane	ND	RL5	ug/L	2050	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,1-Dichloroethane	ND	RL5	ug/L	1600	5000	5000	03/11/06 09:15	SW846 8260B	6031174
1,2-Dichloroethane	ND	RL5	ug/L	1400	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
cis-1,2-Dichloroethene	ND	RL5	ug/L	1950	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
1,1-Dichloroethene	ND	RL5	ug/L	2250	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
trans-1,2-Dichloroethene	ND	RL5	ug/L	1700	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
1,3-Dichloropropane	ND	RL5	ug/L	3150	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
1,2-Dichloropropane	ND	RL5	ug/L	2500	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
2,2-Dichloropropane	ND	RL5	ug/L	3300	5000	5000 ()3/11/06 09:15	SW846 8260B	6031174
cis-1,3-Dichloropropene	ND	RL5	ug/L	2250	5000	5000 (03/11/06 09:15	SW846 8260B	6031174
trans-1,3-Dichloropropene	ND	RL5	ug/L	2450	5000	5000 ()3/11/06 09:15	SW846 8260B	6031174
l,1-Dichloropropene	ND	RL5	ug/L	2550	5000	5000 ()3/11/06 09:15	SW846 8260B	6031174
Ethylbenzene	ND	RL5	ug/L	1700	5000	5000 (3/11/06 09:15	SW846 8260B	6031174
Hexachlorobutadiene	ND	RL5	ug/L	3350	5000	5000 (3/11/06 09-15	SW846 8260B	6031174

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

ANALYTICAL REPORT											
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch		
Sample ID: NPC0479-03 (P5803	6020601 -	Ground	l Water) -	· cont. Sam	pled: 03/0	2/06 15:5	50				
Volatile Organic Compounds by EPA	A Method	8260B - d	cont.								
2-Hexanone	ND	RL5	ug/L	12600	250000	5000	03/11/06 09:15	SW846 8260B	6031174		
Isopropylbenzene	ND	RL5	ug/L	1700	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
p-Isopropyltoluene	ND	RL5	ug/L	1700	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
Methyl tert-Butyl Ether	ND	RL5	ug/L	1600	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
Methylene Chloride	ND	RL5	ug/L	6300	25000	5000	03/11/06 09:15	SW846 8260B	6031174		
4-Methyl-2-pentanone	ND	RL5	ug/L	21200	250000	5000	03/11/06 09:15	SW846 8260B	6031174		
Naphthalene	ND	RL5	ug/L	5650	25000	5000	03/11/06 09:15	SW846 8260B	6031174		
n-Propylbenzene	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
Styrene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
1,1,1,2-Tetrachloroethane	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
1,1,2,2-Tetrachloroethane	ND	RL5	ug/L	2450	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
Tetrachloroethene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
Toluene	ND	RL5	ug/L	1400	5000	5000	03/11/06 09:15	SW846 8260B	6031174		
1,2,3-Trichlorobenzene	ND	RL5	ug/L	2800	10000	5000 (03/11/06 09:15	SW846 8260B	6031174		
1,2,4-Trichlorobenzene	ND	RL5	ug/L	3950	10000	5000 (03/11/06 09:15	SW846 8260B	6031174		
1,1,2-Trichloroethane	ND	RL5	ug/L	2100	5000	5000 (03/11/06 09:15	SW846 8260B	6031174		
1,1,1-Trichloroethane	ND	RL5	ug/L	2000	5000	5000 (03/11/06 09:15	SW846 8260B	6031174		
Trichloroethene	ND	RL5	ug/L	2250	5000	5000 ()3/11/06 09:15	SW846 8260B	6031174		
Trichlorofluoromethane	ND	RL5	ug/L	2400	5000	5000 (03/11/06 09:15	SW846 8260B	6031174		
1,2,3-Trichloropropane	ND	RL5	ug/L	2800	5000	5000 (3/11/06 09:15	SW846 8260B	6031174		
1,3,5-Trimethylbenzene	ND	RL5	ug/L	1400	5000	5000 (3/11/06 09:15	SW846 8260B	6031174		
1,2,4-Trimethylbenzene	ND	RL5	ug/L	1700	5000	5000 (3/11/06 09:15	SW846 8260B	6031174		
Vinyl chloride	ND	RL5	ug/L	2150	5000	5000 (3/11/06 09:15	SW846 8260B	6031174		
Xylenes, total	ND	RL5	ug/L	4100	15000	5000 (3/11/06 09:15	SW846 8260B	6031174		
Surr: 1,2-Dichloroethane-d4 (70-130%)	106 %					1 0	3/11/06 09-15	SW846 8260B	6031174		
Surr: Dibromofluoromethane (79-122%)	104 %					1 0	3/11/06 09:15	SW846 8260B	6031174		
Surr: Toluene-d8 (78-121%)	103 %					1 0	3/11/06 09:15	SW846 8260B	6031174		
Surr: 4-Bromofluorobenzene (78-126%)	101 %					1 0	3/11/06 09:15	SW846 8260B	6031174		

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

ANALYTICAL REPORT										
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batcl	
Sample ID: NPC0479-04 (P	- 5803020602	Groun	d Water) S	Sampled:	03/02/06 15	50				
Field Sampling Parameters					*					
nH	6 78		pH Units	NΔ	NA	1	02/02/06 15.50	EPA 150 1	602145	
Specific conductance	3460		uS/cm	NA	0 100	1	03/02/06 15:50	EPA 120.1	603145	
Temperature	59.2		°F	0.00	NA	i	03/02/06 15:50	EPA 170 1	603145	
Volatile Organic Compounds by	v EPA Method	8260B				-	05/02/00 15:50	Dirttion	000110	
Acetone	ND	RL5	ug/L	29600	250000	5000	03/11/06 00.40	SW846 8260B	603117/	
Benzene	464000	RL5	ug/L	1450	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Bromobenzene	ND	RL5	ug/L	2350	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Bromochloromethane	ND	RL5	ug/L	2100	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Bromodichloromethane	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Bromoform	ND	RL5	ug/L	2500	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Bromomethane	ND	RL5	ug/L	3000	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
2-Butanone	ND	RL5	ug/L	25400	250000	5000	03/11/06 09:40	SW846 8260B	6031174	
sec-Butylbenzene	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
n-Butylbenzene	ND	RL5	ug/L	2300	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
tert-Butylbenzene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Carbon disulfide	ND	RL5	ug/L	1550	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Carbon Tetrachloride	ND	RL5	ug/L	2400	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Chlorobenzene	ND	RL5	ug/L	1600	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Chlorodibromomethane	ND	RL5	ug/L	1800	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Chloroethane	ND	RL5	ug/L	2500	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Chloroform	ND	RL5	ug/L	1900	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
Chloromethane	ND	RL5	ug/L	2300	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
2-Chlorotoluene	ND	RL5	ug/L	1350	5000	5000	03/11/06 09:40	SW846 8260B	6031174	
4-Chlorotoluene	ND	RL5	ug/L	1850	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,2-Dibromo-3-chloropropane	ND	RL5	ug/L	8200	25000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,2-Dibromoethane (EDB)	ND	RL5	ug/L	1900	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
Dibromomethane	ND	RL5	ug/L	2850	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,4-Dichlorobenzene	ND	RL5	ug/L	2300	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,3-Dichlorobenzene	ND	RL5	ug/L	1800	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,2-Dichlorobenzene	ND	RL5	ug/L	1850	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
Dichlorodifluoromethane	ND	RL5	ug/L	2050	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,1-Dichloroethane	ND	RL5	ug/L	1600	5000	5000 (03/11/06 09:40	SW846 8260B	6031174	
1,2-Dichloroethane	ND	RL5	ug/L	1400	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
cis-1,2-Dichloroethene	ND	RL5	ug/L	1950	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
1,1-Dichloroethene	ND	RL5	ug/L	2250	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
trans-1,2-Dichloroethene	ND	RL5	ug/L	1700	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
1,3-Dichloropropane	ND	RL5	ug/L	3150	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
1,2-Dichloropropane	ND	RL5	ug/L	2500	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
2,2-Dichloropropane	ND	RL5	ug/L	3300	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
cis-1,3-Dichloropropene	ND	RL5	ug/L	2250	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
trans-1,3-Dichloropropene	ND	RL5	ug/L	2450	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
1,1-Dichloropropene	ND	RL5	ug/L	2550	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
Ethylbenzene	ND	RL5	ug/L	1700	5000	5000 (3/11/06 09:40	SW846 8260B	6031174	
Hexachlorobutadiene	ND	RL5	ug/L	3350	5000	5000 C	3/11/06 09:40	SW846 8260B	6031174	

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPC0479-04 (P5803	020602 -	Ground	d Water) ·	- cont. Sam	pled: 03/0	2/06 15:5	50		
Volatile Organic Compounds by EPA	A Method	8260B - d	cont.						
2-Hexanone	ND	RL5	ug/L	12600	250000	5000	03/11/06 09:40	SW846 8260B	6031174
Isopropylbenzene	ND	RL5	ug/L	1700	5000	5000	03/11/06 09:40	SW846 8260B	6031174
p-Isopropyltoluene	ND	RL5	ug/L	1700	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Methyl tert-Butyl Ether	ND	RL5	ug/L	1600	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Methylene Chloride	ND	RL5	ug/L	6300	25000	5000	03/11/06 09:40	SW846 8260B	6031174
4-Methyl-2-pentanone	ND	RL5	ug/L	21200	250000	5000	03/11/06 09:40	SW846 8260B	6031174
Naphthalene	ND	RL5	ug/L	5650	25000	5000	03/11/06 09:40	SW846 8260B	6031174
n-Propylbenzene	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Styrene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,1,1,2-Tetrachloroethane	ND	RL5	ug/L	1850	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,1,2,2-Tetrachloroethane	ND	RL5	ug/L	2450	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Tetrachloroethene	ND	RL5	ug/L	1950	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Toluene	ND	RL5	ug/L	1400	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,2,3-Trichlorobenzene	ND	RL5	ug/L	2800	10000	5000	03/11/06 09:40	SW846 8260B	6031174
1,2,4-Trichlorobenzene	ND	RL5	ug/L	3950	10000	5000	03/11/06 09:40	SW846 8260B	6031174
1,1,2-Trichloroethane	ND	RL5	ug/L	2100	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,1,1-Trichloroethane	ND	RL5	ug/L	2000	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Trichloroethene	ND	RL5	ug/L	2250	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Trichlorofluoromethane	ND	RL5	ug/L	2400	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,2,3-Trichloropropane	ND	RL5	ug/L	2800	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,3,5-Trimethylbenzene	ND	RL5	ug/L	1400	5000	5000	03/11/06 09:40	SW846 8260B	6031174
1,2,4-Trimethylbenzene	ND	RL5	ug/L	1700	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Vinyl chloride	ND	RL5	ug/L	2150	5000	5000	03/11/06 09:40	SW846 8260B	6031174
Xylenes, total	ND	RL5	ug/L	4100	15000	5000	03/11/06 09:40	SW846 8260B	6031174
Surr: 1,2-Dichloroethane-d4 (70-130%)	109 %					1 (03/11/06 09·40	SW846 8260B	6031174
Surr: Dibromofluoromethane (79-122%)	104 %					1 (03/11/06 09·40	SW846 8260B	6031174
Surr: Toluene-d8 (78-121%)	103 %					1 1	3/11/06 00.10	SW846 8260R	6031174
Surr: 4-Bromofluorobenzene (78-126%)	101 %					1 (2/11/06 00.40	SW816 87602	6031174
	101 70					I U	13/11/00 09:40	577040 0200D	5051174

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0479-05 (P	73030206EB	- Groun	d Water)	Sampled:	03/02/06 1	1:05			
Volatile Organic Compounds b	v EPA Method 8	8260B							
Acetone	NP.		ug/L	5 91	50.0	1 (3/10/06 02.02	SW846 8260D	6022146
Benzene	(2.62)		ug/L	0.290	1.00	1 4	3/10/06 03.02	SW846 8260D	6022140
Bromobenzene			ug/L	0.470	1.00	1 1	3/10/06 03.02	SW846 8260B	6032140
Bromochloromethane	ND		ug/L	0.470	1.00	1 (3/10/06 03.02	SW846 8260B	6032140
Bromodichloromethane	ND		ug/L	0.380	1.00	1 (3/10/06 03.02	SW846 8260B	6032140
Bromoform	ND		ug/L	0.500	1.00	1 (3/10/06 03.02	SW846 8260B	6032140
Bromomethane	ND		ug/L	0.500	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
2-Butanone	ND		ug/L	5.09	50.0	1 (3/10/06 03:02	SW846 8260B	6032146
sec-Butylbenzene	ND		ug/L	0 380	1 00	1 (3/10/06 03.02	SW846 8260B	6032146
n-Butylbenzene	ND		ug/L	0.460	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
tert-Butylbenzene	ND		ug/L	0.390	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
Carbon disulfide	ND		ug/L	0.310	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
Chlorobenzene	ND		ug/L	0.320	1.00	1 (3/10/06 03:02	SW846 8260B	6032140
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (3/10/06 03:02	SW846 8260B	6032140
Chloroethane	ND		ug/L	0.500	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
Chloroform	ND		ug/L	0.380	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
Chloromethane	ND		ug/L	0.460	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 (3/10/06 03:02	SW846 8260B	6032146
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Dibromomethane	ND		ug/L	0.570	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Ethylbenzene	ND		ug/L	0.340	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
2-Hexanone	ND		ug/L	2.53	50.0	1 0	3/10/06 03:02	SW846 8260B	6032146
Isopropylbenzene	ND		ug/L	0.340	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 0	3/10/06 03:02	SW846 8260B	6032146
Methylene Chloride	ND		ug/L	1.26	5.00	1 0	3/10/06 03:02	SW846 8260B	6032146

Page 11 of 35

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPC0479-05 (P7303	0206EB	- Groun	d Water)	- cont. San	npled: 03/02	/06 11:	:05		
Volatile Organic Compounds by EPA	Method 8	3260B - c	ont.						
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/10/06 03:02	SW846 8260B	6032146
Naphthalene	ND		ug/L	1.13	5.00	1	03/10/06 03:02	SW846 8260B	6032146
n-Propylbenzene	ND		ug/L	0.370	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Styrene	ND		ug/L	0.390	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Tetrachloroethene	ND		ug/L	0.390	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Toluene	ND		ug/L	0.280	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	03/10/06 03:02	SW846 8260B	6032146
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	03/10/06 03:02	SW846 8260B	6032146
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Trichloroethene	ND		ug/L	0.450	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1	03/10/06 03:02	SW846 8260B	6032146
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Vinyl chloride	ND		ug/L	0.430	1.00	1	03/10/06 03:02	SW846 8260B	6032146
Xylenes, total	ND		ug/L	0.820	3.00	1	03/10/06 03:02	SW846 8260B	6032146
Surr: 1,2-Dichloroethane-d4 (70-130%)	102 %					1	03/10/06 03:02	SW846 8260B	6032146
Surr: Dibromofluoromethane (79-122%)	104 %					1	03/10/06 03:02	SW846 8260B	6032146
Surr: Toluene-d8 (78-121%)	103.%					ì	03/10/06 03:02	SW846 8260B	6032146
Surr: 4-Bromofluorobenzene (78-126%)	105 %					1	03/10/06 03:02	SW846 8260B	6032146
Sample ID: NPC0479-06 (030206	501TB - C	Ground	Water) S	ampled: 0	3/02/06 00:01	1			

Volatile Organic Compounds by EPA Method 8260B

Acetone	ND	ug/L	5.91	50.0	1	03/10/06 15:33 SW846 8260B	6032156
Benzene	ND	ug/L	0.290	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Bromobenzene	ND	ug/L	0.470	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Bromochloromethane	ND	ug/L	0.420	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Bromodichloromethane	ND	ug/L	0.380	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Bromoform	ND	ug/L	0.500	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Bromomethane	ND	ug/L	0.600	1.00	1	03/10/06 15:33 SW846 8260B	6032156
2-Butanone	ND	ug/L	5.09	50.0	1	03/10/06 15:33 SW846 8260B	6032156
sec-Butylbenzene	ND	ug/L	0.380	1.00	1	03/10/06 15:33 SW846 8260B	6032156
n-Butylbenzene	ND	ug/L	0.460	1.00	1	03/10/06 15:33 SW846 8260B	6032156
tert-Butylbenzene	ND	ug/L	0.390	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Carbon disulfide	ND	ug/L	0.310	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Carbon Tetrachloride	ND	ug/L	0.480	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Chlorobenzene	ND	ug/L	0.320	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Chlorodibromomethane	ND	ug/L	0.360	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Chloroethane	ND	ug/L	0.500	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Chloroform	ND	ug/L	0.380	1.00	1	03/10/06 15:33 SW846 8260B	6032156
Chloromethane	ND	ug/L	0.460	1.00	1	03/10/06 15:33 SW846 8260B	6032156
ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

Analyte Result Flag Units MDL MRL Factor Date/Time Method Batch Sample ID: NPC0479-06 (03020601TB - Ground Water) - cont. Sampled: 03/006 [5:33 SW46 82006 602115 Volatile Organic Compounds by EPA Method 250B - cont. 2.Clorotoluene ND upl. 0.270 1.00 1 03/1006 [5:33 SW46 82006 602115 2.Clorotoluene ND upl. 0.370 1.00 1 03/1006 [5:33 SW46 82006 602125 1.2-Dibronc-brank (EDB) ND upl. 0.370 1.00 1 03/1006 [5:33 SW46 82006 602125 1.2-Dibronc-brank (EDB) ND upl. 0.460 1.00 1 03/1006 [5:33 SW46 82006 602125 1.2-Dibronc-brank ND upl. 0.370 1.00 1 03/1006 [5:33 SW46 82006 602125 1.2-Dibronc-brank ND upl. 0.310 1 03/1006 [5:33 SW46 82006 602125 1.2-Dibroloropenze ND upl.				ANALY	FICAL REP	ORT				
Sample ID: NPC0479-06 (03020601TB - Ground Water) - cont. Sampled: 03/02/06 00:01 Volatile Organic Compounds by EPA Method 8260B - cont. 2-Cildorotalune ND ug/L 0.370 1.00 1 03/1006 15.33 SW446 8260B 6032165 1.2-Dibrone-shlorotpapae ND ug/L 0.370 1.00 1 03/1006 15.33 SW446 8260B 6032165 1.2-Dibrone-shlorotpapae ND ug/L 0.370 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dibronoenthane (EDB) ND ug/L 0.360 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dibronoenthane (EDB) ND ug/L 0.360 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dibronoenthane (EDB) ND ug/L 0.360 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dibronoenthane (EDB) ND ug/L 0.360 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dibronoenthane ND ug/L 0.360 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dichlorodifluoromethane ND ug/L 0.310 1.00 103/1006 15.33 SW446 8260B 6032165 Dichlorodifluoromethane ND ug/L 0.410 1.00 1 03/1006 15.33 SW446 8260B 6032165 Dichlorodifluoromethane ND ug/L 0.430 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichlorobenzee ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichlorobethane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichlorobethane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichlorobethane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032165 Cit-1.2-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichloropropane ND ug/L 0.450 1.00 1 03/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichloropropane ND ug/L 0.370 1.00 1 33/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichloropropane ND ug/L 0.320 1.00 1 03/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichloropropane ND ug/L 0.320 1.00 1 03/1006 15.33 SW446 8260B 6032156 Cit-1.3-Dichlor	Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
	Sample ID: NPC0479-06 (03	020601TB -	Ground	Water) -	cont. Sam	pled: 03/02	2/06 00:0	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Volatile Organic Compounds by	EPA Method	8260B - o	cont.						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Chlorotoluene	ND		ug/L	0.270	1.00	1	03/10/06 15:22	SW846 8260B	6032156
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Chlorotoluene	ND		ug/L	0.370	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1.2-Differementance (EDB) ND ug/L 0.380 1.00 1 0.371006 13.3 SW846 82.60B 6032156 Dibromomethane ND ug/L 0.460 1.00 1 0.371006 15.33 SW846 82.60B 6032156 1.4-Dichlorobenzane ND ug/L 0.460 1.00 1 0.371006 15.33 SW846 82.60B 6032156 1.2-Dichlorobenzane ND ug/L 0.360 1 0.371006 15.33 SW846 82.60B 6032156 1.2-Dichlorobenzane ND ug/L 0.410 1 0.371006 15.33 SW846 82.60B 6032156 1.1-Dichloroethane ND ug/L 0.320 1.00 1 0.371006 15.33 SW846 82.60B 6032156 1.2-Dichloroethane ND ug/L 0.450 1.00 1 0.371006 15.33 SW846 82.60B 6032156 1.2-Dichloroethene ND ug/L 0.450 1.00 1 0.371006 15.33 SW846 82.60B 6032156 <td>1.2-Dibromo-3-chloropropane</td> <td>ND</td> <td></td> <td>ug/L</td> <td>1.64</td> <td>5.00</td> <td>ì</td> <td>03/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	1.2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	ì	03/10/06 15:33	SW846 8260B	6032156
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1	03/10/06 15:33	SW846 8260B	6032156
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibromomethane	ND		ug/L	0.570	1.00	1	03/10/06 15:33	SW846 8260B	6032156
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1.2-Dichlorobenzene ND ug/L 0.370 1.00 1 03/10/66 15.35 SW846 82606 6032156 Dichlorodifflooromethane ND ug/L 0.320 1.00 1 03/10/06 15.33 SW846 82608 6032156	1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1	03/10/06 15:33	SW846 8260B	6032156
Dicklorodifluoromethane ND ug/L 0.410 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,1-Dichloroethane ND ug/L 0.220 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,2-Dichloroethane ND ug/L 0.280 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,1-Dichloroethane ND ug/L 0.340 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,2-Dichloroethane ND ug/L 0.450 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,2-Dichloropropane ND ug/L 0.660 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,2-Dichloropropane ND ug/L 0.500 1.00 1 03/1006 15:33 SW846 82:00F 6032156 1,2-Dichloropropane ND ug/L 0.510 1.00 1 03/1006	1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1,1-Dichloroethane ND ug/L 0.320 1.00 1 03/1006 15:33 SW846 82:00B 603/2166 1,2-Dichloroethane ND ug/L 0.390 1.00 1 03/1006 15:33 SW846 82:00B 603/2166 603/2156 6	Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1.2-Dichloroethane ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032156 cis-1,2-Dichloroethene ND ug/L 0.390 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1-Dichloroethene ND ug/L 0.340 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2-Dichloroethene ND ug/L 0.340 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2-Dichloropropane ND ug/L 0.660 1.00 1 03/10/06 15:33 SW846 8260B 6032156 cis-1,3-Dichloropropane ND ug/L 0.460 1.00 1 03/10/06 15:33 SW846 8260B 6032156 cis-1,3-Dichloropropane ND ug/L 0.440 1.00 1 03/10/06 15:33 SW846 8260B 6032156 cis-1,3-Dichloropropane ND ug/L 0.340 1.00 1 03/10/06 15:33 SW846<	1.1-Dichloroethane	ND		ug/L	0.320	1.00	Î	03/10/06 15:33	SW846 8260B	6032156
cis-1,2-Dichloroethene ND ug/L 0.390 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,1-Dichloroethene ND ug/L 0.450 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,3-Dichloroptropane ND ug/L 0.630 1.00 1 03/1006 15:33 SW846 8260B 6032156 2,2-Dichloroptropane ND ug/L 0.660 1.00 1 03/1006 15:33 SW846 8260B 6032156 2,2-Dichloroptropane ND ug/L 0.450 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,2-Dichloroptropane ND ug/L 0.450 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,2-Dichloroptropene ND ug/L 0.510 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,1-Dichloroptropene ND ug/L 0.540 1.00 1 03/1006 <t< td=""><td>1.2-Dichloroethane</td><td>ND</td><td></td><td>ug/L</td><td>0.280</td><td>1.00</td><td>1</td><td>03/10/06 15:33</td><td>SW846 8260B</td><td>6032156</td></t<>	1.2-Dichloroethane	ND		ug/L	0.280	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1,1-Dichloroethene ND ug/L 0.450 1.00 1 03/1006 15:33 SW846 8260B 6032156 trans-1,2-Dichloroptene ND ug/L 0.340 1.00 1 03/1006 15:33 SW846 8260B 6032156 1,2-Dichloropropane ND ug/L 0.500 1.00 1 03/1006 15:33 SW846 8260B 6032156 2,2-Dichloropropane ND ug/L 0.660 1.00 1 03/1006 15:33 SW846 8260B 6032156 cis-1,3-Dichloropropene ND ug/L 0.490 1.00 1 03/1006 15:33 SW846 8260B 6032156 Ethylbenzene ND ug/L 0.410 1.00 1 03/1006 15:33 SW846 8260B 6032156 Ethylbenzene ND ug/L 0.340 1.00 1 03/1006 15:33 SW846 8260B 6032156 L-bichloropropane ND ug/L <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>ug/L</td> <td>0.390</td> <td>1.00</td> <td>1</td> <td>03/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1	03/10/06 15:33	SW846 8260B	6032156
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1-Dichloroethene	ND		ug/L	0.450	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1,3-DichloropropaneNDug/L0.6301.00103/10/0615:33SW8468260B60321561,2-DichloropropaneNDug/L0.5601.00103/10/0615:33SW8468260B6032156cis-1,3-DichloropropaneNDug/L0.4501.00103/10/0615:33SW8468260B6032156cis-1,3-DichloropropeneNDug/L0.4501.00103/10/0615:33SW8468260B6032156Li-DichloropropeneNDug/L0.5101.00103/10/0615:33SW8468260B6032156EthylbenzeneNDug/L0.5101.00103/10/0615:33SW8468260B6032156EthylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156SpropylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156JepropylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156JepropylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156JepropylbenzeneNDug/L0.3201.00103/10/0615:33SW8468260B6032156JepropylbenzeneNDug/L0.3201.00103/10/0615:33SW8468260B603215	trans-1.2-Dichloroethene	ND		ug/L	0.340	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1,2-DichloropropaneND $ug'L$ 0.5001.0010.510.0611.533SW846 8260B60221562,2-DichloropropaneND $ug'L$ 0.6601.0010.3/10/0615:33SW846 8260B6032156cis-1,3-DichloropropeneND $ug'L$ 0.4501.0010.3/10/0615:33SW846 8260B6032156tis-1,3-DichloropropeneND $ug'L$ 0.4901.0010.3/10/0615:33SW846 8260B6032156tihylbenzneND $ug'L$ 0.5101.0010.3/10/0615:33SW846 8260B6032156HexachlorobutadieneND $ug'L$ 0.6701.0010.3/10/0615:33SW846 8260B60321562-HexanoneND $ug'L$ 0.3401.0010.3/10/0615:33SW846 8260B6032156p-lopropylbenzeneND $ug'L$ 0.3401.0010.3/10/0615:33SW846 8260B6032156p-lopropylbenzeneND $ug'L$ 0.3401.0010.3/10/0615:33SW846 8260B6032156hethylenc.blorideND $ug'L$ 0.3201.0010.3/10/0615:33SW846 8260B60321564-Methyl-2-pentanoneND $ug'L$ 0.3701.0010.3/10/0615:33SW846 8260B6032156SyreneND $ug'L$ 0.3701.0010.3/10/0615:33SW846 8260B6032156Lj,2-TetachloroethaneND <td< td=""><td>1.3-Dichloropropane</td><td>ND</td><td></td><td>ug/L</td><td>0.630</td><td>1.00</td><td>1</td><td>03/10/06 15:33</td><td>SW846 8260B</td><td>6032156</td></td<>	1.3-Dichloropropane	ND		ug/L	0.630	1.00	1	03/10/06 15:33	SW846 8260B	6032156
2,2-DichloropropaneNDug/L0.6601.0010.3/10/0615:33SW846 8260B6032156cis-1,3-DichloropropeneNDug/L0.4501.0010.3/10/0615:33SW846 8260B6032156trans-1,3-DichloropropeneNDug/L0.4401.0010.3/10/0615:33SW846 8260B6032156trans-1,3-DichloropropeneNDug/L0.5101.0010.3/10/0615:33SW846 8260B6032156EthylbenzeneNDug/L0.3401.0010.3/10/0615:33SW846 8260B6032156HexachlorobutadieneNDug/L0.3401.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3401.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3401.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3401.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3201.0010.3/10/0615:33SW846 8260B60321564-Hetyl-2-pentadeNDug/L0.3201.0010.3/10/0615:33SW846 8260B60321564-Methyl-2-pentanoneNDug/L1.265.0010.3/10/0615:33SW846 8260B60321561,1,1,2-TetrachloroethaneNDug/L0.370 <td>1.2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/L</td> <td>0.500</td> <td>1.00</td> <td>1</td> <td>03/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	1.2-Dichloropropane	ND		ug/L	0.500	1.00	1	03/10/06 15:33	SW846 8260B	6032156
cis-1,3-DichloropropeneNDug/L0.4501.0010.3/10/0615:33SW846 8260B6032156trans-1,3-DichloropropeneNDug/L0.4901.0010.3/10/0615:33SW846 8260B60321561,1-DichloropropeneNDug/L0.5101.0010.3/10/0615:33SW846 8260B6032156EthylbenzeneNDug/L0.5101.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.6701.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3401.0010.3/10/0615:33SW846 8260B60321562-HexanoneNDug/L0.3401.0010.3/10/0615:33SW846 8260B6032156p-IsopropylbenzeneNDug/L0.3201.0010.3/10/0615:33SW846 8260B6032156Methylene ChlorideNDug/L0.3201.0010.3/10/0615:33SW846 8260B6032156Methylene ChlorideNDug/L1.135.0010.3/10/0615:33SW846 8260B6032156NaphlaeneNDug/L0.3701.0010.3/10/0615:33SW846 8260B6032156n-ProylbenzeneNDug/L0.3701.0010.3/10/0615:33SW846 8260B60321561,1,2.2-TetrachloroethaneNDug/L0.3701.00 <td>2.2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/L</td> <td>0.660</td> <td>1.00</td> <td>1</td> <td>03/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	2.2-Dichloropropane	ND		ug/L	0.660	1.00	1	03/10/06 15:33	SW846 8260B	6032156
trans-1,3-DichloropropeneNDug/L0.4901.00103/10/06 15:33SW846 8260860321561,1-DichloropropeneNDug/L0.5101.00103/10/06 15:33SW846 826086032156EthylbenzeneNDug/L0.3401.00103/10/06 15:33SW846 826086032156EthylbenzeneNDug/L0.6701.00103/10/06 15:33SW846 8260860321562-HexanoneNDug/L0.3401.00103/10/06 15:33SW846 826086032156JespropylkolueneNDug/L0.3401.00103/10/06 15:33SW846 826086032156Methyl ert-Butyl EtherNDug/L0.3401.00103/10/06 15:33SW846 826086032156Methylene ChlorideNDug/L1.265.00103/10/06 15:33SW846 826086032156AmpthaleneNDug/L1.135.00103/10/06 15:33SW846 826086032156NaphthaleneNDug/L0.3701.00103/10/06 15:33SW846 8260860321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260860321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260860321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260860321561,1,2-Tetrach	cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	Ĩ	03/10/06 15:33	SW846 8260B	6032156
1,1-DichloropropeneNDug/L0.5101.00103/10/06 15:33SW846 826086032156EthylbenzeneNDug/L0.3401.00103/10/06 15:33SW846 826086032156HexachlorobutadieneNDug/L0.6701.00103/10/06 15:33SW846 826086032156JeropropylbenzeneNDug/L2.5350.0103/10/06 15:33SW846 826086032156JeropropylbenzeneNDug/L0.3401.00103/10/06 15:33SW846 826086032156JeropropylbenzeneNDug/L0.3401.00103/10/06 15:33SW846 826086032156Methyltert-Butyl EtherNDug/L0.3201.00103/10/06 15:33SW846 826086032156A-Methyl-2-pentanoneNDug/L1.265.00103/10/06 15:33SW846 826086032156A-propylbenzeneNDug/L1.3771.00103/10/06 15:33SW846 826086032156A-propylbenzeneNDug/L0.3701.00103/10/06 15:33SW846 826086032156L,1,2.7-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 826086032156L,2.4-TrichloroethaneNDug/L0.3901.00103/10/06 15:33SW846 826086032156L,2.4-TrichloroethaneNDug/L0.3901.00103/10/06 15:33SW846 826086032156<	trans-1.3-Dichloropropene	ND		ug/L	0.490	1.00	Î.	03/10/06 15:33	SW846 8260B	6032156
EthylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156HexachlorobutadieneNDug/L0.5701.00103/10/0615:33SW8468260B60321562-HexanoneNDug/L0.3401.00103/10/0615:33SW8468260B60321562-HexanoneNDug/L0.3401.00103/10/0615:33SW8468260B6032156p-IsopropylbenzeneNDug/L0.3401.00103/10/0615:33SW8468260B6032156Methylene ChlorideNDug/L0.3201.00103/10/0615:33SW8468260B6032156AmpthaleneNDug/L1.135.00103/10/0615:33SW8468260B6032156n-PropylbenzeneNDug/L0.3701.00103/10/0615:33SW8468260B6032156NpribenzeneNDug/L0.3701.00103/10/0615:33SW8468260B60321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/0615:33SW8468260B60321561,2,3-TrichlorobenzeneNDug/L0.3701.00103/10/0615:33SW8468260B60321561,2,3-TrichlorobenzeneNDug/L0.3901.00103/10/0615:33SW8468260B6032156	1,1-Dichloropropene	ND		ug/L	0.510	1.00	1	03/10/06 15:33	SW846 8260B	6032156
HexachlorobutadieneNDug/L 0.670 1.00 1 $0.3/10/06$ 15.33 SW846 22.08 2-HexanoneNDug/L 2.53 50.0 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 IsopropylbenzeneNDug/L 0.340 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 Methyl tert-Butyl EtherNDug/L 0.340 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 Methyl tert-Butyl EtherNDug/L 0.320 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 Methyl-PenctanoneNDug/L 0.320 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 A-Methyl-2-pentanoneNDug/L 1.25 50.0 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 NaphthaleneNDug/L 0.370 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 StyreneNDug/L 0.370 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 L,1,2-TetrachloroethaneNDug/L 0.370 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 L,2,3-TrichlorobenzeneNDug/L 0.370 1.00 1 $0.3/10/06$ 15.33 SW846 $8260B$ 6032156 L,2,4-Trichlorobenz	Ethylbenzene	ND		ug/L	0.340	1.00	1	03/10/06 15:33	SW846 8260B	6032156
2-HexanoneNDug/L2.5350.0103/10/0615:33SW846 8260B6032156IsopropylbenzeneNDug/L0.3401.00103/10/0615:33SW846 8260B6032156p-IsopropylbenzeneNDug/L0.3201.00103/10/0615:33SW846 8260B6032156Methyl tert-Butyl EtherNDug/L0.3201.00103/10/0615:33SW846 8260B6032156Methylene ChlorideNDug/L1.265.00103/10/0615:33SW846 8260B6032156A-Methyl-2-pentanoneNDug/L1.135.00103/10/0615:33SW846 8260B6032156NaphthaleneNDug/L0.3701.00103/10/0615:33SW846 8260B6032156N-PropylbenzeneNDug/L0.3701.00103/10/0615:33SW846 8260B60321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/0615:33SW846 8260B60321561,1,2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,1,2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,2,3-TrichloroethaneNDug/L0.2801.00103/10/0615:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.420	Hexachlorobutadiene	ND		ug/L	0.670	1.00	Ĩ	03/10/06 15:33	SW846 8260B	6032156
IsopropylbenzeneNDug/L0.3401.00103/10/0615:33SW846 8260B6032156p-IsopropyltolueneNDug/L0.3201.00103/10/0615:33SW846 8260B6032156Methyl tert-Butyl EtherNDug/L0.3201.00103/10/0615:33SW846 8260B6032156Methylene ChlorideNDug/L1.265.00103/10/0615:33SW846 8260B6032156MaphthaleneNDug/L4.2550.0103/10/0615:33SW846 8260B6032156NaphthaleneNDug/L0.3701.00103/10/0615:33SW846 8260B6032156NaphthaleneNDug/L0.3701.00103/10/0615:33SW846 8260B6032156StyreneNDug/L0.3701.00103/10/0615:33SW846 8260B60321561,1,2-TetrachloroethaneNDug/L0.3701.00103/10/0615:33SW846 8260B60321561,1,2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,2,3-TrichloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.2801.00103/10/0615:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.4201.00 <td>2-Hexanone</td> <td>ND</td> <td></td> <td>ug/L</td> <td>2.53</td> <td>50.0</td> <td>1</td> <td>03/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	2-Hexanone	ND		ug/L	2.53	50.0	1	03/10/06 15:33	SW846 8260B	6032156
p-IsopropyltolueneNDug/L0.3401.0010.3/10/0615:33SW846 8260B6032156Methyl tert-Butyl EtherNDug/L0.3201.00103/10/0615:33SW846 8260B6032156Methyl-LepentanoneNDug/L1.265.00103/10/0615:33SW846 8260B6032156A-Methyl-2-pentanoneNDug/L1.135.00103/10/0615:33SW846 8260B6032156NaphthaleneNDug/L0.3701.00103/10/0615:33SW846 8260B6032156n-PropylbenzeneNDug/L0.3701.00103/10/0615:33SW846 8260B6032156StyreneNDug/L0.3701.00103/10/0615:33SW846 8260B60321561,1,2-2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,1,2-2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,2,3-TrichloroethaneNDug/L0.3901.00103/10/0615:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.2801.00103/10/0615:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.2801.00103/10/0615:33SW846 8260B60321561,1,2-TrichloroethaneNDug/L <td< td=""><td>Isopropylbenzene</td><td>ND</td><td></td><td>ug/L</td><td>0.340</td><td>1.00</td><td>1</td><td>03/10/06 15:33</td><td>SW846 8260B</td><td>6032156</td></td<>	Isopropylbenzene	ND		ug/L	0.340	1.00	1	03/10/06 15:33	SW846 8260B	6032156
Methyl tert-Butyl EtherNDug/L0.3201.00103/10/06 15:33SW846 8260B6032156Methylene ChlorideNDug/L1.265.00103/10/06 15:33SW846 8260B6032156A-Methyl-2-pentanoneNDug/L4.2550.0103/10/06 15:33SW846 8260B6032156NaphthaleneNDug/L1.135.00103/10/06 15:33SW846 8260B6032156n-PropylbenzeneNDug/L0.3701.00103/10/06 15:33SW846 8260B60321561,1,1,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260B60321561,1,2,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloroethaneNDug/L0.4901.00103/10/06 15:33SW846 8260B60321561,2,3-TrichlorobenzeneNDug/L0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneNDug/L0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneNDug/L0.4201.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneNDug/L0.4201.00103/10/06 15:33SW846 8260B60321561,2,4-TrichloroethaneNDug/L0.4201.00103/10/06 15:33SW846 8260B	p-Isopropyltoluene	ND		ug/L	0.340	1.00	1	03/10/06 15:33	SW846 8260B	6032156
Methylene Chloride ND ug/L 1.26 5.00 1 03/10/06 15:33 SW846 8260B 6032156 4-Methyl-2-pentanone ND ug/L 4.25 50.0 1 03/10/06 15:33 SW846 8260B 6032156 Naphthalene ND ug/L 1.13 5.00 1 03/10/06 15:33 SW846 8260B 6032156 Naphthalene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 n.Propylbenzene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 styrene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Z-Tetrachloroethane ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichloroethane ND ug/L <	Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1	03/10/06 15:33	SW846 8260B	6032156
4-Methyl-2-pentanone ND ug/L 4.25 50.0 1 03/10/06 15:33 SW846 8260B 6032156 Naphthalene ND ug/L 1.13 5.00 1 03/10/06 15:33 SW846 8260B 6032156 Naphthalene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Styrene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Styrene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Tetrachloroethane ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Toluene ND ug/L 0.390 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichlorobenzene ND ug/L 0.280	Methylene Chloride	ND		ug/L	1.26	5.00	1	03/10/06 15:33	SW846 8260B	6032156
Naphthalene ND ug/L 1.13 5.00 1 03/10/06 15:33 SW846 8260B 6032156 n-Propylbenzene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Styrene ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Tetrachloroethane ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Tetrachloroethane ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Tetrachloroethane ND ug/L 0.370 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichlorobetnae ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,4-Trichlorobenzene ND ug/L 0.560 2.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,1-Trichloroethane ND	4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/10/06 15:33	SW846 8260B	6032156
n-PropylbenzeneNDug/L0.3701.00103/10/0615.33SW8468260B6032156StyreneNDug/L0.3901.00103/10/0615:33SW8468260B60321561,1,2.7 EtrachloroethaneNDug/L0.3701.00103/10/0615:33SW8468260B60321561,1,2.7 EtrachloroethaneNDug/L0.4901.00103/10/0615:33SW8468260B60321561,2,2-TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW8468260B6032156TetrachloroethaneNDug/L0.3901.00103/10/0615:33SW8468260B6032156TolueneNDug/L0.2801.00103/10/0615:33SW8468260B60321561,2,3-TrichlorobenzeneNDug/L0.5602.00103/10/0615:33SW8468260B60321561,2,4-TrichloroethaneNDug/L0.4201.00103/10/0615:33SW8468260B60321561,1,1-TrichloroethaneNDug/L0.4001.00103/10/0615:33SW8468260B60321561,2,3-TrichloroethaneNDug/L0.4001.00103/10/0615:33SW8468260B60321561,2,3-TrichloroethaneNDug/L0.4001.00103/10/0615:33SW846<	Naphthalene	ND		ug/L	1.13	5.00	1	03/10/06 15:33	SW846 8260B	6032156
StyreneNDug/L0.3901.00103/10/06 15:33SW846 8260B60321561,1,1,2-TetrachloroethaneNDug/L0.3701.00103/10/06 15:33SW846 8260B60321561,1,2,2-TetrachloroethaneNDug/L0.4901.00103/10/06 15:33SW846 8260B6032156TetrachloroethaneNDug/L0.3901.00103/10/06 15:33SW846 8260B6032156TetrachloroethaneNDug/L0.2801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichlorobenzeneNDug/L0.5602.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneNDug/L0.7902.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneNDug/L0.4201.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneNDug/L0.4201.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneNDug/L0.4501.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloroptopaneNDug/L0.4801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloroptopaneNDug/L0.4801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloroptopaneNDug/L0.2801.00103/10/06 15:33SW846 8260B	n-Propylbenzene	ND		ug/L	0.370	1.00	1	03/10/06 15:33	SW846 8260B	6032156
1,1,2-TetrachloroethaneND ug/L 0.370 1.00 1 $03/10/06$ 15.35 $5W866$ $260B$ 6032156 1,1,2,2-TetrachloroethaneND ug/L 0.490 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 TetrachloroethaneND ug/L 0.390 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 TetrachloroethaneND ug/L 0.390 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 TolueneND ug/L 0.280 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,3-TrichlorobenzeneND ug/L 0.560 2.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,4-TrichloroethaneND ug/L 0.790 2.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,1,1-TrichloroethaneND ug/L 0.420 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,1,1-TrichloroethaneND ug/L 0.400 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,3-TrichloropropaneND ug/L 0.480 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,3-TrichloropropaneND ug/L 0.280 1.00 1 $03/10/06$ <td>Styrene</td> <td>ND</td> <td></td> <td>ug/L</td> <td>0.390</td> <td>1.00</td> <td>1</td> <td>13/10/06 15:33</td> <td>SW846 8260B</td> <td>6032156</td>	Styrene	ND		ug/L	0.390	1.00	1	13/10/06 15:33	SW846 8260B	6032156
NoNDug/L0.4901.00103/10/0615:33SW8468260B6032156TetrachloroetheneNDug/L0.3901.00103/10/0615:33SW8468260B6032156TolueneNDug/L0.2801.00103/10/0615:33SW8468260B60321561,2,3-TrichlorobenzeneNDug/L0.2801.00103/10/0615:33SW8468260B60321561,2,4-TrichlorobenzeneNDug/L0.5602.00103/10/0615:33SW8468260B60321561,1,2-TrichlorobenzeneNDug/L0.7902.00103/10/0615:33SW8468260B60321561,1,2-TrichloroethaneNDug/L0.4201.00103/10/0615:33SW8468260B60321561,1,1-TrichloroethaneNDug/L0.4201.00103/10/0615:33SW8468260B60321561,1,1-TrichloroethaneNDug/L0.4401.00103/10/0615:33SW8468260B6032156TrichlorofluoromethaneNDug/L0.4501.00103/10/0615:33SW8468260B60321561,2,3-TrichloropropaneNDug/L0.4801.00103/10/0615:33SW8468260B60321561,3,5-TrimethylbenzeneNDug/L0.2801.00103/10/0615:33SW846	1.1.1.2-Tetrachloroethane	ND		ug/L	0 370	1.00	1 (03/10/06 15:33	SW846 8260B	6032156
Tetrachloroethene ND ug/L 0.390 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Toluene ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032156 J.2,3-Trichlorobenzene ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032156 J.2,4-Trichlorobenzene ND ug/L 0.560 2.00 1 03/10/06 15:33 SW846 8260B 6032156 J.1,2-Trichlorobenzene ND ug/L 0.560 2.00 1 03/10/06 15:33 SW846 8260B 6032156 J.1,1-Trichloroethane ND ug/L 0.420 1.00 1 03/10/06 15:33 SW846 8260B 6032156 J.1,1-Trichloroethane ND ug/L 0.420 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Trichloroethane ND ug/L 0.400 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Trichloroethane ND ug/L 0.480 1.00 1 03/10/06 15:33 SW846 8260B	1.1.2.2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	3/10/06 15:33	SW846 8260B	6032156
Toluene ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichlorobenzene ND ug/L 0.560 2.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichlorobenzene ND ug/L 0.560 2.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,4-Trichlorobenzene ND ug/L 0.790 2.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,2-Trichloroethane ND ug/L 0.420 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,1,1-Trichloroethane ND ug/L 0.420 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Trichloroethane ND ug/L 0.400 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Trichloroethane ND ug/L 0.480 1.00 1 03/10/06 15:33 SW846 8260B 6032156 1,2,3-Trichloropropane ND ug/L 0.560 1.00 1 03/10/06 15:33 SW846 8260B	Tetrachloroethene	ND		ug/L	0.390	1.00	1 ()3/10/06 15:33	SW846 8260B	6032156
1,2,3-TrichlorobenzeneND ug/L 0.5602.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneND ug/L 0.7902.00103/10/06 15:33SW846 8260B60321561,1,2-TrichlorobenzeneND ug/L 0.4201.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneND ug/L 0.4001.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneND ug/L 0.4001.00103/10/06 15:33SW846 8260B6032156TrichloroethaneND ug/L 0.4501.00103/10/06 15:33SW846 8260B6032156TrichloroethaneND ug/L 0.4801.00103/10/06 15:33SW846 8260B6032156TrichloroptopaneND ug/L 0.4801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloropropaneND ug/L 0.2801.00103/10/06 15:33SW846 8260B60321561,3,5-TrimethylbenzeneND ug/L 0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B6032156Vinyl chlorideND ug/L 0.4301.00103/10/06 15:33 <t< td=""><td>Toluene</td><td>ND</td><td></td><td>ug/L</td><td>0.280</td><td>1.00</td><td>1 (</td><td>3/10/06 15:33</td><td>SW846 8260B</td><td>6032156</td></t<>	Toluene	ND		ug/L	0.280	1.00	1 (3/10/06 15:33	SW846 8260B	6032156
1,2,4-TrichlorobenzeneND ug/L 0.7902.00103/10/06 15:33SW846 8260B60321561,2,4-TrichlorobenzeneND ug/L 0.4201.00103/10/06 15:33SW846 8260B60321561,1,2-TrichloroethaneND ug/L 0.4201.00103/10/06 15:33SW846 8260B60321561,1,1-TrichloroethaneND ug/L 0.4001.00103/10/06 15:33SW846 8260B6032156TrichloroethaneND ug/L 0.4501.00103/10/06 15:33SW846 8260B6032156TrichlorofluoromethaneND ug/L 0.4801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloropropaneND ug/L 0.5601.00103/10/06 15:33SW846 8260B60321561,3,5-TrimethylbenzeneND ug/L 0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B6032156Vinyl chlorideND ug/L 0.4301.00103/10/06 15:33SW846 8260B6032156	1.2.3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 1	3/10/06 15:33	SW846 8260B	6032156
ND ug/L 0.420 1.00 1 $03/10/06$ 15.33 $5W646$ $0200B$ $005/156$ $1,1,2$ -TrichloroethaneND ug/L 0.420 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 $1,1,1$ -TrichloroethaneND ug/L 0.400 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 TrichloroethaneND ug/L 0.450 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 TrichlorofluoromethaneND ug/L 0.480 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 $1,2,3$ -TrichloropropaneND ug/L 0.560 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 $1,3,5$ -TrimethylbenzeneND ug/L 0.280 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 $1,2,4$ -TrimethylbenzeneND ug/L 0.340 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 Vinyl chlorideND ug/L 0.340 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156	1.2.4-Trichlorobenzene	ND		ug/L	0.200	2.00	1 (3/10/06 15:33	SW846 8260B	6032156
ND ug/L 0.400 1.00 1 $03/10/06$ 15.33 $5W846$ $8260B$ 6032156 1,1,1-TrichloroethaneND ug/L 0.400 1.00 1 $03/10/06$ $15:33$ $5W846$ $8260B$ 6032156 TrichloroethaneND ug/L 0.450 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 TrichlorofluoromethaneND ug/L 0.480 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,3-TrichloropropaneND ug/L 0.560 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,3,5-TrimethylbenzeneND ug/L 0.280 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 1,2,4-TrimethylbenzeneND ug/L 0.340 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 Vinyl chlorideND ug/L 0.340 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156	1.1.2-Trichloroethane	ND		ug/L	0.420	1.00	1 ()3/10/06 15:33	SW846 8260B	6032156
ND ug/L 0.450 1.00 1 $03/10/06$ 15.33 $5W846$ $3200D$ 0032136 TrichloroetheneND ug/L 0.450 1.00 1 $03/10/06$ 15.33 $SW846$ $8260B$ 6032156 TrichlorofluoromethaneND ug/L 0.480 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 $1,2,3$ -TrichloropropaneND ug/L 0.560 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 $1,3,5$ -TrimethylbenzeneND ug/L 0.280 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 $1,2,4$ -TrimethylbenzeneND ug/L 0.340 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156 Vinyl chlorideND ug/L 0.430 1.00 1 $03/10/06$ $15:33$ $SW846$ $8260B$ 6032156	1.1.1-Trichloroethane	ND		ug/L	0.400	1.00	1 ($\frac{3}{10} \frac{10}{06} \frac{15}{323}$	SW846 8260B	6032156
Initial controlND ug/L 0.4801.00103/10/06 15:33SW846 8260B60321561,2,3-TrichloropropaneND ug/L 0.5601.00103/10/06 15:33SW846 8260B60321561,3,5-TrimethylbenzeneND ug/L 0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B6032156Vinyl chlorideND ug/L 0.4301.00103/10/06 15:33SW846 8260B6032156	Trichloroethene	ND		ug/L	0.450	1.00	1 (3/10/06 15:33	SW846 8260B	6032156
1,2,3-Trichloropropane ND ug/L 0.560 1.00 1 03/10/06 15:33 SW840 8260B 6032136 1,3,5-Trimethylbenzene ND ug/L 0.280 1.00 1 03/10/06 15:33 SW846 8260B 6032136 1,2,4-Trimethylbenzene ND ug/L 0.340 1.00 1 03/10/06 15:33 SW846 8260B 6032156 Vinyl chloride ND ug/L 0.340 1.00 1 03/10/06 15:33 SW846 8260B 6032156	Trichlorofluoromethane	ND		ug/L	0 480	1.00	1 (3/10/06 15.33	SW846 8760P	6032156
1,3,5-TrimethylbenzeneNDug/L0.2801.00103/10/06 15:33SW846 8260B60321561,2,4-TrimethylbenzeneNDug/L0.3401.00103/10/06 15:33SW846 8260B6032156Vinyl chlorideNDug/L0.4301.00103/10/06 15:33SW846 8260B6032156	1.2.3-Trichloropropane	ND		ug/L	0.560	1.00	1 4	3/10/06 15:33	SW846 8760P	6032156
1,2,4-TrimethylbenzeneND ug/L 0.3401.00103/10/06 15:33SW846 8260B6032156Vinyl chlorideND ug/L 0.4301.00103/10/06 15:33SW846 8260B6032156	1.3.5-Trimethylbenzene	ND		ug/L	0.280	1.00	1 4	3/10/06 15.33	SW846 8760P	6032156
Vinyl chloride ND ug/L 0.430 1.00 1 03/10/06 15:33 SW846 8260B 6032156	1.2.4-Trimethylbenzene	ND		ug/L	0 340	1.00	1 4	3/10/06 15.33	SW846 8760P	6032156
	Vinyl chloride	ND		ug/L	0.430	1.00	1 ()3/10/06 15:33	SW846 8260B	6032156

Page 13 of 35

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0479-06 (03020	601TB -	Ground	Water) -	cont. Sam	pled: 03/02	2/06 00:01	l		
Volatile Organic Compounds by EPA	Method	8260B - c	ont.						
Xylenes, total	ND		ug/L	0.820	3.00	1 (03/10/06 15:33	SW846 8260B	6032156
Surr: 1,2-Dichloroethane-d4 (70-130%)	105 %					1 0	3/10/06 15:33	SW846 8260B	6032156
Surr: Dibromofluoromethane (79-122%)	106 %					1 0	3/10/06 15:33	SW846 8260B	6032156
Surr: Toluene-d8 (78-121%)	104 %					1 0	3/10/06 15:33	.SW846 8260B	6032156
Surr: 4-Bromofluorobenzene (78-126%)	109 %					1 0	3/10/06 15:33	SW846 8260B	6032156

ANALYTICAL TESTING CORPORATION 2960 Foster Creighton Roa

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0479Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/03/06 08:00

DATA QUALIFIERS AND DEFINITIONS

- **B** Analyte was detected in the associated Method Blank.
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- **R2** The RPD exceeded the acceptance limit.
- **RL5** Reporting limit raised due to high single peak analyte.

METHOD MODIFICATION NOTES

	ST AMERICA NPC04	29	26 M	DHONE FOR	: 800-765	-0880	X# 616-7	26-3404					Shel	io I	Pro	onpo	its L	SC SC	haiı	n Of	Cus	tody	Record	
	ME Enterorise Drive, resource, in 50613 03/08/06 1	2:00			SOP	US Pr	oject N	lanage	r to be	Involo	;pe;							CIDEN		N NO		DATE:	31-106	
Î	4500 Trinky Bivd., Suita 106, Fort Worth, TX 76155 Phone 817-571-	6800			٦ ال	TRONME	ITAL SERV	S	<u>[₹</u>	AE OF PA	I TO BILL		万	Hand (SOPUS		0	7 2	+	8 8	0	PAGË:	- <u> </u> of _	7
<u> </u>	601 South Divie Drive, Dayton, CH 46439 Phone 800-572-9839 380 Busch Parkway, Buffalo Grove, 11. 60089 Phone 847-406-7766					CHNICAL (ERVICES		3	VE OF T	TO BILL						ä	0 5 4				nvoice	with g events for t	his site,
οů	110 Elition Drive, Suite A, Colorado Springs, CO 80907 Phone 719-1 the	1166-66				1 CONSUL	TANT			SHELL R	S		te reimiði	IRSEMENT	RATES							amplec	I through the g date:	
8	IN THAT COMPARY. URS OF	prorati	5						*	S ADORESS	pue veulg)	2442								·.				
YOON	tase 1001 Highlanda Plaz	a Drive	West; Su	te 300					_ <u>₹</u>	900 Sol	Inth Con	tral Ave	nue, Ro	(Copy to):	62048				CONSULTA	NT PROJECT				
či	St. Louis	WO 6	3110						<u> </u>	NPLER NA	Heri E(3) (Phri):	hand (SOPUS		Jeff	idams (UR8)	1		los	S-West	Fencelin	e P-83 Project	
PP	PHONE 314-428-0100 FAX: (Office) 431-429-0482 (office) 431-429-0482 (office) 431-429-0482 (office) 648-284-4512		No	r Adama	Thoma	• Ademi	Looung	moor	Γ															
<u>Pő</u>	KNAROUND TAKE (CALENDAR DAYS): TANDARD (10 DAY) [2] 5 DAYS [] 3 DAYS		2 DAYS	т х П	SIL	õ	SULTS NE	EDED EEKEND						REQU	ESTED	ANAL	YSIS # n	nore then	one metho	id is fisted.	circla one			
TEMF	SERATURE ON RECEIPT C																					_	Container PID Re	adings
, w	PECIAL INSTRUCTIONS OR NOTES :																						or Laboratory	
د 	evel 4 QC Defiverables										•													
		GNAS	DNI			00000	AVATA/2	ŀ		(510)	(910		<u>.</u>											
			2					Ī	0.0	8) 02	e) Ot													
33	Field Sample Identification	DATE	TIME	MATRIX	т ţ	NO3 H28C	M NONE	OTHER	SONT.	TPH-04	90-Hell													
	P66 03 0206 01	20/40	040	64	X				S S	X									_				MPCOYJ	10-6
	P7302070601		041	,	Σ				Š							_							_	ډ
	P5803020601		1220		~		1		3	\mathbf{Y}								_						n
	6 030200 250		1520		X				3	\mathbf{x}					_						_			2
	a3 p73030206ES	4	1105	->	×				ر ب	$\overline{\mathbf{v}}$							-							2
ł	030206 01 TB							•		\mathbf{X}		_												æ
													_				-	_						
					 																			
2		1		Received by:	(Bignature														2			Time:		
ġ	Interface (Boosting)		T	Received by:	(Signature													ă				Time:		
	(annual (Bub) - (do annual built																							
<u> </u> 2	kinquithed by: (Bigneture)			Received by.	(Signature				$\left \right\rangle$		$ \rangle$	$ \rangle$	$ \rangle$	i				å	3/2/	5		Та (У. ')	Q	
O SE	TRIBUTION: White with finel report, Green to File, Yellow and Pink to Client.							1														Î	6/1/01 Revision	

16-726-3404	
FAX# 61	
PHONE 800-765-0980	
2690 FOSTER CREIGHTON, NASHVILLE, TN 37204	
FEST AMERICA	

Shell Oil Products US Chain Of Custody Record

ł

2	02 Commerce Drive, Watertown, WI 53094 Phone 800-833-7036					5						_
2 0	4 Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401		SOS	P US Project Mana	ger to be li	nvolced:		INCIDE	NT# (S&E ONLY)	DATE	312106	
	500 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-571-	800		INVIRONMENTAL SERVICES	NAME	: OF PM TO BILL:	Herb Hand (SOPUS)	9 7 2	1 6 6 4	0 PAGE:	<u> مر</u> :	
= - -	01 South Dixte Drive, Dayton, OH 46439 Phone 800-572-9839 80 Busch Partway, Buffalo Grove, 1L 60089 Phone 847-808-7766			ECHNICAL SERVICES	NAME	OF TS TO BILL:		SAP or	CRNT & (TS/CRNT)	Involce v samolin	with	
# 	10 Eikton Drive, Suite A, Colorado Springs, CO 80907 Phone 719-5	3-9911	<u>ו</u>	IMT HOUSTON	_					sampleo	d through the	
б П	her			WIT CONSULTANT	5 5		ETMBURSEMENT RATES		· · · · · · · · · · · · · · · · · · ·	followin	ig date:	
CONSI	ILTANT COMPANY:				BITE A	DORESS (Street and City):						
	URS CC	rporation				10 South Central Avenue	Bowane H 82048					
ADDRE	sss 1001 Highlande Plazi	Drive West; Su	ulte 300		PROJE	ECT CONTACT (Report to):	, ruxalia, iL uturo (Copy to):		CONBULTANT PROJECT NO.:			_
CITY:	St. Louis	MO 63110			BAMPI	Herb Hand (SO	PUS) Jeff Adams ((URS)	-sobos	Vest Fencelin	e P-93 Project	_
TELEP	HONE: (office) 314-429-0100 FAX: (cell) 314-409-8480 (Trailer) 618-284-1612	Jet	ff Adams Thon	nas_Adama@urscorp.com								
ы П Ч	NAROUND TIME (CALENDAR DAYS): TANDARD (10 DAY) 2 5 DAYS 3 DAYS		🔲 24 HOURS	C RESULTS NEEDED ON WEEKEN								3
TEMPI	ERATURE ON RECEIPT C°				Γ							
s.	FECIAL INSTRUCTIONS OR NOTES :											
د س	vel 4 QC Deliverables				<u></u>							
		SAMPL	LING		LD PARAMET	rers						
930	Field Sample Identification	DATE	TIME	TEMPERATURE (F)	Hd	CONDUCTIVITY (see units below)						
	P6603 UN0601	312/06	1040	63.5	6.SF	1260 ×5/cm						
	P73 U 3070601		1420	60.95	6.71	1170 m S/cm						
	PSE 03020601		اكته	59.18	6.78	3460 ms/em						
	PSE03020602	7	اكدم	53.18	6.78	3460mb/cm						

West Fenceline Data Review

Laboratory SDG: NPC0653

Reviewer: Tony Sedlacek

Date Reviewed: 2/11/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P7503030601	P93A03030601
P93B03030601	P5703030601
03030602TB	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

No, the COC designated sample P93A03030601 as an MS/MSD to be analyzed for VOCs. The VOC MS/MSD data was not received as part of the data package. The laboratory was contacted and the data was requested.

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that several LCS recoveries were outside evaluation criteria. Some samples were diluted due to high levels of target analytes and professional judgment was used to evaluate and qualify methylene chloride in sample P5703030601. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
6031695-BS1	VOCs	sec-butylbenzene	138	N/A	75-131
6031695-BS1	VOCs	tert-butylbenzene	138	N/A	74-129
6031695-BS1	VOCs	Isopropylbenzene	134	N/A	75-130
6031695-BS1	VOCs	p-Isopropyltoluene	137	N/A	76-133

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Oualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery Criteria
N/A			

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification

Field ID	Parameter	Analyte	Qualification
N/A			

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, the COC designated sample P93A03030601 as an MS/MSD to be analyzed for VOCs. The VOC MS/MSD data was not received as part of the data package. The laboratory was contacted and the data was requested.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Paramete	er i station	Analyte	Qualification
N/A				

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplic	ate ID
N/A		

Were field duplicates within evaluation criteria?

N/A

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
P93A03030601	VOCs	5000
P93B03030601	VOCs	5000
P5703030601	VOCs	1000

11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminant methylene chloride reported at concentrations less than two times (2X) the RL

Field 1D	Analyte	New RL	Qualification	Comments
P5703030601DL	Methylene chloride	1400	U	Professional Judgment

April 21, 2006

Client: URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn: Jeff Adams

SAMPLE IDENTIFICATION

P7503030601 P93A03030601 MS/MSD P93B03030601 P5703030601 03030602TB

LAB NUMBER

NPC0653-01 NPC0653-02 NPC0653-03 NPC0653-04 NPC0653-05

NPC0653 Work Order: Project Name: West Fenceline P-93 Project Project Nbr: SAP 340061 P/O Nbr: 97216640 Date Received: 03/04/06

COLLECTION DATE AND TIME

03/03/06 10:30 03/03/06 14:30 03/03/06 15:45 03/03/06 15:50 03/03/06 00:01

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Per enclosed Chain of Custody, "samples were properly preserved and received in good condition on 3/4/06. Analysis was extracted and performed within method required holding times following Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846)". Initial and Continuing Calibration requirements were met. Package was completed as a "Level IV".

Please note for QC bacth 6031174: Please note that the reporting limit for P93A03030601 MS/MSD and P93A03030601 were elevated due to the matrix effect. Several % Recovery and % RPD for the MAtrix Spike and Matrix Spike Duplicate were outside laboratory acceptable QC limit due to the matrix of the sample spiked.

Please note for QC bacth 6031695: sec-Butylbenzene, tert-Butylbenzene, Isopropylbenzene, and p-Isopropylbenzene in the LCS were outside laboratory acceptable OC limit biased high. These analytes were not detected in this QC bacth, therefore the data was not impacted.

Organics: Unknown analyte concentrations were determined using the average response factor from the initial calibration curve for all analytes whose % RSD is less than or equal to 15. All other analyte concentrations were determined using linear regression analysis. Copies of curves for compounds with %RSD's greater than 15 are supplied.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980 ext 1256.

Illinois Certification Number: 001177

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Jeff Adams Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: NPC0653 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 03/04/06 08:00

lunh. Noton

Glenn Lee Norton Data Package Coordinator

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668)

Work Order: NPC0653 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 03/04/06 08:00

Analyte	Result	nelŦ	Units	MDL	MRI.	Dilution Eactor	Analysis	Method	Rotch
					- - -	- -			
Sample ID: NPC0653-01 (P	7503030601 -	Groun	d Water) S	Sampled:	03/03/06 10:	30			
Field Sampling Parameters									
pH	6.45		pH Units	NA	NA	1	03/03/06 10:30	EPA 150.1	6031453
Specific conductance	1220		uS/cm	NA	0.100	1 (03/03/06 10:30	EPA 120.1	6031453
Temperature	61.7		°F	0.00	NA	1 (03/03/06 10:30	EPA 170.1	6031453
Volatile Organic Compounds by	EPA Method 8	8260B							
Acetone	ND		ug/L	5.91	50.0	1 (03/08/06 11:08	SW846 8260B	6031695
Benzene	2780		ug/L	5.80	20.0	20	03/11/06 03:05	SW846 8260B	6031174
Bromobenzene	ND		ug/L	0.470	1.00	1 (03/08/06 11:08	SW846 8260B	6031695
Bromochloromethane	ND		ug/L	0.420	1.00	1 (03/08/06 11:08	SW846 8260B	6031695
Bromodichloromethane	ND		ug/L	0.380	1.00	1 (03/08/06 11:08	SW846 8260B	6031695
Bromoform	ND		ug/L	0.500	1.00	1 (03/08/06 11:08	SW846 8260B	6031695
Bromomethane	ND		ug/L	0.600	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
2-Butanone	ND		ug/L	5.09	50.0	1 (3/08/06 11:08	SW846 8260B	6031695
sec-Butylbenzene	ND		ug/L	7.60	20.0	20 (3/11/06 03:05	SW846 8260B	6031174
n-Butylbenzene	30.0		ug/L	0.460	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
tert-Butylbenzene	14.6	J	ug/L	7.80	20.0	20 0	3/11/06 03:05	SW846 8260B	6031174
Carbon disulfide	ND		ug/L	0.310	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Chlorobenzene	ND		ug/L	0.320	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Chloroethane	ND		ug/L	0.500	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Chloroform	ND		ug/L	0.380	1.00	1 (3/08/06 11:08	SW846 8260B	6031695
Chloromethane	ND .		ug/L	0.460	1.00	1 (3/08/06 11:08	SW846 8260B	6031605
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
4-Chlorotoluene	ND		ug/L	0 370	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
1.2-Dibromo-3-chloropropane	ND		ug/L	1 64	5.00	1 0	2/08/06 11:08	SW846 8260B	6031605
1.2-Dibromoethane (EDB)	ND		ug/L	0 380	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
Dibromomethane	ND		ug/L	0.570	1.00	1 0	2/08/06 11:08	SW846 8260D	6031605
1.4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	2/08/06 11:08	SW846 8260D	6031695
1.3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 0	2/08/06 11:08	SW846 8260D	6021605
1.2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	2/08/06 11:08	SW846 8260D	6021605
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	2/08/06 11:08	SW846 8760D	6021605
1.1-Dichloroethane	ND		ug/L	0.410	1.00	1 0	2/00/00 11.00	SW846 8260D	6021605
1 2-Dichloroethane	ND		ug/[,	0.320	1.00	1 0	2/08/06 11.08	SW040 0200D	6031095
cis-1 2-Dichloroethene	ND		ug/L	0.200	1.00	1 0	2/08/06 11:08	SW040 0200D	6021695
1 1-Dichloroethene	ND		ug/L	0.350	1.00	1 0	2/08/06 11:08	SW040 0200D	6021695
trans-1 2-Dichloroethene	ND		ug/L	0.450	1.00	1 0	3/08/06 11:08	SW040 0200D	0031093
1 3-Dichloropropage	ND		ug/L	0.540	1.00	1 0	3/08/06 11:08	SW040 0200B	0031093
1.2-Dichloropropane	ND		ug/L	0.050	1.00	1 0	3/08/06 11:08	SW840 8200B	6031695
2 2-Dichloropropage	ND		ug/L	0.500	1.00	1 0	3/08/06 11:08	SW840 8200B	6031695
cic 1.2 Dichloropropane			ug/L	0.000	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
trans_1_2_Dichloron-nana			и <u>д</u> /Г 110/Л	0.430	1.00	1 0	3/08/06 11:08	5 W 846 8260B	6031695
1 1 Dishloronco			и <u>е</u> /L 110/Т	0.490	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
r, r-Dichloropropene	ND		ug/L	0.510	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
EuryiDenzene Uavashlarahutadiana	29.6		ug/L	0.340	1.00	1 0	3/08/06 11:08	SW846 8260B	6031695
ricxachiorodulaciene	ND		ug/L	0.670	1.00	I 0	3/08/06 11:08	SW846 8260B	6031695

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Jeff Adams Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: NPC0653 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 03/04/06 08:00

			ANALY	I ICAL KEP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batcl
Sample ID: NPC0653-01 (P7503		Groun	d Water)	– – – – – – - cont. Sam	pled: 03/0)3/06 10::	- <u>-</u>		
Volatile Organic Compounds by EPA	A Method	8260B -	cont.		-				
2-Hexanone	ND		ug/L	2.53	50.0	1	03/08/06 11:08	SW846 8260B	603169
Isopropylbenzene	103		ug/L	6.80	20.0	20	03/11/06 03:05	SW846 8260B	6031174
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1	03/08/06 11:08	SW846 8260B	603169
Methyl tert-Butyl Ether	191		ug/L	0.320	1.00	1	03/08/06 11:08	SW846 8260B	603169
Methylene Chloride	ND		ug/L	1.26	5.00	1	03/08/06 11:08	SW846 8260B	603169
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/08/06 11:08	SW846 8260B	603169
Naphthalene	28.6		ug/L	1.13	5.00	1	03/08/06 11:08	SW846 8260B	6031695
n-Propylbenzene	156		ug/L	0.370	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Styrene	ND		ug/L	0.390	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Tetrachloroethene	ND		ug/L	0.390	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Toluene	16.9		ug/L	0.280	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	03/08/06 11:08	SW846 8260B	6031695
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	03/08/06 11:08	SW846 8260B	6031695
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Trichloroethene	ND		ug/L	0.450	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,3,5-Trimethylbenzene	14.6		ug/L	0.280	1.00	1	03/08/06 11:08	SW846 8260B	6031695
1,2,4-Trimethylbenzene	66.4		ug/L	0.340	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Vinyl chloride	ND		ug/L	0.430	1.00	1	03/08/06 11:08	SW846 8260B	6031695
Xylenes, total	39.3		ug/L	0.820	3.00	1	03/08/06 11:08	SW846 8260B	6031695
Diisopropyl Ether	616		ug/L	8.40	20.0	20	03/11/06 03:05	SW846 8260B	6031174
Surr: 1,2-Dichloroethane-d4 (70-130%)	90 %	÷				1 (03/08/06 11:08	SW846 8260B	603169
Surr: 1,2-Dichloroethane-d4 (70-130%)	101 %					1	03/11/06 03.05	SW846 8260B	6031174
Surr: Dibromofluoromethane (79-122%)	100 %					1 1	03/08/06 11:08	SW846 8260B	6031693
Surr: Dibromofluoromethane (79-122%)	104 %					1 (03/11/06 03:05	SW846 8260B	6031174
Surr: Toluene-d8 (78-121%)	90 %					1 1	03/08/06 11.08	SW846 8260B	6031695
Surr: Toluene-d8 (78-121%)	104 %					1 (03/11/06 03·05	SW846 8260B	6031174
Surr: 4-Bromofluorobenzene (78-126%)	85 %					1 1	03/08/06 11:08	SW846 8260B	6031695
Surr: 4-Bromofluorobenzene (78-126%)	104 %					1 (03/11/06 03:05	SW846 8260B	6031174

ANAL TIME CALL DEDON

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order: NPC0653 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 03/04/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0653-02 (P	93A03030601	l MS/M	SD - Grou	nd Water)	Sampled:	03/03/06	14:30		
Field Sampling Parameters									
pH	6.61		pH Units	NA	NA	1	03/03/06 14-30	EPA 150 1	6031453
Specific conductance	1020		uS/cm	NA	0.100	1	03/03/06 14:30	EPA 120.1	6031453
Temperature	62.6		°F	0.00	NA	1	03/03/06 14:30	EPA 170.1	6031453
Volatile Organic Compounds by	EPA Method	8260B							
Acetone	ND	RL1	ug/L	29600	250000	5000	03/11/06 08:26	SW846 8260B	6031174
Benzene	506000		ug/L	1450	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Bromobenzene	ND	RL1	ug/L	2350	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Bromochloromethane	ND	RL1	ug/L	2100	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Bromodichloromethane	ND	RLI	ug/L	1900	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Bromoform	ND	RLI	ug/L	2500	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Bromomethane	ND	RL1	ug/L	3000	5000	5000	03/11/06 08:26	SW846 8260B	6031174
2-Butanone	ND	RL1	ug/L	25400	250000	5000	03/11/06 08:26	SW846 8260B	6031174
sec-Butylbenzene	ND	RL1	ug/L	1900	5000	5000	03/11/06 08:26	SW846 8260B	6031174
n-Butylbenzene	ND	RL1	ug/L	2300	5000	5000	03/11/06 08:26	SW846 8260B	6031174
tert-Butylbenzene	ND	RL1	ug/L	1950	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Carbon dísulfide	ND	RL1	ug/L	1550	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Carbon Tetrachloride	ND	RL1	ug/L	2400	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Chlorobenzene	ND	RL1	ug/L	1600	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Chlorodibromomethane	ND	RLI	ug/L	1800	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Chloroethane	ND	RL1	ug/L	2500	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Chloroform	ND	RL1	ug/L	1900	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Chloromethane	ND	RL1	ug/L	2300	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
2-Chlorotoluene	ND	RL1	ug/L	1350	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
4-Chlorotoluene	ND	RL1	ug/L	1850	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2-Dibromo-3-chloropropane	ND	RL1	ug/L	8200	25000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2-Dibromoethane (EDB)	ND	RL1	ug/L	1900	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Dibromomethane	ND	RL1	ug/L	2850	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,4-Dichlorobenzene	ND	RL1	ug/L	2300	5000	5000 ()3/11/06 08:26	SW846 8260B	6031174
1,3-Dichlorobenzene	ND	RL1	ug/L	1800	5000	5000 ()3/11/06 08:26	SW846 8260B	6031174
1,2-Dichlorobenzene	ND	RL1	ug/L	1850	5000	5000 . ()3/11/06 08:26	SW846 8260B	6031174
Dichlorodifluoromethane	ND	RL1	ug/L	2050	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,1-Dichloroethane	ND	RL1	ug/L	1600	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
1,2-Dichloroethane	ND	RL1	ug/L	1400	5000	5000 ()3/11/06 08:26	SW846 8260B	6031174
cis-1,2-Dichloroethene	ND	RL1	ug/L	1950	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
1,1-Dichloroethene	ND	RL1	ug/L	2250	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
trans-1,2-Dichloroethene	ND	RL1	ug/L	1700	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
1,3-Dichloropropane	ND	RL1	ug/L	3150	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
1,2-Dichloropropane	ND	RL1	ug/L	2500	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
2,2-Dichloropropane	ND	RL1	ug/L	3300	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
cis-1,3-Dichloropropene	ND	RL1	ug/L	2250	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
trans-1,3-Dichloropropene	ND	RL1	ug/L	2450	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
1,1-Dichloropropene	ND	RL1	ug/L	2550	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
Ethylbenzene	ND	RL1	ug/L	1700	5000	5000 (3/11/06 08:26	SW846 8260B	6031174
Hexachlorobutadiene	ND	RL1	ug/L	3350	5000	5000 0	3/11/06 08:26	SW846 8260B	6031174

Test/Merica

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

ANALYTICAL REPORT

						Dilutior	n Analysis	<u></u>	
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPC0653-02 (P93A))303060	1 MS/M	SD - Grou	ind Water)	- cont. San	npled: 0			
Volatile Organic Compounds by EPA	Method	8260B - d	cont.			•		-	
2-Hexanone	ND	RL1	ug/L	12600	250000	5000	03/11/06 08.26	SW846 8260B	6031174
Isopropylbenzene	ND	RL1	ug/L	1700	5000	5000	03/11/06 08:20	SW846 8260B	6031174
p-Isopropyltoluene	ND	RL1	ug/L	1700	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Methyl tert-Butyl Ether	2550	RLI, J	ug/L	1600	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Methylene Chloride	ND	RL1	ug/L	6300	25000	5000	03/11/06 08:26	SW846 8260B	6031174
4-Methyl-2-pentanone	ND	RL1	ug/L	21200	250000	5000	03/11/06 08:26	SW846 8260B	6031174
Naphthalene	ND	RL1	ug/L	5650	25000	5000	03/11/06 08:26	SW846 8260B	6031174
n-Propylbenzene	ND	RL1	ug/L	1850	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Styrene	ND	RL1	ug/L	1950	5000	5000	03/11/06 08:26	SW846 8260B	6031174
1,1,1,2-Tetrachloroethane	ND	RL1	ug/L	1850	5000	5000	03/11/06 08:26	SW846 8260B	6031174
1,1,2,2-Tetrachloroethane	ND	RLI	ug/L	2450	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Tetrachloroethene	ND	RL1	ug/L	1950	5000	5000	03/11/06 08:26	SW846 8260B	6031174
Toluene	ND	RL1	ug/L	1400	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2,3-Trichlorobenzene	ND	RL1	ug/L	2800	10000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2,4-Trichlorobenzene	ND	RL1	ug/L	3950	10000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,1,2-Trichloroethane	ND	RL1	ug/L	2100	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,1,1-Trichloroethane	ND	RL1	ug/L	2000	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Trichloroethene	ND	RL1	ug/L	2250	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Trichlorofluoromethane	ND	RL1	ug/L	2400	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2,3-Trichloropropane	ND	RL1	ug/L	2800	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,3,5-Trimethylbenzene	ND	RL1	ug/L	1400	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
1,2,4-Trimethylbenzene	ND	RL1	ug/L	1700	5000	5000 (03/11/06 08:26	SW846 8260B	6031174
Vinyl chloride	ND	RL1	ug/L	2150	5000	5000 ()3/11/06 08:26	SW846 8260B	6031174
Xylenes, total	ND	RL1	ug/L	4100	15000	5000 ()3/11/06 08:26	SW846 8260B	6031174
Surr: 1,2-Dichloroethane-d4 (70-130%)	105 %					1 0	3/11/06 08.26	SW846 8260B	6031174
Surr: Dibromofluoromethane (79-122%)	104 %					1 0	2/11/06 00.20	SW846 8760B	6031174
Surr: Toluene-d8 (78-121%)	103 %					1 0	3/11/00 08:20	SW040 0200D	6021174
Surr 4-Bromofluorobenzene (78-126%)	105 /0					1 0	3/11/06 08:26	SW840 820UB	(0))11/4
5	YO 70					10	3/11/06 08:26	SW846 8260B	00311/4

/

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPC0653-03 (P	93B03030601	- Grou	nd Water)	Sampled:	03/03/06	 15:45			
Field Sampling Parameters									
nH	7.09		pH Units	NA	NA	1	03/03/06 15.45	FPA 150 1	6031453
Specific conductance	1160		uS/cm	NA	0 100	1	03/03/06 15:45	FPA 120.1	6031453
Temperature	57.9		°F	0.00	NA	1	03/03/06 15:45	EPA 170.1	6031453
Volatile Organic Compounds by	y EPA Method	8260B							
Acetone	ND	RLI	ug/L	29600	250000	5000	03/11/06 08:50	SW846 8260B	6031174
Benzene	370000		ug/L	1450	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Bromobenzene	ND	RL1	ug/L	2350	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Bromochloromethane	ND	RL1	ug/L	2100	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Bromodichloromethane	ND	RL1	ug/L	1900	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Bromoform	ND	RL1	ug/L	2500	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Bromomethane	ND	RL1	ug/L	3000	5000	5000	03/11/06 08:50	SW846 8260B	6031174
2-Butanone	ND	RL1	ug/L	25400	250000	5000	03/11/06 08:50	SW846 8260B	6031174
sec-Butylbenzene	ND	RL1	ug/L	1900	5000	5000	03/11/06 08:50	SW846 8260B	6031174
n-Butylbenzene	ND	RL1	ug/L	2300	5000	5000	03/11/06 08:50	SW846 8260B	6031174
tert-Butylbenzene	ND	RL1	ug/L	1950	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Carbon disulfide	ND	RL1	ug/L	1550	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Carbon Tetrachloride	ND	RL1	ug/L	2400	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Chlorobenzene	ND	RL1	ug/L	1600	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Chlorodibromomethane	ND	RL1	ug/L	1800	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Chloroethane	ND	RL1	ug/L	2500	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Chloroform	ND	RL1	ug/L	1900	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Chloromethane	ND	RL1	ug/L	2300	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
2-Chlorotoluene	ND	RLI	ug/L	1350	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
4-Chlorotoluene	ND	RL1	ug/L	1850	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,2-Dibromo-3-chloropropane	ND	RL1	ug/L	8200	25000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,2-Dibromoethane (EDB)	ND	RL1	ug/L	1900	5000	5000 ()3/11/06 08:50	SW846 8260B	6031174
Dibromomethane	ND	RL1	ug/L	2850	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,4-Dichlorobenzene	ND	RL1	ug/L	2300	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,3-Dichlorobenzene	ND	RL1	ug/L	1800	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,2-Dichlorobenzene	ND	RL1	ug/L	1850	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
Dichlorodifluoromethane	ND	RL1	ug/L	2050	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,1-Dichloroethane	ND	RL1	ug/L	1600	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,2-Dichloroethane	ND	RL1	ug/L	1400	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
cis-1,2-Dichloroethene	ND	RL1	ug/L	1950	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,1-Dichloroethene	ND	RLI	ug/L	2250	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
trans-1,2-Dichloroethene	ND	RL1	ug/L	1700	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,3-Dichloropropane	ND	RL1	ug/L	3150	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,2-Dichloropropane	ND	RL1	ug/L	2500	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
2,2-Dichloropropane	ND	RL1	ug/L	3300	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
cis-1,3-Dichloropropene	ND	RL1	ug/L	2250	5000	5000 0	3/11/06 08:50	SW846 8260B	6031174
trans-1,3-Dichloropropene	ND	RL1	ug/L	2450	5000	5000 0	3/11/06 08:50	SW846 8260B	6031174
1,1-Dichloropropene	ND	RL1	ug/L	2550	5000	5000 0	3/11/06 08:50	SW846 8260B	6031174
Ethylbenzene	ND	RL1	ug/L	1700	5000	5000 0	3/11/06 08:50	SW846 8260B	6031174
Hexachlorobutadiene	ND	RL1	ug/L	3350	5000	5000 0	3/11/06 08:50	SW846 8260B	6031174

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

						Dilution	n Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPC0653-03 (P93B))3030601	l - Grou	nd Water) - cont. Sa		 /03/06 15:			
Volatile Organic Compounds by EPA	Method	8260B - d	cont.	•					
2-Hexanone	ND	RL1	ug/L	12600	250000	5000	03/11/06 08:50	SW846 8260B	6031174
Isopropylbenzene	ND	RL1	ug/L	1700	5000	5000	03/11/06 08:50	SW846 8260B	6031174
p-Isopropyltoluene	ND	RLI	ug/L	1700	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Methyl tert-Butyl Ether	2350	RL1, J	ug/L	1600	5000	5000	03/11/06 08:50	SW846 8260B	6031174
Methylene Chloride	ND	RL1	ug/L	6300	25000	5000	03/11/06 08:50	SW846 8260B	6031174
4-Methyl-2-pentanone	ND	RL1	ug/L	21200	250000	5000 (03/11/06 08:50	SW846 8260B	6031174
Naphthalene	ND	RL I	ug/L	5650	25000	5000 (03/11/06 08:50	SW846 8260B	6031174
n-Propylbenzene	ND	RL1	ug/L	1850	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Styrene	ND	RL1	ug/L	1950	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,1,1,2-Tetrachloroethane	ND	RL1	ug/L	1850	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,1,2,2-Tetrachloroethane	ND	RL1	ug/L	2450	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Tetrachloroethene	ND	RL1	ug/L	1950	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Toluene	ND	RL1	ug/L	1400	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,2,3-Trichlorobenzene	ND	RL1	ug/L	2800	10000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,2,4-Trichlorobenzene	ND	RL1	ug/L	3950	10000	5000 (03/11/06 08:50	SW846 8260B	6031174
1,1,2-Trichloroethane	ND	RL1	ug/L	2100	5000	5000 ()3/11/06 08:50	SW846 8260B	6031174
1,1,1-Trichloroethane	ND	RL1	ug/L	2000	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
Trichloroethene	ND	RL1	ug/L	2250	5000	5000 (03/11/06 08:50	SW846 8260B	6031174
Trichlorofluoromethane	ND	RL1	ug/L	2400	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,2,3-Trichloropropane	ND	RL1	ug/L	2800	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,3,5-Trimethylbenzene	ND	RL1	ug/L	1400	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
1,2,4-Trimethylbenzene	ND	RL1	ug/L	1700	5000	5000 (3/11/06 08:50	SW846 8260B	6031174
Vinyl chloride	ND	RL1	ug/L	2150	5000	5000 Q	3/11/06 08:50	SW846 8260B	6031174
Xylenes, total	ND	RLI	ug/L	4100	15000	5000 Q	3/11/06 08:50	SW846 8260B	6031174
Surr: 1,2-Dichloroethane-d4 (70-130%)	107 %					1 0	3/11/06 08.50	SW846 8260B	6031174
Surr: Dibromofluoromethane (79-122%)	105 %					1 0	3/11/06 08:50	SW846 8260B	6031174
Surr: Toluene-d8 (78-121%)	105 %					1 0	2/11/06 00.50	SW846 8260P	6031174
Surr: 4-Bromofluorobenzene (78-126%)	100 %					1 0.	3/11/00 00:30	CW046 0260D	6031174
· · · · · · · · · · · · · · · · · · ·	100 /0					I 0.	3/11/06 08:50	SW840 820UB	00511/4

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

Analyte	Result	_Flag	Units	MDL	MRL	Dilution Factor	1 Analysis Date/Time	Method	Batch
Sample ID: NPC0653-04 (P57	03030601 -	- Ground	Water) S	Sampled:	03/03/06 15:	:50			
Field Sampling Parameters				-	<u>,</u>				
pH	6.72		pH Units	NA	NA	1	02/02/06 15.50	EDA 150 1	6021452
Specific conductance	1220		uS/cm	NA	0 100	1	03/03/06 15:50	EFA 130.1	6031453
Temperature	55.8		°F	0.00	NA	1	03/03/06 15:50	EPA 170 1	6031453
Volatile Organic Compounds by E	PA Method	8260B				_	05/05/00 15.50	D	0051155
Acetone	ND	RL1	ug/L	5910	50000	1000	03/11/06 03.20	SW846 8260B	6031174
Benzene	177000		ug/L	290	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Bromobenzene	ND	RL1	ug/L	470	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Bromochloromethane	ND	RL1	ug/L	420	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Bromodichloromethane	ND	RL1	ug/L	380	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Bromoform	ND	RL1	ug/L	500	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Bromomethane	ND	RL1	ug/L	600	1000	1000	03/11/06 03:29	SW846 8260B	6031174
2-Butanone	ND	RL1	ug/L	5090	50000	1000	03/11/06 03:29	SW846 8260B	6031174
sec-Butylbenzene	ND	RL1	ug/L	380	1000	1000	03/11/06 03:29	SW846 8260B	6031174
n-Butylbenzene	ND	RL1	ug/L	460	1000	1000	03/11/06 03:29	SW846 8260B	6031174
tert-Butylbenzene	ND	RL1	ug/L	390	1000	1000 ()3/11/06 03:29	SW846 8260B	6031174
Carbon disulfide	ND	RL1	ug/L	310	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Carbon Tetrachloride	ND	RL1	ug/L	480	1000	1000 ()3/11/06 03:29	SW846 8260B	6031174
Chlorobenzene	ND	RL1	ug/L	320	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Chlorodibromomethane	ND	RL1	ug/L	360	1000	1000 ()3/11/06 03:29	SW846 8260B	6031174
Chloroethane	ND	RL1	ug/L	500	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Chloroform	ND	RL1	ug/L	380	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
Chloromethane	ND	RL1	ug/L	460	1000	1000 ()3/11/06 03:29	SW846 8260B	6031174
2-Chlorotoluene	ND	RL1	ug/L	270	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
4-Chlorotoluene	ND	RL1	ug/L	370	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
1,2-Dibromo-3-chloropropane	ND	RL1	ug/L	1640	5000	1000 (3/11/06 03:29	SW846 8260B	6031174
1,2-Dibromoethane (EDB)	ND	RL1	ug/L	380	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
Dibromomethane	ND	RL1	ug/L	570	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
1,4-Dichlorobenzene	ND	RL1	ug/L	460	1000	1000 (3/11/06 03:29	SW846 8260B	6031174
1,3-Dichlorobenzene	ND	RLI	ug/L	360	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,2-Dichlorobenzene	ND	RL1	ug/L	370	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
Dichlorodifluoromethane	ND	RL1	ug/L	410	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,1-Dichloroethane	ND	RLI	ug/L	320	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,2-Dichloroethane	ND	RLI	ug/L	280	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
cis-1,2-Dichloroethene	ND	RL1	ug/L	390	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,1-Dichloroethene	ND	RL1	ug/L	450	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
trans-1,2-Dichloroethene	ND	RL1	ug/L	340	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,3-Dichloropropane	ND	RL1	ug/L	630	1000	1000 0	3/11/06 03:29	SW846 8260B	6031174
1,2-Dichloropropane	ND	RL1	ug/L	500	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
2,2-Dichloropropane	ND	RL1	ug/L	660	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
cis-1,3-Dichloropropene	ND	RL1	ug/L	450	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
trans-1,3-Dichloropropene	ND	RL1	ug/L	490	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
1,1-Dichloropropene	ND	RL1	ug/L	510	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
Ethylbenzene	1120		ug/L	340	1000	1000 0	3/11/06 03:29 \$	SW846 8260B	6031174
Hexachlorobutadiene	ND	RL1	ug/L	670	1000	1000 0	3/11/06 03:29 8	SW846 8260B	6031174

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0653-04 (P57	03030601	- Groun	d Water)	- cont. Sa	mpled: 03/03/	/06 15:5	0		
Volatile Organic Compounds by E	PA Method	8260B -	cont.						
2-Hexanone	ND	RL1	ug/L	2530	50000	1000	03/11/06 03:29	SW846 8260B	6031174
Isopropylbenzene	ND	RL1	ug/L	340	1000	1000	03/11/06 03:29	SW846 8260B	6031174
p-Isopropyltoluene	ND	RL1	ug/L	340	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Methyl tert-Butyl Ether	ND	RLI	ug/L	320	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Methylene Chloride	ND-1400	[™] ¥, RL 1 [®]	ኊ '' ug/L	1260	5000 5000 913	•1000	03/11/06 03:29	SW846 8260B	6031174
4-Methyl-2-pentanone	ND	RLI	ug/L	4250	50000	1000	03/11/06 03:29	SW846 8260B	6031174
Naphthalene	ND	RL1	ug/L	1130	5000	1000	03/11/06 03:29	SW846 8260B	6031174
n-Propylbenzene	ND	RLI	ug/L	370	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Styrene	ND	RL1	ug/L	390	1000	1000	03/11/06 03:29	SW846 8260B	6031174
1,1,1,2-Tetrachloroethane	ND	RL1	ug/L	370	1000	1000	03/11/06 03:29	SW846 8260B	6031174
1,1,2,2-Tetrachloroethane	ND	RL1	ug/L	490	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Tetrachloroethene	ND	RL1	ug/L	390	1000	1000	03/11/06 03:29	SW846 8260B	6031174
Toluene	ND	RL1	ug/L	280	1000	1000	03/11/06 03:29	SW846 8260B	6031174
1,2,3-Trichlorobenzene	ND	RL1	ug/L	560	2000	1000	03/11/06 03:29	SW846 8260B	6031174
1,2,4-Trichlorobenzene	ND	RL1	ug/L	790	2000	1000	03/11/06 03:29	SW846 8260B	6031174
1,1,2-Trichloroethane	ND	RL1	ug/L	420	1000	1000	03/11/06 03:29	SW846 8260B	6031174
1,1,1-Trichloroethane	ND	RL1	ug/L	400	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Trichloroethene	ND	RL1	ug/L	450	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Trichlorofluoromethane	ND	RL1	ug/L	480	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
1,2,3-Trichloropropane	ND	RLI	ug/L	560	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
1,3,5-Trimethylbenzene	ND	RL1	ug/L	280	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
1,2,4-Trimethylbenzene	ND	RL1	ug/L	340	1000	1000 (03/11/06 03:29	SW846 8260B	6031174
Vinyl chloride	ND	RL1	ug/L	430	1000	1000 ()3/11/06 03:29	SW846 8260B	6031174
Xylenes, total	1040	J, RL1	ug/L	820	3000	1000 (03/11/06 03:29	SW846 8260B	6031174
Surr: 1,2-Dichloroethane-d4 (70-130%)) 103 %					1 0	3/11/06 03.29	SW846 8260B	6031174
Surr: Dibromofluoromethane (79-122%	6) 105 %					1 0	3/11/06 03:22	SW846 8260B	6031174
Surr: Toluene-d8 (78-121%)	102 %					1 0	3/11/06 02.20	SW846 8760P	6031174
Surr: 4-Bromofluorobenzene (78-126%) 101 %					1 0	3/11/06 03:29	SW846 8260B	6031174

Test/Merica

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC0653-05 (030	30602TB -	Ground	Water)	Sampled:	03/03/06 00:0	1			
Volatile Organic Compounds by E	EPA Method	8260B							
Acetone	ND		ug/L	5.91	50.0	1 (03/08/06 05.23	SW846 8260B	6031695
Benzene	ND		ug/L	0.290	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Bromobenzene	ND		ug/L	0.470	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Bromochloromethane	ND		ug/L	0.420	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Bromodichloromethane	ND		ug/L	0.380	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Bromoform	ND		ug/L	0.500	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Bromomethane	ND		ug/L	0.600	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
2-Butanone	ND		ug/L	5.09	50.0	1 (03/08/06 05:23	SW846 8260B	6031695
sec-Butylbenzene	ND		ug/L	0.380	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
n-Butylbenzene	ND		ug/L	0.460	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
tert-Butylbenzene	ND		ug/L	0.390	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Carbon disulfide	ND		ug/L	0.310	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Chlorobenzene	ND		ug/L	0.320	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Chloroethane	ND		ug/L	0.500	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Chloroform	ND		ug/L	0.380	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
Chloromethane	ND		ug/L	0.460	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 (03/08/06 05:23	SW846 8260B	6031695
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 (3/08/06 05:23	SW846 8260B	6031695
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
Dibromomethane	ND		ug/L	0.570	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
Dichlorodifluoromethane	ND	,	ug/L	0.410	1.00	1 (3/08/06 05:23	SW846 8260B	6031695
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
Ethylbenzene	ND		ug/L	0.340	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
Hexachlorobutadiene	ND		ug/L	0.670	1.00	10	3/08/06 05:23	SW846 8260B	6031695
2-Hexanone	ND		ug/L	2.53	50.0	1 0	3/08/06 05:23	SW846 8260B	6031695
Isopropylbenzene	ND		ug/L	0.340	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 0	3/08/06 05:23	SW846 8260B	6031695
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	10	3/08/06 05:23	SW846 8260B	6031695
Methylene Chloride	ND		ug/L	1.26	5.00	10	3/08/06 05:23	SW846 8260B	6031695

Page 11 of 27

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

A I	D L		TT :4-	MDI	MOT	Dilutio	n Analysis		
	Result	Flag		MDL		Factor		Method	Batch
Sample ID: NPC0653-05 (03030	602TB -	Ground	Water) -	cont. Sam	oled: 03/03	6/06 00:0	1		
Volatile Organic Compounds by EP.	A Method	8260B - c	ont.						
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1	03/08/06 05:23	SW846 8260B	6031695
Naphthalene	ND		ug/L	1.13	5.00	1	03/08/06 05:23	SW846 8260B	6031695
n-Propylbenzene	ND		ug/L	0.370	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Styrene	ND		ug/L	0.390	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Tetrachloroethene	ND		ug/L	0.390	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Toluene	ND		ug/L	0.280	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	03/08/06 05:23	SW846 8260B	6031695
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	03/08/06 05:23	SW846 8260B	6031695
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Trichloroethene	ND		ug/L	0.450	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1	03/08/06 05:23	SW846 8260B	6031695
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Vinyl chloride	ND		ug/L	0.430	1.00	1	03/08/06 05:23	SW846 8260B	6031695
Xylenes, total	ND		ug/L	0.820	3.00	1	03/08/06 05:23	SW846 8260B	6031695
Surr: 1,2-Dichloroethane-d4 (70-130%)	83 %					1	13/08/06 05.23	SW846 8260B	6031695
Surr: Dibromofluoromethane (79-122%)	98 %					1	13/08/06 05.23	SW846 8760B	6031695
Surr: Toluene-d8 (78-121%)	97%					1))/00/00 05.23	SW046 0200D	6031605
Surr: 4-Bromofluorobenzene (78-126%)	102 %					1 1)3/08/06 05:23)3/08/06 05:23	SW846 8260B SW846 8260B	6031695

Test Amalytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPC0653Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:03/04/06 08:00

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- **R2** The RPD exceeded the acceptance limit.
- **RL1** Reporting limit raised due to sample matrix effects.
- **RL5** Reporting limit raised due to high single peak analyte.

METHOD MODIFICATION NOTES

NPC0653	03/09/06 17:00	THAT THAT THE GUT
	TEST AME	

HTON, NASHVILLE, TN 37204 PHONE 800-765-0980 FAX# 616-726-3404

Shell Oil Products US Chain Of Custody Record

D Š	12 Commerce Drive,					ł								
ş D	i Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401		SOP US Project Mana	ger to be	Involce	ÿ				:IDENT # (S&E 0	ONLY	DATE	13/06	
5	30 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-571-6800		ENVIRONMENTAL SERVICES	¥	NE OF PM	, BILL:	<u>Herb Han</u>	d (SOPUS)	6	2 1 6	6 4 0	PAGE: /	ام ال	
88 []	11 South Dixle Drive, Dayton, OH 46439 Phone 800-572-9839		TECHNICAL SERVICES									Invoice with		
٩ ١	30 Busch Parkway, Buffalo Grove, 1L 60039 Phone 847-808-7766			<u>¥</u>	HE OF TS 1	O BILL:			24	or CRMT # (TS	(CRMT)	sampling ev	ents for this site,	
	[0 Elkbon Drive, Suite A, Colorado Springs, CO 80907 Phone 719-593-5911				SHELL RAT		STATE REIMBURSEM	ENT RATES				sampled threfore the following dates and the following dates and the following dates and the following the followi	ougn tne te:	
Š					E ADVARES (B							'		
CONBUL	LTANT COMPANY: URS Corporation			ē		-1610-01-01-01-01-01-01-01-01-01-01-01-01-0								
ADORES	38. 1001 Highlands Plaza Drive We	est: Suite 300		JE .	900 South	Central /	Venue, Roxana, (copy h	IL 62048		CONSULTANT	PROJECT NO .:			
спү:						Herb Ha	id (SOPUS)	Jeff Adam	s (URS)		SOPUS-Wee	t Fenceline P-9	3 Project	
	St. Louis, MO 8311	0		3	MPLER NAME() (Print):					3	101		
TELEPH	Contec (office) 314.429-0100 FAX: (office) 314.429-0100 (Office) 431-429-0482 (Trailer) 818-254-1512 (Trailer) 818-254-1512	All: Jeff Adams	Thomas_Adams@urscorp.com						:					
aí s P	VAROUND TIME (CALENDAR DAYS): ANDARD (10 DAY) 3 5 DAYS 3 DAYS 3 2 D	DAYS 24	HOURS I RESULTS NEEDED				RE	QUESTED AN	ALYSIS If mo	re than one method I	is listed, circle one			
TEMPE	RATURE ON RECEIPT C°											Conta	iner PID Readings	
SPI	ECIAL INSTRUCTIONS OR NOTES :								<u> </u>				aboratory Notes	
Lev	vel 4 QC Deliverables				1	anut								
	SAMPLIN	g	PREBERVATIVE		(51.08)	sion s								
332	Field Sample Identification DATE TI	ME	HCI HNO3 H2804 NONE OTHER	NO. OF	0990-441	8760 / 8015			·					
	prs 03030601 3/3/6 10	20 C	Χ	\sim								NP	10-623-01	
	P93403020601 14	130 1		2 >	د ا							、 	2	
	P936030501 15	45	<u> ۲</u>	ר ר									m	
	P 2703030601 15	201	×	~									2	<u> </u>
	11 P0320306 MS	1 20	K	3	, ,								.2	·
	P934050306 45D & 14	(35 4		ς γ									0	,
	0303060778			^ -									5	,
												\geq	4 ²	2°
Relinq.	usition by (Signment)	Received by	r. (Signature)					·		7/1/6	5	Time 8,'UU		
Relinq	(Bigneture)	Received by	r: (Signature)							Date:		Time:		
Relinqu	ulahed by: (Signature)	Received by	r. (Signature)							Date:		Time:		
												06/1/01 R	evision	
DIBTHIL	BUTION: White with final report, Green to File, Yellow and Fink to Client.													

Ш×	ST AMERICA I 2660 FOSTER CHEIGH 3 Commerce Drive, Waterbown, VI 53094 Phone 800 633-712	iton, NASHVILLE, TN 3. 136	7204 PHONE 800-74	65-0980 FAX# 616-726-340-		٢	Shell Oil Prod	ucts US	Chain Of C	ustody Record	1
ي گ	Enterprise Drive, Cedar Felis, 1A 50613 Phone 319-277-240		SO	> US Project Manaç	ler to be inv	/olced:			NZ 9 (SAE ONLY)	DATE: 2/3/00	
Ц Ц	00 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-5	0089-1/1		NUTRONMENTAL SERVICES	NAME O	IF PM TO BILL:	Herb Hand (SOPUS)	6 7	1 6 6 4	PAGE: 2 of 2	
ង្គ ឆ្ន ព ព	II Souch Davie, Dayton, OH 46439 Phone 800-572-9839 0 Busch Parkway, Buffalo Grove, IL 60089 Phone 847-808-776	œ.		Echnical Services Mr Honiston	NAME	IF T8 TO BILL:		20 9 9 9	CRME & (TS/CRMM)	Involce with sampling events for this	e site,
38	0 Elitan Drive, Suita A, Colorado Springs, CO 80907 Phone 71 er	116 6 -593-9911		THE CONSULTANT	1 N N		TE REIMBURSEMENT RATES			following date:	
CONBUT	.TANT COMPANY:				SITE ADD	ALLES (Bitraet and City):					T
	URS	Corporation			5		Bonne II Conne				
ADDRE	ss: 1001 Highlande Pi	aza Drive West; Si	ulte 300		PROJECT	SOULD CERTURAL AVE	(Copy al: 04040		CONSULTANT PROJECT NO.		Τ
CILX	St. Lo	uie, MO 63110			BAMPLE	Herb Hand R NME(8) (Print):	(SOPUS) Jeff Adam	18 (URS)	-SUPOS	Vest Fenceline P-93 Project	
	CME: (office) 314-429-0100 PAX (centee) 314-429-0100 (Office) 314-429-0482 (centee) 314-408-4460 (TimBer) 818-264-1612	Charles Charles	nf Adama Then	nas. Adama@uracorp.com							
第日	UROUND TIME (CALENDAR DAYS): ANDARD (10 DAY) 2 5 DAYS 2 3 DAYS	2 DAYS	C 24 HOURS	C RESULTS NEEDED ON WEEKEN							
ENPE	RATURE ON RECEIPT C ⁴										
8	ECIAL INSTRUCTIONS OR NOTES :										
Lei	rei 4 QC Deliverables										
		SAMPI	LING		LD PARAMETE	RS	ſ				
33	Field Sample Identification	DATE	TIME	TEMPERATURE (F)	ਸ਼ ਸ਼	CONDUCTIVITY (a units below)	88				
	P7503020601	3/3/06	(030	61.7	6.45	2m vcl)	(en				
	Pa3403030601		1430	62.6	661	2m KO	(cu,				
	P33 B U3050601		احدر	57.92	7-09	1161 mS	5				
	P5703030601	~	دحكم	55.76	6.72	12 m RISI	0				
				-							

West Fenceline Data Review

Laboratory SDG: NPD0520

Reviewer: Tony Sedlacek

Date Reviewed: 2/11/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P9302GWP43	P9302GWP59
P9311GWP41	TB04050601

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, the laboratory case narrative did not indicate any problems although samples were diluted due to high levels of target analytes. This issue is addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

HIDLE	Voromotor	Apolyto	and in the section
II NI/A			
I IN/A			
1 1 1 1 1			
B			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Paramatar	Apolyta	Non DI	Ouglification
FIEID ID	TATAMETEI	Allalyte	INCH ILL	Quantication
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte Analyte	Qualification
N/A			

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	P	arameter	Analyte	Qualification
N/A				

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
P9302GWP43	VOCs	10000
P9302GWP59	VOCs	10000
P9311GWP41	VOCs	10000

11.0 Additional Qualifications

Were additional qualifications applied?

No

May 25, 2006

Client:	URS Corporation (St. Louis)/SHELL (13668)	
	1001 Highlands Plaza Dr. West, Suite 300	
	St. Louis, MO 63110	
Attn:	Amelia Turnell	

Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Nbr:SAP 340061P/O Nbr:97216640Date Received:04/06/06

SAMPLE IDENTIFICATION

P9302GWP43 P9302GWP59 P9311GWP41 TB04050601

LAB NUMBER

NPD0520-01 NPD0520-02 NPD0520-03 NPD0520-04

COLLECTION DATE AND TIME

04/05/06 13:30 04/05/06 15:15 04/05/06 17:20 04/05/06 00:01

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Samples were properly preserved and received in good condition on 04/06/06. Analyses were performed within method required holding times. There were no anomalies noted at sample log-in. MS/MSD was not performed due to insufficient sample volume. All QC results were within acceptable limits. Please note: Reporting limits are elevated due to sample matrix effects. See Data Qualifiers and Definitions at end of this report for further explanation. Initial and Continuing Calibration requirements were met.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980. Illinois Certification Number: 001177

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

randra Mchfilte

Sandra McMillin Senior Project Manager

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0520-01 (P9	9302GWP43	- Wate	r) Sampled	: 04/05/0	6 13:30				
Volatile Organic Compounds by	EPA Method	8260B							
Acetone	ND	RL1	ug/L	59100	500000	10000 04	/11/06 02:44	SW846 8260B	6041767
Benzene	1310000	RL1	ug/L	2900	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Bromobenzene	ND	RL1	ug/L	4700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Bromochloromethane	ND	RL1	ug/L	4200	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Bromodichloromethane	ND	RL1	ug/L	3800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Bromoform	ND	RL1	ug/L	5000	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Bromomethane	ND	RL1	ug/L	6000	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
2-Butanone	ND	RL1	ug/L	50900	500000	10000 04	/11/06 02:44	SW846 8260B	6041767
sec-Butylbenzene	ND	RL1	ug/L	3800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
n-Butylbenzene	ND	RL1	ug/L	4600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
tert-Butylbenzene	ND	RL1	ug/L	3900	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Carbon disulfide	ND	RL1	ug/L	3100	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Carbon Tetrachloride	ND	RL1	ug/L	4800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Chlorobenzene	ND	RL1	ug/L	3200	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Chlorodibromomethane	ND	RL1	ug/L	3600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Chloroethane	ND	RL1	ug/L	5000	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Chloroform	ND	RL1	ug/L	3800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Chloromethane	ND	RL1	ug/L	4600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
2-Chlorotoluene	ND	RL1	ug/L	2700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
4-Chlorotoluene	ND	RL1	ug/L	3700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,2-Dibromo-3-chloropropane	ND	RL1	ug/L	16400	50000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,2-Dibromoethane (EDB)	ND	RL1	ug/L	3800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Dibromomethane	ND	RL1	ug/L	5700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,4-Dichlorobenzene	ND	RL1	ug/L	4600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,3-Dichlorobenzene	ND	RL1	ug/L	3600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,2-Dichlorobenzene	ND	RL1	ug/L	3700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Dichlorodifluoromethane	ND	RL1	ug/L	4100	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,1-Dichloroethane	ND	RL1	ug/L	3200	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,2-Dichloroethane	ND	RL1	ug/L	2800	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
cis-1,2-Dichloroethene	ND	RL1	ug/L	3900	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,1-Dichloroethene	ND	RLI	ug/L	4500	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
trans-1,2-Dichloroethene	ND	RL1	ug/L	3400	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,3-Dichloropropane	ND	RL1	ug/L	6300	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,2-Dichloropropane	ND	RL1	ug/L	5000	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
2,2-Dichloropropane	ND	RLI	ug/L	6600	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
cis-1,3-Dichloropropene	ND	RL1	ug/L	4500	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
trans-1,3-Dichloropropene	ND	RL1	ug/L	4900	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
1,1-Dichloropropene	ND	RLI	ug/L	5100	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Ethylbenzene	6200	RL1, J	ug/L	3400	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Hexachlorobutadiene	ND	RL1	ug/L	6700	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
2-Hexanone	ND	RL1	ug/L	25300	500000	10000 04	/11/06 02:44	SW846 8260B	6041767
Isopropylbenzene	ND	RL1	ug/L	3400	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
p-Isopropyltoluene	ND	RL1	ug/L	3400	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Methyl tert-Butyl Ether	ND	RL1	ug/L	3200	10000	10000 04	/11/06 02:44	SW846 8260B	6041767
Methylene Chloride	ND	RL1	ug/L	12600	50000	10000 04	/11/06 02:44	SW846 8260B	6041767

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

ANALYTICAL REPORT

			-			Dilution	n Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0520-01 (P9302	GWP43	- Water) - cont. S	Sampled:	04/05/06 13:	:30			
Volatile Organic Compounds by EPA	A Method	8260B - c	ont.						
4-Methyl-2-pentanone	ND	RL1	ug/L	42500	500000	10000	04/11/06 02:44	SW846 8260B	6041767
Naphthalene	ND	RL1	ug/L	11300	50000	10000	04/11/06 02:44	SW846 8260B	6041767
n-Propylbenzene	ND	RL1	ug/L	3700	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Styrene	ND	RL1	ug/L	3900	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,1,1,2-Tetrachloroethane	ND	RL1	ug/L	3700	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,1,2,2-Tetrachloroethane	ND	RL1	ug/L	4900	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Tetrachloroethene	ND	RL1	ug/L	3900	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Toluene	29500	RL1	ug/L	2800	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,2,3-Trichlorobenzene	ND	RL1	ug/L	5600	20000	10000	04/11/06 02:44	SW846 8260B	6041767
1,2,4-Trichlorobenzene	ND	RL1	ug/L	7900	20000	10000	04/11/06 02:44	SW846 8260B	6041767
1,1,2-Trichloroethane	ND	RL1	ug/L	4200	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,1,1-Trichloroethane	ND	RL1	ug/L	4000	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Trichloroethene	ND	RL1	ug/L	4500	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Trichlorofluoromethane	ND	RL1	ug/L	4800	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,2,3-Trichloropropane	ND	RL1	ug/L	5600	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,3,5-Trimethylbenzene	ND	RL1	ug/L	2800	10000	10000	04/11/06 02:44	SW846 8260B	6041767
1,2,4-Trimethylbenzene	9800	J, RL1	ug/L	3400	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Vinyl chloride	ND	RLI	ug/L	4300	10000	10000	04/11/06 02:44	SW846 8260B	6041767
Xylenes, total	26400	RL1, J	ug/L	8200	30000	10000	04/11/06 02:44	SW846 8260B	6041767
Surr: 1,2-Dichloroethane-d4 (70-130%)	85 %					1 (04/11/06 02:44	SW846 8260B	6041767
Surr: Dibromofluoromethane (79-122%)	94 %					1 1	$04/11/06\ 02.44$	SW846 8260B	6041767
Surr: Toluene-d8 (78-121%)	98 %					, , , , , , , , , , , , , , , , , , ,	$\frac{1}{1}$	SW846 8260B	6041767
Surr: 4-Bromofluorobenzene (78-126%)	91 %					1 (04/11/06 02:44	SW846 8260B	6041767

Sample ID: NPD0520-02 (P9302GWP59 - Water) Sampled: 04/05/06 15:15

Volatile Organic Compounds by EPA Method 8260B

Acetone	ND	RL1	ug/L	59100	500000	10000	04/11/06 02:19 SW846	8260B 604176
Benzene	264000	RL1	ug/L	2900	10000	10000	04/11/06 02:19 SW846	8260B 604176
Bromobenzene	ND	RL1	ug/L	4700	10000	10000	04/11/06 02:19 SW846	8260B 604176
Bromochloromethane	ND	RL1	ug/L	4200	10000	10000	04/11/06 02:19 SW846	8260B 604176
Bromodichloromethane	ND	RL1	ug/L	3800	10000	10000	04/11/06 02:19 SW846	8260B 604176
Bromoform	ND	RL1	ug/L	5000	10000	10000	04/11/06 02:19 SW846	8260B 604176
Bromomethane	ND	RL1	ug/L	6000	10000	10000	04/11/06 02:19 SW846	8260B 6041763
2-Butanone	ND	RL1	ug/L	50900	500000	10000	04/11/06 02:19 SW846	8260B 604176
sec-Butylbenzene	ND	RL1	ug/L	3800	10000	10000	04/11/06 02:19 SW846	8260B 604176
n-Butylbenzene	ND	RL1	ug/L	4600	10000	10000	04/11/06 02:19 SW846	8260B 6041762
tert-Butylbenzene	ND	RL1	ug/L	3900	10000	10000	04/11/06 02:19 SW846	8260B 6041762
Carbon disulfide	ND	RLI	ug/L	3100	10000	10000	04/11/06 02:19 SW846	8260B 6041763
Carbon Tetrachloride	ND	RL1	ug/L	4800	10000	10000	04/11/06 02:19 SW846	8260B 6041762
Chlorobenzene	ND	RLI	ug/L	3200	10000	10000	04/11/06 02:19 SW846	8260B 6041763
Chlorodibromomethane	ND	RLI	ug/L	3600	10000	10000	04/11/06 02:19 SW846	8260B 6041763
Chloroethane	ND	RL1	ug/L	5000	10000	10000	04/11/06 02:19 SW846	8260B 6041763
Chloroform	ND	RLI	ug/L	3800	10000	10000	04/11/06 02:19 SW846	8260B 6041763
Chloromethane	ND	RLI	ug/L	4600	10000	10000	04/11/06 02:19 SW846	8260B 6041767

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

						Dilution	Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0520-02 (P	9302GWP59	- Water	-) - cont. S	Sampled: 0	4/05/06 15	:15			
Volatile Organic Compounds by	EPA Method	8260B - (cont.						
2-Chlorotoluene	ND	RI 1	ug/L	2700	10000	10000 0	1/11/06 02.10	SW846 8260D	6041767
4-Chlorotoluene	ND	RL1	ug/L	3700	10000	10000 0	1/11/06 02:19	SW/846 8260D	6041767
1.2-Dibromo-3-chloropropane	ND	RL1	ug/L	16400	50000	10000 0	1/11/06 02.19	SW846 8260B	6041767
1.2-Dibromoethane (EDB)	ND	RL1	ug/L	3800	10000	10000 0	1/11/06 02.19	SW846 8260B	6041767
Dibromomethane	ND	RLI	ug/L	5700	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1.4-Dichlorobenzene	ND	RL1	ug/L	4600	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1.3-Dichlorobenzene	ND	RL1	ug/L	3600	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1,2-Dichlorobenzene	ND	RL1	ug/L	3700	10000	10000 04	1/11/06 02:19	SW846 8260B	6041767
Dichlorodifluoromethane	ND	RL1	ug/L	4100	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1.1-Dichloroethane	ND	RLI	ug/L	3200	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1.2-Dichloroethane	ND	RLI	ug/L	2800	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
cis-1.2-Dichloroethene	ND	RL1	ug/L	3900	10000	10000 0/	1/11/06 02:19	SW846 8260B	6041767
1.1-Dichloroethene	ND	RL1	ug/L	4500	10000	10000 02	11/06 02.19	SW846 8260B	60/1767
trans-1.2-Dichloroethene	ND	RLI	ug/L	3400	10000	10000 0/	1/11/06 02:19	SW846 8260B	60/1767
1.3-Dichloropropane	ND	RL1	ug/L	6300	10000	10000 0/	11/06 02.19	SW846 8260B	60/1767
1.2-Dichloropropane	ND	RL1	ug/L	5000	10000	10000 0/	11/06 02.19	SW846 8260B	6041767
2.2-Dichloropropane	ND	RL1	ug/L	6600	10000	10000 0/	11/06 02.19	SW846 8260B	6041767
cis-1.3-Dichloropropene	ND	RL1	ug/L	4500	10000	10000 04	/11/06 02.19	SW846 8260B	60/1767
trans-1.3-Dichloropropene	ND	RL1	ug/L	4900	10000	10000 04	/11/06 02.19	SW846 8260D	6041767
1.1-Dichloropropene	ND	RLI	ug/L	5100	10000	10000 04	11/06 02.19	SW846 8260B	6041767
Ethylbenzene	10900	RL1	ug/L	3400	10000		/11/06 02.19	SW846 8260B	60/1767
Hexachlorobutadiene	ND	RL1	ug/L	6700	10000	10000 04	/11/06 02.19	SW846 8260D	6041767
2-Hexanone	ND	RL1	ug/L	25300	500000	10000 04	/11/06 02:19	SW846 8260B	6041767
Isopropylbenzene	ND	RL1	ug/L	3400	10000	10000 04	/11/06 02.19	SW846 8260B	6041767
p-Isopropyltoluene	ND	RL1	ug/L	3400	10000	10000 04	/11/06 02.19	SW846 8260B	6041767
Methyl tert-Butyl Ether	ND	RL1	ug/L	3200	10000	10000 04	/11/06 02:19	SW846 8260B	6041767
Methylene Chloride	ND	RLI	ug/L	12600	50000	10000 04	/11/06 02.19	SW846 8260B	60/1767
4-Methyl-2-pentanone	ND	RL1	ug/L	42500	500000	10000 04	/11/06 02:19	SW846 8260B	6041767
Naphthalene	ND	RL1	ug/L	11300	50000	10000 04	/11/06 02.19	SW846 8260B	6041767
n-Propylbenzene	ND	RLI	ug/L	3700	10000	10000 04	/11/06 02.19	SW846 8260B	6041767
Styrene	ND	RLI	ug/L	3900	10000	10000 04	/11/06 02:19	SW846 8260B	6041767
1.1.1.2-Tetrachloroethane	ND	RL1	ug/L	3700	10000	10000 04	/11/06 02:19	SW846 8260B	6041767
1.1.2.2-Tetrachloroethane	ND	RLI	ug/L	4900	10000	10000 04	/11/06 02:19	SW846 8260B	6041767
Tetrachloroethene	ND	RL1	ug/L	3900	10000	10000 04	/11/06 02.19	SW846 8260B	6041767
Toluene	56500	RL1	ug/L	2800	10000	10000 04	/11/06 02:19	SW846 8260B	6041767
1.2.3-Trichlorobenzene	ND	RL1	ug/L	5600	20000	10000 04	/11/06 02.19	SW846 8260B	6041767
1.2.4-Trichlorobenzene	ND	RLI	ug/L	7900	20000	10000 04	/11/06 02.19	SW846 8260B	6041767
1.1.2-Trichloroethane	ND	RL1	ug/L	4200	10000	10000 04	/11/06 02.19	SW846 8260B	6041767
1.1.1-Trichloroethane	ND	RL1	ug/L	4000	10000	10000 04	/11/06 02:19	SW846 8260D	6041767
Trichloroethene	ND	RL1	ug/L	4500	10000	10000 04	/11/06 02:19	SW846 8260D	6041767
Trichlorofluoromethane	ND	RL1	ug/L	4800	10000	10000 04	/11/06 02:19	SW816 8760D	6041767
1.2.3-Trichloropronane	ND	RL1	ug/L	5600	10000	10000 04	/11/06 02:19	SW246 2760D	60/1767
1.3.5-Trimethylbenzene	4600	RL1 I	ug/L	2800	10000	10000 04	/11/06 02:19	SW846 9760D	6041767
1.2.4-Trimethylbenzene	16600	RL1	ug/L	3400	10000	10000 04	/11/04 02:19	SW046 01600	6041767
Vinvl chloride	ND	RL1	ug/L	4300	10000	10000 04	/11/06/02:19	SW040 0200B	0041/0/ 6041767
		1001	- 0 -	-100U	10000	10000 04	/11/00/02:19	3 W 040 0200B	0041/0/

Page 4 of 19

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0520-02 (P9302	2GWP59	- Water	') - cont. S	Sampled:	04/05/06 15:	:15			
Volatile Organic Compounds by EP.	A Method	8260B - d	cont.						
Xylenes, total	48900	RL1	ug/L	8200	30000	10000_04	1/11/06 02.19	SW846 8260B	6041767
Surr: 1,2-Dichloroethane-d4 (70-130%)	84 %		_			1 04	/11/06 02.17	SW046 0260D	6041767
Surr: Dibromofluoromethane (79-122%)	03%					1 04	/11/06 02:19	SW840 8200B	6041767
Surr: Toluene-d8 (78-121%)	00.0/					1 04	/11/06 02:19	SW846 8260B	0041707
Surr: 4-Bromofluorobenzana (78-126%)	<i>JJ /0</i>					1 04	/11/06 02:19	SW846 8260B	0041/0/
5	91 %					1 04	/11/06 02:19	SW846 8260B	6041767
Sample ID: NPD0520-03 (P931)	IGWP41	- Water) Sample	d: 04/05/0)6 17 :2 0				
Volatile Organic Compounds by EPA	A Method	8260B							
Acetone	ND	RL1	ug/L	59100	500000	10000 04	1/11/06 03:00	SW846 8260B	6041767
Benzene	1060000	RL1	ug/L	2900	10000	10000 04	L/11/06 03:09	SW846 8260B	6041767
Bromobenzene	ND	RL1	ug/L	4700	10000	10000 04	L/11/06 03:09	SW846 8260B	6041767
Bromochloromethane	ND	RL1	ug/L	4200	10000	10000 04	11/06 03:09	SW846 8260B	6041767
Bromodichloromethane	ND	RL1	ug/L	3800	10000	10000 04	11/06 03:09	SW846 8260B	6041767
Bromoform	ND	RLI	ug/L	5000	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Bromomethane	ND	RL1	ug/L	6000	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
2-Butanone	ND	RL1	ug/L	50900	500000	10000 04	/11/06 03:09	SW846 8260B	6041767
sec-Butylbenzene	ND	RL1	ug/L	3800	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
n-Butylbenzene	ND	RL1	ug/L	4600	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
tert-Butylbenzene	ND	RL1	ug/L	3900	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Carbon disulfide	ND	RL1	ug/L	3100	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Carbon Tetrachloride	ND	RL1	ug/L	4800	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Chlorobenzene	ND	RL1	ug/L	3200	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Chlorodibromomethane	ND	RL1	ug/L	3600	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Chloroethane	ND	RL1	ug/L	5000	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Chloroform	ND	RLI	ug/L	3800	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Chloromethane	ND	RL1	ug/L	4600	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
2-Chlorotoluene	ND	RL1	ug/L	2700	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
4-Chlorotoluene	ND	RL1	ug/L	3700	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1,2-Dibromo-3-chloropropane	ND	RLI	ug/L	16400	50000	10000 04	/11/06 03:09	SW846 8260B	6041767
1,2-Dibromoetnane (EDB)	ND	RLI	ug/L	3800	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
LA Diskland angen	ND	RLI	ug/L	5700	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1,4-Dichlorobenzene	ND	RLI	ug/L	4600	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1,3-Dichlorobengene	ND	KLI DL1	ug/L	3600	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
Dishlaradifluaramathana	ND	KLI DL1	ug/L	3700	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1.1. Dichloroethene		KLI DI 1	ug/L	4100	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1.2-Dichloroethane			ug/L ug/I	3200	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
cis-1 2-Dichloroethene			ug/L ug/I	2800	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1 1-Dichloroethene	ND		ч <i>6/1</i> . 110/Л	3900	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
trans-1 2-Dichloroethene		DI 1	ng/L	4300	10000	10000 04	/11/06 03:09	SW846 8260B	6041767
1.3-Dichloronropane	ND	RI 1	ug/L	5400	10000	10000 04	/11/06/03:09	SW846 8260B	6041767
1.2-Dichloropropane	ND	RT 1	ug/L	5000	10000	10000 04	/11/06/03:09	5 W 840 8260B	0041767
2.2-Dichloropropane	ND	RL1	ug/L	6600	10000	10000 04	/11/06/03:09	SW840 820UB	0041767
cis-1,3-Dichloropropene	ND	RL1	ug/L	4500	10000	10000 04	/11/06/03:09	0 W 040 0200B	0041/0/
,			0-	-1000	10000	10000 04	/11/00/03:09	SW040 820UB	0041/0/

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	1 Analysis Date/Time	Method	Batch
		B	·····			• •			
Sample ID: NPD0520-03 (P931)	IGWP41	- Water) - cont.	Sampled:	04/05/06 17:	20			
Volatile Organic Compounds by EPA	A Method	8260B - c	ont.						
trans-1,3-Dichloropropene	ND	RL1	ug/L	4900	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,1-Dichloropropene	ND	RL1	ug/L	5100	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Ethylbenzene	ND	RL1	ug/L	3400	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Hexachlorobutadiene	ND	RL1	ug/L	6700	10000	10000	04/11/06 03:09	SW846 8260B	6041767
2-Hexanone	ND	RL1	ug/L	25300	500000	10000	04/11/06 03:09	SW846 8260B	6041767
Isopropylbenzene	ND	RL1	ug/L	3400	10000	10000	04/11/06 03:09	SW846 8260B	6041767
p-Isopropyltoluene	ND	RL1	ug/L	3400	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Methyl tert-Butyl Ether	ND	RLI	ug/L	3200	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Methylene Chloride	ND	RLI	ug/L	12600	50000	10000	04/11/06 03:09	SW846 8260B	6041767
4-Methyl-2-pentanone	ND	RLI	ug/L	42500	500000	10000	04/11/06 03:09	SW846 8260B	6041767
Naphthalene	ND	RL1	ug/L	11300	50000	10000	04/11/06 03:09	SW846 8260B	6041767
n-Propylbenzene	ND	RLI	ug/L	3700	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Styrene	ND	RL1	ug/L	3900	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,1,1,2-Tetrachloroethane	ND	RL1	ug/L	3700	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,1,2,2-Tetrachloroethane	ND	RLI	ug/L	4900	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Tetrachloroethene	ND	RL1	ug/L	3900	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Toluene	17500	RL1	ug/L	2800	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,2,3-Trichlorobenzene	ND	RL1	ug/L	5600	20000	10000	04/11/06 03:09	SW846 8260B	6041767
1,2,4-Trichlorobenzene	ND	RLI	ug/L	7900	20000	10000	04/11/06 03:09	SW846 8260B	6041767
1,1,2-Trichloroethane	ND	RL1	ug/L	4200	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,1,1-Trichloroethane	ND	RL1	ug/L	4000	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Trichloroethene	ND	RLI	ug/L	4500	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Trichlorofluoromethane	ND	RL1	ug/L	4800	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,2,3-Trichloropropane	ND	RL1	ug/L	5600	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,3,5-Trimethylbenzene	ND	RL1	ug/L	2800	10000	10000	04/11/06 03:09	SW846 8260B	6041767
1,2,4-Trimethylbenzene	6400	RL1, J	ug/L	3400	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Vinyl chloride	ND	RL1	ug/L	4300	10000	10000	04/11/06 03:09	SW846 8260B	6041767
Xylenes, total	16500	RL1, J	ug/L	8200	30000	10000	04/11/06 03:09	SW846 8260B	6041767
Surr: 1,2-Dichloroethane-d4 (70-130%)	85 %					1 (<i>4/11/06 03⋅09</i>	SW846 8260B	6041767
Surr: Dibromofluoromethane (79-122%)	93 %					1 0	04/11/06 03:09	SW846 8260B	6041767
Surr: Toluene-d8 (78-121%)	99 %					1 (A/11/06 03:00	SW846 8260B	6041767
Surr: 4-Bromofluorobenzene (78-126%)	91%					1 0	1/00 03.09 ·	SW846 8260B	6041767
						1 0			
ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0520-04 (TH	304050601 - `	Water)	Sampled:	04/05/06 0	0:01				
Volatile Organic Compounds by	EPA Method 8	8260B							
Acetone	ND		ug/L	5.91	50.0	1 0	4/07/06 01.49	SW846 8260B	6041267
Benzene	ND		ug/L	0.290	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Bromobenzene	ND		ug/L	0.470	1.00	1 0.	4/07/06 01:49	SW846 8260B	6041267
Bromochloromethane	ND		ug/L	0.420	1.00	1 0.	4/07/06 01:49	SW846 8260B	6041267
Bromodichloromethane	ND		ug/L	0.380	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Bromoform	ND		ug/L	0.500	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Bromomethane	ND		ug/L	0.600	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
2-Butanone	ND		ug/L	5.09	50.0	1 04	4/07/06 01:49	SW846 8260B	6041267
sec-Butylbenzene	ND		ug/L	0.380	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
n-Butylbenzene	ND		ug/L	0.460	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
tert-Butylbenzene	ND		ug/L	0.390	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Carbon disulfide	ND		ug/L	0.310	1.00	1 0-	4/07/06 01:49	SW846 8260B	6041267
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Chlorobenzene	ND		ug/L	0.320	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Chloroethane	ND		ug/L	0.500	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Chloroform	ND		ug/L	0.380	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Chloromethane	ND		ug/L	0.460	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Dibromomethane	ND		ug/L	0.570	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Ethylbenzene	ND		ug/L	0.340	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
2-Hexanone	ND		ug/L	2.53	50.0	1 04	4/07/06 01:49	SW846 8260B	6041267
Isopropylbenzene	ND		ug/L	0.340	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 04	4/07/06 01:49	SW846 8260B	6041267
Methylene Chloride	ND		ug/L	1.26	5.00	1 04	1/07/06 01:49	SW846 8260B	6041267

Page 7 of 19

ANALYTICAL TESTING CORPORATION

95%

121%

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

ANALYTICAL REPORT Dilution Analysis MDL Analyte Result Flag Units MRL Factor **Date/Time** Method Batch Sample ID: NPD0520-04 (TB04050601 - Water) - cont. Sampled: 04/05/06 00:01 Volatile Organic Compounds by EPA Method 8260B - cont. 4-Methyl-2-pentanone ND ug/L 4.25 50.0 1 04/07/06 01:49 SW846 8260B 6041267 Naphthalene ND ug/L 1.13 5.00 1 04/07/06 01:49 SW846 8260B 6041267 n-Propylbenzene ug/L ND 0.370 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Styrene ND ug/L 0.390 1.00 1 04/07/06 01.49 SW846 8260B 6041267 1,1,1,2-Tetrachloroethane ug/L ND 0.370 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,1,2,2-Tetrachloroethane ug/L ND 0.490 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Tetrachloroethene ug/L ND 0.390 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Toluene ND ug/L 0.280 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,2,3-Trichlorobenzene ug/L ND 0.560 2.00 1 04/07/06 01:49 SW846 8260B 6041267 1.2.4-Trichlorobenzene ND ug/L 0.790 2.00 1 04/07/06 01:49 SW846 8260B 6041267 1,1,2-Trichloroethane ug/L ND 0.420 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,1,1-Trichloroethane ug/L ND 0.400 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Trichloroethene ND ug/L 0.450 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Trichlorofluoromethane ND ug/L 0.480 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,2,3-Trichloropropane ug/L ND 0.560 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,3,5-Trimethylbenzene ug/L ND 0.280 1.00 1 04/07/06 01:49 SW846 8260B 6041267 1,2,4-Trimethylbenzene ND ug/L 0.340 1.00 1 04/07/06 01:49 SW846 8260B 6041267 Vinyl chloride ug/L ND 0.430 1.00 1 04/07/06 01:49 SW846 8260B 6041267 ug/L Xylenes, total ND 0.820 3.00 1 04/07/06 01:49 SW846 8260B 6041267 Surr: 1,2-Dichloroethane-d4 (70-130%) 111 % 6041267 04/07/06 01:49 SW846 8260B 1 Surr: Dibromofluoromethane (79-122%) 104 % 04/07/06 01:49 SW846 8260B 6041267 1

Surr: Toluene-d8 (78-121%) Surr: 4-Bromofluorobenzene (78-126%)

6041267

6041267

04/07/06 01:49 SW846 8260B

04/07/06 01:49 SW846 8260B

1

I

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD0520Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/06/06 08:00

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- **RL1** Reporting limit raised due to sample matrix effects.

METHOD MODIFICATION NOTES

-
0
N
5
0
ā.
L
Ζ

TEST MINILIATION 17:00 TER CREIGHTON, MASHVILLE, TN 37204 PHONE 800-765-0980 FAX# 616-726-3404

Cooler 1 & 1

pro
Recc
ody
ust
Q Q
hain
ប
S
lots
rodi
i: D
0
Jel
S
٢

7	602 Commerce Drive, Watertown, WI 53094 Phone 800-833-7036					
	04 Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401	SOP US Project Manager to	be involced:		NCIDENT#(SAE ONEY)	DATE: 4-5-00
Õ	4500 Trinity Blvd., Suite 106, Fort Worth, TX 76155 Phone 817-571-6800	ENVIRONMENTAL SERVICES	NAME OF PM TO BILL:	Herb Hand (SOPUS)	9 7 2 1 6 6 3 4	PAGE: / of /
Ē.	601 South Divie Drive, Dayton, OH 46439 Phone 800-572-9839					Involce with
	380 Busch Parkway, Buffalo Grove, 1L 60089 Phone 847-808-7766 140 Elitera Paire & Calorado Scalaro Colomo Phone 240-602-001		NAME OF TS TO BILL:		SAP OF CRM F# (15/CRM1)	sampling events for this site,
	110 Enture in Net, participation specified of the second specified of the seco		C SHELL RATES] STATE REIMBURSEMENT RATES		following date:
CONB	ULTART COMPANY: URS Corporation		SITE ADDRESS (Birent and City West Pt	Enceline P-93		
ADOA	tess: 1001 Highlands Plaza Drive West; §	ulte 300	PROJECT CONTACT (Report to): (Copy to):	Hartford, IL 62048 computant PROJECT NO.:	West Fenceline P.93
ĊĻĊ	St. Louis. MO 63110		Herb SAMPLER NAME(8) (PHM):	land (SOPUS) Jeff Adam	(URS) SOPU	
TELE	PRONE (Office) 314.429-0100 FAX (centre) 314.409-4480 (Trailere) 431.429-0462 FAVIU	leff Adams Thomas AdamsQurecorp.com	Mik	e Corbett		
Ϊů	NAROUND TIME (CALENDAR DAYS): TANDARD (10 DAY) □ 5 DAYS □ 3 DAYS □ 2 DAYS	C 24 HOURS C RESULTS NEEDED ON WEEKEND		REQUESTED AN	LYSIS if more than one method is listed, circle one	
TEMP	ERATURE ON RECEIPT C					Container PID Readings
<u> </u>	PECIAL INSTRUCTIONS OR NOTES : .evel 4 QC Deliverables	p Blank Included				or Laboratory Notes
			مرامد کار ا			
33	Field Sample Identification	PRESERVATIVE NO. OF MATRUX OCT	404104104 10010464 10010464 10010464 10010464	Mei 4 CC Del		
8	P9302GWP43 4/5/00 1330	Water X NONE OTHER 3	A 4 7 10 ×			NPD0520-01
	P9302 GWP59 H/5/041515	Water X 3	×			2
	P9311 GWP41 4/5/00 1720	Water X 3	×	×		3
	TB04050601 4/5/20		X			7
						\rightarrow
Rell Z	Verden M & I in 4/5/02 (745	Received by: (Signature)			Date	Time:
Relin	aquished by: (Saneture)	Received by: (Signature)			Date:	Time.
Relin	rquished by: (Signature)	Received by: (Signeture)	7	7	Date: V/, V.,	Time S.M
DISTR	tiBUTION: White with final report, Green to File, Yellow and Pink to Client.				971/a1.	05/1/01 Revision

West Fenceline Data Review

Laboratory SDG: NPD0794

Reviewer: Tony Sedlacek

Date Reviewed: 2/12/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P9311GWP59	P9311GWP59D
TB04060602	P9303GWP40

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, the laboratory case narrative indicated that surrogate recovery for 1,2-dichloroethane- d_4 was outside evaluation criteria. Although, not indicated in the laboratory case narrative several analytes were detected in the method blanks, and samples were evaluated and qualified using professional judgment. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

- 6				
18			A state of the second s	 March March March 1997 Control (2017) 2017 (2017) 2017 (2017) 2017
11	- Biold ID	n na wa wa sha wa	A T. A	1 m m
-10	PICKI LI	r raraineier	Anaivie	Incorporation
18			2 AAAAAA Y LO	v uameation
-11				
- 11	~~/.	1		
-18	NI/A	1		
-12	IN/A	1		
- 11		1		
- 12				

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
6041664-BLK1	VOCs	Hexachlorobutadiene	0.860	μg/L
6041664-BLK1	VOCs	Naphthalene	3.22	μg/L
6041664-BLK1	VOCs	1,2,3-Trichlorobenzene	1.84	μg/L
6041664-BLK2	VOCs	Naphthalene	3.66	μg/L
6041664-BLK2	VOCs	1,2,3-Trichlorobenzene	1.72	μg/L
6042192-BLK1	VOCs	Naphthalene	3.24	μg/L
6042192-BLK1	VOCs	1,2,3-Trichlorobenzene	1.69	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
P9303GWP40	VOCs	1,2-Dichloroethane-d ₄	29	70-130

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Sample P9303GWP40 was analyzed undiluted as part of batch 6041664 and also at a dilution due to high levels of target analytes. Surrogate recoveries in the diluted sample were within evaluation criteria; therefore, no qualification of data was required.

Field ID	Parameter	Analyte	Qualification
P9303GWP40	VOCs	All detects/nondetects	J/UJ

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyt	e G	Dualification
N/A				

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
P9311GWP59	P9311GWP59D

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminant 2-butanone reported at concentrations less than two times (2X) the RL.

Field D	Analyte	New RL	Qualification	Comments
P9311GWP59	2-Butanone	-	U	Professional Judgment

May 12, 2006

Client: URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300		Work Order: Project Name:	NPD0794 West Fenceline P-93 Project
	St. Louis, MO 63110	Project Nbr:	SAP 340061
Attn:	Herb Hand	P/O Nbr: Date Received:	97216634 04/07/06
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
P93	11GWP59	NPD0794-01	04/06/06 09:30
P93	11GWP59D	NPD0794-02	04/06/06 09:30
TB0	04060602	NPD0794-03	04/06/06 00:01
P93	03GWP40	NPD0794-04	04/06/06 16:10

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Samples were properly preserved and received in good condition on 04/07/06. Analyses were performed within method required holding times. There were no anomalies noted at sample log-in. Surrogate % recovery was outside QC criteria in low level run due to sample matrix; however, diluted run had surrogates within OC limits. All QC results were within acceptable limits. MS/MSD was not performed due to insufficient sample volume. Initial and Continuing Calibration requirements were met.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980. Illinois Certification Number: 001177

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

gudra Mchfilts

Sandra McMillin Senior Project Manager

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Herb Hand Work Order:NPD0794Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/07/06 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0794-01 (P9311GWP59	- Water)	Sample	d: 04/06/06	09:30				
Volatile Organic Compounds	by EPA Method 8	8260B							
Acetone	ND		ug/L	5.91	50.0	1 0	4/10/06 12:01	SW846 8260B	6041664
Benzene	11800		ug/L	29.0	100	100 0	4/11/06 11:40	SW846 8260B	6042102
Bromobenzene	ND		ug/L	0.470	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Bromochloromethane	ND		ug/L	0.420	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Bromodichloromethane	ND		ug/L	0.380	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Bromoform	ND		ug/L	0.500	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Bromomethane	ND	_	ug/L	0.600	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
2-Butanone	ND-37.0	_+K.	ug/L	5.09	50.0	1 0	4/10/06 12:01	SW846 8260B	6041664
sec-Butylbenzene	ND ND		ug/L	0.380	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
n-Butylbenzene	ND		ug/L	0.460	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
tert-Butylbenzene	4.18		ug/L	0.390	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Carbon disulfide	ND		ug/L	0.310	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Chlorobenzene	ND		ug/L	0.320	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 0	4/10/06 12:01	SW846 8260B	6041664
Chloroethane	ND		ug/L	0.500	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
Chloroform	ND		ug/L	0.380	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
Chloromethane	ND		ug/L	0.460	1.00	1 0-	4/10/06 12:01	SW846 8260B	6041664
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
Dibromomethane	ND		ug/L	0.570	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 04	\$/10/06 12:01	SW846 8260B	6041664
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 04	1/10/06 12:01	SW846 8260B	6041664
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 04	4/10/06 12:01	SW846 8260B	6041664
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 04	1/10/06 12:01	SW846 8260B	6041664
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	l 04	1/10/06 12:01	SW846 8260B	6041664
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
Ethylbenzene	92.6		ug/L	0.340	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
2-Hexanone	ND		ug/L	2.53	50.0	1 04	/10/06 12:01	SW846 8260B	6041664
Isopropylbenzene	6.18		ug/L	0.340	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
p-isopropyltoluene	ND		ug/L	0.340	1.00	l 04	/10/06 12:01	SW846 8260B	6041664
Methyl tert-Butyl Ether	4.49		ug/L	0.320	1.00	1 04	/10/06 12:01	SW846 8260B	6041664
Methylene Chloride	ND		ug/L	1.26	5.00	1 04	/10/06 12:01	SW846 8260B	6041664

Test/Merica

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Herb Hand Work Order:NPD0794Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/07/06 08:00

ANALYTICAL REPORT

,

						Dilution	Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0794-01 (P931)	GWP59	- Water	·) - cont. S	ampled:	04/06/06 09:	30			
Volatile Organic Compounds by EPA	A Method	8260B - d	cont.						
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1 (04/10/06 12:01	SW846 8260B	6041664
Naphthalene	20.8		ug/L	1.13	5.00	1 (04/10/06 12:01	SW846 8260B	6041664
n-Propylbenzene	11.6		ug/L	0.370	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Styrene	ND		ug/L	0.390	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Tetrachloroethene	ND		ug/L	0.390	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Toluene	182		ug/L	0.280	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Trichloroethene	ND		ug/L	0.450	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,3,5-Trimethylbenzene	17.2		ug/L	0.280	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
1,2,4-Trimethylbenzene	52.6		ug/L	0.340	1.00	1 (04/10/06 12:01	SW846 8260B	6041664
Vinyl chloride	ND		ug/L	0.430	1.00	1 (4/10/06 12:01	SW846 8260B	6041664
Xylenes, total	295		ug/L	0.820	3.00	1 (4/10/06 12:01	SW846 8260B	6041664
Surr: 1,2-Dichloroethane-d4 (70-130%)	100 %					1 0	4/10/06 12:01	SW846 8260B	6041664
Surr: 1,2-Dichloroethane-d4 (70-130%)	99 %					1 0	4/11/06 11:49	SW846 8260B	6042192
Surr: Dibromofluoromethane (79-122%)	92 %					1 0	4/10/06 12:01	SW846 8260B	6041664
Surr: Dibromofluoromethane (79-122%)	97 [.] %					1 0	A/11/06 11:40	SW846 8260B	6042192
Surr: Toluene-d8 (78-121%)	97%					1 0	4/10/06 12:01	SW846 8260B	6041664
Surr: Toluene-d8 (78-121%)	95 %					1 0	4/11/06 11:49	SW846 8260B	6042192
Surr: 4-Bromofluorobenzene (78-126%)	108 %					1 0	4/10/06 12.01	SW846 8260B	6041664
Surr: 4-Bromofluorobenzene (78-126%)	101 %					1 0	4/11/06 11:49	SW846 8260B	6042192

Sample ID: NPD0794-02 (P9311GWP59D - Water) Sampled: 04/06/06 09:30

Volatile Organic Compounds by EPA Method 8260B

Acetone	ND	ug/L	5.91	50.0	1	04/10/06 12:30 SW846 8260B	6041664
Benzene	13100	ug/L	29.0	100	100	04/11/06 12:18 SW846 8260B	6042192
Bromobenzene	ND	ug/L	0.470	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Bromochloromethane	ND	ug/L	0.420	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Bromodichloromethane	ND	ug/L	0.380	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Bromoform	ND	ug/L	0.500	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Bromomethane	ND	ug/L	0.600	1.00	1	04/10/06 12:30 SW846 8260B	6041664
2-Butanone	ND	ug/L	5.09	50.0	1	04/10/06 12:30 SW846 8260B	6041664
sec-Butylbenzene	ND	ug/L	0.380	1.00	1	04/10/06 12:30 SW846 8260B	6041664
n-Butylbenzene	ND	ug/L	0.460	1.00	1	04/10/06 12:30 SW846 8260B	6041664
tert-Butylbenzene	4.20	ug/L	0.390	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Carbon disulfide	ND	ug/L	0.310	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Carbon Tetrachloride	ND	ug/L	0.480	1.00	1	04/10/06 12:30 SW846 8260B	6041664
Chlorobenzene	ND	ug/L	0.320	1.00	1	04/10/06 12:30 SW846 8260B	6041664

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Herb Hand Attn

Work Order: NPD0794 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 04/07/06 08:00 Received:

			ANALY	FICAL REP	ORT				
		.	Linite	MDI	MDI	Dilution	Analysis		
Analyte	Kesuit	Flag	Units		IVIKL	Factor	Date/ I mie	Ivietnoa	Batch
Sample ID: NPD0794-02 (P9	9311GWP59	D - Wat	er) - cont.	Sampled:	04/06/06 ()9:30			
Volatile Organic Compounds by	EPA Method	8260B - (cont.	-					
Chlorodibromomethane	ND		ug/L	0 360	1.00	1	04/10/06 12:20	SW846 8760B	6041664
Chloroethane	ND		ug/L	0.500	1.00	1	04/10/06 12:30	SW846 8260B	6041664
Chloroform	ND		ug/L	0 380	1.00	1	04/10/06 12:30	SW846 8260B	6041664
Chloromethane	ND		ug/L	0.460	1.00	1	04/10/06 12:30	SW846 8260B	6041664
2-Chlorotoluene	ND		ug/L	0.270	1.00	1	04/10/06 12:30	SW846 8260B	6041664
4-Chlorotoluene	ND		ug/L	0.370	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1	04/10/06 12:30	SW846 8260B	6041664
1.2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1	04/10/06 12:30	SW846 8260B	6041664
Dibromomethane	ND		ug/L	0.570	1.00	Î	04/10/06 12:30	SW846 8260B	6041664
1.4-Dichlorobenzene	ND		ug/L	0.460	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.3-Dichlorobenzene	ND		ug/L	0.360	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.2-Dichlorobenzene	ND		ug/L	0.370	1.00	1	04/10/06 12:30	SW846 8260B	6041664
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.1-Dichloroethane	ND		ug/L	0.320	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.2-Dichloroethane	ND		ug/L	0.280	1.00	1	04/10/06 12:30	SW846 8260B	6041664
cis-1.2-Dichloroethene	ND		ug/L	0 390	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.1-Dichloroethene	ND		ug/L	0.450	1.00	1	04/10/06 12:30	SW846 8260B	6041664
trans-1.2-Dichloroethene	ND		ug/L	0.340	1.00	1 4	04/10/06 12:30	SW846 8260B	6041664
1 3-Dichloropropane	ND		ug/L	0.630	1.00	1	04/10/06 12:30	SW846 8260B	6041664
1.2-Dichloropropane	ND		ug/L	0.500	1.00	1 1	04/10/06 12:30	SW846 8260B	6041664
2.2-Dichloropropane	ND		ug/L	0.660	1.00	1 4	04/10/06 12:30	SW846 8260B	6041664
cis-1.3-Dichloropropene	ND		ug/L	0.450	1.00	1 1	04/10/06 12:30	SW846 8260B	60/166/
trans-1.3-Dichloropropene	ND		ug/L	0.490	1.00	1 4	$\frac{10}{00} \frac{12.30}{12.30}$	SW846 8260B	60/166/
1.1-Dichloropropene	ND		ug/L	0.510	1.00	1 1	$\frac{34}{10} \frac{10}{00} \frac{12.30}{12.30}$	SW846 8260B	6041664
Ethylbenzene	87.6		ug/L	0 340	1.00	1 (04/10/06 12:30	SW846 8260B	6041664
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 (04/10/06 12:30	SW846 8260B	6041664
2-Hexanone	ND		ug/L	2.53	50.0	1 (04/10/06 12:30	SW846 8260B	6041664
Isopropylbenzene	6.08		ug/L	0 340	1.00	1 ($\frac{10}{00} \frac{12.30}{12.30}$	SW846 8260B	6041664
p-Isopropyltoluene	ND		ug/L	0 340	1.00	1 ($\frac{10}{00} \frac{12.30}{12.30}$	SW846 8260B	6041664
Methyl tert-Butyl Ether	4.64		ug/L	0.320	1.00	1 ($\frac{14}{10} \frac{10}{06} \frac{12.30}{12.30}$	SW846 8260B	6041664
Methylene Chloride	ND		ug/L	1.26	5.00	1 (14/10/06 12:30	SW846 8260B	6041664
4-Methyl-2-pentanone	ND		ug/L	4 25	50.0	1 ($\frac{10}{00}$ 12.30	SW846 8260B	6041664
Naphthalene	21.4		ug/L	1.13	5 00	1 ($\frac{10}{06} \frac{12.30}{12.30}$	SW846 8260B	6041664
n-Propylbenzene	11.2		ug/L	0 370	1.00	1 (04/10/06 12:30	SW846 8260B	6041664
Styrene	ND		ug/L	0.390	1.00	1 (M/10/06 12:30	SW846 8260B	6041664
1.1.1.2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (04/10/06 12:30	SW846 8260B	6041664
1.1.2.2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 ($\frac{10}{06} \frac{12.30}{12.30}$	SW846 8260B	6041664
Tetrachloroethene	ND		ug/L	0.390	1.00	1 (04/10/06 12:30	SW846 8260B	6041664
Toluene	183		ug/L	0.280	1.00	1 (04/10/06 12:30	SW846 8260D	6041664
1.2.3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 (04/10/06 12:30	SW846 8260D	6041664
1.2.4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 (10/00 12.30	SW846 8760P	6041664
1.1.2-Trichloroethane	ND		ug/L	0.420	1 00	1 (10/00 12.30 A/10/06 12:20	SW846 2260D	60/166/
1 1 1-Trichloroethane	ND		ug/L	0.400	1.00	1 4	A/10/06 12:30	SW846 9760D	60/1444
Trichloroethene	ND		ug/L	0 4 5 0	1.00	1 (M/10/06 12:30	SW846 8760D	6041664
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 (14/10/06 12:30	SW846 8260B	6041664

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Herb Hand 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPD0794Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/07/06 08:00

Analyte Result Flag Units MDL MRL Factor Date/Time Method Bat Sample ID: NPD0794-02 (P9311GWP59D - Water) - cont. Sampled: 04/06/06 09:30 Volatile Organic Compounds by EPA Method 8260B - cont. 1,2,3-Trichloropropane 10 1 04/10/06 12:30 SW846 8260B 60416 1,2,3-Trinethylberazene 16.9 ug/L 0.560 1.00 1 04/10/06 12:30 SW846 8260B 60416 1,2,4-Trinethylberazene 16.9 ug/L 0.430 1.00 1 04/10/06 12:30 SW846 8260B 60416 Vigetes, total 278 ug/L 0.430 1.00 1 04/10/06 12:30 SW846 8260B 60417 Surr: 12-Dichloroethane4 (70-130%) 99 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Dibrom@flucoromethane (78-125%) 92 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Toluen-d8 (78-121%) 97 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Toluen-d8 (78-121%) 96 % 1				ANALY	TICAL REP	ORT					
Sample ID: NPD0794-02 (P9311GWP59D - Water) - cont. Sampled: 04/06/06 09:30 Volatile Organic Compounds by EPA Method 8260B - cont. 1,2,3-Trichloropropane ND ug/L 0.560 1.00 1 04/10/06 12:30 SW846 8260B 60416 1,2,3-Trinethylbenzene 50.7 ug/L 0.340 1.00 1 04/10/06 12:30 SW846 8260B 60416 1,2,4-Trinethylbenzene 50.7 ug/L 0.340 1.00 1 04/10/06 12:30 SW846 8260B 60416 Xylenes, total 278 ug/L 0.820 3.00 1 04/10/06 12:30 SW846 8260B 60411 Surr: 1,2-Dichloroethane-d4 (70-130%) 100 % 1 04/11/06 12:18 SW846 8260B 60412 Surr: 1,2-Dichloroethane-d4 (70-130%) 100 % 1 04/11/06 12:18 SW846 8260B 60412 Surr: Tohone-d8 (78-121%) 97 % 1 04/11/06 12:18 SW846 8260B 60412 Surr: Tohuen-d8 (78-121%) 97 % 1 04/11/06 12:30 SW846 8260B 60412 Surr: Tohuen-d8 (78-121%) 96 %	Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch	
Volatile Organic Compounds by EPA Method 8260B - cont. ug/L 0.560 1.00 1 04/1006 12:30 SW846 8260B 60416 1,2,3-Trinichlylbenzene 16.9 ug/L 0.280 1.00 1 04/1006 12:30 SW846 8260B 60416 1,2,4-Trinichlylbenzene 50.7 ug/L 0.340 1.00 1 04/1006 12:30 SW846 8260B 60416 Vinje chioride ND ug/L 0.820 3.00 1 04/1006 12:30 SW846 8260B 60416 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B 60412 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B 60412 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B 60412 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B 60412 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B 60412 Surr: 1.2-Dichloroethane-d4 (70-130%) 100 % 1 04/1006 12:30 SW846 8260B	Sample ID: NPD0794-02 (P931)	GWP591	D - Wat	er) - cont.	. Sampled:	04/06/06 0)9:30				
1,2.3-Trichloropropane ND ug/L 0.560 1.00 1 04/10/06 12:30 SW846 8260B 60416 1,3.5-Trinnethylbenzene 16.9 ug/L 0.280 1.00 1 04/10/06 12:30 SW846 8260B 60416 Vinyl chloride ND ug/L 0.340 1.00 1 04/10/06 12:30 SW846 8260B 60416 Vinyl chloride ND ug/L 0.340 1.00 1 04/10/06 12:30 SW846 8260B 60416 Surr: 1.2-Dichloroethane-d4 (70-130%) 99 % 1 04/10/06 12:30 SW846 8260B 60412 Surr: Dibromofluoromethane (79-122%) 22 % 1 04/11/06 12:30 SW846 8260B 60421 Surr: Dibromofluoromethane (79-122%) 122 % 1 04/11/06 12:30 SW846 8260B 60421 Surr: Toinen-48 (78-121%) 97 % 1 04/11/06 12:30 SW846 8260B 60412 Surr: Toinen-48 (78-121%) 97 % 1 04/11/06 12:30 SW846 8260B 60412 Surr: Toinen-48 (78-121%) 98 % 1 04/11/06 12:30 SW846 8260B 60416 Surr: A-Bromofluoro	Volatile Organic Compounds by EPA	A Method	8260B - d	cont.							
1,3-Trimethylbenzene 16.9 ug/L 0.280 1.00 1 041/006 12.30 SW846 82.000 60416 1,2,4-Trimethylbenzene 50.7 ug/L 0.340 1.00 1 041/006 12.30 SW846 82.000 60416 1,2,4-Trimethylbenzene 50.7 ug/L 0.340 1.00 1 041/006 12.30 SW846 82.000 60416 Xylenes, total 278 ug/L 0.820 3.00 1 041/006 12.30 SW846 82.008 60416 Surr: 1.2-Dichloroethane-44 (70-130%) 90 % 1 041/106 12.33 SW846 82.008 60412 Surr: 1.2-Dichloroethane-479-1223% 92 % 1 041/106 12.38 SW846 82.008 60412 Surr: Toluene-48 (78-121%) 97 % 1 041/106 12.38 SW846 82.008 60412 Surr: 4-Bromoflucorobenzene (78-126%) 96 % 1 041/106 12.38 SW846 82.008 60412 Surr: 4-Bromoflucorbenzene (78-126%) 0.89 % 1 041/106 12.36 SW846 82.008 60416 Surr: 4-Bromoflucorbenzene (78-126%)<	1.2.3-Trichloropropane	ND		ug/L	0 560	1.00	1	04/10/06 12:20	SW846 8260B	6041664	
1,2,4-Trimethylbenzene 50,7 ug/L 0.340 1.00 1 04/10/06 12:30 SW846 82:000 60416 Vinyl chloride ND ug/L 0.430 1.00 1 04/10/06 12:30 SW846 82:000 60416 Syrens, total ug/L 0.820 3.00 1 04/10/06 12:30 SW846 82:000 60416 Surr: 1.2-Dichloroethane-d4 (70-130%) 99 % 1 04/10/06 12:30 SW846 82:000 60412 Surr: Dibromofluoromethane (79-122%) 92 % 1 04/11/06 12:18 SW846 82:000 60412 Surr: Toluene-d8 (78-121%) 97 % 1 04/11/06 12:30 SW846 82:000 60421 Surr: 7-biner-d8 (78-121%) 96 % 1 04/11/06 12:30 SW846 82:000 60421 Surr: 7-biner-d8 (78-121%) 96 % 1 04/11/06 12:30 SW846 82:000 60421 Surr: 7-biner-d8 (78-121%) 96 % 1 04/11/06 12:30 SW846 82:000 60421	1,3,5-Trimethylbenzene	16.9		ug/L	0.280	1.00	1	04/10/06 12:30	SW846 8260B	6041664	
Vinyl chloride ND ug/L 0.430 1.00 1 0.4/10/06 12:30 SW846 8260B 60416 Xylenes, total 278 ug/L 0.820 3.00 1 0.4/10/06 12:30 SW846 8260B 60416 Swrr: 1.2-Dichloroethane-44 (70-130%) 99 % I 0.4/10/06 12:30 SW846 8260B 60412 Swrr: 1.2-Dichloroethane-47 (70-130%) 99 % I 0.4/10/06 12:30 SW846 8260B 60421 Swrr: 1.2-Dichloroethane-47 (70-130%) 92 % I 0.4/10/06 12:30 SW846 8260B 60412 Swrr: 1.2-Dichloroethane-47 (70-130%) 92 % I 0.4/10/06 12:30 SW846 8260B 60412 Swrr: Toluene-48 (78-121%) 92 % I 0.4/10/06 12:30 SW846 8260B 60412 Surr: 4-Bromofluorobenzene (78-126%) 102 % I 0.4/10/06 12:30 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % I 0.4/10/06 12:30 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % I 0.4/10/06 12:30 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % <thi< td=""><td>1,2,4-Trimethylbenzene</td><td>50.7</td><td></td><td>ug/L</td><td>0.340</td><td>1.00</td><td>1</td><td>04/10/06 12:30</td><td>SW846 8260B</td><td>6041664</td></thi<>	1,2,4-Trimethylbenzene	50.7		ug/L	0.340	1.00	1	04/10/06 12:30	SW846 8260B	6041664	
Xylens, total 778 ug/L 0.820 3.00 1 04/10/06 12:30 SW46 8260B 60416 Surr: 1.2-Dichloroethane-d4 (70-130%) 99 % 1 04/10/06 12:30 SW46 8260B 60416 Surr: 1.2-Dichloroethane-d4 (70-130%) 99 % 1 04/10/06 12:30 SW46 8260B 60412 Surr: Dibromofluoromethane (79-122%) 92 % 1 04/10/06 12:30 SW46 8260B 60421 Surr: Toluene-d8 (78-121%) 97 % 1 04/10/06 12:30 SW46 8260B 60421 Surr: Toluene-d8 (78-121%) 96 % 1 04/10/06 12:30 SW46 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 108 % 1 04/10/06 12:30 SW46 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW46 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % 10 ug/L 5.91 50.0 1 04/10/06 12:30 SW46 8260B 60416 Bernzene ND ug/L 5.91 50.0 1	Vinyl chloride	ND		ug/L	0.430	1.00	1	04/10/06 12:30	SW846 8260B	6041664	
Surr: 1.2-Dickloroethane-d4 (70-130%) 99 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: 1.2-Dickloroethane-d4 (70-130%) 100 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: Dibromofluoromethane (79-122%) 92 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: Dibromofluoromethane (79-122%) 92 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: Toluene-d8 (78-121%) 97 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: A-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60410 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:50 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:56 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 21:56 SW846 8260B 60416 Surr: 4-Bromofluorobenzene (78-126%) 102 % 100 1 04/09/06 21:56 SW846 8260B	Xylenes, total	278		ug/L	0.820	3.00	1	04/10/06 12:30	SW846 8260B	6041664	
Surr: 1,2-Dickloroethane-d4 (70-130%) 100 % 1 04/11/06 12:18 SW846 8260B 60421 Surr: Dibromoflucomethane (79-122%) 92 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Dibromoflucomethane (79-122%) 122 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Toluene-d8 (78-121%) 97 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: Albornofluorobenzene (78-126%) 108 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60421 Sample D: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 1 04/09/06 21:56 SW846 8260B 60416 Sectone ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromobenzene ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromobenzene ND ug/L 0.40 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromoform ND <td>Surr: 1,2-Dichloroethane-d4 (70-130%)</td> <td>99 %</td> <td></td> <td></td> <td></td> <td></td> <td>, (</td> <td>04/10/06 12:30</td> <td>SW846 8260B</td> <td>6041664</td>	Surr: 1,2-Dichloroethane-d4 (70-130%)	99 %					, (04/10/06 12:30	SW846 8260B	6041664	
Surr: Dibromofluoromethane (79-122%) 92 % 1 04/10/06 12:30 SW846 82000 60416 Surr: Dibromofluoromethane (79-122%) 122 % 1 04/10/06 12:30 SW846 82600 60416 Surr: Toluene-d8 (78-121%) 96 % 1 04/10/06 12:30 SW846 82600 60416 Surr: Toluene-d8 (78-121%) 96 % 1 04/11/06 12:18 SW846 82600 60416 Surr: A-Bromofluorobenzene (78-126%) 108 % 1 04/11/06 12:18 SW846 82600 60416 Surr: A-Bromofluorobenzene (78-126%) 102 % 1 04/11/06 12:18 SW846 82600 60416 Surr: A-Bromofluorobenzene (78-126%) 102 % 1 04/11/06 12:18 SW846 82600 60416 Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 1 04/09/06 21:56 SW846 82600 60416 Benzene ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 82600 60416 Bromodichoromethane ND ug/L 0.400 1.00 1 04/09/06 21:56 SW846 82600 60416 Bromodichoromethane ND ug/L 0	Surr: 1,2-Dichloroethane-d4 (70-130%)	100 %					1 (1/11/06 12:30	SW816 8260B	6042192	
Surr: Dibromfluoromethane (79-122%) 122% 1 04/10/06 12:30 SW46 8200B 60421 Surr: Toluene-d8 (78-121%) 97 % 1 04/10/06 12:30 SW846 8200B 60421 Surr: Toluene-d8 (78-121%) 96 % 1 04/11/06 12:18 SW846 8200B 60421 Surr: A-Bromofluorobenzene (78-126%) 108 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: A-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60421 Surr: A-Bromofluorobenzene (78-126%) 102 % 1 04/10/06 12:30 SW846 8260B 60421 Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 1 04/09/06 21:56 SW846 8260B 60416 Surra: Dibromethane ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromochloromethane ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromochloromethane ND ug/L 0.400 1 04/09/06 21:56 SW846 8260B 60416 Bromodchloromethane ND	Surr: Dibromofluoromethane (79-122%)	92 %						4/11/00 12.18	SW046 0200D	60/166/	
Surr: Toluene-d8 (78-121%) 97% 1 04/11/06 12:18 SW846 8200B 00421 Surr: Toluene-d8 (78-121%) 96% 1 04/11/06 12:30 SW846 8200B 60421 Surr: Toluene-d8 (78-121%) 96% 1 04/11/06 12:30 SW846 8200B 60421 Surr: A-Bromofluorobenzene (78-126%) 108 % 1 04/11/06 12:30 SW846 8200B 60421 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/11/06 12:36 SW846 8260B 60412 Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 04/11/06 12:36 SW846 8260B 60416 Sample D: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 1 04/09/06 21:56 SW846 8260B 60416 Benzene ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromochloromethane ND ug/L 0.400 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromochloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 60416 Bromochloromethane ND ug/L	Surr: Dibromofluoromethane (79-122%)	172 %					1 0	14/10/06 12:30	SW040 0200B	6041004	
Ant. 1 outche dl (78-121%) 9/ % 1 04/10/06 12:30 5/846 82608 00416 Surr: 7 June -dl (78-121%) 96 % 1 04/11/06 12:18 SW846 82608 60421 Surr: 7 June -dl (78-121%) 96 % 1 04/11/06 12:18 SW846 82608 60421 Surr: 7 June -dl (78-126%) 102 % 1 04/11/06 12:18 SW846 82608 60421 Sample D: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 1 04/10/06 12:150 SW846 82608 60416 Benzene ND ug/L 5.91 50.0 1 04/09/06 21:56 SW846 82608 60416 Bromobenzene ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 82608 604166 Bromochoromethane ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 82608 604166 Bromochinomethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 82608 604166 Bromofur ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 82608 604166 2	Surr: Tolyone-d8 (78-121%)	122 /0					1 0	04/11/06 12:18	SW846 8260B	0042192	
Jahr. 1 Journe-us (78-1219) 96 % I 04/11/06 12:18 SW346 8260B 60421 Surr: 4-Bromofluorobenzene (78-126%) 108 % I 04/10/06 12:30 SW346 8260B 60421 Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 I 04/10/06 12:36 SW346 8260B 60421 Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 I 04/10/06 12:56 SW346 8260B 60416 Benzene ND ug/L 0.290 1.00 I 04/09/06 21:56 SW346 8260B 60416 Bromochloromethane ND ug/L 0.420 1.00 I 04/09/06 21:56 SW346 8260B 60416 Bromochloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW346 8260B 604166 Bromochloromethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW346 8260B 604166 Bromochloromethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW346 8260B 604166 Bromochloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW346 8260B 604166 Bromoform <td< td=""><td>Sum: Tolucne $d8(78, 121%)$</td><td>97%</td><td></td><td></td><td></td><td></td><td>1 (</td><td>04/10/06 12:30</td><td>SW846 8260B</td><td>6041664</td></td<>	Sum: Tolucne $d8(78, 121%)$	97%					1 (04/10/06 12:30	SW846 8260B	6041664	
Surr: 4-Dromofluorobenzene (78-120%) 108 % 1 $04/10/06\ 12:30\ SW846\ 8260B\ 60416\ 6021$ Surr: 4-Bromofluorobenzene (78-126%) 102 % 1 $04/10/06\ 12:30\ SW846\ 8260B\ 60421\ 60421$ Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: $04/06/06\ 00:01$ $04/09/06\ 21:56\ SW846\ 8260B\ 60416\ 6021\ 5021\ $	Surr. 1010000-00 (78-12170)	96 %					1 ()4/11/06 12:18	SW846 8260B	6042192	
Surr: 4-Bromofluorobenzene ($78-126\%$) 102 % 1 04/11/06 12:18 SW846 8260B 60421 Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 Volatile Organic Compounds by EPA Method 8260B 60416 6	Surr: 4-Bromofluorobenzene (78-120%)	108 %					1 (04/10/06 12:30	SW846 8260B	6041664	
Sample ID: NPD0794-03 (TB04060602 - Water) Sampled: 04/06/06 00:01 Volatile Organic Compounds by EPA Method 8260B Acetone ND ug/L 5.91 50.0 1 04/09/06 21:56 SW846 8260B 604166 Benzene ND ug/L 0.290 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromochoromethane ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromochoromethane ND ug/L 0.420 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromochioromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromonofirm ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Butanone ND ug/L 0.300 1.00 1 04/09/06 21:56 SW846 8260B 604166 n-Butylbenzene ND ug/L 0.380 1.00 1 04/09/06 21:56 <td>Surr: 4-Bromofluorobenzene (78-126%)</td> <td>102 %</td> <td></td> <td></td> <td></td> <td></td> <td>1 0</td> <td>4/11/06 12:18</td> <td>SW846 8260B</td> <td>6042192</td>	Surr: 4-Bromofluorobenzene (78-126%)	102 %					1 0	4/11/06 12:18	SW846 8260B	6042192	
Summer Derive Derive Der (Disordorder Vieter) Samplet: 0.000 00.01 Volatile Organic Compounds by EPA Method 8260B Acctone ND ug/L 5.91 50.0 1 04/09/06 21:56 SW846 8260B 604166 Benzene ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromobenzene ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromothormethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromodichloromethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromomethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Butanone ND ug/L 0.509 50.0 1 04/09/06 21:56 SW846 8260B 604166 2-Butylbenzene ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L<	Sample ID: NPD0794-03 (TB04))60602 - V	Water)	Samnled	04/06/06 (0.01					
AcetoneND ug/L 5.91 50.0 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BenzeneND ug/L 0.290 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromobenzeneND ug/L 0.470 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromochloromethaneND ug/L 0.470 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromochloromethaneND ug/L 0.380 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromoformND ug/L 0.500 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromomethaneND ug/L 0.600 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromomethaneND ug/L 0.600 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromomethaneND ug/L 0.600 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 BromomethaneND ug/L 0.380 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 Carbon disulfideND ug/L 0.390 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 Carbon TetrachlorideND ug/L 0.390 1.00 I $04/09/06\ 21:56$ $SW846\ 8260B$ 604166 ChlorobenzeneND ug/L 0.310 <td< td=""><td>Volatile Organic Compounds by EPA</td><td>Method 8</td><td>3260B</td><td>Sampicu.</td><td>04/00/00 0</td><td>0.01</td><td></td><td></td><td></td><td></td></td<>	Volatile Organic Compounds by EPA	Method 8	3260B	Sampicu.	04/00/00 0	0.01					
BenzeneND ug/L 0.2901.00104/09/06 21:56SW846 82:0B604166BromobenzeneND ug/L 0.4701.00104/09/06 21:56SW846 82:0B604166BromochloromethaneND ug/L 0.4201.00104/09/06 21:56SW846 82:0B604166BromochloromethaneND ug/L 0.4201.00104/09/06 21:56SW846 82:0B604166BromoformND ug/L 0.5001.00104/09/06 21:56SW846 82:0B604166BromoformND ug/L 0.6001.00104/09/06 21:56SW846 82:0B6041662-ButanoneND ug/L 0.6001.00104/09/06 21:56SW846 82:0B6041662-ButanoneND ug/L 0.3801.00104/09/06 21:56SW846 82:0B6041662-ButanoneND ug/L 0.3901.00104/09/06 21:56SW846 82:0B604166Carbon disulfideND ug/L 0.3101.001	Acetone	ND		ug/L	5.91	50.0	E (04/09/06 21.56	SW846 8260B	6041664	
Bromobenzene ND ug/L 0.470 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromochloromethane ND ug/L 0.420 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromodichloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromodichloromethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromomethane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Butanone ND ug/L 5.09 50.0 1 04/09/06 21:56 SW846 8260B 604166 sec-Butylbenzene ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 carbon disulfide ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloroofbromomethane ND ug/L	Benzene	ND		ug/L	0.290	1.00	1 ()4/09/06 21:56	SW846 8260B	6041664	
BromochloromethaneNDug/L 0.420 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 BromodichloromethaneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 BromoformNDug/L 0.500 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 BromomethaneNDug/L 0.600 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Sec-ButylbenzeneNDug/L 5.09 50.0 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 n-ButylbenzeneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 carbon disulfideNDug/L 0.390 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon TetrachlorideNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorodibromomethaneNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorodibromomethaneNDug/L 0.320 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorodibromomethaneNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Chlorofo	Bromobenzene	ND		ug/L	0.470	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
BromodichloromethaneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 BromoformNDug/L 0.500 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 BromomethaneNDug/L 0.600 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 2-ButanoneNDug/L 5.09 50.0 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 sec-ButylbenzeneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 n-ButylbenzeneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon disulfideNDug/L 0.390 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon disulfideNDug/L 0.390 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon disulfideNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorobenzeneNDug/L 0.320 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L	Bromochloromethane	ND		ug/L	0.420	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
Bromoform ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Bromomethane ND ug/L 0.600 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Butanone ND ug/L 5.09 50.0 1 04/09/06 21:56 SW846 8260B 604166 2-Butanone ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 sec-Butylbenzene ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorobenzene ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360	Bromodichloromethane	ND		ug/L	0.380	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
BromomethaneNDug/L 0.600 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 2-ButanoneNDug/L 5.09 50.0 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 sec-ButylbenzeneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 n-ButylbenzeneNDug/L 0.460 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 tert-ButylbenzeneNDug/L 0.390 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon disulfideNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon TetrachlorideNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorobenzeneNDug/L 0.320 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorodibromomethaneNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChloroformNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChloroformNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChloroformNDug/L 0.380	Bromoform	ND		ug/L	0.500	1.00	1 ()4/09/06 21:56	SW846 8260B	6041664	
2-Butanone ND ug/L 5.09 50.0 1 04/09/06 21:56 SW846 8260B 604166 sec-Butylbenzene ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 n-Butylbenzene ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 tert-Butylbenzene ND ug/L 0.390 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon Tetrachloride ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorobenzene ND ug/L 0.320 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloroform ND ug/L 0.38	Bromomethane	ND		ug/L	0.600	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
sec-Butylbenzene ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 n-Butylbenzene ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 tert-Butylbenzene ND ug/L 0.390 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon Tetrachloride ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorobenzene ND ug/L 0.480 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorothane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorotofurm ND ug/L	2-Butanone	ND		ug/L	5.09	50.0	1 (04/09/06 21:56	SW846 8260B	6041664	
n-Butylbenzene ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 tert-Butylbenzene ND ug/L 0.390 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon disulfide ND ug/L 0.310 1.00 1 04/09/06 21:56 SW846 8260B 604166 Carbon Tetrachloride ND ug/L 0.480 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorobenzene ND ug/L 0.320 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloroform ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlororothane ND ug/L	sec-Butylbenzene	ND		ug/L	0.380	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
tert-ButylbenzeneNDug/L 0.390 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon disulfideNDug/L 0.310 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 Carbon TetrachlorideNDug/L 0.480 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorobenzeneNDug/L 0.320 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorodibromomethaneNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L 0.360 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothaneNDug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ChlorothueneNDug/L 0.460 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 2-ChlorotolueneNDug/L 0.370 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 1,2-Dibromo-3-chloropropane <td< td=""><td>n-Butylbenzene</td><td>ND</td><td></td><td>ug/L</td><td>0.460</td><td>1.00</td><td>1 (</td><td>4/09/06 21:56</td><td>SW846 8260B</td><td>6041664</td></td<>	n-Butylbenzene	ND		ug/L	0.460	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	
Carbon disulfideND ug/L 0.310 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 Carbon TetrachlorideND ug/L 0.480 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorobenzeneND ug/L 0.320 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorodibromomethaneND ug/L 0.360 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.360 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothaneND ug/L 0.460 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 ChlorothueneND ug/L 0.370 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 4-ChlorotolueneND ug/L 0.370 1.00 1 $04/09/06\ 21:56$ SW846\ 8260B 604166 1,2-Dibromo-3-chloropropaneND ug/L </td <td>tert-Butylbenzene</td> <td>ND</td> <td></td> <td>ug/L</td> <td>0.390</td> <td>1.00</td> <td>1 (</td> <td>4/09/06 21:56</td> <td>SW846 8260B</td> <td>6041664</td>	tert-Butylbenzene	ND		ug/L	0.390	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	
Carbon TetrachlorideNDug/L 0.480 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChlorobenzeneNDug/L 0.320 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChlorodibromomethaneNDug/L 0.360 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChlorothaneNDug/L 0.500 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChloroformNDug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChlorotolueneNDug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 ChlorotolueneNDug/L 0.460 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 4-ChlorotolueneNDug/L 0.370 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 4-ChlorotolueneNDug/L 0.370 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 1,2-Dibromo-3-chloropropaneNDug/L 0.370 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166 1,2-Dibromoethane (EDB)NDug/L 0.380 1.00 1 $04/09/06\ 21:56$ SW846 8260B 604166	Carbon disulfide	ND		ug/L	0.310	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	
Chlorobenzene ND ug/L 0.320 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorotibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorothane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorothane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorothane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorotoluene ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Chlorotoluene ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L <t< td=""><td>Carbon Tetrachloride</td><td>ND</td><td></td><td>ug/L</td><td>0.480</td><td>1.00</td><td>1 (</td><td>04/09/06 21:56</td><td>SW846 8260B</td><td>6041664</td></t<>	Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
Chlorodibromomethane ND ug/L 0.360 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chlorothane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloroform ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloromethane ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Chlorotoluene ND ug/L 0.270 1.00 1 04/09/06 21:56 SW846 8260B 604166 4-Chlorotoluene ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromoethane (EDB) ND ug/L	Chlorobenzene	ND		ug/L	0.320	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
Chlorofernane ND ug/L 0.500 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloroform ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloromethane ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Chlorotoluene ND ug/L 0.270 1.00 1 04/09/06 21:56 SW846 8260B 604166 4-Chlorotoluene ND ug/L 0.270 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-4-chloropropane ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromoethane (EDB) ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166	Chloroethere	ND		ug/L	0.360	1.00	1 (04/09/06 21:56	SW846 8260B	6041664	
Chloromethane ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166 Chloromethane ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Chlorotoluene ND ug/L 0.270 1.00 1 04/09/06 21:56 SW846 8260B 604166 4-Chlorotoluene ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L 1.64 5.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromoethane (EDB) ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166	Chloroform			ug/L	0.500	1.00	I (4/09/06 21:56	SW846 8260B	6041664	
ND ug/L 0.460 1.00 1 04/09/06 21:56 SW846 8260B 604166 2-Chlorotoluene ND ug/L 0.270 1.00 1 04/09/06 21:56 SW846 8260B 604166 4-Chlorotoluene ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromo-3-chloropropane ND ug/L 1.64 5.00 1 04/09/06 21:56 SW846 8260B 604166 1,2-Dibromoethane (EDB) ND ug/L 0.380 1.00 1 04/09/06 21:56 SW846 8260B 604166	Chloromothana			ug/L	0.380	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	
Visit Construction Visit Constructinction <th td="" vis<=""><td>2-Chlorotoluene</td><td></td><td></td><td>ug/L ug/I</td><td>0.460</td><td>1.00</td><td>1 (</td><td>4/09/06 21:56</td><td>SW846 8260B</td><td>6041664</td></th>	<td>2-Chlorotoluene</td> <td></td> <td></td> <td>ug/L ug/I</td> <td>0.460</td> <td>1.00</td> <td>1 (</td> <td>4/09/06 21:56</td> <td>SW846 8260B</td> <td>6041664</td>	2-Chlorotoluene			ug/L ug/I	0.460	1.00	1 (4/09/06 21:56	SW846 8260B	6041664
1,2-Dibromo-3-chloropropaneND ug/L 0.370 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 $1,2$ -Dibromoethane (EDB)ND ug/L 1.64 5.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166 ug/L 0.380 1.00 1 $04/09/06$ $21:56$ SW846 $8260B$ 604166	4-Chlorotoluene	ND		ug/L ug/I	0.270	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	
1/2Distribute1/D ug/L 1.045.001 $04/09/06$ 21:56SW8468260B6041661,2-Dibromoethane (EDB)ND ug/L 0.3801.001 $04/09/06$ 21:56SW8468260B604166	1 2-Dibromo-3-chloropropage	ND		ug/L μσ/L	0.370	1.00		4/09/06 21:56	SW846 8260B	6041664	
	1 2-Dibromoethane (FDB)	ND		ug/L	0.380	3.00		4/09/06 21:56	SW846 8260B	6041664	
Dipromomethane ND $ug/L = 0.570 \pm 1.00 \pm 0.04/00/00(21.50) SW246 8260 D (0.04/00)$	Dibromomethane	ND		ug/L	0.580	1.00		4/09/06 21:56	SW846 8260B	6041664	
1.4-Dichlorobenzene ND ug/L 0.460 1.00 1 04/09/06 21.56 SW846 8260B 604166	1.4-Dichlorobenzene	ND		ug/L	0.370	1.00	1 (4/09/06 21:36	SW040 02000	6041664	
1.3-Dichlorobenzene ND ug/L 0.360 1.00 1 04/09/06 21.56 SW846 8260B 604166	1,3-Dichlorobenzene	ND		ug/L	0.460	1.00	1 (4/03/00 21:30	SW846 8260B	6041664	
1,2-Dichlorobenzene ND ug/L 0.370 1.00 1 04/09/06 21:56 SW846 8260B 604166	1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 (4/09/00 21:30	SW846 87600	6041664	
Dichlorodifluoromethane ND $ug/L = 0.410 = 1.00 = 1.00 + 0.0000 + 0.000 + 0.000 + 0.0$	Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	4/09/06 21:30	SW846 82600	6041664	
1,1-Dichloroethane ND ug/L 0.320 1.00 1 04/09/06 21:56 SW846 8260B 604166	1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 (4/09/06 21:56	SW846 8260B	6041664	

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Herb Hand Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: NPD0794 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 04/07/06 08:00

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	1 Analysis Date/Time	Method	Batch
Sample ID: NPD0794-03 (TB04	060602 -	Water)	- cont. Sa	mpled: 04/	/06/06 00:01				
Volatile Organic Compounds by EPA	A Method	8260B - (cont.						
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1	04/09/06 21.56	SW846 8260B	6041664
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1	04/09/06 21:50	SW846 8260B	6041664
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1	04/09/06 21:56	SW846 8260B	6041664
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1	04/09/06 21:56	SW846 8260B	6041664
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1	04/09/06 21:56	SW846 8260B	6041664
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1	04/09/06 21:56	SW846 8260B	6041664
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1	04/09/06 21:56	SW846 8260B	6041664
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1	04/09/06 21:56	SW846 8260B	6041664
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 (04/09/06 21:56	SW846 8260B	6041664
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 0	04/09/06 21:56	SW846 8260B	6041664
Ethylbenzene	ND		ug/L	0.340	1.00	1	04/00/06 21:56	SW846 8260B	6041664
Hexachlorobutadiene	ND	·	ug/L	0.670	1.00	1	04/00/06 21:56	SW846 8260B	6041664
2-Hexanone	ND		ug/L	2.53	50.0	1	04/09/06 21:56	SW846 8260B	6041664
Isopropylbenzene	ND		ug/L	0.340	1.00	1 0	34/09/06 21:56	SW846 8260B	6041664
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 (M/00/06 21:56	SW846 8260B	6041664
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 0	14/09/06 21:56	SW846 8260B	60/166/
Methylene Chloride	ND		ug/L	1.26	5.00	1 (34/09/06 21.30	SW846 8260D	6041664
4-Methyl-2-pentanone	ND		ug/L	4 25	50.0	1 (04/09/00 21.30	SW846 8260D	6041664
Naphthalene	ND		ug/L	1 13	5 00	1 (1/09/06 21:56	SW846 8260D	6041664
n-Propylbenzene	ND		ug/L	0.370	1.00	1 (1/09/06 21.56	SW846 8260D	6041664
Styrene	ND		ug/L	0.390	1.00	1 (14/09/06 21.30	SW846 8260D	6041664
1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00		4/09/06 21:50	SW846 8260D	6041664
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 (1/00/06 21:50	SW846 8260D	6041664
Tetrachloroethene	ND		ug/L	0.390	1.00	1 (04/09/00 21:30	SW040 0200B	0041004 6041664
Toluene	ND		ug/L	0.280	1.00	1 (04/09/00 21:30	SW040 0200D	6041664
1.2.3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 (4/09/00 21:30	SW040 0200D	6041664
1.2.4-Trichlorobenzene	ND		ug/L	0.790	2.00		14/09/06 21:56	SW846 8260B	0041004
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 (4/09/06 21:56	SW040 0200B	6041664
1.1.1-Trichloroethane	ND		ug/L	0.400	1.00	1 (4/09/06 21:56	SW040 0200D	0041004
Trichloroethene	ND		ug/L	0.450	1.00	1 (4/09/06 21:56	SW846 8200B	0041004
Trichlorofluoromethane	ND		ug/L	0.490	1.00		4/09/06 21:56	SW040 0200B	0041004
1.2.3-Trichloropropane	ND		ug/L	0.400	1.00		4/09/06 21:56	SW840 8200B	6041664
1.3.5-Trimethylbenzene	ND		ug/L	0.280	1.00	1 0	4/09/06 21:56	SW840 8200B	0041004
1.2.4-Trimethylbenzene	ND		ug/L	0.230	1.00		4/09/06 21:56	SW846 8260B	6041664
Vinvl chloride	ND		ug/L	0.340	1.00	1 0	4/09/06 21:56	SW846 8260B	6041664
Xylenes total	ND		ug/L	0.430	2.00		4/09/06 21:56	SW846 8260B	6041664
Surr: 1 2-Dichloroethane-d4 (70-130%)	107.0/		B-2-	0.820	3.00	1 (4/09/06 21:56	5W846 8260B	6041664
Sume Dibyomoffu operation (70-13070)	10/ %					1 0	4/09/06 21:56	SW846 8260B	6041664
Surr. Divromojiuorometnane (79-122%)	110 %					1 0	4/09/06 21:56	SW846 8260B	6041664
Surr: Toluene-d8 (78-121%)	96 %					1 0	4/09/06 21:56	SW846 8260B	6041664
Surr: 4-Bromofluorobenzene (78-126%)	106 %					1 0	4/09/06 21:56	SW846 8260B	6041664

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110

Herb Hand Attn

Work Order: NPD0794 West Fenceline P-93 Project Project Name: Project Number: SAP 340061 04/07/06 08:00 Received:

ANALYTICAL REPORT

Analyte	Result F	lag Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0794-04 (P9	9303GWP40 - W	Vater) Sampl	ed: 04/06/06	6 16:10				
Volatile Organic Compounds by	EPA Method 826	0B						
Acetone	ND - ''ル	J' ug/L	5.91	50.0	1 0	4/10/06 06:41	SW846 8260B	6041664
Benzene	348000	ug/L	1450	5000	5000 0	4/11/06 10:51	SW846 8260B	6042192
Bromobenzene	ND - יינ	J" ug/L	0.470	1.00	1 0	4/10/06 06:41	SW846 8260B	6041664
Bromochloromethane	ND	ug/L	0.420	1.00	1 0	4/10/06 06:41	SW846 8260B	6041664
Bromodichloromethane	ND	ug/L	0.380	1.00	1 0	4/10/06 06:41	SW846 8260B	6041664
Bromoform	ND	ug/L	0.500	1.00	1 0	4/10/06 06:41	SW846 8260B	6041664
Bromomethane	ND	ug/L	0.600	1.00	1 0	4/10/06 06:41	SW846 8260B	6041664
2-Butanone	ND	ug/L	5.09	50.0	1 04	4/10/06 06:41	SW846 8260B	6041664
sec-Butylbenzene	ND	ug/L	0.380	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
n-Butylbenzene	ND	ug/L	0.460	1.00	1 0-	4/10/06 06:41	SW846 8260B	6041664
tert-Butylbenzene	ND	ug/L	0.390	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Carbon disulfide	ND	ug/L	0.310	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Carbon Tetrachloride	ND	ug/L	0.480	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Chlorobenzene	ND	ug/L	0.320	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Chlorodibromomethane	ND	ug/L	0.360	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Chloroethane	ND	ug/L	0.500	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Chloroform	ND	ug/L	0.380	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Chloromethane	ND	ug/L	0.460	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
2-Chlorotoluene	ND	ug/L	0.270	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
4-Chlorotoluene	ND	ug/L	0.370	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
1,2-Dibromo-3-chloropropane	ND	ug/L	1.64	5.00	1 04	4/10/06 06:41	SW846 8260B	6041664
1,2-Dibromoethane (EDB)	ND	ug/L	0.380	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
Dibromomethane	ND	ug/L	0.570	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
1,4-Dichlorobenzene	ND	ug/L	0.460	1.00	l 04	4/10/06 06:41	SW846 8260B	6041664
1,3-Dichlorobenzene	ND	ug/L	0.360	1.00	1 04	4/10/06 06:41	SW846 8260B	6041664
1,2-Dichlorobenzene	ND	ug/L	0.370	1.00	1 04	#/10/06 06:41	SW846 8260B	6041664
Dichlorodifluoromethane	ND	ug/L	0.410	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,1-Dichloroethane	ND	ug/L	0.320	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,2-Dichloroethane	ND	ug/L	0.280	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
cis-1,2-Dichloroethene	ND	ug/L	0.390	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,1-Dichloroethene	ND	ug/L	0.450	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
trans-1,2-Dichloroethene	ND	ug/L	0.340	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,3-Dichloropropane	ND	ug/L	0.630	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,2-Dichloropropane	ND	ug/L	0.500	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
2,2-Dichloropropane	ND	ug/L	0.660	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
cis-1,3-Dichloropropene	ND (ug/L	0.450	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
trans-1,3-Dichloropropene	ND V	ug/L	0.490	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
1,1-Dichloropropene	ND - WUJ	ug/L	0.510	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
Ethylbenzene	534	ug/L	34.0	100	100 04	/11/06 10:22	SW846 8260B	6042192
Hexachlorobutadiene	ND - M	J ug/L	0.670	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
2-Hexanone	ND — ""	J ug/L	2.53	50.0	1 04	/10/06 06:41	SW846 8260B	6041664
Isopropylbenzene	15.4 —"J	ug/L	0.340	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
p-Isopropyltoluene	ND - ""	J'ug/L	0.340	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
Methyl tert-Butyl Ether	36.0 "	J' ug/L	0.320	1.00	1 04	/10/06 06:41	SW846 8260B	6041664
Methylene Chloride	אטיי — ND	ίΩ ug/L	1.26	5.00	1 04	/10/06 06:41	SW846 8260B	6041664

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Herb Hand 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPD0794Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/07/06 08:00

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis r Date/Time	Method	Batch
Sample ID: NPD0794-04 (P930)	3GWP40	- Water	r) - cont. S	ampled: 0	4/06/06 16:	:10			
Volatile Organic Compounds by EP.	A Method 8	3260B - 0	cont.						
4-Methyl-2-pentanone	ND -	······································	ug/L	4.25	50.0	1	04/10/06 06:41	SW846 8260B	6041664
Naphthalene	70.2	ייםיי_	ug/L	1.13	5.00	1	04/10/06 06:41	SW846 8260B	6041664
n-Propylbenzene	26.1	-"J"	ug/L	0.370	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Styrene	ND - '	~~J~1	ug/L	0.390	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,1,2,2-Tetrachloroethane	ND	1	ug/L	0.490	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Tetrachloroethene	ND —	in Maria	ug/L	0.390	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Toluene	123 —	"J	ug/L	0.280	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,2,3-Trichlorobenzene	ND —	mus .	ug/L	0.560	2.00	1	04/10/06 06:41	SW846 8260B	6041664
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	04/10/06 06:41	SW846 8260B	6041664
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Trichloroethene	ND		ug/L	0.450	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,2,3-Trichloropropane	ND	·u.T"	ug/L	0.560	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,3,5-Trimethylbenzene	ND —	('T)	ug/L	0.280	1.00	1	04/10/06 06:41	SW846 8260B	6041664
1,2,4-1rimethylbenzene	129	. J 	ug/L	0.340	1.00	1	04/10/06 06:41	SW846 8260B	6041664
Vinyl chloride	ND ~	······································	ug/L	0.430	1.00	1	04/10/06 06:41	SW846 8260B	6041664
o-Xylene	470		ug/L	32.0	100	100	04/11/06 10:22	SW846 8260B	6042192
m,p-Xylene	1140		ug/L	50.0	100	100	04/11/06 10:22	SW846 8260B	6042192
Xylenes, total	1610		ug/L	82.0	300	100	04/11/06 10:22	SW846 8260B	6042192
Surr: 1,2-Dichloroethane-d4 (70-130%)	(29%)	Z				1 (04/10/06 06:41	SW846 8260B	6041664
Surr: 1,2-Dichloroethane-d4 (70-130%)	95%					1 (04/11/06 10:22	SW846 8260B	6042192
Surr: Dibromofluoromethane (79-122%)	79 %					1 1	04/10/06 06.41	SW846 8260B	6041664
Surr: Dibromofluoromethane (79-122%)	91 %					1	04/11/06 10:22	SW846 8260B	6042192
Surr: Toluene-d8 (78-121%)	94 %					1	04/10/06 06 41	SW040 0200D	60/166/
Surr: Toluene-d8 (78-121%)	97 %					1 0	04/10/00 00:41	SW040 0200B	6041004
Surr: 4-Bromofluorobenzene (78-126%)	125.0/					1 (04/11/06 10:22	SW846 8260B	0042192
Surr: 4-Bromofluorohouzona (79-1260)	123 70					1 (04/10/06 06:41	SW846 8260B	6041664
Surr. +-Dromojiuorovenzene (78-120%)	105 %					1 0	04/11/06 10:22	SW846 8260B	6042192

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Herb Hand Work Order:NPD0794Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/07/06 08:00

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.
- Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

METHOD MODIFICATION NOTES

			IN			Cooler	/ o f /
	ST AMERICA 🛛 2690 FOSTER CREIGH 22 Commerce Drive, Waterdown, WI 53094 Phone 800-633-70	FTON, NASHVILLE, TN 37204 PH 036	10NE 800-765-0980 FA 04/1	7/06 23:59	Shell Oil Pro	ducts US Chain Of C	ustody Record
Ř	HEnterprise Drive, Cedar Falls, IA 50613 Phone 319-277-240	11	SOP US Project Manag	er to be involced:		INCIDENT # ISAE ONE YI	DATE: 4//6/06
	200 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-5	571-6800		NAME OF PM TO BI	L: Herb Hand (SOPUS)	9 7 2 1 6 8 3 ¹	4 PAGE: // of //
	11 South Deve Linke, Layaon, Uni 19933 Phone 847-808-776 10 Busch Parkway, Buffalo Grove, 11. 60089 Phone 847-808-776 0 Elidon Drive, Suite A, Colorado Sorinos, CO 80907 Phone 21.	6 19-593-9911	C TECHNICAL SERVICES	NAME OF TS TO BIL	ä	SAP or CRMT # (15/CRMT)	Invoice with sampling events for this site,
8	re.			SHELL RATES			sampled through the following date:
CONSU	LTANT COMPANY: URS	Corporation		SITE ADDRESS (Street an	st Fenceline 8-93		
ADDREI	38: 1001 Highlands Pi	aza Drive West; Sulte 300		PROJECT CONTACT (Rep	ad Automode 170 East Rand Aven or to): (Copy to):	ue: Hartford, IL 62048 combultant Provect No:	Wet Building 8 03
CIIX	5t Lou	uis, MO 63110		HO BAMPLER NAME(S) (Print	rb Hand (SOPUS) Jeff A	iams (URS) SO	CL-1 2 INDEX 1922
TELEPH	ONE FAX (Office) 314-429-0100 FAX (Office) 431-429-0462 (Office) 314-409-6460 (Trailer) 618-254-1512		Thomas Adams@urscorp.com	1	Michael Corbett		
ές Γ Γ	(AROUND TIME (CALENDAR DAYS): 4 MDARD (10 DAY) 3 DAYS		4 HOURS ON WEEKEND		REQUESTED	ANALYSIS if more than one method is listed, circle of	
TEMPE	RATURE ON RECEIPT C°			 			Container PiO Beadinne
SP	ECIAL INSTRUCTIONS OR NOTES :						or Laboratory Notes
<u>ت</u> ـ	evel 4 QC Deliverables	emp Blank	Included	09	sages Market		
		SAMPLING	PREBERVATIVE	(SL08 (SL08 (SL08	Delive		
	Field Sample Identification	DATE TIME MATRIX	HCL HHKO2 HONE OTHER	2 2 0 2 2 4 0000 Meth 10H-DRO (· · · · · · · · · · · · · · · · · · ·	
	P43116WP59	4/6/06 0930 WATER	×	ч Х Х	X		NPD Ogan-OI
	P9311GWP59D	4/6/06 0930 water		3 X	X		29
	TB 04060602	4/6/ac water	X	X			
	P93036WP40	4/6/4/6/0 1 water		N X N	X		ho-
	abad hur. (Sitra shura)						
	nh Celet 4/4	1730	y: (signature)	C		Date	Time:
Relingu	ished by: (Signature)	Received b	y: (Signature)			Date:	
Relinqu	lahed by: (Signature)	Received by	: (Signature) [] [] [] [] [] [] [] [] [] [NN		4/7/06	Rine S, OO
DISTRIB	UTION: White with final report, Green to File, Yellow and Pink to Cilent			₽			05/1/01 Revision

West Fenceline Data Review

Laboratory SDG: NPD0934

Reviewer: Tony Sedlacek

Date Reviewed: 2/12/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P9303GWP59	P9305GWP45
P9305GWP58	TB04070603
P9306GWP50EB	P9306GWP50

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

No, the COC designated sample P9305GWP58 as an MS/MSD to be analyzed for VOCs. The laboratory did not spike this sample for VOCs, due to high levels of target analytes in the native sample. Therefore, VOC MS/MSD data for sample P9305GWP58 was not received as part of the data package.

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that several surrogate recoveries and LCS recovery for bromochloromethane were outside evaluation criteria. Although not indicated in the laboratory case narrative, analytes were detected in method and equipment blanks. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field D	Parameter	Analyte Qualification
N/A		

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
P9306GWP50EB	VOCs	Benzene	41.1	μg/L
6041550-BLK1	VOCs	Naphthalene	2.94	μg/L
6041550-BLK1	VOCs	1,2,3-Trichlorobenzene	1.32	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
P9305GWP45	VOCs	Naphthalene	-	U
P9306GWP50	VOCs	Naphthalene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
6041550-BS1	VOCs	Bromochloromethane	131	N/A	74-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Ministration of the second	A Contraction of the Activity of Contraction of	 Control control contro control control co	
TO DITO	n n		
	Uo romotor	A molecto	Contraction of the second statement of the second stat
	l alallete	Allalvir	
		1 Street, ve	I VUIIII CONDIVII
		· · · · · · · · · · · · · · · · · · ·	1 ,
IN/A			1 /
11/18			1 /
			1 /

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
P9305GWP45	VOCs	1,2-Dichloroethane-d ₄	28	70-130
P9305GWP45	VOCs	Dibromofluoromethane	39	79-122
P9305GWP58	VOCs	1,2-Dichloroethane-d ₄	55	70-130
P9306GWP50	VOCs	1,2-Dichloroethane-d ₄	30	70-130
P9306GWP50	VOCs	Dibromofluoromethane	132	79-122

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
P9305GWP45	VOCs	All detects/nondetects	J/UJ
P9305GWP58	VOCs	All detects/nondetects	J/UJ
P9306GWP50	VOCs	All detects/nondetects	J/UJ

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No, the COC designated sample P9305GWP58 as an MS/MSD to be analyzed for VOCs. The laboratory did not spike this sample for VOCs, due to high levels of target analytes in the native sample. Therefore, VOC MS/MSD data for sample P9305GWP58 was not received as part of the data package.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

			The second	
				Sand a second
			CONTRACTOR OF A 1 IN VERSION POLICE	
			CONTRACT OF AN AND IN ADDRESS SHOW	NR 460 I C C 2 N N N N S 7 L Z 2 N S 7 N G 1 NAMMEN
	I ICIU D'UDIICAIC ID		1000000 A & God P JOSSON 1000	835, 97 A 7 E 7 G 6 B 8 E 197 7 B 8 E 6 J 6 B869B
IN/A				
1 1/2 1				
N		 1		

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

11.0 Additional Qualifications

Were additional qualifications applied?

No

1.0 FULL VALIDATION OF VOC DATA - SDG NPD0934

This section describes the full validation for four water samples which were prepared by USEPA SW-846 Method 5030B and analyzed for volatile organic compounds (VOCs) by USEPA SW-846 Method 8260B. Samples were analyzed by Test America Analytical Testing Corporation of Nashville, Tennessee, and submitted as part of sample delivery group (SDG) NPD0934. Samples included as part of this validation are listed below:

Sample Ide	entification
P93030	GWP59
P93050	GWP45
P93050	GWP58
P93060	GWP50

QA/QC criteria were identified in the West Fenceline P-93 Dissolved Phase Benzene Investigation 2006 work plan and USEPA SW-846 Method 8260B. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Program National Functional Guidelines for Organic Data Review (USEPA 1999) where applicable to SW-846 Method 8260B.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative/cooler receipt form
- Holding times and sample preservation
- GC/MS instrument performance
- Initial calibration
- Calibration verification
- Blank samples
- Surrogate spike recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Internal standards and retention times
- Laboratory control spike (LCS) samples
- Target compound identification and quantitation
- Overall data assessment

1.1 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with

requested QC documentation for the respective methods. The COC designated sample P9305GWP58 as an MS/MSD to be analyzed for VOCs. The laboratory did not spike this sample for VOCs, due to high levels of target analytes in the native sample. Therefore, VOC MS/MSD data for sample P9305GWP58 was not received and the data package was not complete.

1.2 Laboratory Case Narrative/Cooler Receipt Form

The laboratory case narrative indicated that several surrogate recoveries and LCS recovery for bromochloromethane were outside evaluation criteria. Although not indicated in the laboratory case narrative, analytes were detected in method and equipment blanks. These issues are addressed further in the appropriate section below. No problems were indicated in the cooler receipt form for the validated samples.

1.3 Holding Times and Sample Preservation

Review of the sample collection and analysis dates involved comparing the chains-ofcustody, the summary forms, the raw data forms, and the chromatograms for accuracy, consistency, and holding time compliance. The samples were received at $4^{\circ}C \pm 2^{\circ}C$, and at a pH <2 and were analyzed within the 14 day holding time criteria. No qualification of data was required due to sample preservation or holding time criteria.

1.4 GC/MS Instrument Performance

GC/MS instrument performance checks were performed to ensure mass resolution, identification, and instrument sensitivity. Criteria for evaluation of instrument performance included possible transcription/calculation errors, adherence to instrument tuning frequency requirements, mass assignments, and ion abundance criteria. Instrument performance check samples were evaluated against criteria established in USEPA SW-846 Method 8260B.

Based on the raw data, the ion abundance criteria were within evaluation criteria for all masses, and no qualification of data was required. The raw data forms were checked against the summary forms and no calculation or transcription errors were noted.

1.5 Initial Calibration

An Initial calibration (ICAL) was established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for volatile analysis. Samples as part of SDG NPD0934 were analyzed using instrument HP36. The ICAL for instrument HP36 was established on 4-8-06 prior to sample analysis and using at least five concentration standards to establish the initial calibration curve as required by Method 8260B. An average response factor (RF) was determined for each target analyte, the RFs were reviewed and verified greater than 0.10 for chloromethane, 1,1-dichloroethane and bromoform, 0.30 for chlorobenzene and 1,1,2,2-tetrachloroethane and

greater than 0.05 for all other target analytes, with the exception of acetone (0.024) and 2-butanone (0.028). The ICAL for compound 2-butanone was determined by linear least squares regression; therefore, no qualification of data was required. Acetone data qualifications are summarized in the table below.

Field ID	Analyte	Qualification
P9303GWP59	Acetone	R
P9305GWP45	Acetone	R
P9305GWP58	Acetone	R
P9306GWP50	Acetone	R

Review of the initial calibration summary forms indicated %RSDs were $\leq 30\%$ for calibration check compounds (CCCs) [1,1-dichloroethene, toluene, chloroform, ethylbenzene, 1,2-dichloropropane, and vinyl chloride], and $\leq 15\%$ for non-CCCs with some exceptions. The initial calibration for compounds with %RSD values above 15% was determined using least square linear regression. All correlation coefficients (r) were greater than 0.990, with the exception of bromoform (.989). Bromoform was previously qualified in samples P9305GWP58 and P9306GWP50 due to low surrogate recovery; therefore, no additional qualification is needed. Bromoform data qualifications are summarized in the table below.

Field ID	Analyte	Qualification
P9303GWP59	Bromoform	UJ
P9305GWP45	Bromoform	UJ

Percent RSDs were recalculated from the raw data and no errors in calculation were noted; therefore, no qualification of data was required. A second source verification was analyzed following the initial calibration. All percent difference values were within 15 percent, with the exception of those compounds summarized in the table below.

Analyte	%D
Acetone	-20.5
Bromochloromethane	-16.0
1,3-Dichloropropane	-16.4
1,2-Dichlorobenzene	-17.3

Acetone was previously qualified because of ICAL RF less than 0.05 in all associated samples and bromochloromethane, 1,3-dichloropropane and 1,2-dichlorobenzene were previously qualified due to low surrogate recovery in samples P9305GWP58 and P9306GWP50; therefore, no additional qualification is needed. Qualifications for compounds with %Ds greater than 15% are summarized in the table below.

Field ID	Analyte	Qualification
P9303GWP59	Bromochloromethane	UJ

Field ID	Analyte	Qualification
P9303GWP59	1,3-Dichloropropane	UJ
P9303GWP59	1,2-Dichlorobenzene	UJ
P9305GWP45	Bromochloromethane	UJ
P9305GWP45	1,3-Dichloropropane	UJ
P9305GWP45	1,2-Dichlorobenzene	UJ

1.6 Calibration verification

Review of the sample chromatograms indicated the calibration verifications (CVs) were performed at the required frequency every 12 hours. Review of continuing calibration summary forms indicated all RFs met the evaluation criteria of greater than 0.10 (chloromethane, 1,1-dichloroethane and bromoform), 0.30 (chlorobenzene and 1,1,2,2-tetrachloroethane) and greater than 0.05 for all other analytes with the exception of acetone (0.027) and 2-butanone (0.034). Acetone was were previously qualified due to initial calibration RFs less than 0.05 and the 2-butanone calibration was determined by linear least squares; therefore, no additional qualification of data was required. In addition, percent differences (%Ds) and percent drift (%Drift) met the evaluation criteria of \leq 20 percent for CCCs and < 30 percent for all other target analytes with the exceptions those summarized below:

CV (Date/Time)	Analyte	%D or %Drift
04/07/07 1738	Hexachlorobutadiene	33.5

The compound hexachlorobutadiene was previously qualified due to low surrogate recovery in samples P9305GWP58 and P9306GWP50; therefore, no additional qualification of data is needed. Qualifications due to %D greater than 30% are summarized in the table below.

Field ID	Analyte	Qualification
P9303GWP59	Hexachlorobutadiene	UJ
P9305GWP45	Hexachlorobutadiene	UJ

Recalculations of the RFs and %Ds for two target compounds were completed for each CV, and no errors in calculation were noted. No qualification of data was required.

1.7 Blank Samples

The purpose of the method blank samples is to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Method blank samples were analyzed with each analytical batch as required by USEPA SW-846 Method 8260B. All target compounds were reported as nondetect in all method blanks and equipment blanks analyzed as part of this SDG with the exception of those summarized in the table below.

Blank ID	Parameter -	Analyte	Concentration	Units
P9306GWP50EB	VOCs	Benzene	41.1	μg/L
6041550-BLK1	VOCs	Naphthalene	2.94	μg/L
6041550-BLK1	VOCs	1,2,3-Trichlorobenzene	1.32	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
P9305GWP45	VOCs	Naphthalene	-	U
P9306GWP50	VOCs	Naphthalene	-	U

Target analytes for all trip blank samples were reported as nondetect. The review of chromatograms indicates all peaks present were accounted or the concentrations reported were below the method detection limit. No qualification of data was required.

1.8 Surrogate Spike Recoveries

Surrogate compounds were used to evaluate the overall laboratory sample preparation efficiency on a per sample basis. All surrogate recoveries were within the method acceptance criteria, with the exception of those summarized in the table below.

Field ID	Surrogate	Recovery	Criteria
P9305GWP45	1,2-Dichloroethane-d4	28	70-130
P9305GWP45	Dibromofluoromethane	39	79-122
P9305GWP58	1,2-Dichloroethane-d4	55	70-130
P9306GWP50	1,2-Dichloroethane-d4	30	70-130
P9306GWP50	Dibromofluoromethane	132	79-122

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Analyte	Qualification
P9305GWP45	All detects/nondetects	J/UJ
P9305GWP58	All detects/nondetects	J/UJ
P9306GWP50	All detects/nondetects	J/UJ

A minimum of ten percent of the recoveries were recalculated, and the summary forms versus the raw data were verified. No calculation or transcription errors were noted and no qualification of data was required.

1.9 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to assess potential matrix effects. Sample PS11-1106 was spiked and analyzed for VOCs. The COC designated sample P9305GWP58 as an MS/MSD to be analyzed for VOCs. The laboratory did not spike this sample for VOCs, due to high levels of target analytes in the native sample. Therefore, VOC MS/MSD data for sample P9305GWP58 was not received as part of the data package.

1.10 Internal Standards and Retention Times

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50 percent to +100 percent, and the IS retention times must be within 30 seconds of the IS continuing calibration retention time. IS areas and retention times for the validated samples in this SDG were within evaluation criteria, with the exception of those summarized in the table below.

Field ID	Internal standard	Internal standard area	Internal standard criteria
P9306GWP50	Chlorobenzene-d5	1570129	380174-1520696

The internal standard area was above evaluation criteria and all analytes associated with Chlorobenzene-d5 were nondetect; therefore no qualification of data was required. The retention time for internal standard fluorobenzene (5.96) minutes was outside evaluation criteria (4.47-5.47) minutes in samples P9305GWP45 and P9306GWP50. The retention time shifted due to elevated levels of benzene in the samples. Therefore, analytes quantified with internal standard fluorobenzene were qualified as summarized in the table below with the exception of acetone. Acetone was previously qualified due to an ICAL RF less than 0.5; therefore, no additional qualification of data is needed. The methyl tert-butyl ether result was reported from the diluted sample and not associated with internal standard fluorobenzene; no qualification of data was required.

Field ID	Analyte	Qualification
P9305GWP45	Bromodichloromethane	R
P9305GWP45	Carbon disulfide	R
P9305GWP45	Carbon tetrachloride	R
P9305GWP45	Chloroform	R
P9305GWP45	Chloromethane	R
P9305GWP45	1,2-Dichloroethane	R
P9305GWP45	cis-1,2-Dichloroethene	R
P9305GWP45	1,1-Dichloroethene	R
P9305GWP45	trans-1,2-Dichloroethene	R
P9305GWP45	2,2-Dichloropropane	R
P9305GWP45	1,1-Dichloropropene	R
P9305GWP45	Methyl tert-butyl ether	R
P9305GWP45	1,1,1-Trichloroethane	R
P9305GWP45	Trichlorofluoromethane	R

Field ID	Analyte	Qualification
P9305GWP45	Vinyl chloride	R
P9306GWP50	Bromodichloromethane	R
P9306GWP50	Carbon disulfide	R
P9306GWP50	Carbon tetrachloride	R
P9306GWP50	Chloroform	R
P9306GWP50	Chloromethane	R
P9306GWP50	1,2-Dichloroethane	R
P9306GWP50	cis-1,2-Dichloroethene	R
P9306GWP50	1,1-Dichloroethene	R
P9306GWP50	trans-1,2-Dichloroethene	R
P9306GWP50	2,2-Dichloropropane	R
P9306GWP50	1,1-Dichloropropene	R
P9306GWP50	1,1,1-Trichloroethane	R
P9306GWP50	Trichlorofluoromethane	R
P9306GWP50	Vinyl chloride	R

The summary forms versus the raw data were verified and no transcription errors were noted.

1.11 Laboratory Control Spike Samples

Laboratory control samples were analyzed with each analytical batch to assess the accuracy of the analytical process. LCS recoveries were within evaluation criteria, with the exception of bromochloromethane (131%) with criteria (74-130%). All associated samples were nondetect for bromochloromethane and did not require qualification.

A minimum of ten percent of the spiking compound recoveries for the LCS's were recalculated using the LCS summary forms, and no calculation or transcription errors were noted.

1.12 Target Compound Identification and Quantitation

For validation of the compound identification, chromatograms were reviewed to verify the major peaks were identified, the spectra of the identified compounds were verified against the library spectra, and the relative retention time was no greater than 0.06 different from the associated CV retention times. A minimum of ten percent of the detected target analytes and spiking compounds were verified. No anomalies were noted with the identification of the target compounds in the samples.

For the validation of compound quantitation, 10% of the target analytes were recalculated from the raw data, and no calculation errors were noted. Additionally, the reporting limits were verified to determine if reporting limits (RLs) were adjusted for dilutions. No qualification of the data was required and review of the data indicated the correct RLs were reported.

1.13 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses be accepted for their intended use, with the exception of rejected (R) data. Acceptable levels of accuracy and precision, based on LCS, and surrogate data were achieved for this SDG. In addition, completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated (J/UJ) data, was 86 percent for VOC data for this SDG and should be used for their intended purpose. The percentage of valid analytical results for all SDGs included in the project, met the project goal of 95 percent.

May 15, 2006

Client:	URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Jeff Adams	Work Order: Project Name: Project Nbr: P/O Nbr: Date Received:	NPD0934 170 E. Rand Avenue, Hartford, IL SAP 340061 97216634 04/08/06
Attn:			
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
P9303GWP59		NPD0934-01	04/07/06 09:05
P93	05GWP45	NPD0934-02	04/07/06 11:00
P93	05GWP58	NPD0934-03	04/07/06 12:05
TB	04070603	NPD0934-04	04/07/06 00:01
P93	06GWP50EB	NPD0934-05	04/07/06 15:10
P93	06GWP50	NPD0934-06	04/07/06 16:00

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Per enclosed Chain of Custody, "samples were properly preserved and received in good condition on 4/8/06. Analysis was extracted and performed within method required holding times following Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846)". All QC results were within acceptable limits. Initial and Continuing Calibration requirements were met. Package was completed as a "Level IV".

Please note for this work order: Sample NPD0934-03 (P9305GWP58) was not analyzed as the MS/MSD sample due to the high concentration of target analytes that are present in the sample. A Blank Spike was the only QC reported with these samples. Due to sample matrix interference, the surrogate recoveries were outside laboratory acceptable QC limit. Bromochloromethane in the LCS for QC bacth 6041550 was outside laboratory acceptable QC limit biased high. Analyte not detected in the samples, therefore data not impacted.

Organics: Unknown analyte concentrations were determined using the average response factor from the initial calibration curve for all analytes whose % RSD is less than or equal to 15. All other analyte concentrations were determined using linear regression analysis. Copies of curves for compounds with %RSD's greater than 15 are supplied.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980 ext 1256.

Illinois Certification Number: 001177

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110

Attn Jeff Adams

Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

lunch. Norton

Glenn Lee Norton Data Package Coordinator
ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Jeff Adams Attn

Work Order: NPD0934 170 E. Rand Avenue, Hartford, IL Project Name: Project Number: SAP 340061 Received: 04/08/06 08:30

						Dilution	Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0934-01 (P9303	GWP59	- Water)	Sampled:	04/07/0	6 09:05				
Volatile Organic Compounds by EPA	Method 8	8260B							
Acetone	ND -	···R ^{II}	ug/I.	5 01	50.0	1 0	4/10/06 12.11	SW/846 8260D	6041550
Renzene	3650		ч <u>е</u> , 2 це/Г.	14.5	50.0	50 0	4/12/06 15:11	SW040 0200D	6041330
Bromohenzene	ND		ug/L	0.470	1.00	1 0	4/13/00 00.29	SW846 8260D	6041550
Bromochloromethane	ND	"uJ"	ug/L	0.470	1.00	1 0	4/12/00 13.11	SW846 8260B	6041550
Bromodichloromethane	ND		ug/L	0.380	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Bromoform	ND	"uJ"	ug/L	0.500	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
Bromomethane	ND		ug/L	0.600	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
2-Butanone	ND		ug/L	5.09	50.0	1 0	4/12/06 13:11	SW846 8260B	6041550
sec-Butvibenzene	ND		ug/L	0.380	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
n-Butylbenzene	ND		ug/L	0.460	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
tert-Butylbenzene	6.21		ug/L	0.390	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
Carbon disulfide	1.08		ug/L	0.310	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
Chlorobenzene	ND		ug/L	0.320	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Chloroethane	ND		ug/L	0.500	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Chloroform	ND		ug/L	0.380	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Chloromethane	ND		ug/L	0.460	1.00	1 0	4/12/06 13-11	SW846 8260B	6041550
2-Chlorotoluene	NÐ		ug/L	0.270	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/12/06 13.11	SW846 8260B	6041550
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Dibromomethane	ND		ug/L	0.570	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,3-Dichlorobenzene	ND	_	ug/L	0.360	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,2-Dichlorobenzene	ND	·····J``	ug/L	0.370	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
trans-1,2-Dichloroethene	ND	- ••	ug/L	0.340	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,3-Dichloropropane	ND -	·u]"	ug/L	0.630	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	4/12/06 13:11	SW846 8260B	6041550
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
Ethylbenzene	153		ug/L	0.340	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
Hexachlorobutadiene	ND	urt.	ug/L	0.670	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
2-Hexanone	ND		ug/L	2.53	50.0	1 04	4/12/06 13:11	SW846 8260B	6041550
Isopropylbenzene	16.0		ug/L	0.340	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
Diisopropyl Ether	ND		ug/L	0.420	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 04	4/12/06 13:11	SW846 8260B	6041550

Page 3 of 24

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

						Dilution	n Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0934-01 (P9303	GWP59 -	- Water) - cont.	Sampled:	04/07/06 09:04	 5			
Volatile Organic Compounds by EPA	Method 8	260B - c	ont.	~~~~					
Methylene Chloride	ND		ug/L	1.26	5.00	1	04/12/06 12:11	SW846 8260B	6041550
4-Methyl-2-pentanone	ND		ug/L	4 25	50.0	1	04/12/06 13:11	SW846 8260B	6041550
Naphthalene	21.4		ug/L	1.13	5.00	1	04/12/06 13:11	SW846 8260B	6041550
n-Propylbenzene	40.6		ug/L	0.370	1.00	1	04/12/06 13:11	SW846 8260B	6041550
Styrene	ND		ug/L	0.390	1.00	1	04/12/06 13:11	SW846 8260B	6041550
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	04/12/06 13:11	SW846 8260B	6041550
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	04/12/06 13:11	SW846 8260B	6041550
Tetrachloroethene	ND		ug/L	0.390	1.00	1	04/12/06 13:11	SW846 8260B	6041550
Toluene	4.63		ug/L	0.280	1.00	1	04/12/06 13:11	SW846 8260B	6041550
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
Trichloroethene	ND		ug/L	0.450	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,3,5-Trimethylbenzene	48.2		ug/L	0.280	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
1,2,4-Trimethylbenzene	167		ug/L	0.340	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
Vinyl chloride	ND		ug/L	0.430	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
m,p-Xylene	246		ug/L	0.500	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
o-Xylene	16.0		ug/L	0.320	1.00	1 (04/12/06 13:11	SW846 8260B	6041550
Xylenes, total	262		ug/L	0.820	3.00	1 (04/12/06 13:11	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	94 %					1 0	4/12/06 13:11	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	109 %					1 0	4/13/06 00.29	SW846 8260B	6042169
Surr: Dibromofluoromethane (79-122%)	119 %					1 0	4/12/06 13-11	SW846 8260B	6041550
Surr: Dibromofluoromethane (79-122%)	100 %					1 0	4/12/06 10.11	SW846 8260B	6042169
Surr: Toluene-d8 (78-121%)	93%					1 0	4/13/00 00.29	SW040 0200D	6041550
Surr: Toluene-d8 (78-121%)	84 %					1 0	4/12/00 13:11	SW040 0200D	6041330
Surr: 4-Bromofluorobenzene (78-126%)	101.02					1 0	4/13/00 00:29	SW040 8200B	6041550
Super: A Bromofluorobourous (70-12670)	101 %					1 0	4/12/06 13:11	SW846 8260B	0041550
Surr. 4-Bromojiuorovenzene (78-120%)	89 %					1 0	4/13/06 00:29	SW846 8260B	6042169

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

Analyte Result Fig Units MDL MRL Factor Date/Time Method Batch Samplet D: NPD0934-02 (P9305GWP45 - Water) Sampled: 04/07/06 11:00 Volatile Organic Compounds by EPA Method 8260B 6401550 Acctone ND - ''C'' upl. 5.91 50.0 1 04/1206 13:40 SW846 8260B 6041550 Benzene 1460000 upl. 6.71 1.00 1 04/1206 13:40 SW846 8260B 6041550 Bromochioromethane ND - ''C'' upl. 0.420 1.00 1 04/1206 13:40 SW846 8260B 6041550 Bromochinomethane ND - ''U' upl. 0.500 1.00 1 04/1206 13:40 SW846 8260B 6041550 Bromochinomethane ND - ''U' upl. 0.500 1.00 1 04/1206 13:40 SW846 8260B 6041550 Carbon Terrachonica ND - ''U' upl. 0.360 1.00 1 04/1206 13:40 SW846 8260B 6041550 Carbon Terrachonide ND - ''U' upl.<							Dilution	Analysis		
	Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID: NPD0934-02 (P930		 - Water)	Sample						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Volatile Organic Compounds by FF	PA Method 8	260B	- Sumpri		11.00				
Account (b) (c) (c	Acetone -		· (A)	ug/I	5.01	50.0			CW 10 4 C 00 COD	~~~~~~~~
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Renzene	ND		ug/L ug/I	20000	50.0	1 (04/12/06 13:40	SW846 8260B	6041550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromohenzene	1400000 ND	·-u]``	ug/L ug/L	29000	100000		04/13/06 01:00	SW846 8260B	6042169
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromochloromethane		"W"	ug/L 110/L	0.470	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromodichloromethane	1.86	ייקיי לעדיי	ug/L	0.420	1.00		04/12/06 13:40	SW846 8200B	0041550
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromoform	ND	"ILA T'	ug/L	0.500	1.00		04/12/06 13:40	SW040 0200D	6041550
2-Butanome ND ug/L 5.09 5.00 1 04/12/06 13:40 SW#46 82:005 06/13:05 sec-Butylbenzene ND ug/L 0.360 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 n=Butylbenzene ND ug/L 0.300 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 Carbon distlifde ND ug/L 0.310 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 Carbon distlifde ND ug/L 0.320 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 Chlorofbromomethane ND ug/L 0.320 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 Chlorofbromomethane ND ug/L 0.300 1.00 1 04/12/06 13:40 SW#46 82:005 66/11550 Chlorofbromomethane ND u	Bromomethane	ND	1	ug/L	0.500	1.00		04/12/06 13:40	SW846 8260B	6041550
sc-Butythenzene ND ug/L 0.380 1.00 1 0.41/206 13.40 SWM 05.000 6041150 n-Butythenzene ND ug/L 0.380 1.00 1 04/12/06 13.40 SWM 62/000 6041150 Carbon disulfide ND ug/L 0.310 1.00 1 04/12/06 13.40 SWM 62/000 6041150 Carbon disulfide ND ug/L 0.310 1.00 1 04/12/06 13.40 SWM 62/000 6041150 Chlorobarzene ND ug/L 0.320 1.00 1 04/12/06 13.40 SWM 62/000 604150 Chlorobarzene ND ug/L 0.360 1.00 1 04/12/06 13.40 SWM 62/000 604150 Chlorobarzene ND ug/L 0.380 1.00 1 04/12/06 13.40 SWM 62/000 604150 Chlorobarzene ND ug/L 0.370 1.00 1 04/12/06 13.40 SWM 62/000	2-Butanone	ND		ug/L	5.00	50.0	1 (04/12/06 13:40	SW846 8260B	6041550
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	sec-Butylhenzene	ND		ug/L	0.380	1.00	1 (4/12/06 13:40	SW040 0200D	6041550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n-Butvibenzene	ND		ug/L	0.560	1.00	1 (14/12/06 13:40	SW040 0200D	6041550
Carbon disulfide ND \mathcal{Q}^{*}_{1}	tert-Butylbenzene	ND-~'	·uJ"	ug/L	0.400	1.00	1 (14/12/06 13:40	SW846 8260D	6041550
Carbon Tetrachloride 2.03 χ_{1}^{*} ψ_{L} 0.480 1.00 1 04/12/06 13.40 SW846 8260B 6041350 Chlorobbromethane ND ψ_{L} 0.320 1.00 1 04/12/06 13.40 SW846 8260B 6041550 Chlorobbromethane ND ψ_{L} 0.350 1.00 1 04/12/06 13.40 SW846 8260B 6041550 Chlorobbromethane ND ψ_{L} 0.500 1.00 1 04/12/06 13.40 SW846 8260B 6041550 Chloromethane ND ψ_{L} 0.460 1.00 1 04/12/06 13.40 SW846 8260B 6041550 Chlorobluene ND ψ_{L} 0.370 1.00 1 04/12/06 13.40 SW846 8260B 6041550 1/2-Diblromothane ND ψ_{L} 0.370 1.00 1 04/12/06 13.40 SW846 8260B 6041550 1/2-Diblromothan	Carbon disulfide —	ND	"R''	ug/L	0.310	1.00	1 (4/12/06 13:40	SW846 8260D	6041550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Carbon Tetrachloride	2.03	AnRi	ug/L	0.310	1.00	1 (4/12/06 13:40	SW846 8260D	6041550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorobenzene	ND	"uJ"	ug/L	0.480	1.00	1 0	4/12/06 13:40	SW040 0200D	6041550
Chloroethane ND ugL 0.500 1.00 1 04/12/06 13:40 SW46 82:00B 6041500 Chloroethane ND ugL 0.300 1.00 1 04/12/06 13:40 SW46 82:00B 6041500 Chloroothane ND ugL 0.300 1.00 1 04/12/06 13:40 SW46 82:00B 6041550 2-Chloroothuene ND ugL 0.370 1.00 1 04/12/06 13:40 SW46 82:00B 6041550 2-Chloroothuene ND ugL 0.370 1.00 1 04/12/06 13:40 SW46 82:00B 6041550 1/2-Dibromoethane (EDB) ND ugL 0.380 1.00 1 04/12/06 13:40 SW846 82:00B 6041550 1/4-Dichlorobenzene ND ugL 0.360 1.00 1 04/12/06 13:40 SW846 82:0B 6041550 1/2-Dichloroethane ND ugL 0.360 1.00 1 04/12/06 13:40	Chlorodibromomethane	ND	"" J"	ug/L	0.320	1.00		4/12/06 13:40	SW846 8260D	6041550
Choroform ND ugL 0.330 1.00 1 04/12/06 13:40 SW846 8260B 6041550 Chloroform ND ugL 0.460 1.00 1 04/12/06 13:40 SW846 8260B 6041550 2-Chlorotoluene ND ugL 0.270 1.00 1 04/12/06 13:40 SW846 8260B 6041550 2-Chlorotoluene ND ugL 0.270 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dibromo-3-chloropropane ND ugL 0.370 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Diblorobenzene ND ugL 0.360 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,3-Dichlorobenzene ND ugL 0.370 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dichloroethane ND ugL 0.370 1.00 1 04/12/06 13:40	Chloroethane	ND -	-"""	ug/L	0.500	1.00	1 0	4/12/00 13.40	SW846 8260D	6041550
Chloromethane ND ug/L 0.460 1.00 1 04/12/06 13.40 SNM40 2500B 6041550 2-Chlorotoluene ND ug/L 0.370 1.00 1 04/12/06 13.40 SNM46 2500B 6041550 2-Chlorotoluene ND ug/L 0.370 1.00 1 04/12/06 13.40 SNM46 2500B 6041550 1,2-Dibromo-3-chloropropane ND ug/L 0.380 1.00 1 04/12/06 13.40 SNM46 2500B 6041550 1,2-Dibromoethane (EDB) ND ug/L 0.380 1.00 1 04/12/06 13.40 SNM46 8260B 6041550 1,4-Dichlorobenzene ND ug/L 0.360 1.00 1 04/12/06 13.40 SNM46 8260B 6041550 1,2-Dichlorobenzene ND ug/L 0.360 1.00 1 04/12/06 13.40 SNM46 8260B 6041550 1,2-Dichloroethane ND ug/L 0.320 1.00 1 04/12/06 1	Chloroform -	ND~'	·R"	ug/L	0.380	1.00	1 0	4/12/06 13:40	SW846 8260D	6041550
2-Chlorotoluene ND ug/L 0.270 1.00 1 04/12/06 13:40 SW846 8260B 6041550 4-Chlorotoluene ND ug/L 0.370 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dibromo-3-chloropropane ND ug/L 0.380 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dibromo-3-chloropropane ND ug/L 0.380 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dibromo-scharo ND ug/L 0.360 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,3-Dichlorobenzene ND ug/L 0.360 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dichlorotethane ND ug/L 0.320 1.00 1 04/12/06 13:40 SW846 8260B 6041550 1,2-Dichlorotethane	Chloromethane	ND	"e"	ug/L	0.360	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
4-Chlorotoluene ND ug/L 0.370 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,2-Dibromo-3-chloropropane ND ug/L 0.370 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,2-Dibromoethane (EDB) ND ug/L 0.380 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,4-Dichlorobenzene ND ug/L 0.360 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,3-Dichlorobenzene ND ug/L 0.370 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,2-Dichlorobenzene ND ug/L 0.370 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,2-Dichlorobenzene ND ug/L 0.370 1.00 1 04/12/06 13:40 SWa46 8260B 6041550 1,2-Dichloroethane ND ug/L 0.320 1.00 1 04/12/06 13:40	2-Chlorotoluene	ND	··uj~	ug/L	0.400	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1.2-Dibromo-3-chloropropaneNDug/L1.645.0010.41/2/0613:40SW846 82:00B60415501.2-Dibromethane (EDB)NDug/L0.3801.0010.41/2/0613:40SW846 82:00B60415501.4-DichlorobenzeneNDug/L0.3601.0010.41/2/0613:40SW846 82:00B60415501.4-DichlorobenzeneNDug/L0.3601.0010.41/2/0613:40SW846 82:00B60415501.2-DichlorobenzeneNDug/L0.3601.0010.41/2/0613:40SW846 82:00B60415501.2-DichlorobenzeneNDug/L0.3601.0010.41/2/0613:40SW846 82:00B60415501.2-DichloroethaneNDug/L0.3701.0010.41/2/0613:40SW846 82:00B60415501.2-DichloroethaneNDug/L0.3201.0010.41/2/0613:40SW846 82:00B60415501.2-DichloroethaneNDug/L0.3201.0010.41/2/0613:40SW846 82:00B60415501.2-DichloroetheneNDug/L0.3201.0010.41/2/0613:40SW846 82:00B60415501.3-DichloroetheneNDug/L0.3301.0010.41/2/0613:40SW846 82:00B60415501.3-DichloropropaneNDug/L0.3301.0010.41/2/0613:40SW846 82:00B60415501.3-Dichloropropane<	4-Chlorotoluene	ND	1	ug/L	0.370	1.00	1 0	4/12/00 13:40	SW846 8260B	6041550
1.2-Dibromoethane (EDB)NDug/L0.3801.00104/12/0613:40SW8468260B6041550DibromomethaneNDug/L0.5701.00104/12/0613:40SW8468260B60415501.3-DichlorobenzeneNDug/L0.3601.00104/12/0613:40SW8468260B60415501.3-DichlorobenzeneNDug/L0.3601.00104/12/0613:40SW8468260B60415501.2-DichlorobenzeneNDug/L0.3701.00104/12/0613:40SW8468260B60415501.2-DichloroethaneNDug/L0.3201.00104/12/0613:40SW8468260B60415501.2-DichloroethaneNDug/L0.3201.00104/12/0613:40SW8468260B60415501.2-DichloroethaneNDug/L0.3201.00104/12/0613:40SW8468260B60415501.2-DichloroethaneNDug/L0.3301.00104/12/0613:40SW8468260B60415501.3-DichloroetheneNDug/L0.4301.00104/12/0613:40SW8468260B60415501.3-DichloropropaneNDug/L0.6301.00104/12/0613:40SW8468260B60415501.3-DichloropropaneNDug/L0.6301.00104/12/0613:40SW846 <t< td=""><td>1,2-Dibromo-3-chloropropane</td><td>ND</td><td>1</td><td>ug/L</td><td>1.64</td><td>5.00</td><td>1 0</td><td>4/12/06 13:40</td><td>SW846 8260B</td><td>6041550</td></t<>	1,2-Dibromo-3-chloropropane	ND	1	ug/L	1.64	5.00	1 0	4/12/06 13:40	SW846 8260B	6041550
DibromomethaneND ug/L 0.5701.00104/12/0613:40SW8468260B60415501,3-DichlorobenzeneND ug/L 0.4601.00104/12/0613:40SW8468260B60415501,2-DichlorobenzeneND ug/L 0.3701.00104/12/0613:40SW8468260B60415501,2-DichlorobenzeneND ug/L 0.3701.00104/12/0613:40SW8468260B60415501,1-DichlorobenzeneND ug/L 0.3201.00104/12/0613:40SW8468260B60415501,1-DichloroethaneND ug/L 0.3201.00104/12/0613:40SW8468260B60415501,2-DichloroethaneND ug/L 0.3201.00104/12/0613:40SW8468260B60415501,2-DichloroethaneND ug/L 0.3901.00104/12/0613:40SW8468260B60415501,2-DichloroethaneND ug/L 0.4501.00104/12/0613:40SW8468260B60415501,2-DichloroethaneND ug/L 0.4501.00104/12/0613:40SW8468260B60415501,2-DichloroptopaneND ug/L 0.4501.00104/12/0613:40SW8468260B60415501,2-DichloroptopaneND ug/L 0.6601.00104/12/0613:40<	1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1.4-DichlorobenzeneNDug/L0.4601.0010.4/12/0613:40SW8468260B60415501.3-DichlorobenzeneNDug/L0.3601.00104/12/0613:40SW8468260B60415501.2-DichlorobenzeneNDug/L0.3701.00104/12/0613:40SW8468260B6041550DichlorobenzeneNDug/L0.3701.00104/12/0613:40SW8468260B6041550DichlorobentaneNDug/L0.3201.00104/12/0613:40SW8468260B60415501.2-DichloroethaneND"'e''ug/L0.2801.00104/12/0613:40SW8468260B60415501.2-DichloroethaneND"'e''ug/L0.2801.00104/12/0613:40SW8468260B60415501.3-DichloroethaneND"'e''ug/L0.3901.00104/12/0613:40SW8468260B60415501.3-DichloroptropaneND"'e''ug/L0.3401.00104/12/0613:40SW8468260B60415501.2-DichloroptropaneND"'e''ug/L0.6301.00104/12/0613:40SW8468260B60415502.2-DichloroptropaneND"'e''ug/L0.5001.00104/12/0613:40SW8468260B60415502.2-DichloroptropaneND"'e'' <td>Dibromomethane</td> <td>ND</td> <td>1</td> <td>ug/L</td> <td>0.570</td> <td>1.00</td> <td>1 0</td> <td>4/12/06 13:40</td> <td>SW846 8260B</td> <td>6041550</td>	Dibromomethane	ND	1	ug/L	0.570	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1.3-DichlorobenzeneNDug/L0.3601.00104/12/0603.0004/12/061.2-DichlorobenzeneNDug/L0.3701.00104/12/0613.40SW8468260B6041550DichlorodifluoromethaneNDug/L0.3701.00104/12/0613.40SW8468260B60415501,1-DichloroethaneNDug/L0.3201.00104/12/0613.40SW8468260B60415501,2-DichloroethaneNDug/L0.3201.00104/12/0613.40SW8468260B60415501,2-DichloroetheneNDug/L0.3201.00104/12/0613.40SW8468260B60415501,1-DichloroetheneNDug/L0.3901.00104/12/0613.40SW8468260B60415501,2-DichloroetheneNDug/L0.4501.00104/12/0613.40SW8468260B60415501,3-DichloropropaneNDug/L0.6301.00104/12/0613.40SW8468260B60415502,2-DichloropropaneNDug/L0.6601.00104/12/0613.40SW8468260B60415502,2-DichloropropaneNDug/L0.6601.00104/12/0613.40SW8468260B60415501,1-DichloropropeneNDug/L0.6601.00104/12/0613.40SW8468260B604155	1,4-Dichlorobenzene	ND	1.	ug/L	0.460	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1.2-DichlorobenzeneND''uLJ''ug/L0.3701.00104/12/06 13:40SW846 8260B6041550DichlorodifluoromethaneND''uLJ''ug/L0.3201.00104/12/06 13:40SW846 8260B60415501.2-Dichloroethane ND''uLJ''ug/L0.3201.00104/12/06 13:40SW846 8260B60415501.2-Dichloroethane ND''uL''ug/L0.2801.00104/12/06 13:40SW846 8260B60415501.2-Dichloroethene ND''uL''ug/L0.2801.00104/12/06 13:40SW846 8260B60415501.1-Dichloroethene ND''uL''ug/L0.3401.00104/12/06 13:40SW846 8260B60415501.3-Dichloroethene ND''uL''ug/L0.3401.00104/12/06 13:40SW846 8260B60415501.3-DichloropropaneND''uL''ug/L0.6301.00104/12/06 13:40SW846 8260B60415501.2-Dichloropropane ND''uL''ug/L0.6601.00104/12/06 13:40SW846 8260B60415502.2-Dichloropropane ND''uL''ug/L0.6601.00104/12/06 13:40SW846 8260B60415501.3-Dichloropropane ND''uL''ug/L0.5101.00104/12/06 13:40SW846 8260B60415501.4-Dichloropropene ND''uL''ug/L0.6601.00104/12/06 13:40SW846 8260B60415501.1-Dichloropropene <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>V.</td><td>ug/L</td><td>0.360</td><td>1.00</td><td>1 0</td><td>4/12/06 13:40</td><td>SW846 8260B</td><td>6041550</td></t<>	1,3-Dichlorobenzene	ND	V.	ug/L	0.360	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
DichlorodifluoromethaneND $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ 1.1-DichloroethaneND $\cdot \cdot \cdot$ $\cdot \cdot $	1,2-Dichlorobenzene	ND''	u]"	ug/L	0.370	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1,1-DichloroethaneNDuJ''ug/L0.3201.0010.41/2/0613:40SW8468260B60415501,2-DichloroethaneNDR''ug/L0.2801.0010.41/2/0613:40SW8468260B6041550cis-1,2-DichloroetheneNDR''ug/L0.3901.0010.41/2/0613:40SW8468260B60415501,1-DichloroetheneNDR''ug/L0.3401.0010.41/2/0613:40SW8468260B60415501,3-DichloropropaneNDR''ug/L0.3401.0010.41/2/0613:40SW8468260B60415501,2-DichloropropaneND	Dichlorodifluoromethane	ND	- 11LJ	ug/L	0.410	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1,2-DichloroethaneND ug/L 0.2801.00104/12/06034006041550cis-1,2-DichloroetheneND ug/L 0.3901.00104/12/0613:40SW8468260B60415501,1-DichloroetheneND ug/L 0.4501.00104/12/0613:40SW8468260B60415501,3-DichloroetheneND ug/L 0.3401.00104/12/0613:40SW8468260B60415501,3-DichloropropaneND ug/L 0.3401.00104/12/0613:40SW8468260B60415501,2-DichloropropaneND ug/L 0.5001.00104/12/0613:40SW8468260B60415501,2-DichloropropaneND ug/L 0.6601.00104/12/0613:40SW8468260B60415502,2-DichloropropaneND ug/L 0.5001.00104/12/0613:40SW8468260B60415501,3-DichloropropaneND ug/L 0.4501.00104/12/0613:40SW8468260B6041550trans-1,3-DichloropropeneND ug/L 0.4501.00104/12/0613:40SW8468260B6041550trans-1,3-DichloropropeneND ug/L 0.4901.00104/12/0613:40SW8468260B6041550trans-1,3-DichloropropeneND ug/L 0.5101.00104/12/0613:40<	1,1-Dichloroethane	ND	~uJ~	ug/L	0.320	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
cis-1,2-DichloroetheneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.3901.00104/12/0613:40SW8468260B60415501,1-DichloroetheneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.4501.00104/12/0613:40SW8468260B6041550trans-1,2-DichloroetheneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.3401.00104/12/0613:40SW8468260B60415501,3-DichloropropaneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.6301.00104/12/0613:40SW8468260B60415501,2-DichloropropaneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.6301.00104/12/0613:40SW8468260B60415502,2-DichloropropaneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.5001.00104/12/0613:40SW8468260B60415502,2-DichloropropaneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.6601.00104/12/0613:40SW8468260B60415502,2-DichloropropeneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.4501.00104/12/0613:40SW8468260B60415501,1-DichloropropeneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.4501.00104/12/0613:40SW8468260B60415501,1-DichloropropeneND $\cdot \cdot \mathscr{R}^{(1)}$ ug/L0.5101.00104/12/0613:40SW8468260B60415501,1-DichloropropeneND $\cdot $	1,2-Dichloroethane	ND '	ie''	ug/L	0.280	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1,1-DichloroetheneND $\cdot'e''$ ug/L 0.4501.00104/12/06 13:40SW846 8260B6041550trans-1,2-DichloroetheneND $-''e''$ ug/L 0.3401.00104/12/06 13:40SW846 8260B60415501,3-DichloropropaneND $-''uJ''$ ug/L 0.6301.00104/12/06 13:40SW846 8260B60415501,2-DichloropropaneND $-''uJ''$ ug/L 0.6301.00104/12/06 13:40SW846 8260B60415502,2-DichloropropaneND $-''uJ''$ ug/L 0.6601.00104/12/06 13:40SW846 8260B60415502,2-DichloropropaneND $-''uJ''$ ug/L 0.6601.00104/12/06 13:40SW846 8260B60415502,2-DichloropropaneND $-''uJ''$ ug/L 0.4501.00104/12/06 13:40SW846 8260B6041550cis-1,3-DichloropropeneND $-''uJ''$ ug/L 0.4901.00104/12/06 13:40SW846 8260B60415501,1-DichloropropeneND $-''uJ''$ ug/L 0.5101.00104/12/06 13:40SW846 8260B6041550EthylbenzeneS.80 J'' ug/L 0.3401.00104/12/06 13:40SW846 8260B60415502-HexanoneND ug/L 0.3401.00104/12/06 13:40SW846 8260B60415502-HexanoneND ug/L 0.3401.00104/12/06 13:40SW846 82	cis-1,2-Dichloroethene -	ND *	<i>R</i> "	ug/L	0.390	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
trans-1,2-DichloroetheneND $\cdot''e^{1'}_{1}$ ug/L0.3401.00104/12/0613:40SW846 8260B60415501,3-DichloropropaneND $\cdot''uJ^{''}_{1}$ ug/L0.6301.00104/12/0613:40SW846 8260B60415501,2-DichloropropaneND $\cdot''uJ^{''}_{1}$ ug/L0.5001.00104/12/0613:40SW846 8260B60415502,2-DichloropropaneND $\cdot''uJ^{''}_{1}$ ug/L0.6601.00104/12/0613:40SW846 8260B60415502,2-DichloropropeneND $\cdot''uJ^{''}_{1}$ ug/L0.4501.00104/12/0613:40SW846 8260B6041550cis-1,3-DichloropropeneND $\cdot''uJ^{''}_{1}$ ug/L0.4501.00104/12/0613:40SW846 8260B60415501,1-DichloropropeneND $\cdot''uJ^{''}_{1}$ ug/L0.5101.00104/12/0613:40SW846 8260B60415501,1-DichloropropeneND $\cdot''uJ^{''}_{1}$ ug/L0.3401.00104/12/0613:40SW846 8260B6041550Ethylbenzene5.80 $\cdot'J^{''}_{1}$ ug/L0.3401.00104/12/0613:40SW846 8260B60415502-HexanoneND $\cdot''uJ^{''}_{1}$ ug/L0.3401.00104/12/0613:40SW846 8260B60415501sopropylbenzene3.76 $\cdot'J^{''}_{1}$ ug/L0.3401.00104/12/0613:40 <td>1,1-Dichloroethene -</td> <td>ND '</td> <td>ye"</td> <td>ug/L</td> <td>0.450</td> <td>1.00</td> <td>1 0</td> <td>4/12/06 13:40</td> <td>SW846 8260B</td> <td>6041550</td>	1,1-Dichloroethene -	ND '	ye"	ug/L	0.450	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1,3-Dichloropropane $ND - "uJ"$ ug/L 0.6301.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 1,2-Dichloropropane $ND - "uJ"$ ug/L 0.5001.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 2,2-Dichloropropane $ND - "uJ"$ ug/L 0.6601.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 2,2-Dichloropropane $ND - "uJ"$ ug/L 0.6601.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 cis-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.4501.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 trans-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.4901.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 trans-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.5101.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 trans-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.5101.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 trans-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.5101.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 trans-1,3-Dichloropropene $ND - "uJ"$ ug/L 0.3401.001 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 thylbenzene $ND - "uJ"$ ug/L	trans-1,2-Dichloroethene	ND	"£"	ug/L	0.340	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
1,2-DichloropropaneND	1,3-Dichloropropane	ND "	uJ".	ug/L	0.630	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
2,2-DichloropropaneND $\cdot i R^{11}$ ug/L0.6601.00104/12/06 13:40SW846 8260B6041550cis-1,3-DichloropropeneND $\cdot u 3 T^{11}$ ug/L0.4501.00104/12/06 13:40SW846 8260B6041550trans-1,3-DichloropropeneND $\cdot u 3 T^{11}$ ug/L0.4501.00104/12/06 13:40SW846 8260B6041550trans-1,3-DichloropropeneND $\cdot u 3 T^{11}$ ug/L0.4901.00104/12/06 13:40SW846 8260B6041550t,1-DichloropropeneND $\cdot u 3 T^{11}$ ug/L0.5101.00104/12/06 13:40SW846 8260B6041550EthylbenzeneS.80 $\cdot 3 T^{11}$ ug/L0.3401.00104/12/06 13:40SW846 8260B6041550HexachlorobutadieneND $\cdot u 3 T^{11}$ ug/L0.6701.00104/12/06 13:40SW846 8260B60415502-HexanoneND $u 3 T^{11}$ ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Isopropylbenzene $3.76 - J^{11}$ ug/L0.3401.00104/12/06 13:40SW846 8260B6041550p-IsopropyltolueneND $\cdot u 3 T^{11}$ ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND $\cdot u 3 T^{11}$ ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND $\cdot u 3 T^{11}$ ug/L	1,2-Dichloropropane	ND -	····LT.	ug/L	0.500	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
cis-1,3-DichloropropeneND — " \mathcal{UJ} "ug/L0.4501.00104/12/06 13:40SW846 8260B6041550trans-1,3-DichloropropeneND — " \mathcal{UJ} "ug/L0.4901.00104/12/06 13:40SW846 8260B60415501,1-DichloropropeneND — " \mathcal{R} "ug/L0.5101.00104/12/06 13:40SW846 8260B6041550EthylbenzeneS.80—'J"ug/L0.5101.00104/12/06 13:40SW846 8260B6041550HexachlorobutadieneND — " \mathcal{UJ} "ug/L0.3401.00104/12/06 13:40SW846 8260B60415502-HexanoneND — " \mathcal{UJ} "ug/L0.6701.00104/12/06 13:40SW846 8260B6041550Isopropylbenzene3.76—'J"ug/L0.3401.00104/12/06 13:40SW846 8260B6041550JisopropylbenzeneND — " \mathcal{UJ} "ug/L0.3401.00104/12/06 13:40SW846 8260B6041550JisopropylbenzeneND — " \mathcal{UJ} "ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND — " \mathcal{UJ} "ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND — " \mathcal{UJ} "ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Methyl tert-Butyl Ether —116 — \mathcal{U} " \mathcal{R} "ug/L0.3201.00104/12/06 13:40SW846 8260B6041550	2,2-Dichloropropane -	ND •	1R"	ug/L	0.660	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
trans-1,3-DichloropropeneND - 'W3''ug/L0.4901.00104/12/06 13:40SW846 8260B60415501,1-DichloropropeneND - 'R''ug/L0.5101.00104/12/06 13:40SW846 8260B6041550Ethylbenzene5.80 - '3''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550HexachlorobutadieneND - ''W3''ug/L0.6701.00104/12/06 13:40SW846 8260B60415502-HexanoneND - ''W3''ug/L0.6701.00104/12/06 13:40SW846 8260B6041550Isopropylbenzene3.76 - '3''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550JisopropylbenzeneND - ''W3''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550JisopropylbenzeneND - ''W3''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND - ''W3''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Methyl tert-Butyl Ether -116 - '''R'''ug/L0.3201.00104/12/06 13:40SW846 8260B6041550	cis-1,3-Dichloropropene	ND	···u5"	ug/L	0.450	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
I,1-DichloropropeneND - '. \mathcal{R}^{11} ug/L0.5101.00104/12/06 13:40SW846 8260B6041550Ethylbenzene5.80 - '3'ug/L0.3401.00104/12/06 13:40SW846 8260B6041550HexachlorobutadieneND - '' \mathcal{M}_{J} ''ug/L0.6701.00104/12/06 13:40SW846 8260B60415502-HexanoneND - '' \mathcal{M}_{J} ''ug/L2.5350.0104/12/06 13:40SW846 8260B6041550Isopropylbenzene3.76 - 'J''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550p-IsopropyltolueneND - '' \mathcal{M}_{J} ''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND - '' \mathcal{M}_{J} ''ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Methyl tert-Butyl Ether -116 - '' '' \mathcal{R}_{J}^{+1} 'ug/L0.3201.00104/12/06 13:40SW846 8260B6041550	trans-1,3-Dichloropropene	ND	uj"	ug/L	0.490	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
Ethylbenzene $5.80 - 13^{\prime}$ ug/L 0.340 1.00 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 HexachlorobutadieneND - 14Jug/L 0.670 1.00 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 2-HexanoneND - 14Jug/L 2.53 50.0 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 Isopropylbenzene $3.76 - 17^{\prime}$ ug/L 2.53 50.0 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 p-IsopropylbuleneND - 14Jug/L 0.340 1.00 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 Diisopropyl EtherND - 14Jug/L 0.340 1.00 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550 Methyl tert-Butyl Ether - $116 - 714^{\prime}$ ug/L 0.320 1.00 1 $04/12/06$ $13:40$ $SW846$ $8260B$ 6041550	1,1-Dichloropropene	ND - '	'R'	ug/L	0.510	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
HexachlorobutadieneND	Ethylbenzene	5.80-1	34	ug/L	0.340	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
2-HexanoneND - \mathcal{U} Jug/L2.5350.0104/12/06 13:40SW846 8260B6041550Isopropylbenzene3.76 - \mathcal{U} ug/L0.3401.00104/12/06 13:40SW846 8260B6041550p-IsopropyltolueneND - \mathcal{U} ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Diisopropyl EtherND - \mathcal{U} ug/L0.3401.00104/12/06 13:40SW846 8260B6041550Methyl tert-Butyl Ether -116 - \mathcal{U} ug/L0.3201.00104/12/06 13:40SW846 8260B6041550	Hexachlorobutadiene	ND''	นวี	ug/L	0.670	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
Isopropylbenzene 3.76 $'J''$ ug/L 0.340 1.00 i $04/12/06$ $13:40$ SW846 $8260B$ 6041550 p-IsopropyltolueneND $''UJ''$ ug/L 0.340 1.00 i $04/12/06$ $13:40$ SW846 $8260B$ 6041550 Diisopropyl EtherND $''UJ''$ ug/L 0.340 1.00 i $04/12/06$ $13:40$ SW846 $8260B$ 6041550 Methyl tert-Butyl Ether 116 $''U'R''$ ug/L 0.320 1.00 i $04/12/06$ $13:40$ SW846 $8260B$ 6041550	2-Hexanone	ND - M	~J~	ug/L	2.53	50.0	1 0	4/12/06 13:40	SW846 8260B	6041550
p-IsopropyltolueneND ug/L 0.3401.00104/12/0613:40SW8468260B6041550Diisopropyl EtherND ug/L 0.4201.00104/12/0613:40SW8468260B6041550Methyl tert-Butyl Ether116 ug/L 0.3201.00104/12/0613:40SW8468260B6041550	Isopropylbenzene	3.76-"	J"	ug/L	0.340	1.00	1 0	4/12/06 13:40	SW846 8260B	6041550
Diisopropyl Ether ND ug/L 0.420 1.00 1 $04/12/06$ $13:40$ SW846 $8260B$ 6041550 Methyl tert-Butyl Ether 116 -7^{**} ug/L 0.320 1.00 1 $04/12/06$ $13:40$ SW846 $8260B$ 6041550	p-Isopropyltoluene	ND '	ut"	ug/L	0.340	1.00	1 0.	4/12/06 13:40	SW846 8260B	6041550
Methyl tert-Butyl Ether – $116 - 7'' R'' ug/L 0.320 1.00 1 04/12/06 13:40 SW846 8260B 6041550$	Diisopropyl Ether	ND -;	u	ug/L	0.420	1.00	1 04	4/12/06 13:40	SW846 8260B	6041550
	Methyl tert-Butyl Ether -	116-7	""R"	ug/L	0.320	1.00	1 04	4/12/06 13:40	SW846 8260B	6041550

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110

Attn Jeff Adams

Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

						Dilution	n Analysis		
Analyte	Result	_Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0934-02 (P930	5GWP45	- Water)	- cont.	Sampled:	04/07/06 11:0	0			
Volatile Organic Compounds by EP	A Method 8	3260B - co	nt.	·		-			
Methylene Chloride	ND	··UJ'	ug/L	1 26	5.00	1	04/12/06 13:40	SW846 8260B	6041550
4-Methyl-2-pentanone	ND -	-"""	ug/L	4.25	50.0	1	04/12/06 13:40	SW846 8260B	6041550
Naphthalene	4.89-8	J'4'3"	ug/L	1.13	5.00	1	04/12/06 13:40	SW846 8260B	6041550
n-Propylbenzene	2.71	~J~	ug/L	0.370	1.00	1 4	04/12/06 13:40	SW846 8260B	6041550
Styrene	ND	in 2 m	ug/L	0.390	1.00	1	04/12/06 13:40	SW846 8260B	6041550
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,1,2,2-Tetrachloroethane	ND	¥	ug/L	0.490	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Tetrachloroethene	ND - '	·uj	ug/L	0.390	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Toluene	14.7'	J" _~	ug/L	0.280	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,2,3-Trichlorobenzene	ND	in 2	ug/L	0.560	2.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,2,4-Trichlorobenzene	ND	*~~~	ug/L	0.790	2.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,1,2-Trichloroethane	ND -		ug/L	0.420	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,1,1-Trichloroethane	•ND	4R -	ug/L	0.400	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Trichloroethene	ND -		ug/L	0.450	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Trichlorofluoromethane	ND —	"R" 7 "	ug/L	0.480	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,3,5-Trimethylbenzene	3.52-		ug/L	0.280	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
1,2,4-Trimethylbenzene	5.37 5		ug/L	0.340	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Vinyl chloride	ND ~	41FC **	ug/L	0.430	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
m,p-Xylene	9.71] .	ug/L	0.500	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
o-Xylene	4.97~	1	ug/L	0.320	1.00	1 (04/12/06 13:40	SW846 8260B	6041550
Xylenes, total	14.7-"	5	ug/L	0.820	3.00	1 (04/12/06 13:40	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	28 %	Ζ				1 0)4/12/06 13:40	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	106%					1 0	4/13/06 01:00	SW846 8260B	6042169
Surr: Dibromofluoromethane (79-122%)	(39%)	Ζ				1 0	4/12/06 13.40	SW846 8260B	6041550
Surr: Dibromofluoromethane (79-122%)	101 %					1 0	04/13/06 01:00	SW846 8260B	6042169
Surr: Toluene-d8 (78-121%)	97 %					1 0	4/12/06 13-40	SW846 8260B	6041550
Surr: Toluene-d8 (78-121%)	85 %					1 0	4/13/06 01:00	SW846 8260B	6042169
Surr: 4-Bromofluorobenzene (78-126%)	124 %						4/12/06 13.40	SW846 8260B	6041550
Surr: 4-Bromofluorobenzene (78-126%)	107 %						A/12/06 13.40	SW846 8760P	6042169
	107 70					1 0	4/15/00 01:00	577 040 0200D	

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams

Work Order: NPD0934 Project Name: 170 E. Rand Avenue, Hartford, IL Project Number: SAP 340061 Received: 04/08/06 08:30

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD0934-03 (P9305	GWP58	- Water)	Sample	ed: 04/07/06	12:05				
Volatile Organic Compounds by EPA	A Method 8	8260B							
Acetone	ND	-tts Tig	R ^{ug/L}	5 91	50.0	1 (04/12/06 14.00	SW846 8260B	6041550
Benzene	52200		ug/L	290	1000	1000	04/13/06 02:01	SW846 8260B	6041330
Bromobenzene	ND	-"uJ"	ug/L	0.470	1.00	1 (04/12/06 14:00	SW846 8260B	6041550
Bromochloromethane	ND	1	ug/L	0.420	1.00	1 ($\frac{12}{06} \frac{14.09}{12}$	SW846 8260B	6041550
Bromodichloromethane	ND		ug/L	0.380	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Bromoform	ND		ug/L	0.500	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Bromomethane	ND		ug/L	0.600	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
2-Butanone	ND	J"	ug/L	5.09	50.0	1 ()4/12/06 14:09	SW846 8260B	6041550
sec-Butylbenzene	5.87	- "J"	ug/L	0.380	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
n-Butylbenzene	ND -	~~~uJ"	ug/L	0.460	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
tert-Butylbenzene	6.32] .	ug/L	0.390	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Carbon disulfide	ND	- "WJ"	ug/L	0.310	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Carbon Tetrachloride	ND	1	ug/L	0.480	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Chlorobenzene	ND		ug/L	0.320	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Chloroethane	ND		ug/L	0.500	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Chloroform	ND		ug/L	0.380	1.00	1 (4/12/06 14:09	SW846 8260B	6041550
Chloromethane	ND		ug/L	0.460	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
Dibromomethane	ND		ug/L	0.570	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,1-Dichloroethane	ND	1	ug/L	0.320	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,1-Dichloroethene	ND		ug/L	0.450	1.00	10	4/12/06 14:09	SW846 8260B	6041550
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	10	4/12/06 14:09	SW846 8260B	6041550
1,3-Dichloropropane	ND		ug/L	0.630	1.00	10	4/12/06 14:09	SW846 8260B	6041550
1,2-Dichloropropane	ND		ug/L	0.500	1.00	10	4/12/06 14:09	SW846 8260B	6041550
2,2-Dichloropropane	ND		ug/L	0.660	1.00	10	4/12/06 14:09	SW846 8260B	6041550
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	10	4/12/06 14:09	SW846 8260B	6041550
trans-1,3-Dichloropropene	ND	₩	ug/L	0.490	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
1,1-Dichloropropene	ND	wJ.	ug/L	0.510	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
Ethylbenzene	203	- 11	ug/L	6.80	20.0	20 0	4/13/06 01:30	SW846 8260B	6042169
Hexachlorobutadiene	ND '	······	ug/L	0.670	1.00	1 0	4/12/06 14:09	SW846 8260B	6041550
2-Hexanone	ND	n] .	ug/L	2.53	50.0	1 0	4/12/06 14:09	SW846 8260B	6041550
Isopropylbenzene	26.0	ʻJ '	ug/L	0.340	1.00	1 04	4/12/06 14:09	SW846 8260B	6041550
p-Isopropyltoluene	ND "	uJ"	ug/L	0.340	1.00	1 04	4/12/06 14:09	SW846 8260B	6041550
Diisopropyl Ether	ND —	······J	ug/L	0.420	1.00	1 04	4/12/06 14:09 \$	SW846 8260B	6041550
Methyl tert-Butyl Ether	ND	··uJ"	ug/L	0.320	1.00	1 04	4/12/06 14:09	SW846 8260B	6041550

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

Analyta	D 14	171	Unite	MDI	MDX	Dilution	Analysis	M-4L-J	D-4-1
									Batch
Sample ID: NPD0934-03 (P9305	GWP58 -	- Water)	- cont. S	Sampled: (04/07/06 12:0	5			
Volatile Organic Compounds by EPA	Method 8	8260B - co	ont.						
Methylene Chloride	ND '	"uJ"	ug/L	1.26	5.00	1	04/12/06 14.09	SW846 8260B	6041550
4-Methyl-2-pentanone	ND	"UJ"	ug/L	4.25	50.0	1	04/12/06 14:09	SW846 8260B	6041550
Naphthalene	24.2	-`J"	ug/L	1.13	5.00	1 (04/12/06 14:09	SW846 8260B	6041550
n-Propylbenzene	59.6	•••-7	ug/L	0.370	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Styrene	ND —	"ut"	ug/L	0.390	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,1,2,2-Tetrachloroethane	ND	4	ug/L	0.490	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Tetrachloroethene	ND	nl	ug/L	0.390	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Toluene	233		ug/L	5.60	20.0	20	04/13/06 01:30	SW846 8260B	6042169
1,2,3-Trichlorobenzene	ND 🔶	·412.	ug/L	0.560	2.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	. 1 (04/12/06 14:09	SW846 8260B	6041550
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Trichloroethene	ND		ug/L	0.450	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,2,3-Trichloropropane	ND -	·····	ug/L	0.560	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,3,5-Trimethylbenzene	40.8	J 1	ug/L	0.280	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
1,2,4-Trimethylbenzene	103	- 1	ug/L	0.340	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Vinyl chloride	ND `	~~	ug/L	0.430	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
m,p-Xylene	376	-"J" 7"	ug/L	0.500	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
o-Xylene	112	_ 4 تا . مو 1	ug/L	0.320	1.00	1 (04/12/06 14:09	SW846 8260B	6041550
Xylenes, total	488]	ug/L	0.820	3.00	1 ()4/12/06 14:09	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	(55 %)	Ζ				1 0	4/12/06 14:09	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	107.%					1 0	4/13/06 01:30	SW846 8260B	6042169
Surr: Dibromofluoromethane (79-122%)	89 %					1 0	4/12/06 14:09	SW846 8260B	6041550
Surr: Dibromofluoromethane (79-122%)	101 %					1 0	4/13/06 01-30	SW846 8260B	6042169
Surr: Toluene-d8 (78-121%)	91 %					1 0	4/12/06 14.09	SW846 8260B	6041550
Surr: Toluene-d8 (78-121%)	84 %					1 0	4/13/06 01.30	SW846 8260B	6042169
Surr: 4-Bromofluorobenzene (78-126%)	116 %					1 0	1/12/06 11.00	SW846 8260B	6041550
Surr: 4-Bromofluorobenzene (78-126%)	00 %					1 0	+/12/00 14.09	CINO 16 02000	6042160
	11 10					I 0	4/13/06 01:30	SW 840 8200B	0072107

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

						Dilution	Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0934-04RF	.1 (TB040706	03 - Wa	ter) Sami	nled: 04/07	/06 00:01				
Volatile Organic Compounds by	v EPA Method 8	3260B							
Acetone	ND		ug/L	5.91	50.0	1 (1/10/06 00.00	SWIGAL OSCOD	6042160
Benzene	ND		ug/L	0.290	1.00		14/12/06 23:28	SW040 0200D	6042109
Bromobenzene	ND		ug/L	0.270	1.00	1 (4/12/06 23:28	SW040 0200D	6042109
Bromochloromethane	ND		ug/L	0.420	1.00	1 (4/12/00 23.20	SW846 8260D	6042109
Bromodichloromethane	ND		ug/L	0.380	1.00	1 (4/12/00 23.20	SW846 8260D	6042109
Bromoform	ND		ug/L	0.500	1.00		4/12/00 23.20	SW846 8260D	6042109
Bromomethane	ND		ug/L	0.600	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
2-Butanone	ND		ug/L	5.09	50.0	1 0	4/12/06 23:28	SW846 8260B	6042109
sec-Butylbenzene	ND		ug/L	0 380	1.00		4/12/06 23.28	SW846 8260B	6042103
n-Butylbenzene	ND		ug/L	0.460	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
tert-Butylbenzene	ND		ug/L	0 390	1.00	1 0	4/12/06 23.28	SW846 8260B	6042109
Carbon disulfide	ND		ug/L	0.310	1.00	1 0	4/12/06 23.28	SW846 8260B	6042109
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
Chlorobenzene	ND		ug/L	0 320	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
Chloroethane	ND		ug/L	0.500	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
Chloroform	ND		ug/L	0 380	1.00	1 0	4/12/00 23.28	SW846 8260B	6042109
Chloromethane	ND		ug/L	0.460	1.00	1 0	4/12/00 23.28	SW846 8260B	6042109
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 0	4/12/06 23.28	SW846 8260B	6042103
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/12/00 23.28	SW846 8260B	6042109
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 0	4/12/06 23:28	SW846 8260B	6042107
1,2-Dibromoethane (EDB)	ND		ug/L	0 380	1.00	1 0	4/12/06 23.28	SW846 8260B	6042109
Dibromomethane	ND		ug/L	0.570	1.00	1 0	4/12/06 23:28	SW846 8260B	6042107
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	4/12/06 23.28	SW846 8260B	6042169
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 0	4/12/06 23:28	SW846 8260B	6042107
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	4/12/06 23.28	SW846 8260B	6042169
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	4/12/06 23.28	SW846 8260B	6042169
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/12/06 23.28	SW846 8260B	6042169
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/12/06 23.28	SW846 8260B	6042107
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	4/12/06 23:28	SW846 8260B	6042103
trans-1,2-Dichloroethene	ND		ug/L	0 340	1.00	1 0	1/12/06 23.28	SW846 8260B	6042107
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 0	1/12/06 23.28	SW846 8260B	6042169
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	1/12/06 23.28	SW846 8260B	6042103
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 0	1/12/06 23.28	SW846 8260D	6042103
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 0	1/12/06 23.28	SW846 8260B	6042105
trans-1,3-Dichloropropene	ND		ug/L	0 490	1.00	1 0	1/12/06 23:28	SW846 8260B	6042109
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 0	1/12/06 23.28	SW846 8260B	6042107
Ethylbenzene	ND		ug/L	0.340	1.00	1 0/	1/12/06 22:28	SW846 8260D	6042109
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 0/	1/12/06 23:28	SW846 8260B	6042107
2-Hexanone	ND		ug/L	2.53	50.0	1 0/	1/12/06 23:28	SW846 8260B	6042107
Isopropylbenzene	ND		ug/L	0.340	1.00	1 04	1/12/06 22.20	SW846 8760P	6042107
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 0/	L/12/06 22.20	SW846 8260B	6042169
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 04	1/12/06 22.20	SW846 8760D	6042107
Methylene Chloride	ND		ug/L	1.26	5.00	1 04	1/12/00 23:20 1	SW846 8760D	60/2107
-			2	1.20	5.00	× 04	12/00 23.20	5 17 040 0200D	0042107

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

	ANALYTICAL REPORT											
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch			
Sample ID: NPD0934-04RE1 (7	ГВ040706	03 - Wa	ter) – con	t. Sampled:	: 04/07/06	00:01						
Volatile Organic Compounds by EP	A Method 8	8260B - d	cont.									
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1 0	4/12/06 23:28	SW846 8260B	6042169			
Naphthalene	ND		ug/L	1.13	5.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
n-Propylbenzene	ND		ug/L	0.370	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
Styrene	ND		ug/L	0.390	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
Tetrachloroethene	ND		ug/L	0.390	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
Toluene	ND		ug/L	0.280	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
Trichloroethene	ND		ug/L	0.450	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 0	4/12/06 23:28	SW846 8260B	6042169			
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	10	4/12/06 23:28	SW846 8260B	6042169			
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	10	4/12/06 23:28	SW846 8260B	6042169			
Vinyl chloride	ND		ug/L	0.430	1.00	10	4/12/06 23:28	SW846 8260B	6042169			
Xylenes, total	ND		ug/L	0.820	3.00	10	4/12/06 23:28	SW846 8260B	6042169			
Surr: 1,2-Dichloroethane-d4 (70-130%)	103 %					1 04	4/12/06 12:42	SW846 8260B	6041550			
Surr: 1,2-Dichloroethane-d4 (70-130%)	107 %					1 04	4/12/06 23:28	SW846 8260B	6042169			
Surr: Dibromofluoromethane (79-122%)	134 %	Ζ				1 04	4/12/06 12:42	SW846 8260B	6041550			
Surr: Dibromofluoromethane (79-122%)	101 %					1 04	4/17/06 23.28	SW846 8260B	6042169			
Surr: Toluene-d8 (78-121%)	94 %					1 0	4/12/06 12:20	SW846 8260B	6041550			
Surr: Toluene-d8 (78-121%)	85 %					1 0	4/12/06 22.72	SW846 8260B	6042169			
Surr: 4-Bromofluorobenzene (78-126%)	103 %					1 0.	1/12/06 12.20	SW846 8760P	6041550			
Surr: 4-Bromofluorobenzene (78-126%)	99 %				·	1 04 1 04	4/12/06 23:28	SW846 8260B	6042169			

Sample ID: NPD0934-05 (P9306GWP50EB - Water) Sampled: 04/07/06 15:10

Volatile Organic Compounds by EPA Method 8260B

AND	ug/L	5.91	50.0	1	04/12/06 23:59 \$	SW846 8260B	6042169
(41.1)	ug/L	0.290	1.00	1	04/12/06 23:59	SW846 8260B	6042169
ND /	ug/L	0.470	1.00	1	04/12/06 23:59	SW846 8260B	6042169
ND	ug/L	0.420	1.00	1	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	0.380	1.00	l	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	0.500	1.00	1	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	0.600	1.00	1	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	5.09	50.0	1	04/12/06 23:59	SW846 8260B	6042169
ND	ug/L	0.380	1.00	1	04/12/06 23:59	SW846 8260B	6042169
ND	ug/L	0.460	1.00	1	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	0.390	1.00	1	04/12/06 23:59	SW846 8260B	6042169
ND	ug/L	0.310	1.00	I	04/12/06 23:59 \$	SW846 8260B	6042169
ND	ug/L	0.480	1.00	1	04/12/06 23:59	SW846 8260B	6042169
ND	ug/L	0.320	1.00	1	04/12/06 23:59 \$	SW846 8260B	6042169
	41.1 ND ND ND ND ND ND ND ND ND ND ND ND ND	ATAug/L41.1ug/LNDug/L	MD ug/L 5.91 41.1 ug/L 0.290 ND ug/L 0.470 ND ug/L 0.420 ND ug/L 0.380 ND ug/L 0.500 ND ug/L 0.600 ND ug/L 0.600 ND ug/L 0.380 ND ug/L 0.390 ND ug/L 0.310 ND ug/L 0.480 ND ug/L 0.320	ND ug/L 5.91 50.0 41.1 ug/L 0.290 1.00 ND ug/L 0.470 1.00 ND ug/L 0.420 1.00 ND ug/L 0.380 1.00 ND ug/L 0.380 1.00 ND ug/L 0.500 1.00 ND ug/L 0.500 1.00 ND ug/L 0.600 1.00 ND ug/L 0.600 1.00 ND ug/L 0.380 1.00 ND ug/L 0.380 1.00 ND ug/L 0.380 1.00 ND ug/L 0.390 1.00 ND ug/L 0.310 1.00 ND ug/L 0.480 1.00 ND ug/L 0.320 1.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD ug/L 5.91 50.0 I 04/12/06 23:59 9 41.1 ug/L 0.290 1.00 I 04/12/06 23:59 9 ND ug/L 0.470 1.00 I 04/12/06 23:59 9 ND ug/L 0.470 1.00 I 04/12/06 23:59 9 ND ug/L 0.420 1.00 I 04/12/06 23:59 9 ND ug/L 0.420 1.00 I 04/12/06 23:59 9 ND ug/L 0.380 1.00 I 04/12/06 23:59 9 ND ug/L 0.500 1.00 I 04/12/06 23:59 9 ND ug/L 0.600 1.00 I 04/12/06 23:59 9 ND ug/L 0.600 1.00 I 04/12/06 23:59 9 ND ug/L 0.380 1.00 I 04/12/06 23:59 9 ND ug/L 0.390 1.00 <th< td=""><td>ND ug/L 5.91 50.0 1 04/12/06 23:59 SW846 8260B ND ug/L 0.290 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.470 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.470 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.420 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.420 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.500 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.600 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B</td></th<>	ND ug/L 5.91 50.0 1 04/12/06 23:59 SW846 8260B ND ug/L 0.290 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.470 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.470 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.420 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.420 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.500 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.600 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B ND ug/L 0.380 1.00 1 04/12/06 23:59 SW846 8260B

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

					-	Dilutio	n Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD0934-05 (P93	06GWP501	EB - Wa	 iter) - cor		04/07/06				
Volatile Organic Compounds by B	PA Method 8	3260B - c	cont		0 1 0 / 0 0	10110			
Chlorodibromomethane	ND		ug/L	0 360	1.00	1	04/10/06 02 50	SW946 9360D	(0421/0
Chloroethane	ND		це/L	0.500	1.00	1	04/12/06 23:59	SW840 8200B	6042169
Chloroform	ND		ug/L	0.380	1.00	1	04/12/06 23:59	SW040 0200B	6042109
Chloromethane	ND		ug/L	0.560	1.00	1	04/12/06 23:39	SW040 0200D	6042109
2-Chlorotoluene	ND		ug/L	0.400	1.00	1	04/12/06 23:39	SW846 8260D	6042109
4-Chlorotoluene	ND		ug/L	0.370	1.00	1	04/12/00 23.39	SW846 8260D	6042109
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1	04/12/06 23:59	SW846 8260B	6042103
1,2-Dibromoethane (EDB)	ND		ug/L	0 380	1.00	1	04/12/06 23.59	SW846 8260B	6042109
Dibromomethane	ND		ug/L	0.570	1.00	1	04/12/06 23.39	SW846 8260B	6042109
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	Î.	04/12/06 23:59	SW846 8260B	6042107
1,3-Dichlorobenzene	ND		ug/L	0 360	1.00	1	04/12/06 23:59	SW846 8260B	6042107
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1	04/12/06 23:59	SW846 8260B	6042107
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1	$\frac{12}{06} \frac{23.59}{3.59}$	SW846 8260B	6042109
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1	04/12/06 23.59	SW846 8260B	6042109
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1	$\frac{12}{00} \frac{23.59}{12}$	SW846 8260B	6042109
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1	$\frac{34}{12}$	SW846 8260B	6042169
1,1-Dichloroethene	ND		ug/L	0.450	1.00	î)4/12/06 23:59	SW846 8260B	6042169
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1	$\frac{12}{06} \frac{23.59}{34}$	SW846 8260B	6042169
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1)4/12/06 23:59	SW846 8260B	6042169
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 (04/12/06 23:59	SW846 8260B	6042169
Ethylbenzene	ND		ug/L	0.340	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 ()4/12/06 23:59	SW846 8260B	6042169
2-Hexanone	ND		ug/L	2.53	50.0	1 ()4/12/06 23:59	SW846 8260B	6042169
Isopropylbenzene	ND		ug/L	0.340	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
Methylene Chloride	ND		ug/L	1.26	5.00	1 (4/12/06 23:59	SW846 8260B	6042169
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1 (4/12/06 23:59	SW846 8260B	6042169
Naphthalene	ND		ug/L	1.13	5.00	1 (4/12/06 23:59	SW846 8260B	6042169
n-Propylbenzene	ND		ug/L	0.370	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
Styrene	ND		ug/L	0.390	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 (4/12/06 23:59	SW846 8260B	6042169
Tetrachloroethene	ND		ug/L	0.390	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169
Toluene	ND		ug/L	0.280	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 0	4/12/06 23:59	SW846 8260B	6042169
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 0	4/12/06 23:59	SW846 8260B	6042169
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169
Trichloroethene	ND		ug/L	0.450	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 0	4/12/06 23:59	SW846 8260B	6042169

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPD0934-05 (P9306	GWP50I	EB - Wa	ter) - con	t. Sampled:	04/07/06	15:10			
Volatile Organic Compounds by EPA	A Method 8	8260B - d	cont.						
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	04/12/06 23:59	SW846 8260B	6042169
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1	04/12/06 23:59	SW846 8260B	6042169
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	1	04/12/06 23:59	SW846 8260B	6042169
Vinyl chloride	ND		ug/L	0.430	1.00	1	04/12/06 23:59	SW846 8260B	6042169
Xylenes, total	ND		ug/L	0.820	3.00	1	04/12/06 23:59	SW846 8260B	6042169
Surr: 1,2-Dichloroethane-d4 (70-130%)	108 %					1 (04/12/06 23:59	SW846 8260B	6042169
Surr: Dibromofluoromethane (79-122%)	100 %					1 1	$\frac{14}{12}$	SW846 8260B	6042169
Surr: Toluene-d8 (78-121%)	84 %					1 1	1/12/06 23:59	SW846 8260B	6042169
Surr: 4-Bromofluorobenzene (78-126%)	93 %					1 0)4/12/06 23:59	SW846 8260B	6042169

Sample ID: NPD0934-06 (P9306GWP50 - Water) Sampled: 04/07/06 16:00

Volatile Organic Compounds by EPA Method 8260B

Acetone	ND	"R"ug/L	5.91	50.0	1	04/12/06 15:08	SW846 8260B	6041550
Benzene	1310000	ug/L	29000	100000	100000	04/13/06 03:02	SW846 8260B	6042169
Bromobenzene	ND - """	ug/L	0.470	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Bromochloromethane	ND -····	ug/L	0.420	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Bromodichloromethane	1.86	"'R"ug/L	0.380	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Bromoform	ND RL5	ug/L	500	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Bromomethane	ND	J ug/L	0.600	1.00	1	04/12/06 15:08	SW846 8260B	6041550
2-Butanone	ND (ug/L	5.09	50.0	1	04/12/06 15:08	SW846 8260B	6041550
sec-Butylbenzene	ND	ug/L	0.380	1.00	1	04/12/06 15:08	SW846 8260B	6041550
n-Butylbenzene	ND	ug/L	0.460	1.00	1	04/12/06 15:08	SW846 8260B	6041550
tert-Butylbenzene	ND 🖌	ug/L	0.390	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Carbon disulfide	ND-ult	"L" ug/L	0.310	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Carbon Tetrachloride	2.03	'%'' ug/L	0.480	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Chlorobenzene	ND RL5	ug/L	320	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Chlorodibromomethane	ND — •••• J	ug/L	0.360	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Chloroethane	ND	ጋԿ ug/L	0.500	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Chloroform	ND-"R"	ug/L	0.380	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Chloromethane	ND	"ug/L	0.460	1.00	1	04/12/06 15:08	SW846 8260B	6041550
2-Chlorotoluene	ND - "uJ	ug/L	0.270	1.00	1	04/12/06 15:08	SW846 8260B	6041550
4-Chlorotoluene	ND	ug/L	0.370	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2-Dibromo-3-chloropropane	ND — "u]	ug/L	1.64	5.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2-Dibromoethane (EDB)	ND RL5	ug/L	380	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Dibromomethane	1.43 — "J"	ug/L	0.570	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,4-Dichlorobenzene	ND	I'' ug/L	0.460	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,3-Dichlorobenzene	ND (ug/L	0.360	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2-Dichlorobenzene	ND	ug/L	0.370	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Dichlorodifluoromethane	ND 4	ug/L	0.410	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,1-Dichloroethane	ND - 40	en all ug/L	0.320	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2-Dichloroethane	ND "	κ μg/L	0.280	1.00	1	04/12/06 15:08	SW846 8260B	6041550
cis-1,2-Dichloroethene	ND	"IK"ug/L	0.390	1.00	1	04/12/06 15:08	SW846 8260B	6041550
cis-1,2-Dichloroethene	ND RL5	ug/L	390	1000		04/13/06 02:32	SW846-8260B-	-6042169_e
1,1-Dichloroethene	ND	Junug/L	0.450	1.00	1	04/12/06 15:08	SW846 8260B	6041550 -
		· · K						

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Jeff Adams Work Order:NPD0934Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/08/06 08:30

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis r Date/Time	e Method	Batch
Sample ID: NPD0934-06 (P93	06GWP50	 - Water)	- cont.	Sampled:	04/07/06 16:	- - 00			
Volatile Organic Compounds by E	PA Method	8260B - co	ont.	-					
trans-1,2-Dichloroethene	ND -	-4234	ing/L	0 340	1.00	1	04/12/06 15:09	SW016 01COD	6041550
1,3-Dichloropropane	ND	RL5	ug/L	630	1000	1000	04/12/06 13:08	SW040 0200D	6042160
1,2-Dichloropropane	2.21	i Kil	ug/L	0 500	1.00	1000	04/13/00 02.32	SW846 8260D	6042109
2,2-Dichloropropane	ND ~	" and they	ug/L	0.660	1.00	1	04/12/06 15:08	SW846 8260B	6041550
cis-1,3-Dichloropropene	ND	RL5	ug/L	450	1000	1000	04/13/06 02:32	SW846 8260B	6042169
trans-1,3-Dichloropropene	ND	RL5	ug/L	490	1000	1000	04/13/06 02:32	SW846 8260B	6042169
1,1-Dichloropropene	ND -	-U.J.	?" ug/L	0.510	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Ethylbenzene	ND	RL5	ug/L	340	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1	04/12/06 15:08	SW846 8260B	6041550
2-Hexanone	ND	RL5	ug/L	2530	50000	1000	04/13/06 02:32	SW846 8260B	6042169
Isopropylbenzene	ND	- "uJ"	ug/L	0.340	1.00	1	04/12/06 15:08	SW846 8260B	6041550
p-Isopropyltoluene	ND —	-••uJ"	ug/L	0.340	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Diisopropyl Ether	ND	-"""	₂_ug/L	0.420	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Methyl tert-Butyl Ether	25300 🛩	- AL	ug/L	320	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Methylene Chloride	ND		ug/L	1.26	5.00	1	04/12/06 15:08	SW846 8260B	6041550
4-Methyl-2-pentanone	ND	RL5	ug/L	4250	50000	1000	04/13/06 02:32	SW846 8260B	6042169
Naphthalene	ND 3.43	_⊁ "แป้"	ug/L	1.13	5.00	1	04/12/06 15:08	SW846 8260B	6041550
n-Propylbenzene	ND	J."	ug/L	0.370	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Styrene	ND	RL5	ug/L	390	1000	1000	04/13/06 02:32	SW846 8260B	6042169
1,1,1,2-Tetrachloroethane	ND	RL5	ug/L	370	1000	1000	04/13/06 02:32	SW846 8260B	6042169
1,1,2,2-Tetrachloroethane	ND —		ug/L	0.490	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Tetrachloroethene	ND	RL5	ug/L	390	1000	1000	04/13/06 02:32	SW846 8260B	6042169
Toluene	ND	RL5	ug/L	280	1000	1000	04/13/06 02:32	SW846 8260B	6042169
1,2,3-Trichlorobenzene	ND —		ug/L	0.560	2.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2,4-Trichlorobenzene	ND —		ug/L	0.790	2.00	1	04/12/06 15:08	SW846 8260B	6041550
1,1,2-Trichloroethane	ND	RL5	ug/L	420	1000	1000	04/13/06 02:32	SW846 8260B	6042169
1,1,1-Trichloroethane	ND —	· tet in	ug/L	0.400	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Trichloroethene	ND —	ups .	ug/L	0.450	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Trichlorofluoromethane	ND -	IRY _	ug/L	0.480	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,3,5-Trimethylbenzene	3.05	-°J	ug/L	0.280	1.00	1	04/12/06 15:08	SW846 8260B	6041550
1,2,4-Trimethylbenzene	4.31	··J··_	ug/L	0.340	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Vinyl chloride	ND 🔶	mas.e	∎ ug/L	0.430	1.00	1	04/12/06 15:08	SW846 8260B	6041550
Xylenes, total	ND	RL5	ug/L	820	3000	1000	04/13/06 02:32	SW846 8260B	6042169
Surr: 1,2-Dichloroethane-d4 (70-130%)) (30%)	Ζ				1 (04/12/06 15.08	SW846 8260B	6041550
Surr: 1,2-Dichloroethane-d4 (70-130%)	109%					1 (<i>4/13/06 02:32</i>	SW846 8260B	6042169
Surr: Dibromofluoromethane (79-122%) (132%)	Ζ				1 (A/12/06 15.00	SW816 87608	6041550
Surr: Dibromofluoromethane (79-122%	99 %					1 0	4/12/00 13.08	SW040 0200D	6042160
Surr: Toluene-d8 (78-121%)	05.92					1 0	4/13/06 02:32	SW840 8200B	(042109
Surr: Toluene-d8 (78-121%)	7J 70 05 07					1 0	4/12/06 15:08	SW846 8260B	0041550
Super A Brown for an Langer (70 1260)	<i>63 %</i>					1 0	4/13/06 02:32	SW846 8260B	6042169
Surr. +-bromojiuorobenzene (/8-120%)	124%					1 0	4/12/06 15:08	SW846 8260B	6041550
Surr: 4-Bromofluorobenzene (78-126%)	105.%					1 0	4/13/06 02:32	SW846 8260B	6042169

Page 13 of 24

ANALYTICAL TESTING CORPORATION 2960

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	URS Corporation (St. Louis)/SHELL (13668)	Work Order:	NPD0934
	1001 Highlands Plaza Dr. West, Suite 300	Project Name:	170 E. Rand Avenue, Hartford, IL
	St. Louis, MO 63110	Project Number:	SAP 340061
Attn	Jeff Adams	Received:	04/08/06 08:30

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- **RL5** Reporting limit raised due to high single peak analyte.
- Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.
- Z2 Surrogate recovery was above the acceptance limits. Data not impacted.

METHOD MODIFICATION NOTES

. .

West Fenceline Data Review

Laboratory SDG: NPD1163

Reviewer: Tony Sedlacek

Date Reviewed: 2/26/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P9306GWP62.5	TB04100604

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that 1,2-dichloroethane-d₄ and dibromofluoromethane surrogate recoveries for were outside evaluation criteria. This issue is addressed further in the appropriate section below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

	Blank ID	Parameter	Analyte	Concentration	Units
N/A	N/A				

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

	and the second
	······································
	1000 10 10 10 10 10 10 10 10 10 10 10 10
Paramater Anolytic	DO DELACITION
	1 9 4 8 8 9 8 8 8 9 4 9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
P9306GWP62.5	VOCs	1,2-Dichlorethane-d ₄	3	70-130
P9306GWP62.5	VOCs	Dibromofluoromethane	33	79-122

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
P9306GWP62.5	VOCs	All detects/nondetects	J/R

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A		· · ·	

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field D	Parameter	Analyte	Qualification
N/A			

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

Field ID	Field Duplicate ID	Parameter	Analyte	RPD Qualification
N/A				

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Analytes were detected in sample that were diluted.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution	Factor
N/A			

11.0 Additional Qualifications

Were additional qualifications applied?

No

April 28, 2006

Client: URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn: Amelia Turnell

2.....

Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Nbr:SAP 340061P/O Nbr:97216640Date Received:04/11/06

SAMPLE IDENTIFICATION

P9306GWP62.5 TB04100604 LAB NUMBER

NPD1163-01 NPD1163-02 **COLLECTION DATE AND TIME**

04/10/06 09:20 04/10/06 00:01

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Per enclosed Chain of Custody, "samples were properly preserved and received in good condition on 4/11/06. Analysis was extracted and performed within method required holding times following Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846)". All QC results were within acceptable limits. Initial and Continuing Calibration requirements were met. Package was completed as a "Level IV".

Please note for P9306GWP62.5 (NPD1163-01): Surrogates 1,2-Dichloroethane-d4 and Dibromofluoromethane were outside laboratory acceptable QC limit biased low in the 1X analysis due matrix interference. Ethylbenzene, Toluene, and Total Xylene were reported results are greater than the upper level of the calibration due to high concentration of Benzene in this sample. These analytes were flagged with an "E".

Organics: Unknown analyte concentrations were determined using the average response factor from the initial calibration curve for all analytes whose % RSD is less than or equal to 15. All other analyte concentrations were determined using linear regression analysis. Copies of curves for compounds with %RSD's greater than 15 are supplied.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980 ext 1256.

Illinois Certification Number: 001177

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

Almh. Noton

ORATION 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/11/06 08:30

Glenn Lee Norton

Data Package Coordinator

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/11/06 08:30

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPD1163-01	(P9306GWP62.	5 - Wat	er) Samp	led: 04/10/	06 09:20				
Volatile Organic Compounds	by EPA Method 8	3260B							
Acetone	325 -	"J"	ug/L	5.91	50.0	1	04/12/06 02:09	SW846 8260B	6042516
Benzene	827000		ug/L	29000	100000	100000	04/13/06 06:36	SW846 8260B	6042516
Bromobenzene	ND - *	<i>R</i> "	ug/L	0 470	1 00	1	04/12/06 02:00	SW846 8260B	6042516
Bromochloromethane	ND	1	ug/L	0.420	1.00	Ť	04/12/06 02:09	SW846 8260B	6042516
Bromodichloromethane	ND	1	ug/L	0.380	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Bromoform	ND ~ '	·R ··	ug/L	0.500	1.00	Î	04/12/06 02:09	SW846 8260B	6042516
Bromomethane	4.32-	'J"	ug/L	0.600	1.00	1	04/12/06 02:09	SW846 8260B	6042516
2-Butanone	ND -	R''	ug/L	5.09	50.0	Î	04/12/06 02:09	SW846 8260B	6042516
sec-Butylbenzene	ND	··R''	ug/L	0 380	1 00	1	04/12/06 02:09	SW846 8260B	6042516
n-Butylbenzene	4.05 -	34	ug/L	0.460	1.00	1	04/12/06 02:09	SW846 8260B	6042516
tert-Butylbenzene	ND	-"R"	ug/L	0.390	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Carbon disulfide	ND	1	ug/L	0.310	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1	04/12/06 02.09	SW846 8260D	6042516
Chlorobenzene	ND		ug/L	0.430	1.00	1	04/12/06 02.09	SW846 8260D	6042510
Chlorodibromomethane	ND		ug/L	0.360	1.00	1	04/12/06 02.09	SW846 8260D	6042510
Chloroethane	ND		ug/L	0.500	1.00	1	04/12/06 02.09	SW846 8260D	6042510
Chloroform	ND		ug/L	0.380	1.00	1	04/12/06 02:09	SW846 8260D	6042510
Chloromethane	ND			0.560	1.00	1	04/12/00 02.09	SW846 8260D	6042516
2-Chlorotoluene	ND	1	ug/L	0.400	1.00	1	04/12/00 02.09	SW846 8260D	6042516
4-Chlorotoluene	ND		ug/L	0.270	1.00	1	04/12/06 02.09	SW846 8260D	6042516
1 2-Dibromo-3-chloropropage	ND	1	ug/L	1.64	5.00	1	04/12/06 02:09	SW040 8200D	6042510
1 2-Dibromoethane (FDB)	ND		ч <u>е</u> ,∼ це/Г.	0.380	1.00	1	04/12/06 02:09	SW040 0200D	6042510
Dibromomethane	ND		ug/L	0.530	1.00	1	04/12/06 02:09	SW040 0200D	0042310 6042516
1 4-Dichlorobenzene		1	ug/L	0.370	1.00	1	04/12/06 02:09	SW046 0260B	0042310
1 3-Dichlorobenzene	ND		ug/L 110/L	0.400	1.00	1 1	04/12/06 02:09	SW046 0260D	0042310
1.2.Dichlorobenzene		1	ug/L 110/I	0.300	1.00	1	04/12/06 02:09	SW846 8260B	0042510
Dichlorodifluoromethane	ND	ł	ц <u>6</u> /Д	0.370	1.00	1 1	04/12/06 02:09	SW840 8200B	0042310
1 1-Dichloroethane	ND		ug/L 110/L	0.410	1.00	1 1	04/12/06 02:09	SW840 8200B	0042510
1.2-Dichloroethane		1	ц <i>ар Ц</i> 110/Л	0.320	1.00		04/12/06 02:09	SW840 8200B	0042510
rig 1.2 Dishloroethane			ug/Д	0.200	1.00	1 1	04/12/06 02:09	SW846 8260B	6042516
1 1-Dichloroethene			ug/1	0.390	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
trang 1.2 Dichloroethana		1	ug/L ug/I	0.430	1.00		04/12/06 02:09	SW846 8260B	6042516
1 2 Dichloropropaga			ug/L ug/I	0.340	1.00		04/12/06 02:09	SW846 8260B	6042516
1,3-Dichloropropane			ug/L ug/I	0.630	1.00		04/12/06 02:09	SW846 8260B	6042516
1,2-Dichloropropane	ND		ug/L ug/I	0.500	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
zia 1.3 Disbloropropane	ND		ug/L ug/I	0.660	1.00		04/12/06 02:09	SW846 8260B	6042516
trans 1.2 Disklassenser	ND		ug/L ug/I	0.450	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
trans-1,3-Dichloropropene	ND	6.1	ug/L	0.490	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
1,1-Dichloropropene	NDe	~ + + + + +	ug/L	0.510	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
Einylbenzene	2100-40T	Je J	ug/L	0.340	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
	ND ~'		ug/L	0.670	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
	ND —		ug/L	2.53	50.0	1 (04/12/06 02:09	SW846 8260B	6042516
Isopropyidenzene	45.4		ug/L	0.340	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
p-isopropyltoluene	ND	~ F	ug/L	0.340	1.00	1 (04/12/06 02:09	SW846 8260B	6042516
Metnyl tert-Butyl Ether	18600		ug/L	320	1000	1000 (04/13/06 06:06	SW846 8260B	6042516
vietnviene Chloride	ND	• 'K '	ug/L	1.26	5.00	1 (14/12/06 02:00	SW/846 8260B	6042516

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Amelia Turnell Attn

Work Order: NPD1163 Project Name: West Fenceline P-93 Project Project Number: SAP 340061 Received: 04/11/06 08:30

			ANALY	TICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	on Analysis r Date/Time	Method	Batch
Sample ID: NPD1163-01 (P930)	– – – – 6GWP62.	 5 - Wat			04/10/06 0				
Volatile Organic Compounds by EP	A Method 2	8260B -	cont						
4-Methyl-2-pentanone		in R "	100mt.	4.25	50.0	1	04/10/07 00 00	0111046 00600	(0.1051)
Nanhthalene	104		ug/L 110/L	4.23	5.00	1	04/12/06 02:09	SW846 8260B	6042516
n-Propylbenzene	118		ug/I.	0.370	3.00	1	04/12/06 02:09	SW840 8200B	6042516
Styrene		vie"	ng/L	0.370	1.00	1	04/12/06 02:09	SW840 8200B	6042510
1 1 1 2-Tetrachloroethane	ND	Ĩ	ug/L	0.370	1.00	1	04/12/06 02:09	SW040 0200D	6042516
1.1.2.2-Tetrachloroethane	ND	L	ug/L	0.490	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Tetrachloroethene	ND ~	···R··	ug/L	0.390	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Toluene >10	0491000	ь. Е	ug/L	280	1000	1000	04/12/06 02:09	SW846 8260B	6042516
1.2.3-Trichlorobenzene	ND -	16 R #1	ug/L	0.560	2.00	1000	04/13/06 00:00	SW846 8260B	6042516
1.2.4-Trichlorobenzene	ND	Ì	ug/L	0.790	2.00	1	04/12/06 02:09	SW846 8260B	6042516
1.1.2-Trichloroethane	ND		ug/L	0.420	1.00	1	04/12/06 02:09	SW846 8260B	6042516
1.1.1-Trichloroethane	ND	1	ug/L	0.400	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Trichloroethene	ND	1	ug/L	0.450	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Trichlorofluoromethane	ND	1	ug/L	0.480	1.00	1	04/12/06 02:09	SW846 8260B	6042516
1.2.3-Trichloropropane	ND ~'	Ř*	ug/L	0.560	1.00	1	04/12/06 02:09	SW846 8260B	6042516
1,3,5-Trimethylbenzene	56.3	· "J"	ug/L	0.280	1.00	1	04/12/06 02:09	SW846 8260B	6042516
1,2,4-Trimethylbenzene	164	"J"	ug/L	0.340	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Vinyl chloride	ND		ug/L	0.430	1.00	1	04/12/06 02:09	SW846 8260B	6042516
Xylenes, total	0 -791 e	J	ug/L	0.820	3.00	î	04/12/06 02:09	SW846 8260B	6042516
Surr: 1,2-Dichloroethane-d4 (70-130%)	(30)	7				,	01/12/06 02:00	SW/946 9760P	6042516
Surr: Dibromofluoromethane (79-122%)	(The second	7	,			1	04/12/00 02:09	SW040 0200D	6042516
Surr: Toluene-d8 (78-121%)						1	04/12/06 02:09	SW840 8200B	0042510
Sum A Proveduart	80 %					1	04/12/06 02:09	SW846 8260B	0042510
Surr. 4-Bromojiuorobenzene (78-120%)	117 %					1	04/12/06 02:09	SW846 8260B	6042516
Sample ID: NPD1163-02 (TB04	100604 - \	Water)	Sampled:	04/10/06 0	0:01				
Volatile Organic Compounds by EPA	A Method 8	260B							
Acetone	ND		ug/L	5.91	50.0	1	04/11/06 23:36	SW846 8260B	6042516
Benzene	ND		ug/L	0.290	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Bromobenzene	ND		ug/L	0.470	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Bromochloromethane	ND		ug/L	0.420	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Bromodichloromethane	ND		ug/L	0.380	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Bromoform	ND		ug/L	0.500	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Bromomethane	ND		ug/L	0.600	1.00	1	04/11/06 23:36	SW846 8260B	6042516
2-Butanone	ND		ug/L	5.09	50.0	1	04/11/06 23:36	SW846 8260B	6042516
sec-Butylbenzene	ND		ug/L	0.380	1.00	1	04/11/06 23:36	SW846 8260B	6042516
n-Butylbenzene	ND		ug/L	0.460	1.00	1	04/11/06 23:36	SW846 8260B	6042516
tert-Butylbenzene	ND		ug/L	0.390	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Carbon disulfide	ND		ug/L	0.310	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Chlorobenzene	ND		ug/L	0.320	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Chlorodibromomethane	ND		ug/L	0.360	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Chloroethane	ND		ug/L	0.500	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Chloroform	ND		ug/L	0.380	1.00	1	04/11/06 23:36	SW846 8260B	6042516
Chloromethane	ND		ug/L	0.460	1.00	1	04/11/06 23:36	SW846 8260B	6042516

Page 4 of 17

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/11/06 08:30

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD1163-02 (Th	304100604 -	Water)	- cont. Sa	mpled: 04/	10/06 00:01	l			
Volatile Organic Compounds by	EPA Method &	8260B - C	cont.						
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	10	4/11/06 23:36	SW846 8260B	6042516
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
Dibromomethane	ND		ug/L	0.570	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	10	4/11/06 23:36	SW846 8260B	6042516
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	10	4/11/06 23:36	SW846 8260B	6042516
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 0	4/11/06 23:36	SW846 8260B	6042516
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
Ethylbenzene	ND		ug/L	0.340	1.00	1 0-	4/11/06 23:36	SW846 8260B	6042516
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
2-Hexanone	ND		ug/L	2.53	50.0	1 04	4/11/06 23:36	SW846 8260B	6042516
Isopropylbenzene	ND		ug/L	0.340	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
Methylene Chloride	ND		ug/L	1.26	5.00	1 04	4/11/06 23:36	SW846 8260B	6042516
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1 04	4/11/06 23:36	SW846 8260B	6042516
Naphthalene	ND		ug/L	1.13	5.00	1 04	1/11/06 23:36	SW846 8260B	6042516
n-Propylbenzene	ND		ug/L	0.370	1.00	1 04	4/11/06 23:36	SW846 8260B	6042516
Styrene	ND		ug/L	0.390	1.00	1 04	1/11/06 23:36	SW846 8260B	6042516
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
Tetrachloroethene	ND		ug/L	0.390	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
Foluene	ND		ug/L	0.280	1.00	1 04	1/11/06 23:36	SW846 8260B	6042516
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1 04	1/11/06 23:36	SW846 8260B	6042516
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1 04	/11/06 23:36	SW846 8260B	6042516
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 04	11/06 23:36	SW846 8260B	6042516
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
Frichloroethene	ND		ug/L	0.450	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
Frichlorofluoromethane	ND		ug/L	0.480	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
Vinyl chloride	ND		ug/L	0.430	1.00	1 04	/11/06 23:36	SW846 8260B	6042516
				-					

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/11/06 08:30

ANALYTICAL REPORT									
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD1163-02 (TB041	.00604 - `	Water)	- cont. Sa	mpled: 04/	/10/06 00:0	1			
Volatile Organic Compounds by EPA	Method 8	8260B - d	cont.						
Xylenes, total	ND		ug/L	0.820	3.00	1 0	4/11/06 23:36	SW846 8260B	6042516
Surr: 1,2-Dichloroethane-d4 (70-130%)	108 %					1 0	4/11/06 23:36	SW846 8260B	6042516
Surr: Dibromofluoromethane (79-122%)	100 %					1 0	4/11/06 23:36	SW846 8260B	6042516
Surr: Toluene-d8 (78-121%)	86 %					1 0	4/11/06 23:36	SW846 8260B	6042516
Surr: 4-Bromofluorobenzene (78-126%)	104 %					1 0	4/11/06 23:36	SW846 8260B	6042516

Page 6 of 17

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

Work Order:NPD1163Project Name:West Fenceline P-93 ProjectProject Number:SAP 340061Received:04/11/06 08:30

DATA QUALIFIERS AND DEFINITIONS

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

METHOD MODIFICATION NOTES

FAX# 616-726-3404
PHONE 800-765-0980
NASHMILLE, TN 37204
(690 FOSTER CREIGHTON)
ST AME

-
9 C
1
Cooler

/ Record
f Custody
S Chain O
oducts US
shell Oil Pr
()

COL ANERICA 12 2690 FOSTER CREIGH 302 Commerce Drive, Watertown, WI 53094 Phone 800-833-703	FTON, NASHVILLE, TN 37204 PHON 036	E 800-765-0980 FAX# 516-726-3404	9	Shell Oil Produc	cts US Chain Of C	Sustody Record	
tterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401	ц	SOP US Project Manager	to be involced:		INCIDENT # (SAE ONEY)	DATE: 4/10/06	
Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-57	571-6800	C ENVIRONMENTAL SERVICES	NAME OF PM TO BILL:	Herb Hand (SOPUS)	9 7 2 1 6 6 3	A PAGE: 1 of 1	
outh Dixle Drive, Dayton, OH 46439 Phone 800-572-9839 usch Partway, Buffalo Grove, IL 60089 Phone 847-808-7766	9	TECHNICAL SERVICES	NAME OF TS TO BILL:		SAP or CRMT# (TSICRWIT	Involce with	
Sitton Drive, Suite A, Colorado Springs, CO 80907 Phone 715	19-593-9911	BILL CONSULTANT		STATE REIMBURSEMENT RATES		sampled through the following date:	
HT COMPANY: URS C	Corporation		SOPUS-FADRES (SILVAL End City):	stfenceline. Henceline	rtford. IL 62048		
1001 Highlands Pla	laza Drive West; Sulte 300		PROJECT CONTACT (Report to):	(Copy to):	CONBULTANT PROJECT NO.:	193 West Repredive	
St Lou	ula, MO 63110		Herb Har SAMPLER NAME(8) (Print):	ind (SOPUS) Jeff Adams (URS)	OPUS-Fride and a second se	
E. Mice) 314-429-0100 FAX: (OMICe) 431-429-0462 cell) 314-409-6460 (Trailer) 618-254-1512	E-WALL: Jeff Adams	Thomas_Adams@urscorp.com	Mik	Corbett			
ROUND TIME (CALENDAR DAYS): DARD (10 DAY) 3 DAYS 3 DAYS	0 2 DAYS 0 24 HC	URS CAREVILTS NEEDED		REQUESTED ANAL	YSIS if more than one method is listed, circl	le one	
ATURE ON RECEIPT C°			 			Container PID Readings	
cial INSTRUCTIONS OR NOTES : EVEL 4 QC Deliverables	Temp Blank	included	•			or Laboratory Nortes	
	•		360)				
Field Sample Identification	SAMPLING DATE TIME MATRIX	PRESERVATIVE NO. (NO. (NO. (ON NO. (ON NO. (NO. (ON NO. (NO. (ON NO. (
P4306 GWP62.5	4/10/04 0920 water		×××		NPD11	63	T
TB04100604	H/10/06 Water				04/16/06 2	3:59	ų
it. (Signeture)	1 800 Received by: (i	Signature) I I I I I I I I I I I I I I I I I I I				1176.	
ed by: (Signature)	Received by: (Signature)			Date:	ж Н	<u> </u>
ed by: (Signature)	Raceived by: (Signature)		M	Date: 4-11-06	Time C8 30	
10N: White with finel report, Green to File, Yellow and Pink to Client.						05/1/01 Revtalon	_

West Fenceline Data Review

Laboratory SDG: NPD1302

Reviewer: Tony Sedlacek

Date Reviewed: 2/26/2007

Guidance: USEPA Contract Laboratory National Functional Guidelines for Organic Data Review (USEPA 1999).

Applicable Work Plan: West Fenceline P-93 Dissolved Phase Benzene Investigation (2006)

Sample Identification #	Sample Identification #
P93309GWP66	P9309GWP66D
P9309GWP52	TB04110605
P9309GWP52EB	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that surrogate recoveries were outside evaluation criteria. Analytes were detected in the trip blank, equipment blank and method blank samples. In addition, samples were diluted due to high levels of target analytes. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte =	Concentration	- Units
TB04110605	VOCs	1,2,3-Trichlorobenzene	0.870	μg/L
P9309GWP52EB	VOCs	Benzene	1.01	μg/L
P9309GWP52EB	VOCs	1,2-dichloroethane	9.64	μg/L
P9309GWP52EB	VOCs	trans-1,3-dichloropropene	1.20	μg/L
P9309GWP52EB	VOCs	Ethylbenzene	1.40	μg/L
P9309GWP52EB	VOCs	Methyl tert-butyl ether	2.63	μg/L
P9309GWP52EB	VOCs	Naphthalene	4.54	μg/L
P9309GWP52EB	VOCs	1,2,4-Trimethylbenzene	0.610	μg/L
P9309GWP52EB	VOCs	Xylenes, total	1.12	μg/L
6042030-BLK1	VOCs	Benzene	0.680	μg/L
6042030-BLK1	VOCs	1,2,3-Trichlorobenzene	0.870	μg/L
6042030-BLK2	VOCs	Hexachlorobutadiene	1.11	μg/L
6042030-BLK2	VOCs	Naphthalene	1.39	μg/L
6042030-BLK2	VOCs	1,2,3-Trichlorobenzene	1.73	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
P9309GWP66	VOCs	1,2-Dichloroethane-d ₄	16	70-130
P9309GWP66	VOCs	Dibromofluoromethane	63	79-122

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Sample P9309GWP66 was diluted and analyzed as part of batch 6044135. The benzene result was reported from the diluted sample; therefore, benzene was not qualified.

Field ID	Parameter	Analyte	Qualification
P9309GWP66	VOCs	All detects/nondetects	J/UJ

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Paran	neter	Ana	lyte	Qu	alification
N/A					<u></u>	

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field D	Parameter	Analyte	Qualification
N/A			

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
P9309GWP66	P9309GWP66D

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
P9309GWP66D	VOCs	10
P9309GWP52	VOCs	10

11.0 Additional Qualifications

Were additional qualifications applied?

No

NPD1302

97216634

Project Name: 170 E. Rand Avenue, Hartford, IL Project Nbr: SAP 340061

May 12, 2006

P9309GWP66

P9309GWP52

TB04110605

P9309GWP66D

P9309GWP52EB

Client:	URS Corporation (St. Louis)/SHELL (13668)
	1001 Highlands Plaza Dr. West, Suite 300
	St. Louis, MO 63110
Attn:	Amelia Turnell

SAMPLE IDENTIFICATION

LAB NUMBER

Work Order:

Project Nbr: P/O Nbr:

Date Received: 04/12/06

NPD1302-01 NPD1302-02 NPD1302-03 NPD1302-04 NPD1302-05 **COLLECTION DATE AND TIME**

04/11/06 15:00 04/11/06 15:00 04/11/06 14:30 04/11/06 00:01 04/10/06 13:15

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments:

Per enclosed Chain of Custody, "samples were properly preserved and received in good condition on 4/12/06. Analysis was extracted and performed within method required holding times following Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846)". Initial and Continuing Calibration requirements were met. Package was completed as a "Level IV" with 'NJ' electronic data deliverables.

Please note for QC batch 6042030: Naphthalene and 1,2,3-Triclorobenzene in the method prep was detected above the MDL but less than the MRL in 6042030-BLK2. Hexachloropropane was detected above the MRL in 6042030-BLK2. No impact on data results. 1,2,3-Triclorobenzene in the method prep was detected above the MDL but less than the MRL in 6042030-BLK1. Surrogates 1,2-Dichloroethane--d4 and Dibromofluoromethane in P9309GWP66 were outside laboratory acceptable QC limit biased low due to matrix interference.

Organics: Unknown analyte concentrations were determined using the average response factor from the initial calibration curve for all analytes whose % RSD is less than or equal to 15. All other analyte concentrations were determined using linear regression analysis. Copies of curves for compounds with %RSD's greater than 15 are supplied.

As you review this data package, please call me if you require any additional information at # 1-800-765-0980 ext 1256.

Illinois Certification Number: 001177

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NPD1302Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/12/06 08:00

lunch. Norton

Glenn Lee Norton Data Package Coordinator

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1302Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/12/06 08:00

						Dilution	Analysis		
Analyte	Result	Flag	Units	MDL	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPD1302-01 (P93		 - Water)	- – – – Sample		15:00				
Volatile Organic Compounds by F	EPA Method 8	260B			10100				
Acetone		້ຳ້ເມີງ''	иа/І	5 01	50.0	1	4115106.05.04	011046 02600	(0.40000
Bongen		D . 2 4 7	че/L •не/I				4/15/06 07:24	SW846 8260B	6042030 6042030
Benzene	295000	- 171 J	ц <u>е</u> /12 цо/Т.	1450	2000	5000 0	4/10/00 10:51	-3W846-8260B-	-604/030
Bromobenzene	ND	ייתזיי	ug/L	0.470	1.00	1 0	4/1//06 13:09	SW840 8200B	6044135
Bromochloromethane	ND	1	ug/L	0.470	1.00	1 0	4/15/06 07:24	SW040 0200D	6042030
Bromodichloromethane	ND		ug/L	0.420	1.00	1 0	4/15/06 07:24	SW040 0200B	6042030
Bromoform	ND		ug/L	0.500	1.00	1 0	4/15/06 07:24	SW846 8260D	6042030
Bromomethane	ND	L.	ug/L	0.500	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
2-Butanone	ND	J''	ug/L	5.000	50.0	1 0	4/15/06 07:24	SW846 8260B	6042030
sec-Butylbenzene	4.54	"J"	ug/L	0 380	1.00	1 0	4/15/06 07.24	SW846 8260B	6042030
n-Butylbenzene	ND -	··uJ"	ug/L	0.460	1.00	1 0	4/15/06 07.24	SW846 8260B	6042030
tert-Butylbenzene	0.590	-i _ _''	ug/L	0.390	1.00	1 0	4/15/06 07.24	SW846 8260B	6042030
Carbon disulfide	ND -	··uJ"	ug/L	0.310	1.00	1 0	4/15/06 07.24	SW846 8260B	6042030
Carbon Tetrachloride	ND	1	ug/L	0.480	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Chlorobenzene	ND		ug/L	0.320	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Chlorodibromomethane	ND	1	ug/L	0.320	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Chloroethane	ND		ug/L	0.500	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Chloroform	ND		ug/L	0.380	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Chloromethane	ND		ug/L	0.460	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,2-Dibromoethane (EDB)	ND	1	ug/L	0.380	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Dibromomethane	ND		ug/L	0.570	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	. 1 0	4/15/06 07:24	SW846 8260B	6042030
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
Dichlorodifluoromethane	ND	1	ug/L	0.410	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	4/15/06 07:24	SW846 8260B	6042030
trans-1,2-Dichloroethene	ND	1	ug/L	0.340	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 04	4/15/06 07:24	SW846 8260B	6042030
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
2,2-Dichloropropane	ND	-	ug/L	0.660	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
trans-1,3-Dichloropropene	ND	1	ug/L	0.490	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
1,1-Dichloropropene	ND	uuj'	ug/L	0.510	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
Ethylbenzene	740		ug/L	3.40	10.0	10 04	1/15/06 07:54	SW846 8260B	6042030
Hexachlorobutadiene	ND	"Tun	ug/L	0.670	1.00	1 04	1/15/06 07:24	SW846 8260B	6042030
2-Hexanone	ND —	uJ``	ug/L	2.53	50.0	1 04	1/15/06 07:24	SW846 8260B	6042030
Isopropylbenzene	15.4	·'J'`	ug/L	0.340	1.00	1 04	15/06 07:24	SW846 8260B	6042030
p-Isopropyltoluene	4.39	ידי ד	ug/L	0.340	1.00	1 04	15/06 07:24	SW846 8260B	6042030
Methyl tert-Butyl Ether	8570	-	ug/L	32.0	100	100 04	16/06 16.22	SW846 8260B	6042030
- •			-						

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1302Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/12/06 08:00

	ANALYTICAL REPORT									
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batch	
Sample ID: NPD1302-01 (P930)	9GWP66	- Water	·) - cont. S	Sampled: 0	4/11/06 15	:00				
Volatile Organic Compounds by EP.	A Method 8	8260B - c	cont.							
Methylene Chloride	ND -	···] ·	ug/L	1.26	5.00	1	04/15/06 07:24	SW846 8260B	6042030	
4-Methyl-2-pentanone	ND 🗕		ug/L	4.25	50.0	1	04/15/06 07:24	SW846 8260B	6042030	
Naphthalene	53.1	J.,	ug/L	1.13	5.00	1	04/15/06 07:24	SW846 8260B	6042030	
n-Propylbenzene	26.2	74	ug/L	0.370	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Styrene	ND —	···	ug/L	0.390	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,1,2,2-Tetrachloroethane	ND	L	ug/L	0.490	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Tetrachloroethene	ND 🔶	·· (L J	ug/L	0.390	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Toluene	156	ว	ug/L	0.280	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,2,3-Trichlorobenzene	ND —	·······································	ug/L	0.560	2.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,2,4-Trichlorobenzene	ND	1	ug/L	0.790	2.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Trichloroethene	ND		ug/L	0.450	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Trichlorofluoromethane	ND	MA T	ug/L	0.480	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,2,3-Trichloropropane	ND	44.1	ug/L	0.560	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,3,5-Trimethylbenzene	35.0	- J 	ug/L	0.280	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
1,2,4-Trimethylbenzene	137	- J	ug/L	0.340	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Vinyl chloride	ND —		ug/L	0.430	1.00	1	04/15/06 07:24	SW846 8260B	6042030	
Xylenes, total	502	- ••)	ug/L	0.820	3.00	1	04/15/06 07:24	SW846 8260B	6042030	
Surr: 1,2-Dichloroethane-d4 (70-130%)	(16%)	Ζ				1 ()4/15/06 07:24	SW846 8260B	6042030	
Surr: 1,2-Dichloroethane-d4 (70-130%)	103%					1 (04/17/06 13.09	SW846 8260B	6044135	
Surr: Dibromofluoromethane (79-122%)	63%	Z				1 (04/15/06 07.24	SW846 8260R	6042030	
Surr: Dibromofluoromethane (79-122%)	160%						74/13/00 07.24	SW946 9260D	6044135	
Surr Toluene-d8 (78-121%)	1110/					1 0	14/17/00 13:09	SW040 0200D	6047020	
Surr: Tolyana d8 (78 121%)	111 70					Ιŭ)4/15/06 07:24	SW846 8260B	0042030	
Suri 10100000 (70-12170)	98 %					1 (04/17/06 13:09	SW846 8260B	6044135	
Surr: 4-Bromofluorobenzene (/8-126%)	118 %					1 0	04/15/06 07:24	SW846 8260B	6042030	
Surr: 4-Bromofluorobenzene (78-126%)	104 %					1 0	04/17/06 13:09	SW846 8260B	6044135	

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1302Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/12/06 08:00

ANALYTICAL REPORT									
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batcl
Sample ID: NPD1302-02 (P	9309GWP66]	D - Wat	er) Sampl	ed: 04/11/	06 15:00				
Volatile Organic Compounds by	EPA Method	8260B							
Acetone	ND		ug/L	59.1	500	10	04/16/06 13:26	SW846 8260B	6042030
Benzene	569000		ug/L	1450	5000	5000	04/16/06 14:24	SW846 8260B	6042030
Bromobenzene	ND		ug/L	4.70	10.0	10	04/16/06 13:26	SW846 8260B	604203
Bromochloromethane	ND		ug/L	4.20	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Bromodichloromethane	ND		ug/L	3.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Bromoform	ND		ug/L	5.00	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Bromomethane	ND		ug/L	6.00	10.0	10	04/16/06 13:26	SW846 8260B	6042030
2-Butanone	ND		ug/L	50.9	500	10	04/16/06 13:26	SW846 8260B	6042030
sec-Butylbenzene	5.20	J	ug/L	3.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
n-Butylbenzene	ND		ug/L	4.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
tert-Butylbenzene	ND		ug/L	3.90	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Carbon disulfide	ND		ug/L	3.10	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Carbon Tetrachloride	ND		ug/L	4.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Chlorobenzene	ND		ug/L	3.20	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Chlorodibromomethane	ND		ug/L	3.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Chloroethane	ND		ug/L	5.00	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Chloroform	ND		ug/L	3.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Chloromethane	ND		ug/L	4.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
2-Chlorotoluene	ND		ug/L	2.70	10.0	10	04/16/06 13:26	SW846 8260B	6042030
4-Chlorotoluene	ND		ug/L	3.70	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,2-Dibromo-3-chloropropane	ND		ug/L	16.4	50.0	10	04/16/06 13:26	SW846 8260B	6042030
1,2-Dibromoethane (EDB)	ND		ug/L	3.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Dibromomethane	ND		ug/L	5.70	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,4-Dichlorobenzene	ND		ug/L	4.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,3-Dichlorobenzene	ND		ug/L	3.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,2-Dichlorobenzene	ND		ug/L	3.70	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Dichlorodifluoromethane	ND		ug/L	4.10	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,1-Dichloroethane	ND		ug/L	3.20	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,2-Dichloroethane	ND		ug/L	2.80	10.0	10	04/16/06 13:26	SW846 8260B	6042030
cis-1,2-Dichloroethene	ND		ug/L	3.90	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,1-Dichloroethene	ND		ug/L	4.50	10.0	10	04/16/06 13:26	SW846 8260B	6042030
trans-1,2-Dichloroethene	ND		ug/L	3.40	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,3-Dichloropropane	ND		ug/L	6.30	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,2-Dichloropropane	ND		ug/L	5.00	10.0	10	04/16/06 13:26	SW846 8260B	6042030
2,2-Dichloropropane	ND		ug/L	6.60	10.0	10	04/16/06 13:26	SW846 8260B	6042030
cis-1,3-Dichloropropene	ND		ug/L	4.50	10.0	10	04/16/06 13:26	SW846 8260B	6042030
trans-1,3-Dichloropropene	ND		ug/L	4.90	10.0	10	04/16/06 13:26	SW846 8260B	6042030
1,1-Dichloropropene	ND		ug/L	5.10	10.0	10	04/16/06 13.26	SW846 8260B	6042030
Ethylbenzene	698		ug/L	3.40	10.0	10	04/16/06 13:26	SW846 8260B	6042030
Hexachlorobutadiene	ND		ug/L	6.70	10.0	10	$\frac{13}{26}$	SW846 8260B	6042030
2-Hexanone	ND		ug/L	25.3	500	10	04/16/06 13.26	SW846 8260B	6042030
Isopropylbenzene	ND		ug/L	3.40	10.0	10	04/16/06 13:26	SW846 8260B	6042030
p-Isopropyltoluene	ND		ug/L	3.40	10.0	10 (04/16/06 13.26	SW846 8260B	6042030
Methyl tert-Butyl Ether	8730		ug/L	64.0	200	200 (04/16/06 13:55	SW846 8260B	6042030
Methylene Chloride	ND		ug/L	12.6	50.0	10 (04/16/06 13:26	SW846 8260B	6042030
ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) Wo

1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110

Attn Amelia Turnell

			ANALY	TICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Facto	on Analysis r Date/Time	e Method	Batch
Sample ID: NPD1302-02 (P930)	9GWP661	D - Wat	er) - cont.	Sampled:	04/11/06 1	5:00			
Volatile Organic Compounds by EP.	A Method	8260B - d	cont.	•					
4-Methyl-2-pentanone	ND		ug/L	12 5	500	10	04/16/06 12 26	CIV046 0060D	(040000
Naphthalene	36.2	т	ug/L	11.3	50.0	10	04/16/06 13:26	5 W 840 8200B	6042030
n-Propylbenzene	21.3	5	ug/L	3 70	10.0	10	04/10/00 13:20	SW046 0200B	6042030
Styrene	ND		ug/L	3.90	10.0	10	04/10/00 13:20	SW840 8200B	6042030
1,1,1,2-Tetrachloroethane	ND		ug/L	3 70	10.0	10	04/10/00 13:20	SW846 8260D	6042030
1,1,2,2-Tetrachloroethane	ND		ug/L	4 90	10.0	10	04/10/00 15:20	SW846 8260D	6042030
Tetrachloroethene	ND		ug/L	3 90	10.0	10	04/10/00 13.20	SW846 8260D	6042030
Toluene	130		ug/L	2.80	10.0	10	04/10/00 13.20	SW846 8260D	6042030
1,2,3-Trichlorobenzene	ND		ug/L	5.60	20.0	10	04/10/00 13.20	SW846 8260D	6042030
1,2,4-Trichlorobenzene	ND		ug/L	7 90	20.0	10	04/10/00 13.20	SW846 8260D	6042030
1,1,2-Trichloroethane	ND		ug/L	4 20	10.0	10	04/10/00 13:20	SW040 0200D	6042030
1,1,1-Trichloroethane	ND		ug/L	4.20	10.0	10	04/16/06 13:20	SW040 0200D	6042030
Trichloroethene	ND		ug/L	4 50	10.0	10	04/10/00 13:20	SW040 0200D	6042030
Trichlorofluoromethane	ND		ug/L	4 80	10.0	10	04/10/00 13:20	SW040 0200D	6042030
1,2,3-Trichloropropane	ND		ug/L	5.60	10.0	10	04/10/00 13:20	SW040 0200D	6042030
1.3.5-Trimethylbenzene	34.2		ug/L	2.80	10.0	10	04/10/06 13:26	SW040 8200B	6042030
1,2,4-Trimethylbenzene	131		ug/L	3 40	10.0	10	04/16/06 13:20	SW040 0200D	6042030
Vinyl chloride	ND		ug/L	4 30	10.0	10	04/10/00 13:20	SW040 0200B	6042030
Xylenes, total	548		ug/L	8 20	30.0	10	04/10/00 13:20	SW040 0200B	6042030
Surr: 1,2-Dichloroethane-d4 (70-130%)	70 %	7	0	0.20	50.0	10	04/10/06 13:26	SW 840 8200B	6042030
Surr Dibromofly or omethane (79-122%)	01.0/	7				1	04/16/06 13:26	SW846 8260B	0042030
Sure: Takiana de (78, 1219)	01 %	L				1	04/16/06 13:26	SW846 8260B	6042030
Surr. 1010000-00 (70-12170)	100 %					1	04/16/06 13:26	SW846 8260B	6042030
Surr: 4-Bromojiuorobenzene (78-126%)	109 %					Ι	04/16/06 13:26	SW846 8260B	6042030
Sample ID: NPD1302-03 (P9309	GWP52 -	Water	Sampled	I: 04/11/06	14:30				
Volatile Organic Compounds by EPA	A Method 8	260B							
Acetone	ND		ug/L	59.1	500	10	04/16/06 14:54	SW846 8260P	6042020
Benzene	250000		ug/L	1450	5000	5000	04/16/06 15:52	SW846 8260D	6042030
Bromobenzene	ND		ug/L	4 70	10.0	10	04/10/00 13.33	SW846 8260D	6042030
Bromochloromethane	ND		ug/L	4 20	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Bromodichloromethane	ND		ug/L	3 80	10.0	10	04/16/06 14:54	SW846 8260D	6042030
Bromoform	ND		ug/L	5.00	10.0	10	04/16/06 14:54	SW846 8260D	6042030
Bromomethane	ND		ug/L	6.00	10.0	10	04/16/06 14.54	SW846 8260D	6042030
2-Butanone	ND		ug/L	50.9	500	10	04/10/00 14:54	SW040 8200D	6042030
sec-Butylbenzene	117		ug/L	3.80	10.0	10	04/10/06 14:54	SW040 0200D	6042030
n-Butylbenzene	ND		ug/L	4.60	10.0	10	04/10/00 14:54	SW040 0200D	6042030
tert-Butylbenzene	32.8		ug/L	3.90	10.0	10	04/16/06 14:54	SW040 0200D	6042030
Carbon disulfide	ND		ug/L	3.10	10.0	10	04/10/00 14:34	SW040 0200D	6042030
Carbon Tetrachloride	ND		ug/L	4 80	10.0	10	04/10/06 14:54	SW846 8200B	6042030
Chlorobenzene	ND		ug/L	3 20	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Chlorodibromomethane	ND		ug/L	3.60	10.0	10	04/10/00 14:34	3 W 040 820UB	6042030
Chloroethane	ND		ug/L	5.00	10.0	10	04/10/00 14:54	3 W 840 8200B	0042030
Chloroform	ND		ug/L	3.80	10.0	10	04/10/00 14:34	SW040 02000	6042030
Chloromethane	ND		ug/L	4 60	10.0	10	04/10/00 14:34	SW846 83600	6042030
			0	1.00	10.0	10	v+/10/00 14:04	J 11 040 0200B	0042030

Page 6 of 27

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batcl
Sample ID: NPD1302-03 (P9	9309GWP52	- Water	·) - cont. S	ampled: 04	4/11/06 14:	:30			
Volatile Organic Compounds by	EPA Method	8260B - d	cont.						
2-Chlorotoluene	ND		ug/L	2.70	10.0	10	04/16/06 14.54	SW846 8260B	6042030
4-Chlorotoluene	ND		ug/L	3.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1.2-Dibromo-3-chloropropane	ND		ug/L	16.4	50.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2-Dibromoethane (EDB)	ND		ug/L	3.80	10.0	10	04/16/06 14:54	SW846 8260B	604203
Dibromomethane	ND		ug/L	5.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,4-Dichlorobenzene	ND		ug/L	4.60	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,3-Dichlorobenzene	ND		ug/L	3.60	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2-Dichlorobenzene	ND		ug/L	3.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Dichlorodifluoromethane	ND		ug/L	4.10	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1-Dichloroethane	ND		ug/L	3.20	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2-Dichloroethane	ND		ug/L	2.80	10.0	10	04/16/06 14:54	SW846 8260B	6042030
cis-1,2-Dichloroethene	ND		ug/L	3.90	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1-Dichloroethene	ND		ug/L	4.50	10.0	10	04/16/06 14:54	SW846 8260B	6042030
trans-1,2-Dichloroethene	ND		ug/L	3.40	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,3-Dichloropropane	ND		ug/L	6.30	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2-Dichloropropane	ND		ug/L	5.00	10.0	10	04/16/06 14:54	SW846 8260B	6042030
2,2-Dichloropropane	ND		ug/L	6.60	10.0	10	04/16/06 14:54	SW846 8260B	6042030
cis-1,3-Dichloropropene	ND		ug/L	4.50	10.0	10	04/16/06 14:54	SW846 8260B	6042030
trans-1,3-Dichloropropene	ND		ug/L	4.90	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1-Dichloropropene	ND		ug/L	5.10	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Ethylbenzene	1260		ug/L	3.40	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Hexachlorobutadiene	ND		ug/L	6.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
2-Hexanone	ND		ug/L	25.3	500	10	04/16/06 14:54	SW846 8260B	6042030
Isopropylbenzene	123		ug/L	3.40	10.0	10	04/16/06 14:54	SW846 8260B	6042030
p-Isopropyltoluene	69.6		ug/L	3.40	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Methyl tert-Butyl Ether	10100		ug/L	64.0	200	200	04/16/06 15:23	SW846 8260B	6042030
Methylene Chloride	ND		ug/L	12.6	50.0	10	04/16/06 14:54	SW846 8260B	6042030
4-Methyl-2-pentanone	ND		ug/L	42.5	500	10	04/16/06 14:54	SW846 8260B	6042030
Naphthalene	215		ug/L	11.3	50.0	10	04/16/06 14:54	SW846 8260B	6042030
n-Propylbenzene	310		ug/L	3.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Styrene	ND		ug/L	3.90	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1,1,2-Tetrachloroethane	ND		ug/L	3.70	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1,2,2-Tetrachloroethane	ND		ug/L	4.90	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Tetrachloroethene	ND		ug/L	3.90	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Toluene	68.5		ug/L	2.80	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2,3-Trichlorobenzene	ND		ug/L	5.60	20.0	10	04/16/06 14:54	SW846 8260B	6042030
1,2,4-Trichlorobenzene	ND		ug/L	7.90	20.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1,2-Trichloroethane	ND		ug/L	4.20	10.0	10	04/16/06 14:54	SW846 8260B	6042030
1,1,1-Trichloroethane	ND		ug/L	4.00	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Trichloroethene	ND		ug/L	4.50	10.0	10	04/16/06 14:54	SW846 8260B	6042030
Trichlorofluoromethane	ND		ug/L	4.80	10.0	10	04/16/06 14.54	SW846 8260B	6042030
1,2,3-Trichloropronane	ND		ug/L	5.60	10.0	10	04/16/06 14.54	SW846 8260B	6042030
1,3,5-Trimethylbenzene	485		ug/L	2.80	10.0	10	04/16/06 14.54	SW846 8260B	6042030
1,2,4-Trimethylbenzene	1770		ug/L	3.40	10.0	10	04/16/06 14.54	SW846 8260B	6042030
Vinyl chloride	ND		ug/L	4.30	10.0	10	04/16/06 14.54	SW846 8260B	6042030
-			-						50.4050

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110

Attn Amelia Turnell

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD1302-03 (P9309	GWP52	- Water	·) - cont. S	ampled: 0	4/11/06 14:	:30			
Volatile Organic Compounds by EPA	Method 3	8260B - 0	cont	-					
Xylenes total	2340		пе/Г.	8 20	30.0	10 (1/16/06 14.54	SW846 8260D	6042030
Surr: 1 2-Dichloroethane-d4 (70-130%)	01.0/		-8-	0.20	50.0	10 (4/10/00 14.54	SW040 0200D	6042030
Surr: Dibromofluoromathana (70-122%)	94 70					1 0	4/16/06 14:54	SW840 8200B	6042030
Surr. Dioromojiuorometriane (77-12270)	94 %					1 0	4/16/06 14:54	SW846 8260B	0042030
Surr: 101uene-a8 (78-121%)	97%					1 0	4/16/06 14:54	SW846 8260B	6042030
Surr: 4-Bromofluorobenzene (78-126%)	105 %					1 0	4/16/06 14:54	SW846 8260B	6042030
Sample ID: NPD1302-04 (TB04)	110605 - `	Water)	Sampled:	04/11/06	D0:01				
Volatile Organic Compounds by EPA	Method 8	8260B							
Acetone	ND		ug/L	5.91	50.0	1 0	4/15/06 04:28	SW846 8260B	6042030
Benzene	ND		ug/L	0.290	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Bromobenzene	ND		ug/L	0.470	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Bromochloromethane	ND		ug/L	0.420	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Bromodichloromethane	ND		ug/L	0.380	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Bromoform	ND		ug/L	0.500	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Bromomethane	ND		ug/L	0.600	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
2-Butanone	ND		ug/L	5.09	50.0	1 0	4/15/06 04:28	SW846 8260B	6042030
sec-Butylbenzene	ND		ug/L	0.380	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
n-Butylbenzene	ND		ug/L	0.460	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
tert-Butylbenzene	ND		ug/L	0.390	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Carbon disulfide	ND		ug/L	0.310	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Chlorobenzene	ND		ug/L	0.320	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Chloroethane	ND		ug/L	0.500	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Chloroform	ND		ug/L	0.380	1.00	10	4/15/06 04:28	SW846 8260B	6042030
Chloromethane	ND		ug/L	0.460	1.00	10	4/15/06 04:28	SW846 8260B	6042030
2-Chlorotoluene	ND		ug/L	0.270	1.00	10	4/15/06 04:28	SW846 8260B	6042030
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	10	4/15/06 04:28	SW846 8260B	6042030
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	10	4/15/06 04:28	SW846 8260B	6042030
Dibromomethane	ND		ug/L	0.570	1.00	10	4/15/06 04:28	SW846 8260B	6042030
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	10	4/15/06 04:28	SW846 8260B	6042030
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	10	4/15/06 04:28	SW846 8260B	6042030
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2-Dichloroethane	ND		ug/L	0.280	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,3-Dichloropropane	ND		ug/L	0.630	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2-Dichloropropane	ND		ug/L	0.500	1.00	1 0-	4/15/06 04:28	SW846 8260B	6042030
2,2-Dichloropropane	ND		ug/L	0.660	1.00	1 0-	4/15/06 04:28	SW846 8260B	6042030
cis-1,3-Dichloropropene	ND		ug/L	0.450	1.00	1 0-	4/15/06 04:28	SW846 8260B	6042030

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Amelia Turnell Attn

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPD1302-04 (TB0	4110605 -	Water)	- cont. Sa		/11/06 00:01				
Volatile Organic Compounds by El	PA Method	8260B - d	cont.						
trans-1,3-Dichloropropene	ND		ug/L	0.490	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
1,1-Dichloropropene	ND		ug/L	0.510	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
Ethylbenzene	ND		ug/L	0.340	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
Hexachlorobutadiene	ND		ug/L	0.670	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
2-Hexanone	ND		ug/L	2.53	50.0	1 (04/15/06 04:28	SW846 8260B	6042030
Isopropylbenzene	ND		ug/L	0.340	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
p-Isopropyltoluene	ND		ug/L	0.340	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
Methyl tert-Butyl Ether	ND		ug/L	0.320	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
Methylene Chloride	ND		ug/L	1.26	5.00	1 (04/15/06 04:28	SW846 8260B	6042030
4-Methyl-2-pentanone	ND		ug/L	4.25	50.0	1 (04/15/06 04:28	SW846 8260B	6042030
Naphthalene	ND		ug/L	1.13	5.00	1 (04/15/06 04:28	SW846 8260B	6042030
n-Propylbenzene	ND		ug/L	0.370	1.00	1 (04/15/06 04:28	SW846 8260B	6042030
Styrene	ND		ug/L	0.390	1.00	1 (4/15/06 04:28	SW846 8260B	6042030
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1 (4/15/06 04:28	SW846 8260B	6042030
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1 (4/15/06 04:28	SW846 8260B	6042030
Tetrachloroethene	ND		ug/L	0.390	1.00	1 (4/15/06 04:28	SW846 8260B	6042030
Toluene	MB		ug/L	0.280	1.00	1 (4/15/06 04:28	SW846 8260B	6042030
1,2,3-Trichlorobenzene	(0.870/	J	ug/L	0.560	2.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2,4-Trichlorobenzene	NB		ug/L	0.790	2.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Trichloroethene	ND		ug/L	0.450	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,3,5-Trimethylbenzene	ND		ug/L	0.280	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
1,2,4-Trimethylbenzene	ND		ug/L	0.340	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Vinyl chloride	ND		ug/L	0.430	1.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Xylenes, total	ND		ug/L	0.820	3.00	1 0	4/15/06 04:28	SW846 8260B	6042030
Surr: 1,2-Dichloroethane-d4 (70-130%)	99 %					1 0.	4/15/06 04.28	SW846 8260R	6042030
Surr: Dibromofluoromethane (79-122%)) 100 %					1 0	4/15/06 04.20 ·	SW816 8760B	6042030
Surr: Toluene-d8 (78-121%)	99 %					1 04	NIJ/00 04:28 ·	GW046 0200D	6012030
Surr: 4-Bromofluorobenzene (78-126%)	10101					1 04	#/15/06/04:28	SW 840 820UB	0042030
	104 70					1 04	4/15/06 04:28	SW846 8260B	0042030

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	n Analysis Date/Time	Method	Batel
Sample ID: NPD1302-05 (P	9309GWP52]	EB - Wa	ter) Sam	pled: 04/10	/06 13:15				
Volatile Organic Compounds by	y EPA Method	8260B							
Acetone	NB.		ug/L	5.91	50.0	1	04/15/06 05:56	SW846 8260B	604203
Benzene	(1.01)		ug/L	0.290	1.00	1	04/16/06 12:27	SW846 8260B	6042030
Bromobenzene	MB		ug/L	0.470	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Bromochloromethane	ND		ug/L	0.420	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Bromodichloromethane	ND		ug/L	0.380	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Bromoform	ND		ug/L	0.500	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Bromomethane	ND		ug/L	0.600	1.00	1	04/15/06 05:56	SW846 8260B	6042030
2-Butanone	ND		ug/L	5.09	50.0	1	04/15/06 05:56	SW846 8260B	6042030
sec-Butylbenzene	ND		ug/L	0.380	1.00	1	04/15/06 05:56	SW846 8260B	6042030
n-Butylbenzene	ND		ug/L	0.460	1.00	1	04/15/06 05:56	SW846 8260B	6042030
tert-Butylbenzene	ND		ug/L	0.390	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Carbon disulfide	ND		ug/L	0.310	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Carbon Tetrachloride	ND		ug/L	0.480	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Chlorobenzene	ND		ug/L	0.320	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Chlorodibromomethane	ND		ug/L	0.360	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Chloroethane	ND		ug/L	0.500	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Chloroform	ND		ug/L	0.380	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
Chloromethane	ND		ug/L	0.460	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
2-Chlorotoluene	ND		ug/L	0.270	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
4-Chlorotoluene	ND		ug/L	0.370	1.00	1 0	04/15/06 05:56	SW846 8260B	6042030
1,2-Dibromo-3-chloropropane	ND		ug/L	1.64	5.00	1 (04/15/06 05:56	SW846 8260B	6042030
1,2-Dibromoethane (EDB)	ND		ug/L	0.380	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
Dibromomethane	ND		ug/L	0.570	1.00	1 (04/15/06 05:56	SW846 8260B	6042030
1,4-Dichlorobenzene	ND		ug/L	0.460	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
1,3-Dichlorobenzene	ND		ug/L	0.360	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
1,2-Dichlorobenzene	ND		ug/L	0.370	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
Dichlorodifluoromethane	ND		ug/L	0.410	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
1,1-Dichloroethane	ND		ug/L	0.320	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
1,2-Dichloroethane	(9.64)		ug/L	0.280	1.00	1 ()4/15/06 05:56	SW846 8260B	6042030
cis-1,2-Dichloroethene	ND		ug/L	0.390	1.00	i ()4/15/06 05:56	SW846 8260B	6042030
1,1-Dichloroethene	ND		ug/L	0.450	1.00	1 (4/15/06 05:56	SW846 8260B	6042030
trans-1,2-Dichloroethene	ND		ug/L	0.340	1.00	1 (4/15/06 05:56	SW846 8260B	6042030
1.3-Dichloropropane	ND		ug/L	0.630	1.00	1 (M/15/06 05:56	SW846 8260B	6042030
1.2-Dichloropropane	ND		ug/L	0.500	1.00	1 (M/15/06 05:56	SW846 8260B	6042030
2.2-Dichloropropane	ND		ug/L	0.500	1.00	1 0	15/06 05:56	SW846 8260B	6042030
cis-1.3-Dichloropropene	ND		ug/L	0.450	1.00	1 (15/00 05.50	SW846 8260D	6042030
trans-1.3-Dichloropropene	120		ug/L	0.490	1.00		14/15/00 05.50	SW846 8260D	6042030
1 1-Dichloropropene	MD		ug/L	0.510	1.00	1 0	4/15/00 05.50	SW040 0200D	6042030
Ethylbenzene			ug/L	0.340	1.00	1 0	13/00 U3:30	SW846 9760D	6042030
Hexachlorobutadiene	WIN		ug/L	0.540	1.00	1 0	4/15/00 03:30	SW846 9760D	6042030
2-Hexanone	ND		-д.» ug/I.	2 53	50.0	1 0	4/15/00 05:56	5 W 040 02000 SW016 0200	6042030
Isopropylbenzene			<u>-</u> в.~ цо/Г.	2.33	1.00	1 0	13/00 UD:20	0 W 040 020UB	0042030
n-Isopropyltoluene			∽ <i>д Г</i> 11σ/Г	0.340	1.00	1 ()	4/15/00 05:56	SW840 8200B	0042030
Methyl tert_Butyl Ether	262		₩ <u>5</u> /L 11σ/Ι	0.340	1.00		4/15/06 05:56	3 W 840 820UB	0042030
Methylene Chloride			чыл. 110/Л	0.520	5.00	1 0	4/15/06 05:56	5 W 840 820UB	0042030
mearyiene Chionde			чgл	1.20	5.00	1 ()	4/15/06 05:56	5W846 8260B	6042030

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Amelia Turnell Attn

			ANALY	FICAL REP	ORT				
Analyte	Result	Flag	Units	MDL	MRL	Dilutio Factor	n Analysis Date/Time	Method	Batch
Sample ID: NPD1302-05 (P930	9GWP521	E B - W a	ater) - con	t. Sampled	: 04/10/06	13:15			
Volatile Organic Compounds by EF	A Method	8260B - d	cont.						
4-Methyl-2-pentanone	ND.		ug/L	4.25	50.0	1	04/15/06 05:56	SW846 8260B	6042030
Naphthalene	(4.54)	J	ug/L	1.13	5.00	1	04/15/06 05:56	SW846 8260B	6042030
n-Propylbenzene	ND		ug/L	0.370	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Styrene	ND		ug/L	0.390	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,1,1,2-Tetrachloroethane	ND		ug/L	0.370	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,1,2,2-Tetrachloroethane	ND		ug/L	0.490	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Tetrachloroethene	ND		ug/L	0.390	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Toluene	ND		ug/L	0.280	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,2,3-Trichlorobenzene	ND		ug/L	0.560	2.00	1	04/15/06 05:56	SW846 8260B	6042030
1,2,4-Trichlorobenzene	ND		ug/L	0.790	2.00	1	04/15/06 05:56	SW846 8260B	6042030
1,1,2-Trichloroethane	ND		ug/L	0.420	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Trichloroethene	ND		ug/L	0.450	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Trichlorofluoromethane	ND		ug/L	0.480	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,2,3-Trichloropropane	ND		ug/L	0.560	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,3,5-Trimethylbenzene	-NP		ug/L	0.280	1.00	1	04/15/06 05:56	SW846 8260B	6042030
1,2,4-Trimethylbenzene	0.610	J	ug/L	0.340	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Vinyl chloride	M		ug/L	0.430	1.00	1	04/15/06 05:56	SW846 8260B	6042030
Xylenes, total	(1.12)	J	ug/L	0.820	3.00	1	04/15/06 05:56	SW846 8260B	6042030
Surr: 1,2-Dichloroethane-d4 (70-130%)	92 %					, (04/15/06 05.56	SW846 8260B	6042030
Surr: Dibromofluoromethane (79-122%)	95 %					1 (M/15/06 05:56	SW846 8760B	6042030
Surr: Toluene-d8 (78-121%)	100 %						14/15/00 0J.JO	STR 040 0200D	6012030
Surr 4-Bromofluorobenzene (78-176%)	100 70					1 0	14/13/06 05:36	SW 840 8200B	60 (2020
5	108 %					1 (04/15/06 05:56	SW846 8260B	0042030

ANALYTICAL TESTING CORPORATION

Client URS Corporation (St. Louis)/SHELL (13668) 1001 Highlands Plaza Dr. West, Suite 300 St. Louis, MO 63110 Attn Amelia Turnell Work Order:NPD1302Project Name:170 E. Rand Avenue, Hartford, ILProject Number:SAP 340061Received:04/12/06 08:00

DATA QUALIFIERS AND DEFINITIONS

- **B** Analyte was detected in the associated Method Blank.
- E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

METHOD MODIFICATION NOTES

	ST AMERICA Z 2690 FOSTER CREIGHI 22 Commerce Drive, Watertown, WI 53094 Phone 800-833-703	ton, nashville, tn 37204 36	PHONE	800-765-0	¢ 04	/17/06	23:59	•	4		Shel	li Oil	Proc	lucts	s US	Cha	in Of (Cust	ody Rec	ord	
Б	4 Enterprise Drive, Cedar Falls, IA 50613 Phone 319-277-2401		.	SOP L	IS Proje	ct Mana	ger to I	ovni ec	iced:						NCIL	ENT # (S	IL ONE AL		DATE: 04 / N	/در	
ے ا	500 Trinity Bivd., Suite 106, Fort Worth, TX 76155 Phone 817-57	71-6800			RONMENTAL	SERVICES		IAME OF I	M TO BIL		Hert	Hand (S	OPUS)	6	7	2 1	6 6 3	4	PAGE: 0		
	01 South Dixle Drive, Dayton, OH 46439 Phone 800-572-9839 80 Busch Parkway, Buffalo Grove, JL 60089 Phone 847-808-7766				HOUSTON	ES		AME OF 1	IS TO BIL	Ë					\$AP 0	CRMT#	(IIS/CRMIT)	<u> </u>	voice with mpling events	or this site,	
	10 Elicon Urive, suite A, Colorado Springs, CU 8090/ Prione /15	1126-566-4	_		CONSULTAN		,	SHELL SHELL	RATES		te reimbu	JRSEMENT F	WITES					3 Q	Impled through	e	
CONS	LITANT COMPANY: URS C	Corporation							S (Street alr	d City): Vel Aven	170	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Avenue of		100						
ADDR	ass 1001 Highlands Pla	zza Drive West; Suite 3	300					PROJECT CC	NTACT (Rep	ort to):		(Copy to):				CONBUL	TANT PROJECT NO				
CLLX	St. Lou	ils, MO 63110						BAMPLER N	ME(B) (PHIM)	rb Hand (SOPUS		Jeff Ada	ms (URS				SUPUS-	Rand Avenue		
TELEF	HONE (office) 314-428-0100 FAX: (Office) 431-428-0462 (cell) 314-408-6460 (Trailer) 618-254-1512	E-MAUL: Jeff Ad	ame.	Thomas	Adama@un	tcorp.com															
²	NAROUND TIME (CALENDAR DAYS): ANDARD (10 DAY)	C 2 DAYS	□ 24 HO(JRS		s Needed IN Weeken	<u>ہ</u>					REQUE	STED A	NALYSI	S If more t	an one met	nod is listed, cir	icle one			
TEMP	ERATURE ON RECEIPT C°																		Container P	D Readings	
ŝ	ECIAL INSTRUCTIONS OR NOTES :																		or Laboral	ory Notes	
.	evel 4 QC Deliverables								· · · · · · · · ·												
			ſ				Τ	12) 12)	(51		····										
		SAMPLING		┠	PRESERVATI		NO. OF	90) (90.	08) 0	00.00											
and And	Field Sample Identification	DATE TIME		HNO TCL	G H2SO4 NC	OTHER.	CONT.	TPH-OR VOC= M	90-H9T	8 / 0070											
	61309 6WP66	04/11/4 1200 M	2				Μ	2		2									NPS 13	22-0(
	P7309 6WP 66D	-1 00.51 7MM/HO	2	>			S	>		2										4	
	P9309 GUPS2	~ 0541 MAN +0	2	>			3	~	_	2										-03	
	7 Boyllo605	1 =/n/ka	3	2			1	>		2				-					•	- 10	
	P9309 EWPSZEB	04/10 1315 L	5	>			Ю	5		>										20-	
																			,		
Relin	ulaihed by: (Signaturat	Racel		(gnature)											<u> </u>	0 4/	(/ 0 6	0	"(830		
	dshead by: (s)partitute)	Receiv	ved by: (Si	gnature)		Ę			C							Date:			me:		
Relin	(ulsted by: (Signature)	Recen	ved by: (Si	(elmand	1				\vdash								DC	_ 			
DISTR	BUTION: White with final report, Green to File, Yellow and Pink to Client.		1		₹		3	X									22		05/1/01 Revision		

NPD1302