REPORT

SUBSURFACE INVESTIGATION

Route 111/Rand Avenue Vicinity Investigation Roxana, Illinois

Prepared for:

Shell Oil Products US 17 Junction Drive PMB#399 Glen Carbon, Illinois 62034

August 2008 Revised January 21, 2009

URS Corporation 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project 21561979.00006**

TABLE OF CONTENTS

EXECUTIVE S	SUMMARY	ES-1
SECTION 1	INTRODUCTION, BACKGROUND AND OBJECTIVES	1-1
SECTION 2	INVESTIGATIVE PROCEDURES	2-1
	 2.1 Prefield Activities	
SECTION 3	INVESTIGATIVE RESULTS	
	 3.1 Description of Site Conditions	
SECTION 4	DISCUSSION AND CONCLUSIONS	4-1
SECTION 5	RECOMMENDATIONS	5-1
SECTION 6	REFERENCES	6-1

TABLE OF CONTENTS

List of Tables

Table 1	Organic Vapor Headspace Measurements
Table 2	Sample Summary for Soil, Soil Vapor, and Groundwater
Table 3	Monitoring Well Completion Summary and Groundwater Gauging
Table 4	Summary of Soil Analytical Detections and Screening
Table 5	Summary of Soil Vapor Analytical Detections
Table 6	Summary of Soil Vapor Natural Gas Detections
Table 7	Summary of Groundwater Analytical Detections and Screening

List of Figures

Figure 1	Site Location Map
Figure 2	Investigation Locations
Figure 3	Cross Section Key Map
Figure 4	Cross Section A-A'
Figure 5	Cross Section B-B'
Figure 6	Cross Section C-C'
Figure 7	Cross Section D-D'
Figure 8	Groundwater Contour Map
Figure 9	Soil Analytical BTEX & MTBE Detections Map
Figure 10	Soil Vapor Analytical BTEX & MTBE Detections Map
Figure 11	Groundwater Analytical BTEX & MTBE Detections Map

List of Appendices

Appendix A	Soil Boring Logs
Appendix B	Well Construction Diagrams
Appendix C	Well Development and Groundwater Sampling Sheets
Appendix D	Soil Vapor Sampling Sheets
Appendix E	IDW Characterization
Appendix F	Laboratory Reports
Appendix G	Summary of 2007 Soil and Groundwater Analytical Results
Appendix H	Summary of 2006 Groundwater Analytical Detections and Screening

ii

EXECUTIVE SUMMARY

Shell Oil Products US (SOPUS) conducted subsurface investigation activities at and outside the WRB Refining LLC (WRB) Wood River Refinery (WRR) in Roxana, Illinois. The investigation area is generally located in a mixed use area (e.g., commercial/industrial and residential). The purpose of the investigation was to further assess a benzene release which apparently occurred from an underground line on January 30, 1986. URS Corporation (URS), on behalf of SOPUS, performed an initial study in 2006 to help gather information on the extent of the benzene impact. The work described in this report was conducted based on a work plan *provided* submitted to the Illinois Environmental Protection Agency (IEPA) on February 15, 2008. *The IEPA provided comments regarding implementation of the work*.

This report was initially submitted to IEPA in August 2008 and IEPA provided comments on this report in a letter dated November 25, 2008. Based on IEPA's November 25, 2008 letter, this report has been revised. The "Response to Comments" document summarizes the revisions to the report. Text additions as a result of those comments are shown in italic font, and text removed from the report as a result of those comments is shown in strike-through format.

The field investigation included direct-push rig soil sampling, small diameter well installation, well development, vapor monitoring point sampling, and monitoring well gauging and sampling. Field activities were conducted between May and July 2008.

The surface topography across the investigation area generally slopes downward to the westsouthwest, with a total drop in elevation of approximately 15 feet across the area. The stratigraphy beneath the area consists of the following materials, from top down: fill (gravel, clay, cinders, etc.) extending to a maximum depth 6 feet below ground surface (bgs); clay extending to a maximum depth of 20 feet bgs; and sand, consisting of glacial outwash, primarily silty sand grading to poorly graded, fine grained sand which coarsens with depth. The sand unit is water saturated below a depth of approximately 35 to 50 feet bgs (approximately elevation 397 to 395). Groundwater contours for the sand indicate flow toward the northeast, toward WRR production water pumping centers.

Soil samples were collected from each boring and analyzed for volatile organic compounds (VOCs). The soil borings generally exhibited low levels of impact or were non-detect, consistent with that expected given their distance from the 1986 release point. The borings closest to the benzene line tended to exhibit relatively higher concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX) (less than 1 mg/kg). The highest concentrations were found in samples between depths of 14 and 24 feet bgs. This is in the area where the clayey soils are thickest, and may indicate residual hydrocarbons sorbed to the fine grained soils.

EXECUTIVE SUMMARY

Groundwater samples were collected from six new monitoring wells and seven existing monitoring wells and analyzed for VOCs. The cumulative analytical information (i.e., including the 2006 data) depicts the highest concentrations generally in a band on the order of 200 feet wide extending between the 1986 release point and the refinery. This area generally underlies the Village Public Works yard and wastewater treatment facility. The core area of impact widens closer to the refinery, consistent with groundwater flow toward pumping centers on WRR North and Main properties. Benzene concentrations in the core area have been identified in the hundreds to thousands of parts per million (ppm). Wells on the north and south sides of this band bound the core area, exhibiting part per billion (ppb) or non-detect concentrations.

Soil vapor samples were collected from four existing probe locations that overlie the highest observed groundwater concentrations. The results show relatively low and sporadic BTEX concentrations. The highest detected benzene concentration was in a probe at the 20 foot depth (37 ppb). Concentrations in the shallower samples (from 5, 10 and 15 feet) were lower or non-detect. Benzene concentrations were non-detect in the other probe locations. This marked attenuation from groundwater to shallow soil vapor is attributed to the distance to groundwater (approximately 45 feet) and biodegradation in the subsurface. It is expected that soil vapor concentrations would be lower in areas where groundwater concentrations are lower (e.g., north or south of the "core").

Based on discussions with IEPA, and SOPUS' Proposed Compliance Commitment Agreement, a work plan is being developed to assess the nature and extent of any mixed hydrocarbons identified along the WRR's west fenceline, generally north of the area investigated for this report. This work plan will also address the following data needs identified in this investigation, including:

- Characterization of soils in the area of the 1986 release
- Refinement of the northern extent of benzene-related groundwater impact north of Eighth Street and east of Highway 111.
- Collection of additional soil vapor data in areas north of the existing vapor probes.
- Collection of reproducible groundwater data over time in the area of highest concentrations (i.e., installation of monitoring wells).

This work plan was initially submitted on September 5, 2008. IEPA provided comments in a letter dated November 25, 2008, and the revised work plan is being submitted to the IEPA concurrent with this report.

Shell Oil Products U.S. (SOPUS) conducted subsurface investigation activities at and outside the WRB Refining LLC $(WRB)^1$ Wood River Refinery (WRR) in Roxana, Illinois. The investigation area is generally located between the intersection of Illinois Route 111 and Rand Avenue and the west fenceline of the refinery (**Figure 1**).

The area is being investigated to further assess a benzene release which apparently occurred on January 30, 1986, from an underground pipeline located just northwest of the Route 111 and Rand Avenue intersection. The pipeline extended from the refinery to barge loading facilities on the Mississippi River, along a route parallel to and just north of Rand Avenue. Beginning in 2005, increased benzene concentrations in groundwater have been observed in the WRR P-93 monitoring well cluster (i.e., P-93A and P-93B) located along the west fenceline of the refinery's North Property. URS Corporation (URS), on behalf of SOPUS, performed a subsurface investigation in 2006 to help gather information on the extent of the benzene impact (URS, 2007). The 2006 investigation provided initial information on the distribution of benzene in groundwater in the area, focusing primarily on screening technologies (e.g., cone penetration testing (CPT), membrane interface probe (MIP) and groundwater profiling).

The work described in this report was conducted based on a work plan *provided* submitted to the Illinois Environmental Protection Agency (IEPA) on February 15, 2008. In an April 18, 2008 letter to SOPUS and the WRR, the IEPA approved the work plan and provided: 1) conditions related to information to be included in the report for this work; and 2) a condition requiring a Water Well Survey.

This report was initially submitted to IEPA in August 2008 and IEPA provided comments on this report in a letter dated November 25, 2008. Based on IEPA's November 25, 2008 letter, this report has been revised. The "Response to Comments" document summarizes the revisions to the report. Text additions based on those comments are shown in italic font, and text removed from the report based on those comments is shown in strike-through format.

¹ WRB, formed January 1, 2007, is a 50/50 joint venture between ConocoPhillips (ConocoPhillips) and EnCana US Refineries LLC. The facility is owned by WRB and operated by ConocoPhillips.

1-1

The field investigation was performed in accordance with the work plan developed for this project, and included direct push rig soil sampling, small diameter well installation, well development, vapor monitoring point sampling, and monitoring well gauging and sampling.

Soil sampling and well installation was conducted between May 14 and 23, 2008. Well development was conducted between May 27 and June 2, 2008. Soil vapor sampling was conducted on June 3 and 4, 2008. Groundwater sampling was conducted between June 9 and 13, 2008.

2.1 PREFIELD ACTIVITIES

A meeting was held on April 22, 2008 between representatives of SOPUS, ConocoPhillips, URS and the Village of Roxana to discuss logistical issues regarding the upcoming work (e.g., site access, underground utilities, work schedule, etc.).

On May 30, 2008, at the request of the Village of Roxana, URS (on behalf of SOPUS) mailed fact sheets to residents in the investigation area. The fact sheet provided background information on the release, described the planned field activities and provided contact information.

The field activities in Roxana were conducted on village property or rights-of-way. This work was performed in accordance with an access agreement, signed May 8, 2008, between SOPUS and the Village of Roxana.

A utility locate was arranged for the drilling locations using Illinois' Joint Utility Locating Information for Excavators (JULIE) services. The Roxana Public Works Department also provided information concerning utilities in the area.

Prior to beginning site work, and at the start of work each day, a daily safety meeting was held. The purpose of this meeting was to discuss the day's planned activities and to address any potential health and safety concerns. URS and subcontract employees attended these daily meetings.

2.2 SOIL SAMPLING, WELL INSTALLATION AND DEVELOPMENT AND IEPA OVERSIGHT

URS subcontracted Roberts Environmental Drilling Inc. (REDI) of Millstadt, Illinois to perform the drilling activities associated with this project. Prior to direct push advancement, nonmechanized advancement techniques (i.e., air vacuum, water jetting, and hand augering) were used from ground surface to a depth of approximately seven feet below ground surface (bgs) in order to clear subsurface utilities and/or other obstructions that were not uncovered with the hand auger, per SOPUS protocol.

Shallow soil samples were collected for logging (detected stratigraphic information) and sampling purposes by utilizing a hand auger to a depth of seven feet bgs. At seven feet bgs, the borings were further advanced with direct push, dual-tube advancement techniques (e.g., Geoprobe[®]). The eight borings that were advanced as part of this investigation are shown in **Figure 2** and described as follows:

- Borings B-1 through B-4 are located in alleys between Sixth Street and Eight Street.
- Borings B-5, GP-7(11) and GP-12(11) are located at the Roxana Public Works yard south of Eighth Street.
- Boring B-6 is located along the Route 111 frontage road, just south of the entrance to the WRR.

Borings B-1 through B-6 were advanced approximately 10 feet below the depth at which groundwater was observed during probing. Total boring depths ranged from 48 to 64 feet bgs.

Borings GP-7 (11) and GP-12 (11) were advanced at locations adjacent to two existing vapor monitoring points. These borings were advanced to a depth of 20 feet bgs to collect more detailed stratigraphic information.

Below seven feet bgs, soil samples were continuously collected using a 2-inch diameter by 4foot long Dual-Tube[®] soil sampler with acetate liners. This technique uses an outer 2.25-inch diameter casing to maintain borehole integrity while samples are obtained using an 1.125 inch inner casing. The subsurface stratigraphy was logged by a qualified field scientist in accordance with the Unified Soil Classification System (USCS). Soil cores from each boring were visually evaluated for evidence of impact and screened in the field for organic vapors using a photoionization detector (PID). The field scientist noted attributes such as color, particle size, consistency, moisture content, structure, plasticity, odor and organic content. PID headspace measurements were obtained at approximately 2-foot intervals by placing a small amount of soil in a ziploc-type bag, and measuring the headspace after approximately 10 minutes (**Table 1**). Boring logs for each of the borings are included in **Appendix A**.

In general, the surface of the project area is covered by a thin layer of fill material, including gravel, clay, and topsoil, with occasional cinders. This is generally underlain by a layer of clay and clayey sand ranging in thickness from 3 to 15 feet. Below the clay lies medium dense sand to the depth probed during this investigation.

For this investigation, URS collected one soil sample from the top seven feet and another soil sample at the depth of greatest apparent impact above the water table. Soil samples were not collected for analysis from below the water table. Groundwater typically entered the boreholes at an approximate elevation of 390 feet (36 to 50 feet bgs).

The soil samples were collected for analysis of volatile organic compounds (VOCs) via Method 8260B. **Table 2** summarizes the soil samples collected for chemical analysis at each of the soil boring locations. Additional information regarding sample preparation and shipment, and laboratory testing, is provided in **Section 2.7** of this report. IEPA personnel were onsite on May 20th and 22nd, 2008 to observe soil sampling and well installation activities.

Small diameter wells were installed at locations B-1 through B-6 to obtain fluid level data and groundwater samples. These wells were constructed of 1-inch diameter threaded PVC, schedule 40 casing, installed through the dual-tube casing. Each well was installed with 15-feet of 0.010-inch slotted PVC well screen extending from the bottom of each boring. The well screens were placed to intersect the groundwater surface. *This length of screen allowed for accurate determination of the water table under variable, but at the same time unknown, fluctuations of the water table.* The native sand was allowed to collapse to approximately 5 feet above the top of the well screen. The remainder of each boring's annulus was filled with a high solids bentonite cement grout and topped with an 8-inch diameter flush-mount well vault. Well construction diagrams are provided in **Appendix B** and **Table 3** provides a well completion summary.

The drill rods and tools were decontaminated between borings. Additional information regarding decontamination practices and waste disposal is provided in **Section 2.6** of this report.

Between May 27 and June 2, 2008, the newly installed small diameter wells were developed in an attempt to remove fines from the sand pack. Development was performed via pumping and/or bailing a minimum of five well volumes of water. During well development, water quality parameters, including pH, temperature, conductivity, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), were measured and recorded on the field sheets (**Appendix C**) after each well volume was removed. Development continued until the water quality parameters stabilized over two consecutive well volumes after the removal of the required well volumes.

2.3 SOIL VAPOR SAMPLING

Eighteen soil vapor samples were collected at four different vapor monitoring point (VMP) locations on or adjacent to the Roxana Public Works yard. Six VMP locations were originally

planned to be sampled, but only four were located and determined to be accessible. These four VMP locations, designated GP-9, GP-11, GP-12 and GP-13 were installed by Equilon in 1999/2000. The two VMP locations which could not be located included GP-7 and GP-8.

Each VMP location consists of four separate 0.375-inch (${}^{3}/_{8}$ -inch) diameter thin-walled polyethylene tubes with 6-inch long sampling ports screened stainless steel screens at depths of approximately 5, 10, 15, and 20 feet bgs. These different sample depths are designated as A, B, C, and D, respectively, in the sample IDs used during this field investigation.

Prior to sampling from a vapor port, the vacuum/pressure reading was collected utilizing a threeway plastic micro-valve and a digital manometer. Readings from the manometer were allowed to stabilize. These initial measurements were then recorded on vapor monitoring sampling field sheets, and any fluctuations during data collection were also noted.

After vacuum/pressure readings were determined, a total of three well volumes one well volume of air were was purged utilizing a 60 milliliter (mL) syringe.

Once purging was completed, a peristaltic pump, one-liter Tedlar bag, and one-liter Summa canister were readied for sampling.

The summa canister, regulator, and assembly were inspected for damage or defects. The Summa canister was prepared for sampling by labeling with the sample information. A pressure gauge was used prior to sampling to verify there were no leaks in the sampling apparatus. The 30minute flow regulator and the initial vacuum of the canister were then verified to be at 25 to 30 inches of mercury (Hg). The canister identification number, flow regulator identification number, and initial inches of Hg were recorded on the field sampling sheets. The *flow regulator and summa canister are connected to the vapor port via rigid-walled Teflon tubing and the* setup was configured in order to allow extraction from the monitoring port only and shut off from the atmosphere. Once setup was complete, the valve on the canister was opened and the sample start time was recorded. The sample was collected with a minimum change of 15 inches of Hg while not allowing the canister vacuum to go below 2 inches of Hg. Once the sample collection was completed, the valve on the canister of Hg. using a tracer) were not used during sampling.

The Tedlar bag was then filled using a peristaltic pump *and the Teflon tubing*. A rotometer was used to adjust the flow to a rate of less than or equal 200 mL/minute. The flow was adjusted as quickly as possible in order to reduce unnecessary purging. Once the flow rate was adjusted, the rotometer was removed and the Tedlar bag was attached, allowing the sample to be collected. Once the sample was collected, a PID meter and a 4-Gas (carbon monoxide, hydrogen sulfide,

oxygen, and the lower explosive limit) meter were inserted and the readings recorded on the field sampling sheets.

The field sampling sheets for this soil vapor sampling event are provided in Appendix D.

The soil vapor samples were collected for analysis of VOCs via Method TO-15 and for analysis of relevant natural gases (such as carbon dioxide, carbon monoxide, ethane, ethane, methane, nitrogen, and oxygen) via Method ASTM D-1946. **Table 2** summarizes the soil vapor samples collected for chemical analysis. Additional information regarding sample preparation and shipment, and laboratory testing, is provided in **Section 2.7** of this report.

Once the sampling was complete, the micro-valve was left in place on the monitoring port, but was closed to ensure that the line was not open to the atmosphere. The remaining equipment was dismantled. Information regarding equipment decontamination and material disposal is provided in **Section 2.6** of this report.

2.4 GROUNDWATER GAUGING AND SAMPLING

After development of the newly installed small diameter monitoring wells, sufficient time was allowed for the new wells to equilibrate with the groundwater.

The wells were gauged utilizing a Heron interface probe in order to detect the presence of any free-phase hydrocarbons and determine groundwater levels. Fluid levels in the wells were gauged on June 9, 2008, prior to sampling. In addition, fluid levels were also gauged on July 2, 2008 following the investigation. **Table 3** displays the fluid level summary for both events.

The comprehensive groundwater sampling event utilizing low-flow procedures was performed between June 9 and 13, 2008, utilized low-flow purging and sampling procedures. ConocoPhillips monitoring wells P-54, P-56, P-58, P-66, P-73, and P-75 were purged and sampled utilizing a 1.82-inch diameter Proactive Stainless Steel Monsoon submersible pump and disposable polyethylene tubing. The newly installed small diameter wells and ConocoPhillips well P-57 were purged and sampled utilizing a 0.850-inch diameter stainless steel submersible bladder pump, powered by the Geotech Geocontrol PROTM, and bonded disposable polyethylene tubing. New tubing was used at each well.

The submersible groundwater pump with the proper length of disposable polyethylene tubing was slowly lowered into the well to be sampled and set with the pump intake near the mid-point of the screen or water column, whichever was deeper which was deeper than the mid-point of the screen (i.e., the water surface was within the well screen). For the WRR wells, the pump intake was positioned approximately 6.5 to 9.5 feet below the top of the water column. For the small

2-6

diameter wells (in Roxana), the pump intake was positioned approximately 5 to 6.5 feet below the top of the water column. The tubing from the pump was connected to a flow-through cell, which discharged into a 5-gallon plastic bucket. Pumping was performed at a low flow rate (\leq 500 mL/minute) so as to not create drawdown of the water level within the well. During groundwater purging, water quality parameters (pH, temperature, conductivity, turbidity, DO and ORP) were measured and recorded on the field sheets (**Appendix C**) after every flow-through cell volume. Purging continued until a minimum of three flow-through cell volumes of water were removed and the water quality parameters stabilized.

Once stabilization was achieved, the groundwater flow was diverted from the flow-through cell and the groundwater sample was collected. The groundwater samples were collected for analysis of VOCs via Method 8260B. **Table 2** summarizes the groundwater samples collected for chemical analysis. Additional information regarding sample preparation and shipment, and laboratory testing, is provided in **Section 2.7** of this report.

ConocoPhillips well P-54 was re-sampled on July 25, 2008 utilizing a HydraSleeve® groundwater sampler². This passive sampler was lowered into the well and positioned to collect a groundwater sample from the midpoint of the well screen. When activated, the HydraSleeve® collected a representative water sample from an approximately two-foot interval without mixing fluid from other intervals. Once the sampler was full, the one-way reed valve collapsed, preventing mixing of extraneous, non-representative fluid during recovery. A short plastic discharge tube was then used to fill the sample containers. This sample was collected for analysis of VOCs via Method 8260B. This method of passive sampling does not create drawdown, and causes only minimal agitation or displacement of the water column.

Reusable equipment was decontaminated between well locations. Additional information regarding decontamination practices and waste disposal is provided in **Section 2.6** of this report.

2.5 SURVEYING

On July 2, 2008 Crawford, Murphy, and Tilly, Inc. (CMT) of Edwardsville, Illinois, conducted a closed circuit survey of points associated with the field activities (under contract to URS). The horizontal coordinates as well as the elevation were determined for each newly installed small diameter wells, four existing wells along the refinery's west fenceline, the four vapor points that were sampled, and the locations of five previously sampled investigation points (2006) in the Village of Roxana.

 $^{^{2}}$ Re-sampling to confirm the validity of the original sample result was discussed in the meeting with IEPA on July 3, 2008.

Each location was surveyed relative to Illinois State Plane Coordinates (NAD 83), while elevations were determined using the 1988 USGS datum.

The following general procedures were used for the survey.

- The top of the casing elevation and location were measured at each monitoring well. Typically, the measurement was taken on the north side of the well casing. Well casings were marked to indicate the measuring point. The ground surface elevation was also measured at each monitoring well. The ground surface measurement was taken one foot north of the center of the well completion.
- The location and elevation of each vapor monitoring point were measured. Each vapor monitoring point is completed flush with the surrounding ground surface. Therefore, the location and elevation of each vapor monitoring point were taken from the center of the flush mount vault cover while the cover was closed.
- The ground surface location and elevation for the former investigation points were surveyed near the approximate location of the investigation point.

Survey data supplied by CMT was used to develop soil borings, well completion logs, pertinent figures (groundwater and stratum contours), and geologic cross-sections included within this report.

2.6 DECONTAMINATION AND INVESTIGATION-DERIVED WASTE

The drill rods and tools were decontaminated between borings at a temporary decontamination pad located at the Public Works yard. Decontamination consisted of a high-pressure hot water wash. The soil cuttings and decontamination water was containerized in 55-gallon drums, labeled and staged on-site. The soil sampler was cleaned between each run at the boring location.

Non-disposable soil vapor and groundwater sampling equipment was dismantled and decontaminated prior to the collection of each analytical sample, between sample locations, and prior to leaving the site by washing with Alconox[®], a desorbing agent (i.e., isopropyl alcohol), and a distilled water rinse.

Decontamination water and purge water accumulated while sampling ConocoPhillips wells within the WRR was disposed daily at Site 9 of the Main Property, in accordance with WRR procedures. Decontamination water and purge water accumulated during sampling activities outside the WRR was collected and containerized in 55-gallon drums, labeled and staged on-site.

Field personnel wore disposable, chemical resistant nitrile gloves when environmental media or equipment was handled, to reduce the potential for personal exposure to potential chemical hazards. Clean gloves were also worn for the collection of analytical samples. With a low probability of impact, disposable materials, such as sample liners, gloves, and other investigation derived waste (IDW), were bagged and disposed as municipal waste.

The water and soil cuttings generated during this investigation were characterized for waste disposal purposes and the results are provided in **Appendix E**. The soil and water will be properly disposed following SOPUS procedures.

2.7 QA/QC, LABORATORY TESTING AND DATA QUALITY REVIEW

Once samples were collected, they were logged onto a Chain-of-Custody (COC) noting all of the sample information. Duplicate samples were collected at a frequency of 10 percent for all samples collected. Equipment blank samples were collected at a frequency of 10 percent, and MS/MSD sample pairs were collected at a frequency of 5 percent for the groundwater samples collected.

Soil and groundwater samples were collected for analysis of VOCs via Method 8260B and were submitted to Xenco Laboratories (Xenco) in Stafford, Texas (under contract to SOPUS). One trip blank accompanied each sample cooler containing samples to be analyzed for VOCs.

Soil vapor samples were collected for analysis of VOCs via Method TO-15 and for relevant natural gases (such as carbon dioxide, carbon monoxide, ethane, ethane, methane, nitrogen, and oxygen) via Method ASTM D-1946. These vapor samples were submitted for analysis to Air Toxics laboratory in Folsom, California (under contract to SOPUS).

The samples, with their corresponding COCs, were packaged and shipped via overnight delivery service to the appropriate laboratory.

Laboratory data from both laboratories were provided in electronic form for Level 4 reporting format. URS conducted an independent review of the analytical data following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1999, and the work plan for this project. A total of 46 investigative samples (soil and groundwater), six duplicates, two equipment blanks, two MS and MSD pairs, and seven trip blanks (*each consisting of a set of two 40-mL vials*) were submitted as part of this sampling program. Qualifiers were assigned to data when results from the review were outside control limits. These qualifiers are included in the data tables (**Tables 4** through 7) and the analytical reports included in **Appendix F**. Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and

precision, based on MS/MSD, laboratory control sample (LCS), surrogate and field duplicate data, were achieved for the work orders to meet the project objectives. Completeness, which is defined to be the percentage of analytical results that are judged to be valid, including estimated (J/UJ) data, was 100 percent for the soil vapor analytical data, and 98.5 percent for the soil and groundwater analytical data.

The data for the investigative and field QA/QC samples for the various media (e.g., soil, soil vapor and groundwater) are provided in **Appendix F**. The **Appendix F** data are organized by investigative media type and then listed by sample delivery group (SDG) or work order associated with the sample media.

2.8 RELATED ACTIVITIES

Water Well Survey

As requested by IEPA (April 18, 2008 letter to SOPUS), URS conducted a Water Well Survey, in accordance with 35 Ill. Adm. Code, Part 1600. The survey identified water wells within 2,500 feet of the 1986 release site. No public water wells were identified within the survey area. Four wells were found to be active, with three being identified as being for commercial/industrial (i.e., non-potable) use and one for private (residential) use. The private (residential) well identified in the survey was found to be miss-located, with the actual location being outside the survey area in Wood River, Illinois. Nine additional wells within the survey area were identified as sealed or abandoned. There were no set-back zones, well head protection areas, or regulated recharge areas relating to public water supply wells identified within the water well survey area.

The well survey was submitted to IEPA on June 16, 2008.

Violation Notice

A Violation Notice (VN) was issued to SOPUS by the IEPA on May 2, 2008 regarding the groundwater conditions as presented in the investigation report dated September 28, 2007. After timely response, SOPUS and URS met with IEPA on July 3, 2008 to discuss the "suggested resolutions" described in the VN. Preliminary data from the subject investigation was conveyed. Subsequent to this meeting, SOPUS submitted a Compliance Commitment Agreement to IEPA on July 22, 2008.

Community Relations

As mentioned in Section 2.1, SOPUS mailed a fact sheet to residents in the investigative area on May 30, 2008, informing them of the basic history of the site, upcoming investigative activities, and contact information. A copy of the fact sheet was also sent to IEPA on May 15, 2008.

On June 13, 2008, IEPA notified SOPUS and WRR that it was their interpretation that the Illinois Administrative Code Part 1600 rules (aka Right to Know) apply to this site. SOPUS and URS met with IEPA on July 22, 2008 to discuss this topic. As a result of this meeting, IEPA stated that Shell would be issued a revised letter, allegedly expanding the area to be part of any community relations effort. Purportedly, this expanded boundary would include the area west of Route 111 to the western fence line of WRR and north of Eight Street to approximately 1st Street.

Village of Roxana Groundwater Ordinance

The Village of Roxana has enacted an ordinance which prohibits the installation and use of private potable water supply wells. The ordinance was adopted on June 2, 2008 (Ordinance No. 867). The ordinance applies to a portion of the Village which does not have private wells. The subject investigation area is contained within the ordinance area.

3.1 DESCRIPTION OF SITE CONDITIONS

A total of eight Geoprobe[®] soil probes and six groundwater monitoring wells were completed at the investigative area in May and June 2008 as part of the field activities. These, in addition to cone penetration testing (CPT) locations from URS investigative work performed in 2006, and monitoring well logs for monitoring wells in the vicinity of the investigation area were used to help refine the current understanding of the investigative site geologic and hydrogeologic conditions.

3.1.1 Site Geology

The investigative site and surrounding area are located on a broad floodplain of the Mississippi River known as the American Bottoms. The site is located approximately 0.7 miles east of the Mississippi River. The surface topography across the investigation area generally slopes downward to the west-southwest, with a total drop in elevation of approximately 15 feet across the area. The floodplain deposits consist of recent alluvial (i.e., river) deposits overlying Pleistocene (i.e., Ice Age) glacial outwash. The recent alluvial deposits consist of a complex, heterogeneous sequence of sands, silts, and clays. The underlying glacial outwash deposits consist of more uniform sands and gravels that extend to bedrock. The depth to bedrock in the area typically exceeds 100 feet.

The stratigraphy beneath the investigative site area consists of the following materials, from top down:

- Fill (gravel, clay, cinders, etc.) extending between 1 and 6 feet in depth
- Clay extending between 2 to 20 feet in depth, an intermittent layer of silty clayey sand (0 to 4 feet thick)
- Sand, consisting of glacial outwash, primarily silty sand grading to poorly graded, fine grained sand which coarsens with depth.

The depth to the top of the sand ranges between approximately 3 and 24 feet bgs. This unit was explored to a depth of about 60 feet bgs at the boring locations.

Cross-section locations can be viewed in **Figure 3** and typical subsurface cross-sections are shown in **Figures 4** through **7**.

3.1.2 Site Hydrogeology

The glacial outwash deposits (i.e., sands) underlying the area are the primary source for large volume water production in the area (e.g., industrial and municipal supply). Prior to development in

the area, the natural movement of groundwater through the valley material was toward the west (toward the Mississippi River) (Schicht, 1965).

Since development in the area, groundwater pumping has significantly altered this pattern. Regional groundwater flow in the area is directed toward pumping centers, locally the WRR to the east and the BP former Wood River refinery to the west.

The sand unit is water saturated below a depth of approximately 35 to 50 feet bgs (approximately elevation 397 to 395).

The groundwater contours for the sand are shown in **Figure 8**, based on gauging conducted on July 2, 2008. Groundwater flow in the sand is generally toward the northeast, toward WRR pumping wells.

Potentiometric surfaces are also interpreted on the cross sections shown in Figures 4 through 7.

3.2 SOIL ANALYTICAL RESULTS

The laboratory analytical results for the soil samples collected during this investigation can be viewed in **Appendix F.** A tabular summary of the analytical detections is presented in **Table 4** and the BTEX/MTBE results are also depicted in **Figure 9** of this report.

The following analytes were detected at concentrations ranging to a maximum of 5.59 mg/kg.

Benzene	Isopropylbenzene
Ethylbenzene	Methylene Chloride
Toluene	Naphthalene
m,p-Xylenes	n-Butylbenzene
o-Xylenes	n-Propylbenzene
1,2,4-Trimethylbenzene	p-Isopropyltoluene
1,3,5-Trimethylbenzene	sec-Butylbenzene
2-Butanone (MEK)	tert-Butylbenzene
Acetone	

These are hydrocarbon constituents, except for MEK, acetone and methylene chloride which are common laboratory artifacts.

The analytical detections were compared with Tier 1 soil remediation objectives for residential properties outlined in the Tiered Approach to Corrective Action Objectives (TACO) rules (35 IAC Part 742 Appendix B). This comparison is also presented in **Table 4**.

The analytical results for organics generally meet the residential property screening criteria except for two organic exceedances: B-2 at a depth of 41 feet; and GP-7(II) at a depth of 19 feet.

- The soil component of the groundwater ingestion pathway screening criterion for benzene (0.03 mg/kg) was exceeded in the soil sample at B-2 at a depth of 41 feet (0.0927 mg/kg). At this depth, the detection is likely related to residual groundwater impact (described in Section 3.4).
- The soil component of the groundwater ingestion pathway screening criterion for benzene (0.03 mg/kg) was exceeded in the soil sample and duplicate sample at GP-7(II) at a depth of 19 feet (0.344 and 0.795 mg/kg).

Soil data collected in 2007 for a subsurface investigation ConocoPhillips conducted were also reviewed for this report. These data were collected in early 2007 by ATC Associates Inc. and provided by ConocoPhillips to IEPA in a report dated April 24, 2007. These soil samples were analyzed by Teklab, Inc. in Collinsville, Illinois for BTEX and MTBE via USEPA Method 8260B. The table of soil analytical results from this investigation report is presented in **Appendix G** and the BTEX/MTBE results are depicted in **Figure 9** of this report. The analytical results generally meet the residential property screening criteria except for benzene exceedances at ConocoPhillips B-3 at depths of 14 to 16, 22 to 24, and 34 to 36 feet, and at ConocoPhillips B-5 at a depth of 38 to 40 feet.

3.3 SOIL VAPOR ANALYTICAL RESULTS

The laboratory analytical results for the soil vapor samples collected during this investigation can be viewed in **Appendix F**. A tabular summary of the volatile organic analytical detections is presented in **Table 5** and a tabular summary of the natural or fixed gas detections is presented in **Table 6**. The results for BTEX and MTBE are depicted in **Figure 10**.

The soil vapor analytical results indicate that benzene, the target constituent, is not present to any significant degree in the locations sampled. Benzene was only detected in 2 of the 16 samples, at concentrations of 1.4 and 37 parts per billion (ppb) in samples from location GP-12 at depths of 10 feet and 20 feet bgs (samples were non-detect at depths of 5 feet and 15 feet). Low ppb concentrations of toluene and xylenes were detected more frequently and at more locations.

3.4 GROUNDWATER ANALYTICAL RESULTS

The laboratory analytical results for the groundwater samples collected during this investigation can be viewed in **Appendix F**. A tabular summary of the analytical detections is presented in **Table 7** and the results for BTEX and MTBE are depicted in **Figure 11**. The analytical

3-4

detections were compared with the groundwater remediation objectives outlined in the TACO rules. This comparison is also presented in **Table 7** and in **Figure 11**.

The following analytes were detected at concentrations ranging to a maximum of 366 mg/L.

Benzene	Dibromomethane
Ethylbenzene	Dichlorodifluoromethane
Toluene	Isopropylbenzene
m,p-Xylenes	Methyl tert-Butyl Ether
o-Xylenes	Methylene chloride
1,2,4-Trimethylbenzene	Naphthalene
1,2-Dichloropropane	n-Butylbenzene
1,3,5-Trimethylbenzene	n-Propylbenzene
Acetone	p-Isopropylbenzene
Bromomethane	sec-Butylbenzene
Carbon disulfide	tert-Butylbenzene
Chlorobenzene	

The analytical results for organics generally meet the groundwater screening criteria except for exceedances of benzene, ethylbenzene, toluene, 1,2,4-trimethylbenzene, MTBE, methylene chloride and naphthalene.

- The groundwater screening criterion for benzene (0.005 mg/L) was exceeded in the samples from wells B-2 (1.1 and 1.12 mg/L) and B-5 (0.0338 mg/L), and in all but one of the ConocoPhillips wells sampled³ (with a maximum of 366 mg/L).
- The groundwater screening criterion for ethylbenzene (0.7 mg/L) was exceeded in the samples from well B-2 (1.62 and 1.53 mg/L), and in ConocoPhillips well P-56 (1.67 mg/L), ConocoPhillips well P-58 (0.87 and 0.914 mg/L) and ConocoPhillips well P-73 (0.89 mg/L).
- The groundwater screening criterion for toluene (1.0 mg/L) was exceeded in the samples from well B-2 (3 and 3.03 mg/L), and in ConocoPhillips well P-73 (1.37 mg/L).
- The groundwater screening criterion for 1,2,4-trimethylbenzene (0.35 mg/L) was exceeded in the samples from well B-2 (0.718 and 0.689 mg/L), and in ConocoPhillips

 $^{^3}$ The sample collected from well P-54 on June 10, 2008 had a benzene detection of 0.00629 mg/L. The detection was considered suspect due to its location. It was resampled on July 25, 2008 and benzene was non-detect (<0.005 mg/L). The June 10th data is considered anomalous.

well P-56 (0.338 mg/L), ConocoPhillips well P-58 (0.734 to 0.82 mg/L), and ConocoPhillips well P-73 (0.596 mg/L).

- The groundwater screening criterion for MTBE (0.07 mg/L) was exceeded in the sample from ConocoPhillips well P-75 (0.125 mg/L).
- The groundwater screening criterion for methylene chloride (0.005 mg/L) was exceeded in the samples from wells B-2 (0.0422 and 0.0472 mg/L) and B-5 (0.00518 mg/L). Methylene chloride is a common laboratory artifact and its presence is judged not to be site related.
- The groundwater screening criterion for naphthalene (0.14 mg/L) was exceeded in the samples from well B-2 (0.145 mg/L), and in ConocoPhillips well P-56 (0.18 mg/L), ConocoPhillips well P-58 (0.179 to 0.202 mg/L), ConocoPhillips well P-73 (0.145 mg/L) and ConocoPhillips well P-75 (0.162 mg/L).

Groundwater data collected during second quarter 2008 from ConocoPhillips wells (collected April 30, 2008) were also reviewed for this report⁴. These data will be included in the upcoming semiannual report to IEPA which ConocoPhillips submits on Shell's behalf. The analytical detections for VOCs are included in **Table 7** and the analytical results for BTEX and MTBE are depicted in **Figure 11** of this report. These analytical results for VOCs generally meet the groundwater criteria except for exceedances of benzene and MTBE at wells P-93A and P-93B.

Groundwater analytical data collected during the 2006 West Fenceline P-93 investigation were also reviewed for this report. These groundwater samples were collected during profiling (e.g., grab samples) in the spring of 2006 by URS and provided in a report dated September 2007. The samples were analyzed by TestAmerica Laboratories (TestAmerica) in Nashville, Tennessee for VOCs via USEPA Method 8260B. A table of these groundwater analytical results compared to the screening criteria is presented in **Appendix H** and the analytical detections for BTEX and MTBE are depicted in **Figure 11** of this report. These analytical results for organics generally meet the groundwater criteria except for exceedances of benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, naphthalene, and n-propylbenzene at various wells and groundwater profile locations in the study area.

Groundwater data collected in 2007 for a subsurface investigation ConocoPhillips conducted were also reviewed for this report. These data were collected in early 2007 by ATC Associates

⁴ Well P-93A was included in the subject sampling plan, however, obstructions in the well precluded the ability to sample using low-flow techniques.

Inc. and provided by ConocoPhillips to IEPA in a report dated April 24, 2007. These groundwater samples were analyzed by Teklab, Inc. in Collinsville, Illinois for BTEX and MTBE via USEPA Method 8260B. The table of groundwater analytical results from this investigation is presented in **Appendix G** and the BTEX/MTBE results are depicted in **Figure 11** of this report. These analytical results for organics generally meet the residential property screening criteria except for benzene exceedances at ConocoPhillips B-1 and ConocoPhillips B-5.

SECTIONFOUR

URS conducted a subsurface investigation on behalf of SOPUS at and outside the WRR. The activities performed during this subsurface investigation expanded upon the 2006 investigation and furthered information on the extent of the groundwater impacts for the area.

The following conclusions are based on the data collected as part of this work plan, as integrated with previous site work.

<u>Soil</u>

- Subsurface conditions generally consist of a variable thickness of surficial fill and lower permeability soils (e.g., clay, silt, clayey sand) underlain by the sands to the depths explored. The maximum thickness of lower permeability soils, up to 24 feet, occurs to the west and southwest, near the intersection of Rand Avenue and Route 111. This material thins toward the east, coincident with the rise in surface topography, and is approximately 4 to 7 feet thick beneath the rest of the investigation area.
- The soil borings generally exhibited low levels of impact or were non-detect, consistent with that expected given their distance from the 1986 release point⁵. The borings closest to the benzene line, e.g., GP-7(ll) and the ConocoPhillips borings, tended to exhibit relatively higher concentrations of BTEX (less than 1 mg/kg). The highest concentrations were found in samples between depths of 14 and 24 feet bgs. This is in the area where the clayey soils are thickest, and may indicate residual hydrocarbons sorbed to the fine grained soils. One exception to this was found in the sample at location B-2 from a depth of 41 feet bgs. The highest concentrations were in the low ppm range, and this likely reflects residual impact from groundwater.

Soil Vapor

• Soil vapor samples were collected from existing probe locations that overlie the highest observed groundwater concentrations. The results show relatively low and sporadic BTEX concentrations. The highest detected benzene concentration was in a probe at the 20 foot depth (37 ppb). Concentrations in the shallower samples (from 5, 10 and 15 feet) were lower or non detect. Benzene concentrations were non detect in the other probe locations. This marked attenuation from groundwater to shallow soil vapor is attributed to the distance to groundwater (approximately 45 feet) and biodegradation in the subsurface.

⁵ It should be noted that characterization of soils in the immediate release area was not part of this scope of work.

SECTIONFOUR

It is expected that soil vapor concentrations would be lower in areas where groundwater concentrations are lower (e.g., north or south of the "core").

Groundwater

- Groundwater occurs at depths varying from approximately 35 to 50 feet bgs in the areas investigated, as a result of the change in surface elevation. This corresponds to a groundwater elevation of approximately 397 to 395 feet, from west to east. The groundwater contours show a clear gradient toward WRR pumping centers.
- The cumulative analytical information (i.e., including the 2006 data and 2007 ConocoPhillips' results) depicts the highest concentrations generally in a band on the order of 200 feet wide extending between the 1986 release point and the refinery. This area generally underlies the Village Public Works yard and wastewater treatment facility. The core area of impact widens closer to the refinery, consistent with groundwater flow toward pumping centers on WRR North and Main properties. Benzene concentrations in the core area have been identified in the hundreds to thousands of ppm. Wells on the north and south sides of this band bound the core area, exhibiting ppb or non detect concentrations.

SECTIONFIVE

Based on discussions with IEPA, and SOPUS' Compliance Commitment Agreement, a work plan is being developed to assess the nature and extent of the mixed hydrocarbons identified along the WRR's west fenceline, generally north of the area investigated for this report. This work plan will also address the following data needs identified in this investigation, including:

- Characterization of soils in the area of the 1986 release
- Refinement of the northern extent of benzene-related groundwater impact north of Eighth Street to approximately 1st Street and east of Route 111.
- Collection of additional soil vapor data in areas north of the existing vapor probes.
- Collection of reproducible groundwater data over time in the area of highest concentrations (i.e., installation of monitoring wells).

As discussed in **Section 1**, IEPA commented on the work plan as submitted in September 2008, and the revised work plan is being submitted to the IEPA concurrent with this report.

SECTIONSIX

6-1

- ATC Associates Inc., 2007; Subsurface Investigation Report on #1 and #4 Dock Lines Report; Prepared for ConocoPhillips – WRR; dated April 24, 2007.
- Illinois Environmental Protection Agency (IEPA); Tiered Approach to Corrective Action Objectives (TACO); Title 35 of the Illinois Administrative Code, Part 742.
- Illinois Environmental Protection Agency (IEPA); Notice of Violation L-2008-01134 letter; Issued to Shell Oil Products U.S. (SOPUS); dated May 2, 2008.
- Illinois Environmental Protection Agency (IEPA); Letter regarding the review of submitted materials and planned future activities; Issued to Shell Oil Products U.S. (SOPUS); dated April 18, 2008.
- Schicht, R.J., 1965; *Groundwater Development in the East St. Louis Area, Illinois*; Illinois State Water Survey Report of Investigation 51.
- URS Corporation (URS), 2007; West Fenceline P-93 Dissolved Phase Benzene Investigation Report – Roxana, Illinois; Prepared for Shell Oil Products U.S. (SOPUS) and WRB Refining LLC (WRB) Wood River Refinery (WRR); dated September 2007.
- URS Corporation (URS), 2008; *Route 111/Rand Avenue Vicinity Investigation Health and Safety Plan – Roxana, Illinois*; Prepared for Shell Oil Products U.S. (SOPUS); dated May 2008.
- URS Corporation (URS), 2008; *Route 111/Rand Avenue Vicinity Investigation Work Plan Roxana, Illinois*; Prepared for Shell Oil Products U.S. (SOPUS); dated February 15, 2008.
- US Environmental Protection Agency (USEPA), 1999; Contract Laboratory Program National Functional Guidelines for Organic Data Review.

TABLE 1 ORGANIC VAPOR HEADSPACE MEASUREMENTS

Boring	Depth (ft bgs)	PID (ppm)	Boring	Depth (ft bgs)	PID (ppm)	Boring	Depth (ft bgs)	PID (ppm)		Boring	
	1	0.0		1	0.0		1	0.0			7
	3	0.0		3	0.0		3	0.0		i i	
	5	0.0		9	0.9		5	0.0		i i	
	7	0.0		11	0.2		7	3.6			
	9	2.1		13	1.3		9	2.6		GP-7(II))
	11	3.7		15	1.8		11	1.8		1	
	14	3.0		17	1.6		13	2.3			
	17 19	0.9		19 21	1.4		15 17	2.6			
	21	1.4			2.4		17	1.8			
	23	2.1 1.8		23 25	1.5 0.8		21	2.3 0.6		1	
	25	0.2	B-3	25	0.8		23				
B-1	25	4.1		29	1.3	B-5	25	1.8 2.8		GP-12(II	n
D-1	29	1.8		31	1.8		27	4.7		01-12(1	'
	31	1.1		33	2.7		29	2.2			
	33	1.7		35 <u>v</u>			31	2.5		1	
	35	2.0		37	1.8		33	3.3			_
	37	1.8		39	2.3		35 <u>v</u>	4.2			
	39	1.4		41	2.7		37	3.1			
-	41	1.8		43	1.5		39	2.8			
	43	0.4		45	12.1		41	4.3			
	45	0.3		47	13.6		43	6.5			
	47	1.3		1	0.0		45	14.5			
	49 <u>v</u>	0.4		3	0.0		47	19.2			
	51	1.8		5	0.0		1	0.0			
	9	2.7		7	0.0		3	0.0			
	11	11.0		10	0.3		5	0.0			
	13	3.1		13	1.2		6.5	0.5			
	15	31.4		15	0.8		7.5	1.4			
	17	5.9		17	0.8		9	2.3			
	19	6.1		19	1.2		11	2.2			
	21	2.4		21	1.2		13	3.9			
	23	4.5		23	0.0		15	4.3			
	25 27	10.1 18.5	B-4	25 27	1.2 1.6		17 19	3.9 3.4			
	29	5.5		29	0.8		21	4.2			
	31	7.3		31	1.7	B-6	23	4.2			
B-2	33	16.5		33	1.4	50	25	3.2			
02	35	9.5		35	2.1		27	2.3			
	37	10.3		39	1.5		29	2.3			
	39	39.9		41	0.8		31	2.0			
	41	192		43	0.2		33	2.2			
	43	167		47	0.9		35	2.3			
	45	20.7		49 v	9.5		37	2.2			
	47	11.1		51	18.7		39 <u>v</u>	1.8			
	49	69.0		53	28.4		41	0.0			
	51	530					43	0.0			
	53 <u>v</u>	597					45	0.0			
	55	1134					47	0.0	l		
	57	1122									

NOTES:

1) Headspace measurements were obtained using a photoionization detector (PID) with a 10.6-eV lamp.

2) \underline{v} Denotes the level of groundwater in the boring at the time of drilling.

Depth

(ft bgs) 1

3

5

9

11

13

15

17

19

6.5

9

11

13

15

17

19

PID (ppm)

0.0

0.0

0.0

0.7

118

537

293

403

541

0.8

1.2

0.7

1.8

1.5

2.3

1.9

TABLE 2	
SAMPLE SUMMARY FOR SOIL, SOIL VAPOR, AND GROUNDWAT	ΈR

Sample	Sample ID	Sample Date	Sample	Analysis							
Location	ES COLLECTED	•	Time	-							
	B-1-03	5/14/2008		VOCs 8260 B							
B-1	B-1-27	5/20/2008	1445	VOCs 8260 B							
	B-2-04	5/14/2008		VOCs 8260 B							
B-2	B-2-41	5/20/2008	1000	VOCs 8260 B							
B-3	B-3-06	5/14/2008		VOCs 8260 B							
в-3	B-3-33	5/21/2008	1100	VOCs 8260 B							
B-4	B-4-06	5/15/2008	945	VOCs 8260 B							
D 4	B-4-35	4/22/2008	935	VOCs 8260 B							
B-5	B-5-04.5	5/15/2008	1345	VOCs 8260 B							
	B-5-27	5/21/2008	1400	VOCs 8260 B							
B-6	B-6-04	5/15/2008	1250	VOCs 8260 B							
	B-6-23	5/19/2008	1205	VOCs 8260 B							
	GP-7(II)-03 GP-7(II)-19	5/15/2008 5/19/2008	1115 1635	VOCs 8260 B VOCs 8260 B							
GP-7(II)	GP-7(II)-19 GP-7(II)-19-Dup	5/19/2008	1635	VOCs 8260 B VOCs 8260 B							
	GP-12(II)-04	5/15/2008	1035	VOCs 8260 B							
GP-12(II)	GP-12(II)-04 GP-12(II)-17	5/22/2008	1425	VOCs 8260 B							
0=()	GP-12(II)-17-Dup	5/22/2008	1425	VOC 8260 B							
SOIL VAPOR	SAMPLES COLLECTE										
	GP-9-A-060408	6/4/2008	1045	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-9-B-060408	6/4/2008	1050	VOCs by TO-15; Natural Gas by ASTM D-1946							
GP-9	GP-9-C-060408	6/4/2008	1055	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-9-C-060408-DUP	6/4/2008	1055	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-9-D-060408	6/4/2008	1115	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-11-A-060308	6/3/2008	1345	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-11-B-060308	6/3/2008	1350	VOCs by TO-15; Natural Gas by ASTM D-1946							
GP-11	GP-11-B-060308-DUP	6/3/2008	1350	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-11-C-060308	6/3/2008	1355	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-11-D-060308 GP-12-A-060308	6/3/2008 6/3/2008	1410 925	VOCs by TO-15; Natural Gas by ASTM D-1946 VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-12-A-060308	6/3/2008	929	VOCs by TO-15; Natural Gas by ASTM D-1946							
GP-12	GP-12-C-060308	6/3/2008	935	VOCs by TO-15; Natural Gas by ACTM D-1946							
	GP-12-D-060308	6/3/2008	940	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-13-A-060408	6/4/2008	850	VOCs by TO-15; Natural Gas by ASTM D-1946							
GP-13	GP-13-B-060408	6/4/2008	855	VOCs by TO-15; Natural Gas by ASTM D-1946							
GP-15	GP-13-C-060408	6/4/2008	900	VOCs by TO-15; Natural Gas by ASTM D-1946							
	GP-13-D-060408	6/4/2008	905	VOCs by TO-15; Natural Gas by ASTM D-1946							
GROUNDWA	TER SAMPLES COLLE	CTED									
P-54	P54-061008	6/10/2008	1612	VOCs 8260 B							
-	P54072508	7/25/2008	1430	VOCs 8260 B							
P-56	P56-060908	6/9/2008	1615	VOCs 8260 B							
P-57	P57-061108	6/11/2008	1310 1425	VOCs 8260 B							
P-58	P58-060908	6/9/2008		VOCs 8260 B							
P-66	P58-060908D P66-061008	6/9/2008 6/10/2008	<u>1425</u> 1340	VOCs 8260 B VOCs 8260 B							
P-00 P-73	P73-061008	6/10/2008	943	VOCS 8260 B							
P-75	P75-061008	6/10/2008	1040	VOCs 8260 B							
P-93				NG DATA FROM 2Q08							
B-1	B1-061208	6/12/2008	1045	VOCs 8260 B							
	B2-061208	6/12/2008	1245	VOCs 8260 B							
B-2	B2-061208D	6/12/2008	1245	VOCs 8260 B							
B-3	B3-061208	6/12/2008	1500	VOCs 8260 B							
B-4	B4-061208	6/12/2008	1630	VOCs 8260 B							
B-5	B5-061308	6/13/2008	1005	VOCs 8260 B							
B-6	B6-061308	6/13/2008	1200	VOCs 8260 B							

1) The natural gases analyzed for include: Carbon Dioxide, Carbon Monoxide, Ethane, Ethane, Methane, Nitrogen, and Oxygen.

2) The sample times for samples B-1-03, B-2-04, and B-3-06 were inadvertantly not recorded at the time of sample collection.

TABLE 3 MONITORING WELL COMPLETION SUMMARY AND GROUNDWATER GAUGING

Well ID	Surface Completion	Well Diameter (in)	Top of Casing Elevation (ft MSL)	Ground Surface Elevation (ft MSL)	Height Above Ground Surface (ft)	Constructed Well Depth (ft btoc)	Bottom of Well Elevation (ft MSL)		Screened Interval (ft btoc)												Screened Eleva (ft N	ation	Depth to Water 6/9/2008 (ft btoc)	Product Thickness (ft)	Corrected Water Elevation 6/9/2008 (ft MSL)	Depth to Water 7/2/2008 (ft btoc)	Product Thickness (ft)	Corrected Water Elevation 7/2/2008 (ft MSL)
SOPUS WE	LLS - VILLAGE	OF ROXAN	IA																									
B-1	FM	1	442.86	443.24	-0.38	58.18	384.68	42.93	57.93	15	399.93	384.93	47.78	NE	395.08	46.84	NE	396.02										
B-2	FM	1	443.93	444.21	-0.28	63.46	380.47	48.21	63.21	15	395.72	380.72	49.38	NE	394.55	48.43	NE	395.5										
B-3	FM	1	430.36	430.69	-0.33	45.99	384.37	30.74	45.74	15	399.62	384.62	34.16	NE	396.2	33.17	NE	397.19										
B-4	FM	1	441.58	441.86	-0.28	57.70	383.88	42.45	57.45	15	399.13	384.13	46.03	NE	395.55	45.09	NE	396.49										
B-5	FM	1	429.73	429.98	-0.25	46.20	383.53	30.95	45.95	15	398.78	383.78	33.49	NE	396.24	32.49	NE	397.24										
B-6	FM	1	432.42	432.75	-0.33	47.64	384.78	32.39	47.39	15	400.03	385.03	35.89	NE	396.53	34.97	NE	397.45										
COP WELL	S - WRR & VILI	AGE OF RO	DXANA																									
P-54	FM	2	442.44	442.62	-0.18	62.82	379.62	37.82	62.82	25	404.62	379.62	47.09	NE	395.35	46.16	NE	396.28										
P-56	SU	2	446.22	444.41	1.81	65.31	380.91	40.31	65.31	25	405.91	380.91	52.08	NE	394.14	51.17	NE	395.05										
P-57	SU	2	447.22	445.22	2.0	65.5	381.72	40.50	65.50	25	406.72	381.72	51.82	NE	395.4	50.91	NE	396.31										
P-58	SU	2	445.60	NRA	NRA	63.5	382.10	38.50	63.50	25	407.10	382.10	49.93	0.34	395.92	48.84	0.12	396.85										
P-59	SU	2	447.53	445.03	2.5	72.5	375.03	47.50	72.50	25	400.03	375.03	NM	NM	NA	52.25	NE	395.28										
P-66	FM	2	436.91	437.23	-0.32	59.68	377.23	34.68	59.68	25	402.23	377.23	41.00	NE	395.91	40.11	NE	396.80										
P-73	SU	4	444.51	442.01	2.5	67.5	377.01	42.50	67.50	25	402.01	377.01	49.82	NE	394.69	48.96	NE	395.55										
P-75	SU	4	446.96	444.46	2.5	68.5	378.46	43.50	68.50	25	403.46	378.46	51.01	NE	395.95	50.14	NE	396.82										
P-93A	SU	2	446.73	444.58	2.15	63.15	383.58	48.15	63.15	15	398.58	383.58	51.68	NE	395.05	50.79	NE	395.94										
P-93B	SU	2	447.18	NRA	NRA	76.53	370.65	74.58	76.53	1.95	372.60	370.65	NM	NM	NA	NM	NM	NA										
P-93C	SU	2	447.55	NRA	NRA	96.84	350.71	94.85	96.84	1.99	352.70	350.71	NM	NM	NA	NM	NM	NA										
P-93D	SU	2	447.13	NRA	NRA	128.02	319.11	126.03	128.02	1.99	321.10	319.11	NM	NM	NA	50.6	NE	396.53										
T-6	SU	4	447.37	NRA	NRA	66.83	380.54	NRA	NRA	NRA	NRA	NRA	NM	NM	NA	51.10	NE	396.27										
T-12	SU	4	445.37	NRA	NRA	72.83	372.54	NRA	NRA	NRA	NRA	NRA	NM	NM	NA	50.72	NE	394.65										

1) The corrected water elevations presented in this table were corrected by a specific gravity of 0.74 for the wells in which product was identified.

2) Elevations presented in this table are relative to the 1988 USGS datum.

3) NA = Not Applicable

4) NE = Not Encountered

5) NM = Not Measured

6) NRA = Not Readily Available

TABLE 4
SUMMARY OF SOIL ANALYTICAL DETECTIONS AND SCREENING

EXCEEDANCES	ARE HIGHLIGHTED IN YEL	LLOW																								
An	alyte (Results in m	ng/kg)	Benzer	ne	Ethylbenz	ene	٦	oluene	m,p-Xyle	nes	o-Xylenes	1,2,4-T	rimethylb	enzene	1,3,5-T	rimethylbe	enzene	2-But	anone (M	EK)	Ac	cetone				
•	on / Inhalation / S reening Values (m		12 0.8	0.03	7,800 400	13	16,000	650 12	16,000	420	200	39,000*	73*	18*	39,000*	45*	10*	47,000*	25,000*	17*	70,000 10	00,000 25				
Location	Sample ID	Date																								
B-1	B-1-03	5/14/2008	< 0.003	94	< 0.0039	94	<	0.00394	< 0.007	87	<0.00394		<0.00394	1		<0.00394			<0.0394		<0	0.0787				
D-1	B-1-27	5/20/2008	< 0.005	75	0.00208	J	0.	00204 J	<0.011	5	<0.00575		<0.00575	5		<0.00575			<0.0575		<	0.115				
B-2	B-2-04	5/14/2008	< 0.005	17	< 0.0051	7	<	<0.00517		3	<0.00517		<0.00517	7		<0.00517		().0142 J		0.0	0404 J				
D-2	B-2-41	5/20/2008	0.0927	<u>J</u>	4.39 D)		0.0136	2.45 [)	0.0246 <u>J</u>		5.59 D			0.184 <u>J</u>		<0.0626		<	0.125					
B-3	B-3-06	5/14/2008	< 0.00	5	< 0.005	5		<0.005		<0.005		<0.010 <0.005			<0.005		<0.005		<0.050		<0.100					
D-3	B-3-33	5/21/2008	< 0.005	67	< 0.0056	67	0.0	0137 J <u>J</u>	<0.011	3	<0.00567		<0.00567	7	<0.00567		<0.0567		<	0.113						
B-4	B-4-06	5/15/2008	< 0.004	79	< 0.0047	79	<	0.00137 J <u>J</u> <0.00479		<0.00479		<0.00479		<0.00479		58	<0.00479		<0.00479		<0.00479		<0.0479		0.0197 J	
0-4	B-4-35	5/22/2008	< 0.005	91	< 0.0059	91	0.	-		8	<0.00591		<0.0059		<0.00591			<0.0591			<	0.118				
B-5	B-5-04.5	5/15/2008	< 0.004	98	< 0.0049	98	<	0.00498	< 0.009	96	<0.00498		< 0.00498		<0.00498				<0.0498		< 0.0996					
D-3	B-5-27	5/21/2008	< 0.005	33	< 0.0053	33	<	0.00533	<0.010	7	<0.00533		<0.00533	3		<0.00533			<0.0533		<	0.107				
B-6	B-6-04	5/15/2008	< 0.003	91	< 0.0039	91	<	0.00391	< 0.007	82	<0.00391		<0.0039		<0.00391			<0.0391			<0	0.0782				
D-0	B-6-23	5/19/2008	< 0.005	13	< 0.0051	3	<	0.00513	< 0.010	13	<0.00513		<0.00513	3		<0.00513			<0.0513		<	0.103				
GP-7(II)	GP-7(II)-19	5/19/2008	0.344 E	<u>J</u>	< 0.0052	29	0.	00115 J	<0.010	6	<0.00529		<0.00529	9	<0.00529		<0.0529		<	0.106						
Gi -7(ii)	GP-7(II)-19-Dup	5/19/2008	0.795 E	J	< 0.005	1	0.	00109 J	<0.010	2	<0.0051		<0.0051			<0.0051			<0.051	_	<	0.102				
GP-12(II)	GP-12(II)-17	5/22/2008	< 0.005	49	0.00132	J	0.	00206 J	< 0.01	1	<0.00549		<0.00549	9		<0.00549			<0.0549		<	0.110				
G1 912(II)	GP-12(II)-17 GP-12(II)-17-Dup	5/22/2008	< 0.005	5	< 0.005	5	0.	00116 J	< 0.01	1	<0.0055		< 0.0055			<0.0055			<0.055		0.0	323 JB				

Analyte (Results in mg/kg)		ng/kg)	Isopropylbenzene	Methylene Chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene
Ingesti	Ingestion / Inhalation / Soil to GW		570**	85 13 0.02	1,600 170 12	240**	240**		220**	390**
Location	Sample ID	Date								
B-1	B-1-03	5/14/2008	< 0.00394	<0.0157	<0.00787	< 0.00394	< 0.00394	<0.00394	<0.00394	< 0.00394
D-1	B-1-27	5/20/2008	<0.00575	<0.023	<0.0115	<0.00575	<0.00575	<0.00575	<0.00575	<0.00575
B-2	B-2-04	5/14/2008	<0.00517	<0.0207	<0.0103	<0.00517	<0.00517	<0.00517	<0.00517	<0.00517
D-2	B-2-41	5/20/2008	0.115 <u>J</u>	0.0123 JB	0.0406 <u>J</u>	0.0913 <u>J</u>	1.73 D	0.0251 <u>J</u>	0.0413 <u>J</u>	0.0136 <u>J</u>
B-3	B-3-06	5/14/2008	<0.005	<0.020	<0.010	< 0.005	< 0.005	<0.005	<0.005	<0.005
D-3	B-3-33	5/21/2008	< 0.00567	0.00922 JB	<0.0113	< 0.00567	< 0.00567	<0.00567	<0.00567	<0.00567
B-4	B-4-06	5/15/2008	<0.00479	<0.0192	<0.00958	<0.00479	< 0.00479	<0.00479	<0.00479	<0.00479
D-4	B-4-35	5/22/2008	< 0.00591	0.0136 JB	<0.0118	<0.00591	< 0.00591	<0.00591	<0.00591	<0.00591
B-5	B-5-04.5	5/15/2008	< 0.00498	<0.0199	<0.00996	< 0.00498	< 0.00498	<0.00498	<0.00498	<0.00498
B-3	B-5-27	5/21/2008	< 0.00533	<0.0213	<0.0107	< 0.00533	< 0.00533	<0.00533	<0.00533	<0.00533
B-6	B-6-04	5/15/2008	< 0.00391	<0.0156	<0.00782	<0.00391	< 0.00391	<0.00391	<0.00391	<0.00391
B-0	B-6-23	5/19/2008	<0.00513	< 0.0205	<0.0103	<0.00513	< 0.00513	<0.00513	<0.00513	<0.00513
GP-7(II)	GP-7(II)-19	5/19/2008	< 0.00529	<0.0212	<0.0106	<0.00529	< 0.00529	<0.00529	<0.00529	<0.00529
GF-7(II)	GP-7(II)-19-Dup	5/19/2008	<0.0051	<0.0204	<0.0102	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
GP-12(II)	GP-12(II)-17	5/22/2008	< 0.00549	0.0109 JB	<0.011	< 0.00549	< 0.00549	<0.00549	<0.00549	<0.00549
01 °12(II)	GP-12(II)-17 GP-12(II)-17-Dup	5/22/2008	<0.0055	0.00605 JB	<0.011	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055

1) Screening values shown above are the Tier 1 Soil Remediation Objectives for Residential Properties.

2) <#.## Denotes the result was not detected below the indicated reporting limit.

3) **BOLD** indicates the analytical detection of the analyte.

4) Sample ID explanation --> X-XX-ZZ --> X-XX is the boring location at which the sample was collected;

ZZ is the depth at which the sample was collected.

5) The soil borings at GP-7(II) and GP-12(II) were located adjacent to the location of the vapor monitoring points GP-7 and GP-12, respectively. 6) The screening values provided are for Xylenes (total), which is the summation of m.p-Xylenes and o-Xylenes.

REFERENCES

- Illinois Environmental Protection Agency (IEPA); Tiered Approach to Corrective Action Objectives (TACO); Title 35 of the Illinois Administrative Code, Part 742, Appendix B, Table A.
- * IEPA; Tiered Approach to Corrective Action Objectives (TACO); Chemicals not in TACO Tier 1 Tables; Table A; May 1, 2007.
- ** U.S. Environmental Protection Agency (USEPA), Region 9; Preliminary Remediation Goals (PRGs) Table; October 2004.

LAB QUALIFIERS

- B = A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D = The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E = The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- J = The target analyte was positively identified below the RL and above the MDL.

URS QUALIFIERS

<u>J</u> = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

TABLE 5
SUMMARY OF SOIL VAPOR ANALYTICAL DETECTIONS

					Analyte (Results in ppbV)									
Location	Sample ID	Depth (ft)	Date	Benzene	Toluene	m,p-Xylene	1,2,4-Trimethylbenzene	1,3-Dichlorobenzene	2-Butanone (MEK)	2-Propanol	4-Ethyltoluene	Acetone		
	GP-9-A-060408	5	6/4/2008	<5.6	12	<5.6	<5.6	12	<5.6	2,800 E <u>J</u>	<5.6	71		
	GP-9-B-060408	10	6/4/2008	<2.9	9.9	<2.9	<2.9	11	17	1,600 E <u>J</u>	<2.9	180		
GP-9	GP-9-C-060408	15	6/4/2008	<140	<140	<140	<140	<140	<140	120,000 E <u>J</u>	<140	1,000		
	GP-9-C-060408-DUP	15	6/4/2008	<140	<140	<140	<140	<140	<140	94,000 E <u>J</u>	<140	1,300		
	GP-9-D-060408	20	6/4/2008	<1.3	10	2.2	<1.3	14	4.6	1,900 E <u>J</u>	<1.3	83		
	GP-11-A-060308	5	6/3/2008	<11	24	<11	<11	18	<11	21,000 E <u>J</u>	<11	130		
	GP-11-B-060308	10	6/3/2008	<60	<60	<60	<60	<60	<60	20,000	<60	<240		
GP-11	GP-11-B-060308-DUP	10	6/3/2008	<11	13	<11	<11	18	<11	20,000 E <u>J</u>	<11	83		
	GP-11-C-060308	15	6/3/2008	<11	18	<11	<11	16	<11	17,000 E <u>J</u>	<11	89		
	GP-11-D-060308	20	6/3/2008	<300	<300	<300	<300	<300	<300	370,000 E <u>J</u>	<300	<1200		
	GP-12-A-060308	5	6/3/2008	<1.5	2.5	1.8	<1.5	<1.5	4	10	<1.5	32		
GP-12	GP-12-B-060308	10	6/3/2008	1.4	2.7	1.9	<1.4	<1.4	5.8	14	<1.4	43		
GF-12	GP-12-C-060308	15	6/3/2008	<1.4	2.6	1.8	<1.4	<1.4	4.5	12	<1.4	40		
	GP-12-D-060308	20	6/3/2008	37	2.6	2	<1.3	<1.3	12	12	<1.3	54		
	GP-13-A-060408	5	6/4/2008	<150	<150	<150	<150	<150	<150	220,000 E <u>J</u>	<150	2,700		
GP-13	GP-13-B-060408	10	6/4/2008	<140	<140	250	150	<140	<140	32,000	140	<580		
GP-13	GP-13-C-060408	15	6/4/2008	<130	<130	<130	<130	<130	<130	280,000 E <u>J</u>	<130	2,800		
	GP-13-D-060408	20	6/4/2008	<140	<140	<140	<140	<140	<140	38,000	<140	<580		

							Analyte	(Results in ppbV)			
Location	Sample ID	Depth (ft)	Date	cis-1,2- Dichloroethene	Cyclohexane	Ethanol	Heptane	Hexachlorobutadiene	Hexane	Tetrahydrofuran	Trichloroethene
	GP-9-A-060408	5	6/4/2008	<5.6	<5.6	610	<5.6	<23	<5.6	6.2	<5.6
	GP-9-B-060408	10	6/4/2008	<2.9	<2.9	550	<2.9	<12	<2.9	3.6	<2.9
GP-9	GP-9-C-060408	15	6/4/2008	<140	<140	<580	<140	<580	<140	<140	<140
	GP-9-C-060408-DUP	15	6/4/2008	<140	<140	<580	<140	<580	<140	140	<140
	GP-9-D-060408	20	6/4/2008	<1.3	<1.3	690 E	<1.3	<5.4	<1.3	3.7	<1.3
	GP-11-A-060308	5	6/3/2008	<11	<11	7,800 E <u>J</u>	<11	<45	<11	<11	<11
	GP-11-B-060308	10	6/3/2008	<60	<60	1,800	<60	240 UJ <u>J</u>	<60	<60	<60
GP-11	GP-11-B-060308-DUP	10	6/3/2008	<11	<11	2,500	<11	44 UJ <u>UJ</u>	<11	<11	<11
	GP-11-C-060308	15	6/3/2008	<11	<11	4,400	<11	45 UJ <u>UJ</u>	<11	<11	<11
	GP-11-D-060308	20	6/3/2008	<300	<300	2,100	<300	1,200 UJ <u>UJ</u>	<300	<300	<300
	GP-12-A-060308	5	6/3/2008	1.5	<1.5	37	<1.5	5.9 UJ <u>UJ</u>	<1.5	7.3	16
GP-12	GP-12-B-060308	10	6/3/2008	<1.4	<1.4	57	<1.4	5.5 UJ <u>UJ</u>	<1.4	8	<1.4
GF-12	GP-12-C-060308	15	6/3/2008	<1.4	<1.4	54	1.7	5.6 UJ <u>UJ</u>	2.1	7.8	2.1
	GP-12-D-060308	20	6/3/2008	<1.3	27	49	<1.3	5.4 UJ <u>UJ</u>	3.5	7.9	<1.3
	GP-13-A-060408	5	6/4/2008	<150	<150	<610	<150	<610	<150	<150	<150
GP-13	GP-13-B-060408	10	6/4/2008	<140	<140	1,100	<140	<580	<140	<140	<140
GP-13	GP-13-C-060408	15	6/4/2008	<130	<130	<540	<130	<540	<130	<130	<130
	GP-13-D-060408	20	6/4/2008	<140	<140	<580	<140	<580	<140	200	<140

1) <#.## Denotes the result was not detected low the indicated reporting limit.

2) **BOLD** indicates the analytical detection of the analyte.

3) Sample ID explanation --> GP-XX-Y-DDDDDD --> GP-XX is the VMP location at which the sample was collected; Y is the VMP port at which the sample was collected; DDDDDD is the date on which the sample was collected.

4) VMP port A is screened at about 5 ft bgs; port B is screened at about 10 ft bgs; port C is screened at about 15 ft bgs; and port D is screened at about 20 ft bgs.

LAB QUALIFIERS

E = Exceeds instrument calibration range. UJ = Non-detected compound associated with low bias in the CCV.

URS QUALIFIERS

 \underline{J} = The analyte was positively identified; however, the concentration given is approximate.

<u>UJ</u> = The analyte was not detected above the reported quantitation limit; however, the reported quantitation limit is approximate.

Location	Sample ID	Dopth (ft)	Date	Analyte (Results in %)						
Location	Sample ID	Depth (ft)	Date	Carbon Dioxide	Methane	Oxygen				
	GP-9-A-060408	5	6/4/2008	8.5	ND	83	8.9			
	GP-9-B-060408	10	6/4/2008	9.2	ND	83	7.5			
GP-9	GP-9-C-060408	15	6/4/2008	9.5	ND	84	7			
	GP-9-C-060408-DUP	15	6/4/2008	9.4	ND	83	7.2			
	GP-9-D-060408	20	6/4/2008	10	ND	84	5.6			
	GP-11-A-060308	5	6/3/2008	6.1	ND	80	14			
	GP-11-B-060308	10	6/3/2008	6.9	ND	80	13			
GP-11	GP-11-B-060308-DUP	10	6/3/2008	7	ND	80	13			
	GP-11-C-060308	15	6/3/2008	7.8	ND	80	12			
	GP-11-D-060308	20	6/3/2008	10	ND	82	8.5			
	GP-12-A-060308	5	6/3/2008	12	ND	81	7			
GP-12	GP-12-B-060308	10	6/3/2008	15	ND	80	4.7			
GF-12	GP-12-C-060308	15	6/3/2008	16	0.00047	80	3.4			
	GP-12-D-060308	20	6/3/2008	17	0.0014	80	2.9			
	GP-13-A-060408	5	6/4/2008	10	0.00039	81	9.3			
GP-13	GP-13-B-060408	10	6/4/2008	12	0.0026	81	6.5			
GF-13	GP-13-C-060408	15	6/4/2008	14	0.00084	81	4.9			
1	GP-13-D-060408	20	6/4/2008	16	0.003	81	3.2			

TABLE 6 SUMMARY OF SOIL VAPOR NATURAL GAS DETECTIONS

NOTES:
1) BOLD indicates the analytical detection of the analyte.
2) Natural gases which were analyzed for but not detected in any of the samples include Carbon Monoxide, Ethane, and Ethene.
3) ND = Not Detected

TABLE 7	
SUMMARY OF GROUNDWATER ANALYTICA	L DETECTIONS AND SCREENING

	ES HIGHLIGHTED IN	YELLOW									Dishlanadifluona
An	alyte (Results in	mg/L)	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Chlorobenzene	Dichlorodifluoro methane
Ingestic	on Screening Val	lues (mg/L)	0.005	0.7	1.0		10	0.35*	0.35*	0.1	1.4*
Location		Date									
SOPUS WI	ELLS										
B-1	B1-061208	6/12/2008	0.00101 J	< 0.005	< 0.005	< 0.010	< 0.005	<0.005	<0.005	<0.005	<0.005
B-2	B2-061208	6/12/2008	1.1 D	1.62 D	3 D	3.13 D	0.933 D	0.718	0.188	< 0.025	< 0.025
	B2-061208D	6/12/2008	1.12 D	1.53 D	3.03 D	3 D	0.867 D	0.689 D	0.202	< 0.025	< 0.025
B-3	B3-061208	6/12/2008	0.00159 J	0.00797	0.0501	0.0894	0.007	<0.005	<0.005	< 0.005	<0.005
B-4	B4-061208	6/12/2008	<0.005	<0.005	<0.005	< 0.010	<0.005	<0.005	<0.005	<0.005	<0.005
B-5	B5-061308	6/13/2008	0.0338	0.003 J	0.00617	< 0.010	<0.005	<0.005	<0.005	<0.005	<0.005
B-6	B6-061308	6/13/2008	<0.005	<0.005	<0.005	< 0.010	<0.005	<0.005	<0.005	<0.005	<0.005
COP WELI	LS										
P-54	P54-061008	6/10/2008	0.00629	0.00101 J	< 0.005	<0.010	<0.005	0.00294 J	<0.005	< 0.005	<0.005
-	P54072508	7/25/2008	< 0.005	<0.005	< 0.005	<0.010	<0.005	<0.005	<0.005	<0.005	<0.005
P-56	P56-060908	6/9/2008	0.383 D	1.67 D	0.46 D	2.22 D	0.233 D	0.388 D	0.0937	<0.005	<0.005
P-57	P57-061108	6/11/2008	257 D	0.624	0.133	0.76	0.117	0.106	0.0285 J	<0.050	0.127 <u>J</u>
P-58	P58-060908	6/9/2008	349 D <u>J</u>	0.87 <u>J</u>	0.148 <u>J</u>	0.769 <u>J</u>	0.157 <u>J</u>	0.734 <u>J</u>	0.116 <u>J</u>	< 0.050	0.115 <u>J</u>
F-30	P58-060908D	6/9/2008	348 D <u>J</u>	0.914 <u>J</u>	0.155 <u>J</u>	0.805 <u>J</u>	0.168 <u>J</u>	0.82 <u>J</u>	0.129 <u>J</u>	< 0.050	0.122 <u>J</u>
P-66	P66-061008	6/10/2008	0.659 D	0.288 D	0.00167 J	0.00387 J	<0.005	0.0903	0.00569	< 0.005	<0.005
P-73	P73-061008	6/10/2008	4 D	0.89 D	1.37 D	1.76 D	0.52 D	0.596 D	0.137	0.00312 J	<0.005
P-75	P75-061008	6/10/2008	3.62 D	0.0836	0.0464	0.0345	0.00674 J	0.0382	0.0108	<0.010	<0.010
P-93A	P-93A	4/30/2008	366 D	0.238	0.0187	0.347	0.0255	0.105	0.0145	<0.010	<0.010
P-93B	P-93B	4/30/2008	232 D	0.0907	0.11	0.174	0.0394	0.0118	<0.010	<0.010	<0.010
										•	
۸۳	alyte (Results in	ma/I)	In a second barrier of	Methyl tert-Butyl	Methylene						
An	alyte (Results in							a Descuelle surrouse	and the second second for the second	and Destable surgery	to at Destable surrows
		iiig/∟)	Isopropyl benzene	Ether	chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene
Ingestic	on Screening Val	• •	0.66**			Naphthalene 0.14	n-Butylbenzene 0.24***	n-Propylbenzene 0.24***	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene 0.24***
Ingestion Location	on Screening Val Sample ID	• •	,	Ether	chloride	-	-		p-Isopropyltoluene	-	
	Sample ID	ues (mg/L)	,	Ether	chloride	-	-		p-Isopropyltoluene	-	
Location	Sample ID	ues (mg/L)	,	Ether	chloride	-	-		p-IsopropyItoluene	-	
Location SOPUS WI B-1	Sample ID ELLS	ues (mg/L) Date	0.66**	Ether 0.07	chloride 0.005	0.14	0.24***	0.24***		0.24***	0.24***
Location SOPUS WI	Sample ID ELLS B1-061208	ues (mg/L) Date 6/12/2008	<0.005	Ether 0.07 0.00438 J	chloride 0.005 0.00321 J	0.14	0.24*** <0.005	0.24*** <0.005	<0.005	0.24*** <0.005	0.24*** <0.005
Location SOPUS WI B-1	Sample ID ELLS B1-061208 B2-061208	ues (mg/L) Date 6/12/2008 6/12/2008	<0.005 0.0539	Ether 0.07 0.00438 J < 0.025	chloride 0.005 0.00321 J 0.0422 B	0.14 < 0.010 0.129	0.24*** <0.005 < 0.025	0.24*** <0.005 0.117	<0.005 < 0.025	0.24*** <0.005 < 0.025	0.24*** <0.005 < 0.025
Location SOPUS WI B-1 B-2	Sample ID ELLS B1-061208 B2-061208 B2-061208D	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008	0.66** <0.005 0.0539 0.0546	Ether 0.07 0.00438 J < 0.025 < 0.025	chloride 0.005 0.00321 J 0.0422 B 0.0472 B	0.14 < 0.010 0.129 0.145	0.24*** <0.005 < 0.025 < 0.025	<0.24*** <0.005 0.117 0.124	<0.005 < 0.025 < 0.025	0.24*** <0.005 < 0.025 < 0.025	0.24*** <0.005 < 0.025 < 0.025
Location SOPUS WI B-1 B-2 B-3	Sample ID ELLS B1-061208 B2-061208 B2-061208D B3-061208	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008	0.66** <0.005 0.0539 0.0546 0.0295	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.025 < 0.005	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005	0.14 < 0.010 0.129 0.145 < 0.010	0.24*** <0.005 < 0.025 < 0.025 0.00269 J	<	<0.005 < 0.025 < 0.025 < 0.025 < 0.005	0.24*** <0.005 < 0.025 < 0.025 0.00229 J	0.24*** <0.005 < 0.025 < 0.025 0.00216 J
Location SOPUS WI B-1 B-2 B-3 B-4	Sample ID ELLS B1-061208 B2-061208 B2-061208D B3-061208 B4-061208	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	 <0.66** <0.005 <0.0539 <0.0546 <0.0295 <0.005 	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.025 < 0.005 < 0.005	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005 0.00482 J	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010	<pre></pre>	<	<0.005 < 0.025 < 0.025 < 0.005 < 0.005	<pre>0.24***</pre>	<pre>0.24***</pre>
Location SOPUS W B-1 B-2 B-3 B-4 B-5	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B5-061308 B6-061308	bues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	 0.66** <0.005 0.0539 0.0546 0.0295 <0.005 0.00193 J 	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.005 < 0.005	chloride 0.005 0.0422 B 0.0472 B <0.005	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010 < 0.010	 0.24*** 0.005 0.025 0.025 0.0026 0.005 <0.005 	 <0.24*** <0.005 0.117 0.124 <0.0549 <0.005 <0.00257 J 	<0.005 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005	0.24*** <0.005 <0.025 <0.025 0.00229 J <0.005 <0.005	0.24*** <0.005 <0.025 <0.025 0.00216 J <0.005 0.00172 J
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WELL	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B5-061308 B6-061308	bues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	 0.66** <0.005 0.0539 0.0546 0.0295 <0.005 0.00193 J 	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.005 < 0.005	chloride 0.005 0.0422 B 0.0472 B <0.005	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010 < 0.010	 0.24*** 0.005 0.025 0.025 0.0026 0.005 <0.005 	 <0.24*** <0.005 0.117 0.124 <0.0549 <0.005 <0.00257 J 	<0.005 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005	0.24*** <0.005 <0.025 <0.025 0.00229 J <0.005 <0.005	0.24*** <0.005 <0.025 <0.025 0.00216 J <0.005 0.00172 J
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B4-061208 B5-061308 B6-061308 LS	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008	0.66** 0.005 0.0539 0.0546 0.0295 <0.005 0.00193 J <0.005	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 0.00104 J	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005 0.00482 J 0.00518 0.00518	 0.14 0.129 0.145 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 	0.24*** <0.005 <0.025 <0.025 0.00269 J <0.005 <0.005 <0.005	 0.24*** 0.005 0.117 0.124 0.0549 <0.005 0.00257 J <0.005 	<0.005 < 0.025 < 0.025 <0.005 <0.005 <0.005 <0.005	0.24*** <0.005 <0.025 <0.025 0.00229 J <0.005 <0.005 <0.005	 0.24*** <0.005 <0.025 <0.025 <0.025 <0.00216 J <0.005 <0.00172 J <0.005
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WELL	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B5-061308 B6-061308 B6-061308 LS P54-061008	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/10/2008	0.66** <0.005	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 0.00104 J < 0.005	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005 0.00482 J 0.00518 0.00157 J 0.00157 J	0.14 0.129 0.145 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	 0.24*** 0.005 < 0.025 < 0.025 0.00269 J < 0.005 < 0.005 < 0.005 	 0.24*** 0.005 0.117 0.124 0.0549 <0.005 0.00257 J <0.005 <0.005 	<0.005 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	0.24*** 0.24*** < 0.025 < 0.025 0.0029 J <0.005 <0.005 <0.005 <0.005	 0.24*** 0.24*** 0.025 0.025 0.026 J 0.00216 J 0.005 0.00172 J <0.005 <0.005
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL P-54	Sample ID ELLS B1-061208 B2-061208 B2-061208 B3-061208 B3-061208 B4-061208 B4-061208 B5-061308 B6-061308 LS P54-061008 P54072508 P54072508	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/10/2008 7/25/2008	 0.66** <0.005 0.0539 <0.0546 <0.0295 <0.005 <0.00193 J <0.005 <0.005	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 0.00104 J 	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005 0.00482 J 0.00518 0.00157 J 0.00207 JB 0.00384 J	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	0.24*** <.0.005 <.0.025 <.0.025 0.00269 J <0.005 <.0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.24*** <0.005 0.117 0.124 <0.0549 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 	<0.005 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	0.24*** <pre></pre>	
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL1 P-54 P-56 P-57	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B3-061208 B5-061308 B5-061308 LS P54-061008 P54072508 P56-060908	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/10/2008 6/10/2008 6/9/2008	 0.66** 0.005 0.0539 0.0546 0.0295 <0.0053 0.00193 J <0.005 <0.00141 	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	chloride 0.005 0.00321 J 0.0422 B 0.0422 B 0.005 0.00482 J 0.00518 0.00518 0.00518 0.00518 J 0.00207 JB 0.00384 J <0.005	 0.14 0.129 0.145 < 0.010 	0.24*** 0.24*** <0.005 <0.025 <0.025 0.00269 J <0.005 <0.005 <0.005 <0.005 <0.005 0.0094	<pre></pre>	<0.005 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	 0.24*** <0.005 <0.025 <0.025 <0.005 <0.005	 <0.005 <0.025 <0.025 <0.025 <0.0025 <0.005 <0.00172 J <0.005 <0
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL1 P-54 P-56	Sample ID ELLS B1-061208 B2-061208 B3-061208 B4-061208 B4-061208 B5-061308 B6-061308 B6-061308 P54-061008 P56-060908 P56-060908 P57-061108	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/10/2008 6/10/2008 6/10/2008 6/10/2008 6/10/2008 6/11/2008	0.66** 0.005 0.0539 0.0546 0.0295 <0.005 0.00193 J <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.00104 J 	chloride 0.005 0.00321 J 0.0422 B 0.0422 B 0.005 0.00518 0.00518 0.00157 J 0.00207 JB 0.00384 J <0.005	0.14 0.129 0.129 0.145 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0129 0.010 0.0129 0.010 0.0129 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	0.24*** <.0.005 <.0.025 0.00269 J <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.005 <.0.0094 <.0.050	 <0.24*** <0.005 <0.117 <0.124 <0.0549 <0.005 <0.0057 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0069 <0.0171 J 	<0.005 <0.025 <0.025 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	0.24*** <.0.005 < 0.025 < 0.025 0.00229 J <.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.24*** <.0.005 < 0.025 < 0.025 0.00216 J <.0.005 0.00172 J <0.005 <.0.005 <0.005 <0.005 <0.005 <0.005
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL1 P-54 P-56 P-57	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B3-061208 B3-061208 B4-061208 B5-061308 B6-061308 P54-061008 P54-061008 P55-061108 P57-061108 P57-061908	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/10/2008 6/10/2008 6/10/2008 6/10/2008 6/11/2008 6/11/2008 6/9/2008	 0.66** <0.005 0.0539 <0.0546 <0.0295 <0.005 <0.00193 J <0.005 <0.005	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.050 < 0.05	chloride 0.005 0.0422 B 0.0472 B 0.005 0.005 0.00518 0.00518 0.00157 J 0.00207 JB 0.00384 J <0.005	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010 < 0.010 <0.010 <0.010 0.18 D 0.065 J 0.179 J	0.24*** <0.005	0.24*** 0.24*** 0.117 0.124 0.0549 <0.005 0.00257 J <0.005 <0.005 <0.005 <0.005 0	<pre><0.005 <0.025 <0.025 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.050</pre>	 0.24*** 0.005 < 0.025 < 0.025 < 0.029 J < 0.005 < 0.050 < 0.050 	 <0.005 <0.025 <0.025 <0.025 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.051 <0.051
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL P-54 P-56 P-57 P-58	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B5-061308 B5-061308 B6-061308 P54072508 P554061008 P556-060908 P558-060908 P58-060908D	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/13/2008 6/10/2008 6/9/2008 6/9/2008	 0.66** <0.005 0.0539 0.0546 0.0295 <0.005 <l< td=""><td>Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.050 < 0.05</td><td>chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005</td> 0.00482 J 0.00518 0.00157 J 0.00207 JB 0.00384 J <0.005</l<>	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.050 < 0.05	chloride 0.005 0.00321 J 0.0422 B 0.0472 B <0.005	0.14 0.129 0.129 0.145 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 0.085 J 0.179 J 0.202 J	0.24*** 0.24*** <0.025 <0.025 0.00269 J <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.05 0.0094 <0.005 0.0094 <0.005 0.0094 <0.005 0.0094 <0.005 0.0094 <0.005 0.0094 0.005 0.0094 0.005	 0.24*** 0.24*** 0.117 0.1124 0.0549 <0.005 0.00257 J <0.005 <0.	<0.005 <0.025 <0.025 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.00415 J <0.050 <0.050 <0.050	 0.24*** <0.005 <0.025 <0.025 <0.005 <0.050 <0.050	 0.24*** <0.005 <0.025 <0.025 <0.00216 J <0.005 <0.00172 J <0.005 <l< td=""></l<>
Location SOPUS W B-1 B-2 B-3 B-4 B-5 B-6 COP WEL P-54 P-56 P-57 P-58 P-66	Sample ID ELLS B1-061208 B2-061208 B3-061208 B3-061208 B4-061208 B5-061308 B5-061308 P54-061008 P54-061008 P56-060908 P58-060908D P58-060908D P66-061008	ues (mg/L) Date 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/13/2008 6/13/2008 6/10/2008 6/10/2008 6/11/2008 6/10/2008 6/11/2008 6/12/2008 6/10/2008 6/10/2008	 0.66** 0.0539 0.0546 0.0295 <0.005 0.00193 J <0.005 <0.00611 <0.0766 J <0.0868 J <0.0915 <0.0915 <li<< li=""></li<<>	Ether 0.07 0.00438 J < 0.025 < 0.025 < 0.005 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050	chloride 0.005 0.00321 J 0.0422 B 0.0422 B 0.00422 J 0.00518 0.00518 0.00157 J 0.00207 JB 0.00207 JB 0.00027 JB 0.00027 JG 0.00207 JG 0.0050 <0.050 <0.050 <0.050	0.14 < 0.010 0.129 0.145 < 0.010 < 0.010 < 0.010 <0.010 <0.010 0.085 J 0.179 J 0.005 J 0.075 J	0.24*** 0.24*** 0.005 <0.025 <0.025 0.00269 J <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.0094 <0.050 0.0094 J 0.0212 J 0.0175	<pre></pre>	<0.005 < 0.025 < 0.025 < 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.00415 J <0.050 <0.050 <0.050 <0.050 <0.005	 0.24*** <0.005 <0.025 <0.025 <0.005 <0.0196 	 0.24*** <0.005 <0.025 <0.025 <0.026 <0.00216 J <0.005 <0.00172 J <0.005 <l< td=""></l<>

Screening values shown above are the Tier 1 Groundwater Remediation Objectives for the Ingestion Route.
 BOLD indicates the analytical detection of the analyte.

3) Sample ID explanation --> XX-DDDDDD --> XX is the well location at which the sample was collected; DDDDDD is the date on which the sample was collected.

The screening values provided are for Xylenes (total), which is the summation of m,p-Xylenes and o-Xylenes.
 Analytical results for P-93A are from the 2Q08 monitoring event for the Wood River Refinery and were provided by COP.

6) The 6/10/2008 data for well P-54 are considered suspect.

REFERENCES

Illinois Environmental Protection Agency (IEPA); Tiered Approach to Corrective Action Objectives (TACO); Title 35 of the Illinois Administrative Code, Part 742, Appendix B, Table E.

* IEPA; TACO; Groundwater Remediation Objectives for Chemicals not listed in TACO; May 1, 2007.

** U.S. Environmental Protection Agency (USEPA); Region 6 Human Health Medium Specific Screening Levels; December 2007.

*** U.S. Environmental Protection Agency (USEPA), Region 9; Preliminary Remediation Goals (PRGs) Table; October 2004.

LAB QUALIFIERS

B = A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.

D = The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.

J = The target analyte was positively identified below the RL and above the MDL.

URS QUALIFIERS

 \underline{J} = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

CHKD. BY: wmp

<u>LEGEND</u>

▲ URS SOIL/GROUNDWATER SAMPLING LOCATION (MAY-JUNE 2008)

✤ URS GROUNDWATER PROFILING LOCATION (MARCH-APRIL 2006)

- EXISTING COP MONITORING WELL SAMPLED (JUNE 2008)
- EXISTING VAPOR MONITORING POINT SAMPLED (JUNE 2008)
- COP SOIL/GROUNDWATER SAMPLING LOCATION (MARCH 2007)

REFERENCE: SHELL OIL COMPANY, WRB REFINING LLC 2008; RCRA PART B POST CLOSURE PERMIT APPLICATION; DATED JUNE 2008; PREPARED BY URS.

NOTES:

1. LOCATION OF "COP" BORINGS PROVIDED BY CONOCOPHILLIPS.

N

SHELL OIL PRODUCTS U.SPROJECT NO.ROUTE 111/RAND AVENUE VICINITY INVESTIGATION21561979ROXANA, ILLINOIS21561979									
	URS								
DRN. BY:djd 7/1/Ø8 DSGN. BY:taj CHKD. BY:b3	Investigation Locations		FIG. NO. 2						

Т-62

- ▲ URS GROUNDWATER SAMPLING LOCATION (JUNE 2008)
- EXISTING COP MONITORING WELL

LEGEND

- EXISTING VAPOR MONITORING POINTS
- 🔶 EXISTING URS GROUNDWATER PROFILE / CPT LOCATION (2006)
- COP SOIL SAMPLING/GROUNDWATER SAMPLING LOCATION (MARCH 2007)
- EXISTING BP GROUNDWATER MONITORING WELL

REFERENCE: SHELL OIL COMPANY, WRB REFINING LLC 2008; RCRA PART B POST CLOSURE PERMIT APPLICATION; DATED JUNE 2008; PREPARED BY URS. THE CPT LOCATION.

- 3. BORING LOGS AND WELL CONSTRUCTION DETAILS OF EXISTING WELLS (COP B-1, P-56, P-57, P-59, P-73, P-74, AND P-93A AND BP WELL B-6(GØØ6)) SHOWN ON CROSS SECTIONS ARE BASED ON DOCUMENTS SUPPLIED TO URS.
- 4. CROSS SECTION TRACE LINE SHOWS DISTANCE AND DIRECTION EACH POINT WAS PROJECTED TO CONSTRUCT THIS CROSS SECTION.
- 5. GROUNDWATER ELEVATIONS WERE GAUGED ON JULY 2, 2008.

EAST	
P-58 ——∘ C'	
L OIL PRODUCTS U.S. PROJECT	T NO.
E 111/RAND AVENUE VICINITY INVESTIGATION 215619 NA, ILLINOIS	} 79
URS BY: mpm 07/29/08 BY: mpm Cross Section C - C'	G. NO. 6

LEGEND

- ▲ URS GROUNDWATER SAMPLING LOCATION (JUNE 2008)
- EXISTING COP MONITORING WELL GAUGED
- S EXISTING COP WATER PRODUCTION WELLS/OIL RECOVERY WELLS
 - GRADIENT
- **397** CONTOUR LINE (INFERRED WHERE DASHED)

REFERENCE:		
SHELL OIL COMPANY,	WRB REFINING LLC 2008; RCRA PART B POST CLOSURE	
PERMIT APPLICATION:	DATED JUNE 2008: PREPARED BY URS.	

NOTES:		P-€
1. GROUNDWATER GAUGING CONDU	ICTED ON JULY 2, 2008.	
	0 SCALE	200 N FEET
SHELL OIL PRODUCTS U.S ROUTE 111/RAND AVENUE ROXANA, ILLINOIS		PROJECT NO. 21561979
	URS	
DRN. BY:Irm 7/17/08 DSGN. BY:tja CHKD. BY:b3	Groundwater Contour Mc	ip FIG. NO. 8

					SHELL OIL P ROUTE 111/R ROXANA, ILL	AND AVENUE	VICINITY		SCALE	PRO	EET JECT NO. 561979
								:	SCALE	I	ЕЕТ
LEGEND EXISTI	ING VAPO	DR MONI	TORING POINT SA	MPLED					Ø		N 200
6/	/4/2008	D (20 ft)	Benzene Ethylbenzene Toluene m.p-Xylene o-Xylene Methyl tert-butyl Ether	<130 <140 <140 <140 <140 <140 <140		6/3/2008	D (20 ft)	Ethylbenzene Toluene m,p-Xylene o-Xylene Methyl tert-butyl	<	<300 <300 <300 <300 <300	
			Methyl tert-butyl Ether	<130				Benzene	<	<300	

File: P:\ENVIRONMENTAL\21561979 SOPUS ROUTE 111 RAND AVE VICINITY INVESTIGATION/INVESTIGATION REPORT 081108\FIGURES\FIGURE 11 GW ANALYTICAL DETECTIONS MAP.DWG Last edited: AUG. 19, 08 9 10:48 a.m. by: wendy_penningto

		Methyl tert-Butyl Ether	0.00104 J	
		o-Xylene	< 0.005	
0	0/13/2000	m,p-Xylene	<0.010	\mathbf{N}
6	6/13/2008	Toluene	< 0.005	
		Ethylbenzene	< 0.005	
		Delizelle	<0.003	

CHKD. BY:b3

		ΚΕΥ ΤΟ Ε	ORING LO	GS
~~~~	BSURFACE MATER	IAL LEGEND		SAMPLER LEGEND
Graphic <u>Symbo</u>		USCS Classification		
	SAND with little or no fines	SP		Air Knife / Hand Auger Sampler
SAND	Silty SAND	SM		Split Spoon Sampler
	Clayey SAND	SC		Geoprobe - Soil sampling not performed
	Low plastic SILT	ML		Geoprobe Dual-Tube Sampler
SLTS AND CLAYS	Low plastic CLAY Medium plastic CL Silty CLAY or Sandy CLAY	AY CL		Depth Groundwater enters at time of drilling.
	FILL			
NOTES:				
Boring log de ground surfac installation.	tails shown on the followir ee and field conditions at th	ng logs are based upon e time of drilling and well		

					_			Page 1 Of 3
							LOG OF BOR B-1	RING
Depth In feet	Inches Driven	Inches Recovered	(mqq) Ülq	Sampler Graphic	Symbol	nscs	Start Completion Coordinates: Date: 5/14/08 Date: 5/21/08	Northing:792528.13 Easting:2321982.84 Elevation: 443.24
മ്	ĒĞ	<u> </u>	ld	လိပ်	ŝ	Š	DESCRIPTION	NOTES
			0.0			FILL	Gravel base coarse, gravel asphalt, and gravel FILL (FILL) Soft to medium stiff, moist, brown and gray, medium plastic CLAY (CL), trace gravel	Boring advanced to a depth of 8' via hand auger, then continued with geoprobe Slight tar odor
-			0.0			CL		(05/14/08) Sample B-1-03 collected for VOCs
5			0.0				Becomes reddish brown	
			0.0			CL.	Soft, moist, brown, low plastic silty CLAY (CL) Medium dense, moist to wet, brown, fine grained	Ain lunife complete d'Arrow - Arrol 1 - 1
10	48	32	2.1				clayey SAND (SC)	Air knife completed deeper than hand auger. Soil contact not observed.
			3.7			SC	Dark and light brown banding	
							Loose, dry, tan, fine grained SAND (SP)	
15	48	20	3.0					
	48	32	0.9					
20			1.4			SP	Becomes medium dense, fine to medium grained	
	48	32	2.1				Secondo modular dense, nav te modular granod	
			1.8					
Projec	t No.:		2156			and Avem		ft., After hrs.
Drillin	ng Cont ng meth	: ractor: od: <u>Han</u>	R R	loberts	Enviror	umental Di	illing, Inc.	drilling       Hollow Stem Auger - Soil sampling not performed         pler       Split Spoon Sampler         cation       Geoprobe - Soil sampling
Logge	-	W	. Penniı	igton / I	<u>M. Mille</u>	<u>}r                                    </u>	based on field visual observations.	not performed



Page 2 Of 3

			-						Page 3 Of 3
							LOG	OF BOR	ling
					ļ			B-1	
eet		-	_				Start Completion Co	ordinates:	Northing:792528.13
in fé		erec	(ud	50			Date: 5/14/08 Date: 5/21/08		Easting:2321982.84
Depth in feet	Inches Driven	Socie	PID (ppm)		Symbol	nscs	Boring Location: Village of Roxana	Ground	Elevation: 443.24
De	<u>6.</u> 2	Inches Recovered	비	Sampler Graphic	Syi	n n			
							DESCRIPTION SAME: Dense, wet, tan, medium grained, SA		NOTES
							(SP)	AIND.	
			1.8						
									Bottom of liner from 48 - 52 ft crushed.
									Liner from 42 - 56 ft crushed at end; no
									recovery
	48	0		I					
55									
									Liner from 56 - 60 ft stuck in rods; no
									recovery
	48	0		Y					
60 -							Bottom of boring at 60 ft bgs		
							÷ 5		
65									
								ĺ	
H									
70									
			1						
H									
Compl	etion D	epth:	60.0	)0 ft bg	s		Water Depth	h: <u>49</u>	ft., AfterATDhrs.
Project			21561				Water Dept	h:	
Project					and Ra	and Avenu	e Vicinity 🗶 Water 1	level ATD	ATD - At time of drilling
Drilling						mental Dri	ling Inc $\nabla$ Water		hrilling Hollow Stem Auger - Soil
Drilling	g metho	d Hand					- III Air Kni	ife / Auger Samp	sampling not performed
Drilled			J	. Cox			TITE COLUMN Hand P		ation Geoprobe - Soil sampling
Logged		W.	Penning		. Mille	r	<b>URS</b> based on fi	ield visual	not performed

							LOG OF BOI	Page 1 Of 3
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	B-2 Start Completion Coordinates: Date: 5/14/08 Date: 5/20/08 Boring Location: Village of Roxana Groum DESCRIPTION	Easting:2322245.99 d Elevation: 444.21 NOTES
	-					CL	TOPSOIL Soft, moist, brown, low plastic, silty CLAY (CL)	Boring advanced to a depth of 8' via hand auger, then continued with geoprobe
5							Loose to medium dense, moist, brown, fine grained, SAND (SP)	(05/14/08) Sample B-2-04 collected for VOCs
10-	48	24	2.7				Becomes loose, tan, trace silt	
			11.0				Silt grades out	
	- 48	30	3.1			SP	Becomes medium dense, dry	
15-	-		31.4 5.9				Becomes fine to medium grained	
20-	- 48	30	6.1					
2V -	48	30	2.4					
			4.5					
Projec Projec Drillir	et No.: et Name ng Contr ng meth d by:	od <u>· Han</u>	2156 Re R d Auger	oute 111 oberts I · / Dual- J. Cox	and Ra Environ Tube G		e Vicinity Water Depth: ₩ Water level ATD	drilling       Hollow Stem Auger - Soil sampling not performed         npler       Split Spoon Sampler         cation       Geoprobe - Soil sampling



ROXANA WELLS.GPJ URSSTLEV.GDT 8/5/08 21561979 2008 014 6 0

Page 2 Of 3

				-					Page 3 Of 3
								LOG OF BOF	RING
								B-2	
feet		pe	Ê				Start Completion Date: 5/14/08 Date: 5/2	Coordinates:	Northing:792541.10 Easting:2322245.99
h In	S C	es over	udd)	pler	po	Ś	Boring Location: Village of Rox		d Elevation: 444.21
Depth In feet	Inches Driven	Inches Recovered	(mqq) (Ilq	Sampler Graphic	Symbol	nscs			
-				0,0			DESCRIPT	ION	NOTES
							SAME: Medium dense, gray, o grained, SAND (SP)	ary, line to medium	
-	1		530				Becomes moist		
	- 48	34		Y					
								~	
	4		597				Becomes wet	Ϋ́	
				7					
55-			1134						
	48	42		Y					
	-		1122						
_									
				$\mathbf{V}$					Sample liner broke off within rods. Pull rods to collect sample. Blind drill to 64'
-	- 24	2							bgs
60-									
	-								
	48	0							
						- - -			
-	-								
-				<b>I</b>			Bottom of boring at 64 ft bgs		
65-	ļ								
-	1								
-	-								
-	-								
	4								
70-	1								
	-								
-	1								
	-								
	1								
	1	l	£ A (	 ۱۵ Ք Ի~				Water Depth: 53	ft After ATD h
	letion D t No.:		<u>64.</u> 21561	<u>)0 ft bg</u> 979	<u>ə</u>				ft., After hrs. ft., After hrs.
-	t Name				and R	and Avenu	e Vicinity	👤 Water level ATD	ATD - At time of drilling
Drillin	ng Conti	actor:	Re			mental Dri		⊥ Water level after     ∭ Air Knife /	drilling Hollow Stem Auger - Soil sampling not performed
		d: Han	d Auger	/ Dual- . Cox	<u>Tube G</u>	eoprobe	Rig Type: 6610DT	Hand Auger Sam	pler Split Spoon Sampler
Drille Logge			Penning		1. Mille	r	URS	Unified Soil Classific based on field visual	not performed
~~55~								observations	Geonrobe Dual-Tube Sampler

ъ

		1	I	1				Page 1 Of 2
							LOG OF BOR B-3	ling
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symboi	nscs	Start Completion Coordinates: Date: 5/14/08 Date: 5/21/08 Boring Location: Village of Roxana Ground DESCRIPTION	Northing:792218.77 Easting:2321690.48 I Elevation: 430.69 NOTES
				222	XXXX	TOPSOIL	TOPSOIL	Boring advanced to a depth of 8' via hand auger, then continued with
			0.0			CL	Clayey FILL (FILL) with gravel and asphalt Medium stiff, moist, brown, medium plastic CLAY (CL) With sand	geoprobe
5-							Becomes gray and brown mottled, sandy Loose to medium dense, moist, brown, fine to	
							Loose to medium dense, moist, brown, line to medium grained SAND (SP) Becomes loose, tan, trace silt	(05/14/08) Sample B-3-06 collected for VOCs
	48	24	0.9					
			0.2				Silt grades out	
15-	48	32	1.3			SP		
	48	32	1.6				Becomes medium dense	
20-		52	1.4				Becomes reddish brown	
	48	32	2.4				Becomes tan	
			1.5					
-	Completion Depth:     48.00 ft bgs       Water Depth:     35.5       Water Depth:     35.5							
•	Project No.:       21561979         Project Name:       Route 111 and Rand Avenue Vicinity         Water level ATD       ATD - At time of drilling         Water level ATD       ATD - At time of drilling							
Drilling	g Contr	ractor:	R	oberts I	Environ	mental Dri	Illing, Inc.	drilling [] Hollow Stem Auger - Soil sampling not performed
Drilling	g metho	od <u>· Han</u>	d Auger	· / Dual-	<u>Tube G</u>	eoprobe	Rig Type: <u>6610DT</u> Hand Auger Sam	pler Split Spoon Sampler
	Drilled by: J. Cox Unified Soil Classification based on field visual observations.							



RAND 2008 21561979 ROXANA WELLS.GPJ URSSTLEV.GDT 8/5/08

	<u>,</u>	1		1				Page 1 Of 3
							LOG OF BOR B-4	ang
Depth In feet	Inches Driven	inches Recovered	PID (ppm)	Sampler Graphic	Symbol	NSCS	Start Completion Coordinates: Date: 5/15/08 Date: 5/22/08 Boring Location: Village of Roxana Ground DESCRIPTION	Northing:792229.68 Easting:2321998.37 I Elevation: 441.86 NOTES
			0.0			FILL	Asphalt, gravel base coarse FILL (FILL) Medium stiff, moist, brownish gray, silty CLAY (CL) Becomes brown, sandy, with small sand zones	Boring advanced to a depth of 8' via hand auger, then continued with geoprobe
			0.0			CI.	becomes brown, sandy, with small sand zones	
5			0.0			СН	Stiff, moist, brown and red, mottled, medium to high plastic CLAY (CH) with sand	
			0.0			CL SC	Medium stiff, moist, brown with red mottled, low to medium plastic CLAY (CL) Loose to medium dense, moist, brown, clayey SAND (SC)	0945 (05/15/08) Sample B-4-06 collected for VOCs
10	48	16	0.3				Loose, moist, orangish brown, fine to medium grained, SAND (SP)	
15	48	30	1.2				Becomes medium dense	
	48	32	0.8			SP		
20		-	1.2					
~v			1.2				Becomes tan	
	48	32	0.0				Becomes dry	
Completion Depth:       58.00 ft bgs         Project No.:       21561979         Project Name:       Route 111 and Rand Avenue Vicinity         Drilling Contractor:       Roberts Environmental Drilling, Inc.         Drilling method:       Hand Auger / Dual-Tube Geoprobe       Rig Type:         Drilled by:       J. Cox         Logged by:       W. Pennington / M. Miller       UCRS           Water Depth:     48.5       ft., After     ATD - At time of drilling         Water level ATD       ATD - At time of drilling         Water level after drilling       Hollow Stem Auger - Soil         sampling not performed       Split Spoon Sampler         Unified Soil Classification       Begorobe - Soil sampling not performed								



979 ROXANA WELLS.GPJ URSSTLEV.GDT 8/5/08 2008

								Page 3 Of 3
							LOG OF BOF	RING
							B-4	
ec.		71	-				Start Completion Coordinates:	Northing:792229.68
ln 5		ere	, mq	<u>ت</u> ور			Date: 5/15/08 Date: 5/22/08	Easting:2321998.37
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Boring Location: Village of Roxana Ground	d Elevation: 441.86
Ď	ĔĞ	Re	lld	ωõ	Ś	ŝ	DECODIFIZION	NOTEO
							DESCRIPTION SAME: Dense, wet, gray, medium grained, SAND	NOTES
						SP	(SP)	
			18.7	<b>Å</b>				
					///	SC	Medium dense, wet, gray, fine grained, clayey SAND (SC)	
			28.4		Ľ././		Dense, wet, gray, medium to fine grained SAND	
							(SP)	
	48	48		Å				
55-								
35						SP		
					· · · · ·			Calid tim brings to 50th an day to
								Solid tip driven to 58' bgs due to recovery issues
-	24	0						,
					*		Bottom of boring at 58 ft bgs	
60								
65								
-								
70-								
//								
			<b>.</b>				105	
		epth: _		00 ft bg	\$		Water Depth: <u>48.5</u> Water Depth:	ft., After <u> hrs.</u> ft., After hrs.
Project			21561 Bo		and D	and Association		ATD - At time of drilling
						and Avenu	V Water level offen	drilling 🔲 Hollow Stem Auger - Soil
	Drilling Contractor: <u>Roberts Environmental Drilling, Inc.</u> Mair Knife / sampling not performed							
Drillin		011141	a zsugul I	/ Duai-	A HOC U		Rig Type: <u>6610DT</u> Hand Auger Sam Unified Soil Classific	
Logged		w	Penning		4. Mille	r	based on field visual	not performed
LOERec	лоу.						observations	Geonrobe Dual-Tube Sampler

-       -       0.0						LOG OF BOF B-5	KING				
Image: Solution of the	Inches Driven Inches	Inches .	Recovered PID (ppm)	Sampler Graphic Symbol	nscs	Date: 5/15/08 Date: 5/21/08 Boring Location: Village of Roxana Ground	Easting:2321801.86 d Elevation: 429.98				
5       0.0       (CL)       1345 (05/15/08) Samp collected for VOCs         24       18       3.6       Becomes medium stiff, dark brown         10       48       48       1.8       CL       Trace fine grained sand         15       48       48       2.3       Becomes soft, grayish brown         15       2.6       Becomes soft, grayish brown       Becomes sandy         48       48       2.3       Medium dense, wet, brown, fine grained, clayey SAND (SC)         20       48       48       1.8       Sec         48       48       1.8       Becomes modelum dense, wet, brown, fine grained, clayey SAND (SC)       SAND (SC)					FILL	Gravel and asphalt FILL (FILL) Gray, silty CLAY (FILL) Dark gray clayey GRAVEL (FILL) Brown, silty CLAY (FILL)	Boring advanced to a depth of 6' via hand auger, then continued with				
-       24       18       3.6         10       48       48       2.6         14       48       48       1.8         15       2.3       CL       Trace fine grained sand         15       2.6       Becomes soft, grayish brown         Becomes soft, grayish brown       Becomes sandy         20       48       48         48       48       2.3         20       48       48         48       48       2.3         48       48       2.3         48       48       2.3         48       48       2.3         48       48       2.3         48       48       2.3         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50       50         50<			0.0			Soft, wet, grayish brown, low plastic, silty CLAY (CL)	1345 (05/15/08) Sample B-5-04.5 collected for VOCs				
10       48       48       1.8        Trace fine grained sand         15       48       48       2.3        Becomes soft, grayish brown         15       48       48       1.8        Becomes soft, grayish brown         16       48       48       2.3        Medium dense, wet, brown, fine grained, clayey         20       48       48       1.8        Sc         20       48       48       1.8        Medium dense, wet, brown, fine grained, clayey         20       48       48       1.8         Medium dense, moist, tan, fine to medium grained, clayey         20       48       48       1.8             20       50              20               20               20               21	24 1	18	8 3.6			Becomes medium stiff, dark brown					
15       48       48       2.3       CL       Frace fine graned said         15       48       48       2.6       Becomes soft, grayish brown         15       48       48       1.8       Becomes sandy         20       48       48       2.3       Medium dense, wet, brown, fine grained, clayey         20       48       48       1.8       Medium dense, wet, brown, fine grained, clayey         20       48       48       1.8       Medium dense, moist, tan, fine to medium grained, sAND (SC)	48 4	48 41	48 48	48 48	48 48	48					
15       48       48       2.6       Becomes soft, grayish brown         15       1.8       1.8       Becomes sandy         48       48       2.3       Medium dense, wet, brown, fine grained, clayey         20       48       48       1.8         48       48       1.8       Sc         48       48       1.8       Sc         20       48       48       1.8         20       Sc       Medium dense, wet, brown, fine grained, clayey         SAND (SC)       Sc         9       Medium dense, moist, tan, fine to medium grained, SAND (SP)			1.8		CL.	Trace fine grained sand					
20     48     48     1.8       48     48     2.3       20     48     48       48     48       48     48       48     48       50     50       50     50       50     50       50     50       50     50       50     50       50     50       50     50	48 4	48									
48       48       1.8         20       48       48         48       48       2.3         Medium dense, wet, brown, fine grained, clayey SAND (SC)         50       5c         48       48         48       48         48       48         50       5c         Medium dense, wet, brown, fine grained, clayey SAND (SC)         5c       5c         5c       Medium dense, moist, tan, fine to medium grained, SAND (SP)			2.6								
20 48 48 0.6 48 48 1.8 SP Medium dense, wet, brown, line grained, clayey SAND (SC) Medium dense, wet, brown, line grained, clayey SAND (SC)	48 4	48				Becomes sandy					
-     48     48       1.8     1.8       SP     Medium dense, moist, tan, fine to medium grained, SAND (SP)			2.3			Medium dense, wet, brown, fine grained, clayey SAND (SC)					
sp Medium dense, moist, tan, line to medium grained, SAND (SP)	48 4	48			sc						
			1.8		SP						
ompletion Depth: 48.00 ft bgs Water Depth: 35.5 ft., After AID	etion Depth	Depth	48	8.00 ft bgs		Water Depth: 35.5	ft., AfterATD hrs.				
roject No.: ft., After ft., After	t No.:		2156	51979		Water Depth:	ft., After hrs.				
roject Name: Roberts Environmental Drilling Inc.						$\frac{\nabla \mathcal{L}}{\nabla} \text{ Water level after}$	drilling 🔲 Hollow Stem Auger - Soil				
rilling method. Hand Auger / Dual-Tube Geoprobe Rig Type. 6610DT Hand Auger Sampler Split Spoon	g method:	ractor	land Auge	<u>r / Dual-Tube G</u>	acata Dr leoprobe	- Rig Type: <u>6610DT</u> Hand Auger Sam					
arilled by J. Cox Unified Soil Classification Geoprobe -	l by:			J. Cox		Unified Soil Classifie	cation 🔲 Geoprobe - Soil sampling				



RAND 2008 21561979 ROXANA WELLS.GPJ_URSSTLEV.GDT_8/5/08 CAN 2

<b></b>	ĩ	1	1	1				Page 1 Of 2
							LOG OF BOF B-6	RING
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	StartCompletionCoordinates:Date: 5/15/08Date: 5/19/08GroundBoring Location: Village of RoxanaGround	Northing:791610.47 Easting:2322074.96 d Elevation: 432.75
				)))	XXX		DESCRIPTION Gravel (FILL)	NOTES Boring advanced to a depth of 6' via
-			0.0				Dark gray and black, mottled, silty CLAY (FILL)	hand auger, then continued with geoprobe
	-		0.0			FILL	Becomes soft, moist, gray and brown	
5-			0.0				Becomes gray, with brown	1250 (05/15/08) Sample B-6-04 collected for VOCs
			0.0	$\langle \langle \langle \langle$			Black cinders and gravel (FILL), trace clay	
	24	24	0.5				Soft, moist, dark gray, low plastic, silty CLAY (CL) Becomes medium stiff, dark brown	
			1.4				Becomes soft, brown	
10-	48	30	2.3					
			2.2			CL	Becomes dark brown Becomes medium stiff	
	48	30	3.9	V			Becomes medium stiff to stiff, brown, with orange mottling	
15			4.3					
	48	30	3.9				Dense, moist, brown, fine grained clayey SAND (SC)	
20			3.4			sc		
	48	36	4.2			Loose, moist, brownish gray, fine to medium grained SAND (SP), trace silt		
			4.7			SP	Silt grades out	1205 (05/19/08) Sample B-6-23 collected for VOCs
	Becomes moist to dry							
Project Project	Completion Depth:       50.00 ft bgs         Project No.:       21561979         Project Name:       Route 111 and Rand Avenue Vicinity         Drilling Contractor:       Roberts Environmental Drilling, Inc.    Water Depth:38 ft., AfterATD hrs. Water Depth:ft., After hrs. Water level ATD ATD - At time of drilling							
Drillin	Drilling method: Hand Auger / Dual-Tube Geoprobe Rig Type: 6610DT Hand Auger Sampler							
	J. Cox       Unified Soil Classification       Geoprobe - Soil sampling         Logged by:       W. Pennington / M. Miller       URS       Unified Soil Classification       Deformed         Cogged by:       W. Pennington / M. Miller       URS       Unified Soil Classification       Deformed							



ROXANA WELLS.GPJ_URSSTLEV.GDT_8/5/08

								Page 1 Of 1
							LOG OF BOF	
*							GP-12(II)	
Depth In feet		E	Ê	<b>-</b>			Start Completion Coordinates: Date: 5/15/08 Date: 5/22/08	Northing: N/A Easting: N/A
pth I	Inches Driven	Inches Recovered	(mqq) Olq	Sampler Graphic	Symbol	nscs	Boring Location: Village of Roxana Ground	d Elevation: N/A
De	<u> </u>	Se Se	비	Gra Gra	Syl	SN	DESCRIPTION	NOTES
T				$\overline{)}$	<u></u>	TOPSOIL	TOPSOIL	Boring advanced to a depth of 5' via
-	-						Soft, moist, brown, low plastic, silty CLAY (CL) Medium stiff, moist, brown, low to medium plastic	hand auger, then continued with geoprobe
	-					CL	CLAY (CL) Trace small roots	1025 (05/15/08) Sample GP-12(11)-04 collected for VOCs
5-							Medium stiff, moist, red brown, low plastic, silty CLAY (CL)	
	36	24	0.8			SC/CL	Soft, wet, brown, sandy CLAY to clayey SAND (CL/SC)	
			1.0		(XII)		Trace silt	
	-		1.2				Loose, moist to dry, tan, fine grained SAND (SP), trace silt	
10-	- 48	24	0.7				Silt grades out	
-	- 48	32	1.8			SP		
15-			1.5					
	- 48	32	2.3					1425 (05/22/08) Sample GP-12(II)-17 and GP-12(II)-17-DUP collected for VOCs
-	-		1.9					
20-							Bottom of boring at 20 ft bgs	
	Bottom of boring at 20 ft bgs							
	-							
	4							
	]							
	Completion Depthy 20.00 ft bgs Water Depthy ft After here							
-	Completion Depth:         20.00 ft bgs         Water Depth:         ft., After         hrs.           Project No.:         21561979         Water Depth:         ft., After         hrs.							
	Project No.: Route 111 and Rand Avenue Vicinity Water level ATD ATD - At time of drilling							
Drilli	ng Conti	ractor:				<u>mental Dri</u>	ung, Inc.	sampling not performed
	Drilling method: Hand Auger / Dual-Tube Geoprobe Rig Type: 6610DT Hand Auger Sampler Unified Soil Classification Geoprobe - Soil sampling							
Logge	-	w	. Pennin		1. Mille	r	based on field visual	not performed
	Logged by:							

Page 1 Of 1



# 2008 WELLS

B-1	
B-2	
B-3	
B-4	
B-5	
B-6	

# ConocoPhillips WELLS

P-54
P-56
P-57
P-58
P-66
P-73
P-75
P-93
















LOC	CATIO	N MAI	p		 بر جريم			wei		IY W	A Revers Village No.	GE_1_OF
	OXANA	VILL	AGE HA	u \		6 0 0	Ē	DA1			Cloudy, low 70s	
=	<u>~~~</u>	<u></u>	<u> </u>	لاحد	•	0 44	HIGHWAT 1		* 03=23=03	DAKLED	<u> </u>	
		AS	PHALT P	AKING	LOT		QIH	8Y DRA	R. Chapin & J. Pawlik	BY	SAMPLING METHOD 1 1/2" ST	
N				•	+ P-5	4		}	HOO 7 4 1/4" Hollow-Stem A		1 . 36' to 34'	(2'1 Bentanita
		× FEI	NGE X			•		PAC			Seat 734' to sur	face (34') coment
CAS	a 🕽	TY#E	Sch	edule	: 40 PV	'C			DIAMETER	2''	LENGTH 38*	DIA
schei	H 🕨	TYPE	Scn	edn Le	40 P				0.01" DIAMETER	2"	<u>ыркати 2.5*</u>	101AL 63'
MOISTUAL CONTENT	DMING	THEFT	MARCITY	INUME NO.	TIP READING	H1430	SAMPLE SAMPLE RECOVERY	PEKETAATIOH AESISTANCE	итно	OGY/REM	ARKS	WELL COMPLETION FLUSH
					1	0 -	+				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MOUNT
			·			1 -	<b>‡</b> .	<u> </u>	4			
						2 -	<b>†</b> _		-			
	i					3 -	+					
άτy	p: 0 c		ł	1	0.8	4	1.11	2_	0.00'-0.06' FILL, crush 1 0.06'-0.58' CLAT, mottled			
damp damp		soft soft	plas sl			- 5	-	3	0.58-1.11' CLAY, mottled			
			plas			5 -						
						7 -	-					
		÷					-		-			
								3				
damp	∞d.	loose		Z	1.0		0.51	5	0.00'-0.51' SAND, dark br	wn, very	fine-to fine-grained.	CASING
						10	-					ENT G
						1	 ·			۰.		N N
						2	-					NN
damp		soft				3	-	-	D.00"-0.18" CLAT, light b slity, and sa	d <del>y</del> .		NN
jamp 1	•bod		plas.	ว่	0.4	▲ <del> </del> +	- 1.18		0.18"-0 70" SAND, EAN, fil slightly silt	e-to very		
damp i damp i						- 5 -			0.70'-0.74" CLAY, Light b 0.76'-1.18" SAND, light to grained.	ovn co can n to can,	fine to very fine -	
						• +	-		-	:		$\mathbf{N}$
iamp no	м. I	oose				7 +	-		0.00"-0.18" SAWD, tan to 1	rown, fine	grained, silty-	
iamp   •	xod - 1 xod - 1	0050				•	• -		0.18'-0.45' SAND, dirty wi 0.45'-0.65' SAND, lavered fine-grained,	tan andera slightly s	inge, fine-to very alty.	
lamp	5	oft		4	0.4	9	.85	4	0.65'-0.85' CLAT, light ca	n, silty,	sandy.	
		ſ				20 +		4				

LOCATION MAP	31		SHELL OIL COMPANY		*AGEOF
	Yalan I		WELL P-54 LOCAT	on Floxana Village	Hall Southern Parking
ROXANA VILLAGE HA	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ξ	DATE 03-29-89 WEATH	EN ) Cloudy, low 70	)\$
		HIGHWAY 111	LOGGED R. Chapin & J. Paulik By	Hathes Drillin	15
ASPHALT PA	ARKING LOT	Ŧ	DRILLING A 1/4" Hollow-Stem Auger	ЗАМРЦИЮ ► 18" 50	lit spoon
Ň	•+ P-54		GRAVEL \$ 63' to 36' (27') MB40 sand		34° (2°) Bentonite surface (34°) Cement
CASHAR TYPE Schedu	ule 40 PVC		DIAMETER 2"	LENGTH 381	HOLE DIA 8 1/4"
SCREEN > TYPE Schedu			SLOT 0.01" DIAMETER 2"	LENGTH 25'	TOTAL DEPTH 63'
		- 2	T T T T T T T T T T T T T T T T T T T		WELL
MOISTURE GONTENT BOATHE	LAWFLE NO. TIP READING (PP.N) DEPTH	RECOVERY	E STREE	MARKS	COMPLETION
	20		• <u>•</u>		
		ł			\$A 1A
		F			
damp mod. loose	5 0.2 1.	.5'	5 0.00'-1.50' SAND, light tan, fine 8 rounded to subround	erto medium-grained, grains.	
		L			
		F			
damp mod. Loose	9		5_0.00'-0.80' SAND, yellow to tan, f	ine to medium grain	ed C
vell	6 0.6 1	26	8 composed of clear, whi orange, rounded grains 0 staining.	te, black, red and , possible yellow	CASING
damp mod. loose		-	0.80-1.22' SAND, light can to whit increase in white and c	e, medium-grained, lear grains.	6
	2	F			
damp mod. loose	3		D.00'-0.45' SAND, light gray to wh grained.		
damp mod. Loose vell	7 0.4		tan grains increasing	percentages, which	
damp mod. loose		╶╴╎╎╴╵ ┝╼╍	gives sand a tan color. 1.14'-1.26' SAND, tan, medium-grain grains becoming domina	ned, orange and tan	BENTONITE
		I	0.00'-0.15' SAND, tan to orange, m 0.15'-0.23' SAND, light gray, media	eoium-grained. um-grained, white	
	7 +		and clear grains predo	ninate.	†≦! ! !
			0.15'-0.21' SAND, light gray, meda and clear grains predou 0.23'-0.26' SAND, dark gray to blav black organic material 0.26'-0.76' SAND, light gray, mediu	minate. ck, composed of 452 , appears to be natu	GRAVEL PACK

.

· _ _ _ )

		ON MAP	LGE HA	ARKING	LOY	1, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		gł	WELL NUM	<ul> <li>03-29-89</li> <li>R. Chapin &amp; J. Paulik</li> <li>MG L</li> </ul>	LOCATION WEATHER DRILLED BY	/ELL LOG Roxana Village Ha Parking Lot Cloudy, low 70's Mathes Drilling Saurung Method 18" Splir	ll Sou	******
Ň	) 	× FEH	ice X	• •	- P-5	54			GRAVI			METHOD 18" Split SEAL 36' to 34' 34' to sur	Spoor (2*) face (	n Benconite (34°) cement
cas	ma )	TYPE	Schedi	ule 40	) PVC					DIAMETER 2"		ценати ₃₈ .	H( Di	DLE
307	EEN }	TYPE :	Schedu	ule 40		- <del>7-</del>				0.01" DIAMETER 2"		LENGTH 25"	70 02	07AL 19TH 631
MOISTUNE	PORTING	DINITIA	PLUTICET	LANT CHO.	TIP READING	DEPTH	TANA	RECOVERY	PINETAATION RESISTANCE	LITHOLC	QY/REM/	AAKS		WELL COMPLETION
no 151		. loose l to med. dense		9	0.8	40 - 1 - 2 - 3 -			6	0.00-1.29' SAND, light gray composed of cies orange, rounded g	ir, white	-to coarse-grained, , black, red, and		
sat.	vell	med . dense		10	1.0	7 -		• 🖸	10	.00'-1.19' SAND, light gra	y, coarse	e-grained.	GRAVEL PACK	SCREEN
sat.	vell	loose to med . denso		11	0.3		- - - - - - - - -			.00'-1.50' SAND, gray, coa	rse-grain	ed, rounded grains.		
sat.	ell.	10054		12 1	.1	9 1		6 11 17		00'-1.50' SAND, light to m grained.	edium gra	ay, coarse^to medium		
										• • •		•		

	_	144 11-43																7
· . ·	lo	CATIC	N MAI	2			1			SHE	LL OIL C	OMPAN	Y — W	ELL L	.OG PAGE	<u> </u>	_0*	
		OXAN	A VILLA	IGE HA	цÌ	·ÌÌ	٩٢			WELL	<b>}</b> P-64		LOCATION	▶ Roxana Parkin	Village Hall g Lot	Southe	rp	
			<u></u>	<u></u>	اد		00				• 03-29-89		WEATHER	Claudy	, low 705			
									ILL ANWAR	LOGGED BV	R. Chapin 6	J. Paulik	OMILLED BY	Hathes	Drilling .			
			A81	HALT #/	AKING I	LOT							er	SAMPLING METHOD	18" Split S	poon		1
	Į₩ ₩		+ FEI	(C# X	••	- P-5	4,		0	PACK	▶ _{631 to 36} *	(27*) M940	sand	SEAL	36' to 34' (2 34' to surfac	2') Ber :e (34	tonite ) cemer	it
	CASH	va 🕨	TYPE	Sched	ule 4	0 PVC		- <u></u> -				DIAMETER 2"		LENGTH	38*	HOLE OIA	8 1/4*	
	SCRE	en 🕨	TYPE	Sched	ule 4		<del></del>	·····		LOT 0.	.01"	DIAMETER 2"		LENSTH	25'	TOTAL	63'	
	MOISTUNE	bontma	DENAITY	MANCIN	LUNE KO	TIP READINO (PPM)	DEFTH	1 June 1		ATHTAK		штносс	)GY/REMA	AKS		COM	WELL APLETIO	н
							eo								4	1   9	1	
							1 -	_								GRAVEL PACK	SCREEN	
							2	- I - ,							-	PAC	NB	
							э-	-	F	N	O SAMPLE TAKE	IN 63.5' - 65	51		-	ł	TD	-
							4 -	-							-	-		
							s –		F						-	L		
							• -	-	F	-						_		
							7-	-	F	$\exists$					•	-		
							•	-	F	<b>-</b>			•		-			
	Î						•								•	-		
						{	70 -	-							-	-		
							. +		F	_						-		
							1-	•	F	=								
		Ì	Ì	.			2 +	• '	E									
Į							3+	•							-	<b>-</b> -		
							•‡								-	-		
							, <u>†</u>								4	-		
							1			-					ł	_		
							• +			1					Ţ	-		
							7+		•••••						+	-		1
l							• ‡	- [		7					-4-	•		
							• ±	ł							4 			
							-	ŀ		-					<u>†</u>			
1			[			•	• +	ł		-					-T			İ

.

-,... ·

.

.



. .

· · ·





.

.

	TANK FARM	SHELL OIL COMPANY		_ <u></u> O# <u></u>
TAACK	t M STREET	- MANECH 7-56	LOCATION & North Property Vest	Fonce line
FENCE		- QATE \$ 4-2-89	WEATHER . Raining. 50's	
N Ű HE.	HAST	togged J. Pavlik Br	oricito ) Haches Drilling	
1 1 4 4 4 7 9	56 TANK FARM	METHOD 4 1/4" Hollow-Sten Au		
		GRAVEL 63.5" to 36.5" (27") ME40 sand	36.5' co 34.5' (2') 8 36.5' co 0' (34.5') c	event HOLE 8 1/6"
CASHE TYPE Sch	hedule 40 PVC	DIMETER 2"	UNATH 38-51	04
screen > TYPE Sch	hedule 40 FVC	SLOT 0.01" CHAMETER 2"	LEHGTH 25"	101AL 04FTN 63-5"
Monitive Conitien Bothing Bothing	Luncing Luncing Luncing Luncing	ă I LITHOLO VIII	)gy/REMARKS	
	1+			GRAVEL PACK
	2		•	SCREEN
	3 +		-	
	13 749 4 -1.50	5 19 0.00' - 1.50' SAND. medium	- to coarse-grained, trace of	TD
wet poor mod.	1.30 F.30	26 fine-gravel hydrocarbon	Lonuque co anoronnora surviva	-
				Ŧ I
				Ŧ I
			•	$\begin{bmatrix} & & & \\ & & & \\ & & & \\ \end{bmatrix}$
			. · ·	<b>-</b>
				$\frac{1}{1}$
	76			Ŧ
				‡
				‡
				‡
				‡
				<u>†</u>
				<u>+</u>
	••			<u> </u>
	<u>.</u>			
		· · · ·		



_





.....



• •

- --- ---



ł



.

5-110		нмар						61		COMPAN	Y W	<u>FILLO</u>	<u> </u>	AGE 3		4	<b>I</b> .
II I		Í		ANK F	ARM		A				т — — —	······································	l				
15	13	- STREET				•	1		IGR P-58		]	North Prop			Corne	r 	
FENCE	$\sum$	ST \					<b>N</b> `	QATE	▶ 1-30-89		WEATHER	Cloudy, Ra	ining.	20.8			
		18	<u> </u>		LST	FET	·····		HO > J. Pavl	ík	ORKLED BY	Mathes Dri	Iling	<del></del>			
	P!	58	щ <i>(</i>						~~ 7	Stem Auger				t Spoon			
田		Ξ		ι(Γ	<u>iii</u>		ŢП	GRAV	a. ) 60° co	36.5' (27')		36.5' tq 34	.5' (2'	) Ben	conit	e	
CASING	<b>1</b>	TIPE	Sche	dule.	40 PVC		<u></u>	<u></u>		DIAMETER Z	*		.5*		* 8 1/4	·"	
scree		IVPE	·					SLOT		DIAMETER 2	······································		<u></u>			[	
		1	Γ.	T	LA PVC		Τ.		0.01"	2	-	4			WEL		ĺ
MOLE UN	DATAG		TANCT	1 A	PPM)	DEPTH	New York	MEMETAATION RELIETANCE		LITHOL	OGY/REMA	AK\$		co	MPLE		
10		ļ			2			22			· · · · · · · · · · · · · · · · · · ·						]
		}	1			48 -	Ţ.		1					Ŧ			
				·		1-	╞							<b>-</b> ‡-			
						2 -	+-							+			
					1	<b>a</b> -	Ţ							Ŧ			
				<b> </b>		4 -	L.	5	0.00*-1.50*	SAND.dark brow subangular to	n,medium-1 subrounder	to coarse-gr: 1 graing.tra	tined.	1			
mois	<b>p</b> 001	med.		9	725		1.50	16 18		fine-gravel, hy	drocarbon	ador.		·			
							F	<b> </b>						ł			
						• •								Ŧ			
·						7	F		••					+			
						8			•					+			~ •
WEE P	oor	med.		10	989		1.25	12		AND, dark brown ubangular to	subrounded	to coarse-gra i grains,trae	ilaed. se of	GRA GRA	s		
veç s	re11	međ.		10	707	<b>8</b> 0		25	9.20*-1.25*	ine-gravel.ga SAND.dark brow subrounded gra	n,medium-;	grained.suba	ngular		CREEN		
·							-			Botodidea Kr	ine ine o				Ē		
							-							+×			
	ĺ					2 -								Ŧ			
						3 -								+			
st. p	700	100#4		11	120	4	ī.5°	6	0.00*~1.25* 9	ubrounded gra	ins, trace	o'coarse gra of angular.	ine-	+			
net		med.	plas			. <b>5</b> -		5	1.25*-1.50* 0	ravel.gas odo IAY.dark gree	n.			+			
					·		•							1			
1						• 7	- -			•				+			2
						7	-						÷	ŦI			
·						• -	-		0.09'~0.55' \$			o fine-grain	ed	+			
at. p		Lauise	Ť			• -		4.	0.55'-1.09' S	ubrounded gra		e-grained.si	lcy.	+			
1		0051	1	12 4	5.7		(+ ) [*] ]	2	-1-11 -1-01 S			e-grained. #		TL			

and the second 
		TAN	K FAI				SH	ELL OIL COMPAN		/ELL LOG March Property Sque	i_4or_4
FENCE					1	4	OATE	> 1-30-89	WEATHER	Cloudy, Raining, 50	's
	ATARET			STRE	ET		LOGGI BY		ORELED BY	Mathew Drilling	<u>`</u>
	8	; C					METHO	NG 4 1/4" Nollow-Stem Auger		SILING 18" Split 5	
	司	L L	LLA	AD T	iy CK	Ш	GAAVE	a ) 63.5 to 36.5 (27°) H840 sand		36.5' to 34.5' (2') 34.5' to 0' (34.5')	
Crement >	TYPE	Schee	fule 4	0 770			•••	Durneter	2**	URHOTH 38.5"	HOLES 1/4H
	TYPE	Schee	lule 4	n PVC			stor	0.01" DIAMETER	2"	UBH3TH 25*	тотац обяти 63.5*
MONITURE CONTENT BOATTANE	LIM10		SHELLE HO	TIP READING (PPM)	DEPTH	LUMLE MCOVERT	MMETAATION ALBISTANCE	LITHO	OGY/REM	LARKS	COMPLETION
	1			r	40 -						
					1 -	[		м. С.			SCREEN GRAVEL PA
					2-	-					PACK
					<b>- c</b>					. · ·	TD
sat. poor	med.		13	51.3	. 4	 1.5'	5 13 18	0.00'-1.50' SAND.dark br subrounded g	ova.media rains.	a-to course-grained.	
					\$	 -	19				Ī
					• -		·····				Ī
					7-1	<b>1</b>					
					<b>₽</b>	-					
					<b>*</b>	-			·	• • • •	
					70	-					
					1 -	-					
					2-	-				•	
					3-	-					+
					4	-		1			
					- <b>۲</b>	-		1			
					• •						
					1-				•	•	‡
					• •	-		- -			‡
					• •					•	+
					•0			1		• · · · · · · · · · · · · · · · · · · ·	······
•											

























	<b>E</b> AN	ION	MAP					- we	SHELL OIL COMPANY - PAGE 2 OF 3
		Ĭ		C.					UMBER WELL P-93 LOCATION FISE STREET. NO. PROPERT
					78)			1	ATE 5-11-91-3-22-91 WEATHER CLOUDY, WINDY
		. ŧ .	- X	K/				BY.	
'N	•	+ *	- 20	<u> </u>	<u> </u>		مــــــــــــــــــــــــــــــــــــ	ORI	THOD 7 7/8" TRI-CONE METHOD SPOON ON JAR
;	Ĩ	R Ta	rack	<u>ي</u>	- 	10102		GR/	AVEL GROUT TO
		<del>;,,,,,</del> ,,,,,,		• •			<u>.</u>	PAC	UN SURFALE
C4	SINC	3	ŢYP	e S(	CHI	ΞÐί	JLE	4	U PVC UIAMETER 8 LENGTH OU DIA-60"-T0:77/
SC	REE	N	TYP	E N/	4	,			OT NA DIAMETER NA LENGTH NA DEPTH 136
URE: NI	9	2	ICITY I	щщ	9.	_	SAMPLE RECOVERY	PENETRATION RESISTANCE	
MOISTURE	SORTING	DENSITY	PLASTICIT	SAMPLE NUMBER	READING	рертн	ECO	ESIST	LITHOLOGY/REMARKS COMPLETION
20	- Si	19	<u>a</u> _	ωz	· • •		50.02	a a	
mist	velt	looe				20-		<u> </u>	0.00'-1.30' SAND, tan, fine-grained, some
1.000				11	2	21-	H.30		very fine-grained, little silt.
·						77	-		
moist	zeil	lóose					-		- 0.00'-0.93' SAND, tan, black laminated.
1.000		Indian	~	12	28	23-	-0.93		hine-grained, some very rine-
						24	<del>.</del> .		grained, little silt.
mois	mod	loose		· · · ·	۰ <b>،</b> .	2.7	-		- 0.00'=0.92' SAND, tan, fine-grained, little + 13 - 4
Í.				13	9.	25-	-0.92		very fine-grained, trace of
						$26 - \frac{1}{2}$	÷ .		medium-grained and silt.
moist	mod	loose				<u> </u>			- 0.00'-0.87' SAND, tan, fine-grained, some - 1933 of
				14	27	27-	-0.87		medium-grained, little very fine
						28-	-		grained.
moist	mod	loose				2 <b>U</b> .	-		-0.00'-0.92' SAND, tan, fine-grained, some + 444
		·		15	2	29 +	-0.92		medium-grained, little very
·.•						70	•		fine,-grained.
moist	mod	loose	· [			30+			0.00'-1.13' SAND, tan, fine and medium $-$
IIMOL				16	30	31-	-1.13		grained, little very fine-grained.
mici	mod	lonse				, †	•		0.00°-0.15' SAND, tan, fine and medium-
			· .	<b> </b>		21			grained, little very fine-grained.
moist	mod	loose		17	·9. ]	53-	1.12		0.15'-1.12' SAND, tan, medium-grained, some
2 				· ·  .	·		· · .		fine-grained, trace of coarse-
	mon	loose				) ⁴ - T			0.00°-0.92° SAND, tan, medium and fine- $\frac{1}{4} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \end{bmatrix}$
moisi	nivu	10026	h	8	19.3	i5	3.92'		grained, little very fine-grained.
· .	.	· · ·	ľ	· [.,		1			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		10000	· [			° <u>1</u>			0.00'-0.91' SAND, tan, medium-grained,
moist	tiidu	loose	1	9	4 3	7	9.91		some coarse-grained, trace
		~	•						of fine-grainea.
		hara	-			8		. :	0.00°-0.95° SAND, tan, medium-grained,
noist	uud	oose		$\mathbf{v}_{0}$	30.3	٩Ţ	95		some fine-grained, little coarse-
	.		ŕ			+			grained.
			<u> </u>			0-1-			
XPL	NATI	ON G	4444	T 97 0	ิสิตม	<b>r</b> , 200	610	202	SAND SCREEN












	GROUNDWATE	R DEVELOPMENT DATA SHEET		
PROJECT NAME: RAND AVENUE		PROJECT NUMBER:21561294.	00001-2/561979	<b>6</b> .
WEATHER: 705, 0 0004 FIELD PERSONNEL: Brian Williamson Billy	S Magazi			
MONITORING WELL ID: B-(	> 11 100 re			
				• • • • • • •
INITIAL DATA				
Well Diameter:in.	Gallons/Lin.Ft1:	0 1115	Ambient PID/FID Reading:	ppm
Total Depth of Well: $5341$ ft Depth to Water: $48.23$ ft	Vol. Of Water Column: Min. Purge Volume:	0.415 gallons (3 volumes)	Wellbore PID/FID Reading:	ppm ft
Height of Water Column: 10.18 ft	Doubh to Tom of Concent	419 21 4		
1 0.163 gallons/ft for 2 inch well, 0.653 gallons/ft for 4-i PURGE DATA	non weil	( 0.0408 × 5 (well val) =		
Purge Method: ball & check va	lve (Qwater)/bailer	43.31 $0.0408 \times 5 (well +315) =$		
	oth to	Temp		DO ORP
(gals) Time Water	er (ft) Color Odor		811 1068 14	mg/l) (mv)
2.4 1218		10.53 19.83	749 363 19	2.4 -8.3
2.8 1224	tan	6.50 19.54		67 -1.8
3.2 1241	clear V	6 39 19.20	1718 282 2.	42 -0.8
3.4 1247		6.60 19.54	753 244 2	
Start Time: 143 0945 Average Purge Rate (gallons/min): 0, 019	Purge Stop Time: 1250 Well Volumes Purged:		Total Volume Purged: 554 Calibrated on: 52	3.5 gallons
SAMPLING DATA Sampling Method:				
Sample Date:	Sample Time:		Analysis:	
COMMENTS:				
~				

PROJECT NAME: Rte (11) Rand and Wicinity	PROJECT NUMBER: 21561979
DATE: 5/29/08	· · · · · · · · · · · · · · · · · · ·
WEATHER: TOS, SUNDY	
FIELD PERSONNEL: S. Margere	
MONITORING WELL ID: 3.2	

### INITIAL DATA

	49.71 umn: <b>13</b> .49 een: <b>4</b> 8.40 h well, 0.653 gallons/ft for 4-	7	ft Vol. ( ft Volurft Min.   ft	ns/Lin.Ft ¹ : ne Of Water Column: Purge Volume: <del></del> 13,49 0.0408	From Drilling: 17 (13.97) 15 (12.75	-gallons ( <u>5</u> vol		V/FID Reading: <u>©</u> V/FID Reading: <u>©</u> APL <u>NA</u> ()		۲ ۲ ۴
Purge Volume		Depth to				Temp	S Cond.	Turbidity	DO	ORP
(gals)	Time	Water (ft)	Color	Odor	pH	(0°)	m(umhos/cm)	(NTUs)	(mg/l)	(mv)
4.5	1618	NA	brown	gasonine 14	5.98	20.03	1.157	1552	1.08	-10.3
4.15	1626		0£		0.50	19.13	1.1HJ	31.3	0,92	- 29.3
5	1636	<b>V</b>	↓ ↓		10,41	19.16		63.0	0.83	-29.7
									11/201	
				<u> </u>						
							L			
Start Time: Average Purge Rat	(gallons/min):	03 Pu	ge Stop Time: Il Volumes Purged:	1640	Elapsed T Water Qu	ime:	0 min SI SSY	Total Volume P Calibrated on:	burged: 5 5/24/08	gallo
SAMPLING DAT Sampling Method: Sample Date:	ГА		Samj	ole Time:			Analysis:	0		
COMMENTS:			DTB =	19.70 cm						
······				1						

			GRO	UNDWATER D	DEVELOPMENT DA	TA SHEET				
DATE: 5 30 WEATHER: 10	S, breezy EL S. Moore		<i>licinity</i>		PROJEC	T NUMBER:_ 🗷 (	561979			
INITIAL DATA Well Diameter: [ Total Depth of Well: Depth to Water: [ Height of Water Col Depth to Top of Scr 10.163 gallons/ft for 2 incl PURGE DATA Purge Method:	In. 4.5.9 34.53 umn:3/.41 een:3/.67 h well, 0.653 gallons/ft for 4-i	ç	ft Vol. Of ft Volume ft Min. Pt	of Water Introdu	$\frac{4760.47}{0.47}$ uced From Drilling: 2,39 $,0408 \times 5 =$	y	allons Wellbore Plations LNAPL / DN	D/FID Reading:	0. 0 . 0 A	F F f
Purge Volume (gals) 3:0 3:0 3:0 3:0 3:0 3:0 3:0 4:0	Time 0920 0926 0935 0944 0944	Depth to Water (ft)	Color brown ttbrown cloudy	Odor NA	рН (0.64 (0.36 (0.65 (0.33) (0.33)	Temp (°C) 20, 40 19, 74 19, 75 19, 42 20, 16	Cond. (µmhos/cm) /, 3 4 7 /-36 2 /-345 /-345 /-335	Turbidity (NTUs) 307 281 7.65 232	DO (mg/l) 1.37 2.22 2.03	ORP (mv) 65.5 2-1 -18.5 -23.6
7.0			(Jours)		6.54 6.54	19.99	1.3/6 1.274 1.274 1.267	149 148 NGS <del>255</del> *~	220	-29.3 -36.2 -30.9

0949

Sample Time:

Purge Stop Time:_____ Well Volumes Purged:__

109

Elapsed Time: 109 min Water Quality Meter ID: 451 556

min

Analysis:_

4.0

galle

Total Volume Purged: 4 Calibrated on: 5-30-0

0

SAMPLING DATA	
Sampling Method:	
Sample Date:	-

0800

Start Time: 0800 Average Purge Rate (gallons/min): 0.04

COMMENTS:



PROJECT NAME: Rie III Rand Ave Vicinity	PROJECT NUMBER: 21561979
DATE: 5 30 08	
WEATHER: 703 SUMMU	
FIELD PERSONNEL: S. M. BORE	
MONITORING WELL ID: 6 - 4	

-

### INITIAL DATA

Well Diameter: Total Depth of Well; Depth to Water: Height of Water Colu Depth to Top of Scra 1 0.163 gallons/ft for 2 inch PURGE DATA Purge Method:	4(c.35 umn: 11.34 een: 42. well, 0.653 gallons/ft for 4-		ft Vol. Of ft Volume ft Min. Pu	s/Lin.Ft ¹ : Water Column: e Of Water Introduc irge Volume: $11,34 \times 0,04$			allons Wellbore PID allons LNAPL / DNA	/FID Reading: C	2.0	ـــــــــــــــــــــــــــــــــــــ
Purge Volume		Depth to			1	Temp	Cond.	Turbidity	DO	ORP
(gals)	Time	Water (ft)	Color	Odor	pH	(0°)	(µmhos/cm)	(NTUs)	(mg/l)	(mv)
2.5	1330	NA	Itbrown	NA	10.78	23.29	1.494	3.15	. 443	-31.7
2.15	1342				7.04	21.50	1.530	321	182	- 55.0
4,0	1350		Jondy		705	22.14	1.513	1338	2.65	-31-6
<i>TFI</i> C	1.2.30	V	cionary	~	6.01	20.03	1. 546	1135	3.36	-20.9
Start Time: Average Purge Rate	/023 (gallons/min):	025 Pu	rge Stop Time: <u>14</u> Il Volumes Purged:	5	Elapsed Water Qu	Time: $\frac{187}{15}$	5.56	Total Volume Calibrated on	Purged: 4.0	
SAMPLING DAT Sampling Method: Sample Date:	A		Sample	Time:			Analysis:	0		
COMMENTS:	for rect	large time				×.				

WEATHER: 304	L'S, MOOM		cinity		PROJEC		21561979			
INITIAL DATA								· .		
Well Dlameter: Total Depth of Well: Depth to Water: Height of Water Colu Depth to Top of Scree	In. 4615	19 36	ft Vol. C	ns/Lin.Ft': If Water Column: ne Of Water Introdu Purge Volume:	0.50 Iced From Drilling:		alions Wellbore Pil alions LNAPL / DN	D/FID Reading: D/FID Reading: APLNA ()	0.0	F F f
Purge Volume (gals)	Time	Depth to Water (ft)	Color	Odor	рН	Temp (°C)	Cond.	Turbidity	DO	ORP
2.5	1600	NA	H brin	NA	10.40	22.68	(µmhos/cm)	(NTUs)	(mg/l)	(mv) -48.8
3.0	1604			1	6.05	20.98	1.144	1189	1.36	- 8.9
3.5	1605		1 Avenue and a second		6.14	20.45	0978	967	1,22	- 35.3
4.9.15.30	1676	1	- cloudy	~	4.30	20.77	1.035	292	3.21	-38,8
4.25	1620		gung	¥	6,45	20.11	1.072	246	3.81	-29.4
			1 <u></u>				10			
			June 1		·		1994 - Angel	an f		e - lo
			2 10				- the second	atsi	4	100
								4.50		
							The second	2.4		
							1 A	<u></u>	and and	
Average Purge Rate	65 1420 (gallons/min): <u>0.(</u>		rge Stop Time: Il Volumes Purged:	1620	Elapsed Elapsed Water Qu	Time: 120 nality Meter ID: <u>75</u>	) 1 5.56	Total Volume Calibrated on:	Purged: 4.6 5-30-0	galk
SAMPLING DAT Sampling Method:	A		Sama	le Timer				0		
Sample Date:			Samp	le Time:	******		Analysis:		and the second	
COMMENTS:	y 4					1 C				· · · · · · · · · · · · · · · · · · ·

PROJECT NAME: Rele 111/Rand ave Vianity	PROJECT NUMBER: 21561979
WEATHER: 105, SUMPLY FIELD PERSONNEL: 5, None	
MONITORING WELL ID: 6-6	

### INITIAL DATA

4

Well Diameter: Total Depth of Well: Depth to Water: Height of Water Col Depth to Top of Scr 10.163 gatons/ft for 2 inc PURGE DATA; Purge Method:	in	4 74 80	ft Vol. Of ft Volume	s/Lin.Ft1: i Water Column: e Of Water Introdu urge Volume:	0.43 c.43 ced From Drilling:	g	allons Weilbore Pil allons LNAPL / DN		0,0	F f
Purge Volume	Time	Depth to	0.1		· · ·	Temp	Cond.	Turbidity	DO	ORP
(gals)	Time /0/3	Water (ft)	Color dk brown	Odor	pH	(0°)	(µmhos/cm)	(NTUs)	(mg/l)	(mv)
.3.25	1018.	- ive	approvid		6.33	20,47	1.70%	9.55	2.26	3.6
3.5	1024				10.36	20.25	1.775	745	2.13	-14.8
4.0	1032	$\checkmark$	cloudy		6.09	20.32	1.768	247	2.89	+9.3
			1						- <u>A.S.</u>	-141
a la de la deserver										
					· · · · · · · · · · · · · · · · · · ·					
										+
									100	
									1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1
									(attained)	
Start Time: 08 Average Purge Rate	9 [0 9 (gallons/min):	Pui 228 We	ge Stop Time: I Volumes Purged:	1032	Elapsed	Time: <u>142</u>	556	Total Volume Calibrated on:	Purged: 4	galle
SAMPLING DAT Sampling Method:	A							0		
Sample Date:			Sample	Time:		4	Analysis:	V		
COMMENTS:			st reading.	Developm	rent Not	Complete.				
bailer	retreiva	1 attemp	ted.		3.			٧.	2012/04	
										and the second s

a s-formation and the

a state of the second 


#### LOW FLOW GROUNDWAN LA SAMPLING DATA SHEET

	oute 111 & Rand Vicnit	ty		PROJECT NUMBER:	21561979	FIELD PERSONNEL:	W. Pennington & S=Moore≈ R. Wernig
DATE: 6/12/08		ATHER:	805,	sunny			_
MONITORING WELL II	): B-1			5	SAMPLE ID:	B1-061208	

#### INITIAL DATA

Well Diameter: <u>1</u> in Total Well Depth (btoc): <i>ちるいイ</i> /… ft	Water Column Height (do not include LNAPL or DNAPL):	<u>10, 72</u> ft bto et.	volume of Flow Through Cell ): <u>1,150</u> Minimum Purge Volume =	mL
Depth to Water (btoc): 47.09 ft	Place Pump at: Total Well Depth - 0.5 (Screen Length + DNAPL Column H	·	<b>a</b>	mĹ
Depth to LNAPL/DNAPL (btoc): ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height :	and Screen Length are $\geq$ 4ft,	Ambient PID/FID Reading: 0.0	ppm
Depth to Top of Screen (btoc): <u>43.47</u> ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL C	Column Height) = <u>53,05</u> ft bto	c Wellbore PID/FID Reading: 77.3	ppm
Screen Length:ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Tota	al Well Depth - 2 ft = ft btoo	;	

HEADSPACE PID = O.Oppm

#### PURGE DATA

Pump Type: Bladder Pump / Low Flow

Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
400	0916	47,39	it orn cloudy	y. st. petrlike	6.41	22.41	1.839	727.4	5.50	210.5
1600	0928	47.39	1		6.28	22.01	1,790	286.5	6.10	221.2
2800	0940	47.39			6.16	22.17	1.720	115.7	7.41	2334
4000	WARPES 50 0952	47.39	clearing		6.09	22.48	1.705	47.3	7.57	209.5
5200	1004	ĺ	1		6,02	22.62	1.700	28.0	8,24	202.4
6400	1016	1			5.92	22.52	1.644	5.7-50-7-WMF	812	204.9
7600	1028		V		5.83	22.61	1.681	2.4	8.18	218.8
8800	1040			artum.	5.85	22,67	1.1050	3.1	8.02	227.4
									-	
Start Time:	8912		Elaps	ed Time:	93 min			ity Meter ID: YSI 6820		
Stop Time:	1045		Avera	nge Purge Rate (mL/mi	in): / 4	): / OO Date Calibrated		ated: <u> </u>	8	
·					,		-	s +		
SAMPLING DA	TA									
Sample Date:	i 1	8	Samı	ole Time:	1045		Lab Analys	is: VOC 8260		
Sample Method:	Bladder Pump / Low Fl	ow	Samp	ble Flow Rate (mL/min	): <i>i f</i>	20	QA/QC:			
					/ C	<u>~</u>	-, <u> </u>			
COMMENTS:										
									-Sulfate:	ppm
								Ferrous Iron	(filtered).	
								Total Purg	le Volume:?	3 <i>00</i> mL

#### LOW FLOW GROUNDWAILR SAMPLING DATA SHEET

PROJECT NAME: Route 111 & Rand Vicnity PROJECT NUMBER: 21561979 FIELD PERSONNEL: W. Pennington & & Moore R. Wernig DATE: 6/12/08 WEATHER: 805, 50000, humid MONITORING WELL ID: B-2 SAMPLE ID: B2-061208

#### **INITIAL DATA**

Well Diameter: 1 in	Water Column Height (do not include LNAPL or DNAPL): 12,95 ft bt	toc Volume of Fl
Total Well Depth (btoc): 62.19 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is ≥4 feet,	Minimum Pur
Depth to Water (btoc): 49,24 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =ft bf	toc (3 x Flow Tl
Depth to LNAPL/DNAPL (btoc): ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are $\geq$ 4ft,	Ambient PID/
Depth to Top of Screen (btoc): 4719 ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = <u>57,72</u> ft b	otoc Wellbore PID
Screen Length: /5ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = ft bt	toc

Volume of Flow Through Cell ): 1,150	mL
Minimum Purge Volume =	
(3 x Flow Through Cell Volume): 3,450	mL
Ambient PID/FID Reading:	ppm
Wellbore PID/FID Reading: 675	ppm

Headspace PID = 108 ppm

#### PURGE DATA

Pump Type: Bladder Pump / Low Flow

ORP Temp Cond. Turbidity DO Purge Volume Depth to (mV) Odor (mS/cm) (NTUs) (mg/L) Color pН (°C) (mL) Time Water (ft) 25,38 1.052 940.6 0,70 -53.1 49.25 mod. octr. 5.67 1130 It. brn. 500 -57.5 7931 49,25 24.19 1.064 0,64 1700 1142 5,47 458.8 0.68 -51.5 2900 49.25 5.21 23.55 1.072 1154 23.67 0,73 -41.6 1.074 172.1 clearing 4100 1206 5,06 57.7 0,70 49.4 23.50 1,072 5380 1218 4.97 -47.6 0.73 1,070 26.1 4.86 23.47 6500 1230 -48,8 ~ 9.8 0,60 1242 4.88 23.51 1.068 7700 Start Time: wwp-1+30 1125 Elapsed Time: www.75mm 80min Water Quality Meter ID: YSI 6820 1245 Date Calibrated: 6/12/08 180 Stop Time: Average Purge Rate (mL/min): SAMPLING DATA Sample Time: 1245 Sample Date: (0/12)08 VOC 8260 Lab Analysis: QA/QC: Sample Flow Rate (mL/min): (B2-06/208D) Sample Method: Bladder Pump / Low Flow 100 Dup COMMENTS: -Sulfate: -ppm----Ferrous Iron (filtered): nnm Total Purge Volume: 7500-""mL

#### $\sim \sim \sim \sim$

PROJECT NAME: Route 111 & Rand Vicnity	PROJECT NUMBER:	21561979	FIELD PERSONNEL:	W. Pennington & S. Moore R. Wernig
DATE: $\frac{1}{2} \circ 8$ WEATHER:	80s, sunny, humid			<u> </u>
MONITORING WELL ID: B-3	S S S S S S S S S S S S S S S S S S S	Sample ID:	B3-061208	

#### INITIAL DATA

Well Diameter: 1in	Water Column Height (do not include LNAPL or DNAPL): パルロ	ft btoc	۷
Total Well Depth (btoc): <u> 45, 9</u> 울 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is $\geq$ 4 feet,		N
Depth to Water (btoc): 3+.03 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =	ft btoc	
Depth to LNAPL/DNAPL (btoc):ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are ≥ 4ft,		A
Depth to Top of Screen (btoc): 30.95 ft	Place Pump at: Total Well Depth - (0.5 X Water Column Height + DNAPL Column Height) =	ft btoc	V
Screen Length: 15 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft =	_ ft btoc	

Volume of Flow Through Cell )	mL	
Minimum Purge Volume =		
(3 x Flow Through Cell Volu	ne): <u>3,450</u>	mL
Ambient PID/FID Reading:	0.0	ppm
Wellbore PID/FID Reading:	22.0	ppm

Headspace PID = 10,7ppm

#### PURGE DATA

Pump Type: Bladder Pump / Low Flow

ORP Turbidity DO Temp Cond. Depth to Purge Volume (mS/cm) (NTUs) (mg/L) (mV) Odor (mL) Water (ft) Color pН (°C) Time - 102.4 1.23 1,229 65.2 fairly clear of petr. - like 5.48 25.27 1410 34.04 1200 -102.2 1 225 16.4 107 5,27 25,12 1424 34.04 2400 -101.9 24.72 1,227 54 0.90 5.13 1432 34.04 clear 3600 -98.3 1.07 24,32 1.222 2.7 34.04 5.07 4800 1440 1.07 -99,2 1,221 1,2 4,96 24.32 1,000 1448 ł -97,2 1.14 24.44 1,220 5.2 5.03 1456 7200 Elapsed Time: 52 min 1408 Water Quality Meter ID: YSI 6820 Start Time: 150 Date Calibrated: 6/12/08 Average Purge Rate (mL/min):_____ 1500 Stop Time: SAMPLING DATA 6/12/08 Sample Time: 1500 VOC 8260 Lab Analysis: Sample Date: QA/QC: Sample Flow Rate (mL/min): 150 Sample Method: Bladder Pump / Low Flow COMMENTS: ---Sulfate: -ppm--Ferrous Iron (filtered): -m<del>op</del> 7800 mL Total Purge Volume:

2

#### LOW FLOW GROUNDWAR A SAMPLING DATA SHEET

PROJECT NAME: Route 111 & Rand Vicnity	PROJECT NUMBER: 21561979	FIELD PERSONNEL:	W. Pennington & S: Moore & R. Wernig
DATE: $G/12/08$ WEATHER: $SO_{S}$	mostly sunny, humid		5
MONITORING WELL ID: B-4		124-061208	

#### INITIAL DATA

		-			
Well Diameter: 1in	Water Column Height (do not include LNAPL or DNAPL):	1173	_ft btoc	Volume of Flow Through Cell ): <u>1,150</u>	mL
Total Well Depth (btoc): 57.03 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is ≥4	feet,		Minimum Purge Volume =	
Depth to Water (btoc): 45.90 ft	Place Pump at: Total Well Depth - 0.5 (Screen Length + DNAPL Column	n Height) =	_ft btoc	(3 x Flow Through Cell Volume): 3.450	mL
Depth to LNAPL/DNAPL (btoc): ft	If Depth to Top of Screen is < Depth to Water AND Water Column Heig		_	Ambient PID/FID Reading: 0,0	ppm
Depth to Top of Screen (btoc): 42.63 ft	Place Pump at: Total Well Depth - (0.5 X Water Column Height + DNAP	L Column Height) =51.77	ft btoc	Wellbore PID/FID Reading: 41. S	ppm
Screen Length: 16 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: T	otal Well Depth - 2 ft =	_ ft btoc		
	•				

#### PURGE DATA

Pump Type: _____ Bladder Pump / Low Flow

_____

Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pH	Temp (°C)	Cond. (mS/cm)	Turbidity (NTUs)	DO (mg/L)	ORP (mV)	
1200	1538	45.90	brn	none	5.68	26.44	1.787	1253.9	8.54	422,3	
2400	1546	45.90	Į	}	5.92	27,19	1.824	11970	2.38	99.2	
3400	1554	45,90			6,02	27.18	1.830	884,3	2.41	77.5	
4800	1402	45,90			6.15	27.25	1,825	556.9	2,31	63,5	
4000	1610	45,90	cleaning		6.11	27.28	1. 821	156.7	2,27	60,2	
7200	1618	1			6.00	27.10	1.833	114.6	2.37	42.4	
8400	1626	l		/	5,95	17.05	1,830	115.4	2.35	70,3	
Start Time:	1530		Elaps	ed Time:	60 m	И	Water Quality	Meter ID: YSI 6820	)		
Stop Time:	1630		Avera	ge Purge Rate (mL/n	nin): <u>/50</u>	>	_ Date Calibrat	ed: <u>()</u>	2/08		
SAMPLING DA	<b>ΤΑ</b> <i>ω</i> /12	108	Samr	le Time:	1630		Lab Analysis	: VOC 8260			
-	Bladder Pump / Low			le Flow Rate (mL/m		~	QA/QC:				
oanipic memou,					in):	0					
COMMENTS: Water c	coming to	the surface	containea	d air bub	bles so tur	bidity was	ıld		-Sulfate:	ppm	
not s	ettle down	complete	ly					Ferrous Iro	n (filtered):	ppm	
		ut				••••••		Total Pur	ge Volume:9	1000 mL	

# Headspace PID = 0.0

PROJECT NAME: Route 111 & Rand Vicnity	PROJECT NUMBER: 21561979	FIELD PERSONNEL:	W. Pennington & S. Moore R. Wernig
DATE: $\omega/13/08$ WEATHER: $70_5$ ,	cloudy, slight rain		
MONITORING WELL ID: B-5	SAMPLE ID:	B5-061308	

#### INITIAL DATA

Well Diameter: 1 in	Water Column Height (do not include LNAPL or DNAPL): 12,74	ft btoc	Volume of Flow Through Cell ): 1,150mL
Total Well Depth (btoc): <u>46.13</u> ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is $\geq 4$ feet,		Minimum Purge Volume =
Depth to Water (btoc): 33.37 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =	ft btoc	(3 x Flow Through Cell Volume): 3,450 mL
Depth to LNAPL/DNAPL (btoc):ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are ≥ 4ft,		Ambient PID/FID Reading:ppm
Depth to Top of Screen (btoc): 31.13 ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = 39.75	ft btoc	Wellbore PID/FID Reading: 85,9 ppm
Screen Length: 15 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft =	ft btoc	

.

#### PURGE DATA

Pump Type: _____ Bladder Pump / Low Flow

# headspace PID = 4.8ppm

.

Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	рН	Temp (°C)	Cond. (mS/cm)	Turbidity (NTUs)	DO (mg/L)	ORP (mV)
1100	0836	33.38	brn.	none	6,34	20,29	0.990	986.7	0.81	-93.8
2200	0847	33.38	1	1	6.30	19.82	0.988	813.4	0.75	-97.9
2300	0858	33.38			6.30	19.66	0.984	620.2	0.73	-42.4
4400	0909	33.38	It.bm.		6.31	19.49	0.982	353.3	0,80	-92.7
5500	0920	1	1		6.32	19.55	0.978	/85.3	0,74	-94.3
6600	0931	1			6.31	19,169	0,975	83.2	0,73	-95.9
7700	0942				6.30		0.973	48,0	0.72	-97.0
8800	0953				6.27	19.70 19.64	0.974	30.1	0.72	-97.0
99.00	1004	1	ļ		6.30	19.62	0,973 0,974 0,976	10.0	0.71	-97.8
							-			
									· · · · ·	
			-							
Start Time:	0825		Elap	sed Time:	100 m	nin	_ Water Quality	y Meter ID: YSI 6820	)	
Stop Time:	1005		Aver	rage Purge Rate (mL/r	nin):/				08	
SAMPLING DA	TA									
Sample Date:	6 13 08	3	Sam	ple Time:	1005		Lab Analysis	S: VOC 8260		
Sample Method:	Bladder Pump / Low	Flow	Sam	pie Flow Rate (mL/m	in):	100	QA/QC:			
COMMENTS:			,							
COMMENTO.									_Sulfate:	-meq
								-Ferrous iro	n (filtered):	ppmppm
								Total Pure	ge Volume:/	0000 mL

#### LOW FLOW GROUNDWAILR SAMPLING DATA SHEET

PROJECT NAME: Route 111 & Rand Vicnity PROJECT NUMBER: 21561979 FIELD PERSONNEL: W. Pennington & S. Moore R. Wernig DATE: 6/13/08 WEATHER: 705, over cast, intermittent rain MONITORING WELL ID: B-6 SAMPLE ID: B6-061308

#### INITIAL DATA

Well Diameter: 1in		Wa
Total Well Depth (btoc): 46.98	_ft	lf D
Depth to Water (btoc): 35.81	_ft	Pla
Depth to LNAPL/DNAPL (btoc):	ft	lf D
Depth to Top of Screen (btoc): 31.9 3	_ft	Pla
Screen Length: 15	_ft	lf S

 Vater Column Height (do not include LNAPL or DNAPL):
 //, / ?
 ft btoc

 Depth to Top of Screen is > Depth to Water AND Screen Lenth is  $\geq 4$  feet,
 is  $\geq 4$  feet,
 ft btoc

 Depth to Top of Screen is < Depth to Water AND Water Column Height) =</td>
 ft btoc
 ft btoc

 Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are  $\geq 4$ ft,
 is  $\geq 4$  ft,
 ft btoc

 Iace Pump at: Total Well Depth - (0.5 X Water Column Height + DNAPL Column Height) =
 = 4/1, 4/0 ft btoc

 Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft =</td>
 ______ft btoc

8

	Volume of Flow Through Cell ): 1,150	mL
	Minimum Purge Volume =	
	(3 x Flow Through Cell Volume): 3,450	mL
	Ambient PID/FID Reading: 0,0	ppm
;	Wellbore PID/FID Reading: 3. 6	ppm

Headspace PID = 15,4ppm

#### PURGE DATA

Pump Type: Bladder Pump / Low Flow

ORP Temp Cond. Turbidity DO Depth to Purge Volume (mV) (mS/cm) (NTUs) (mg/L) Odor (°C) (mL) Time Water (ft) Color рΗ 35.82 6.35 93.3 4.45 -79.1 V.SI. Cloudy 19.84 1,600 1100 1110 none 5.24 -83.60 6.37 35.83 clearing 19.65 1,702 57.1 2200 1121 5.09 -82.7 35.82 6.38 19.53 1.752 34.4 1132 3300 24.9 4.95 - 84.7 19:46 1.789 6.40 35.82 4400 1143 5.7 4.90 -80,6 19,45 5500 1154 6.40 1806 . 400 42-13-Es July 1059 Elapsed Time: Col min Water Quality Meter ID: YSI 6820 Start Time: Date Calibrated: 6/13/08 1200 100 Average Purge Rate (mL/min):_____ Stop Time: SAMPLING DATA Sample Time: 1200 6/13/08 Lab Analysis: VOC 8260 Sample Date: QA/QC: (B6-061308EB) Sample Flow Rate (mL/min): Sample Method: Bladder Pump / Low Flow EB100 COMMENTS: -Sulfate:--ppm -Eerrous fron (filtered): nnm Total Purge Volume: Gi OO mL

#### LOW FLOW GROUNDWALER SAMPLING DATA SHEET

_mL _ mL _ppm _ppm

HEADSPACE PID = O.2 ppm

PROJECT NAME: Route 111 & Rand Vicnity		21561979	FIELD PERSONNEL:	W. Pennington & S. Moore - R. Wernig
DATE: 6/10/08 WEATHER: upper 70's				<u> </u>
MONITORING WELL ID: P-54	SAM	MPLEID: 054	4-061008	

#### INITIAL DATA

Well Diameter: $\mathcal{A}$ in	Water Column Height (do not include LNAPL or DNAPL): when 15.27 15.72 ft btoc	Volume of Flow Through Cell ): 1,150
Total Well Depth (btoc): 62.78 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is $\geq 4$ feet,	Minimum Purge Volume =
Depth to Water (btoc): 47,000 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =ft btoc	(3 x Flow Through Cell Volume): <u>3,450</u>
Depth to LNAPL/DNAPL (btoc): ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are $\geq$ 4ft,	Ambient PID/FID Reading: 0.0
Depth to Top of Screen (btoc): 37.78 ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = $54.92$ ft btoc	Wellbore PID/FID Reading:
Screen Length: <u>25</u> ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = ft btoc	

#### PURGE DATA

Pump Type: Monsoon Stainless Steel Submersible Pump

Temp Cond. Turbidity DO ORP Purge Volume Depth to Odor (mS/cm) (NTUs) (mg/L)(mV) Water (ft) Color (°C) (mL) Time рΗ 47.08 gravish-brow, 19,20 0.915 114.3 0.107 507.7 1530 5,66 none 1250 513,7 47.08 Moude 5,00 19.32 0.940 78.7 0,45 2500 1535 19.18 0.43 511.7 47.08 5.55 0.957 61.7 1540 3750 508.9 52.6 0.39 5.54 19.11 0,963 1546 42.08 5000 5,52 0.9600 35,2 506.2 clearing 19.03 0.33 6250 1550 7500 19,00 0.969 27.5 0,32 504.8 1555 18.9 501.6 5.51 19.00 0.972  $\mathcal{O}, \mathcal{Z}_i$ 8750 1600 0.974 5.51 19.02 0,30 498.3 14.3 1605 9000 6.30 497,0 10.4 10250 1610 47 min 1525 Water Quality Meter ID: YSI 6820 Start Time: Elapsed Time: 6/10/08 250 1612 Date Calibrated: Average Purge Rate (mL/min): Stop Time: SAMPLING DATA 6/10/08 1612 Lab Analysis: VOC 8260 Sample Date: Sample Time: QA/QC: (P54-061008M5) P54-061008M5D Sample Method: Monsoon / Low Flow Sample Flow Rate (mL/min): 250 MSMSD COMMENTS: Possible problem with ORP sensor in YSI sonde. -Sulfate: ppm Ferrous Iron (filtered): mag Total Purge Volume: 11750 mL

#### LOW FLOW GROUNDWALER SAMPLING DATA SHEET

50 <del>- 250</del> 90 <del>- 1500</del> 750 <del>- 1750</del> 70 <u>- 2000</u> 7250	1651 1554 1601 1600 1600 1611	52.04 52.04 52.06 52.06			5.46 5.38 5.38 5.38 5.39 5.32	24,23 24,17 24,28 24,36 24,36 24,29	1.555 1.602 <b>1.612</b> 1.631 1.632	1.3 1.5 1.4 0.8 1.1	0.73 0.69 0.69 0.69 0.65	-70,3 -70,1 -70,1 -70,4 -75,4 -75,4
Depth to Water (b Depth to LNAPL/D Depth to Top of S	$\frac{2}{(btoc): \underline{45,08}}$ inc): <u>52,08</u> invAPL (btoc): <u>40,08</u> icreen (btoc): <u>40,08</u> icree	t Place Pump at: <u>ft</u> If Depth to Top t Place Pump at:	Total Well Depth – 0. of Screen is < Depth Total Well Depth – (0 h and/or water colum	5 (Screen Length + DN to Water AND Water C .5 X Water Column Hei	Lenth is ≥4 feet, APL Column Heigl Column Height and Ight + DNAPL Colu	$\frac{3,00}{1}$ screen Length are $\geq 4ff$ mn Height) = $58.55$ ell Depth - 2 ft =	ft btoc (i ft btoc (i ft btoc We ft btoc	lume of Flow Through himum Purge Volume 3 x Flow Through Cell bient PID/FID Reading Illbore PID/FID Reading PACE PID = 1 Turbidity (NTUs) 44, 8	i Volume): <u>3,450</u> g: g: <b>2</b> ,65	n p p p p p p p p

#### LOW FLOW GROUNDWATL. SAMPLING DATA SHEET

PROJECT NAME:	Route 111 & Rand V	licnity	PROJECT NUMBER:	21561979	FIELD PERSONNEL:	W. Pennington & S. Moore- R, Werning
DATE: 6/11/0		WEATHER: 805,				have a second
MONITORING WELL	D: P-57		Ś.	AMPLE ID:	P67-061108	

#### INITIAL DATA

INITIAL DATA				
	Water Column Height (do not include LNAPL or DNAPL):	ft btoc	Volume of Flow Through Cell ): <u>1,150</u> n	nL
Total Well Depth (btoc): 65.21 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is $\geq$ 4 feet,		Minimum Purge Volume =	
	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =	ft btoc	(0, (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	mL
	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are ≥ 4ft,		· · · · · · · · · · · · · · · · · · ·	pm
	Place Pump at: Total Well Depth - (0.5 X Water Column Height + DNAPL Column Height) =53,48		Wellbore PID/FID Reading: 477	ppm
Screen Length: 25 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft =	ft btoc		

PURGE DATA
Pump Type: Bladder Pump / Low Flow

Headspace PID = 1946 ppm

Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	OR	
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV	<u>/)</u>
1950	1227	51.70	cient	petr like	5.71	28,69	1.331	7.9	1.70	-26	
3150	1235	51.70	i	1	5,63 5,52 5,57	- mp - 53 27.	31,323	8.1	1:47	-20	.0
3150 4350	1243	51.70			5.52	27.26	1.308	7.2	1.31	-11,	9
5550	1251	51.72			5.59	27.08	1.345	8,3	1.17	-17.	<u> </u>
67.50	12.59	51,72			5,48	27.10	1.337	7.8	1.20	~13.	<u></u>
79.60	1307	51.72			5.56	27.13	1.336	7.8	1.21	- 15.	. (
											,
	1		<u> </u>							l	
Start Time:	1214		Elap	osed Time: 5	6 min		Water Qualit	/ Meter ID: YSI 6820			
Stop Time:	1310		Ave	rage Purge Rate (mL/m	in): <u>15</u> く	0	Date Calibrat	ed: 6/11/	08		
SAMPLING DA	TA										
Sample Date:	le [11]	28	San	ple Time:	1310		Lab Analysis	: VOC 8260			
Sample Method:	Bladder Pump / Low			ple Flow Rate (mL/mi		150	QA/QC:				
COMMENTS:											
COMMENTS.									-Sulfate:	<u></u>	ppm
·						······		-Ferrous-Iro			ppm
<u></u>								Total Pur	ge Volume:	8400	mL

PROJECT NAME: Route 111 & Rand Vicnity	PROJECT NUMBER:	561979 FIELD PERSONNEL:	W. Pennington & S. Moore R. Wernia
DATE: 6/9/0% WEATHER: MONITORING WELL ID: P-58		EID: 058-060908	٠

#### INITIAL DATA

Well Diameter: 2in	Water Column Height (do not include LNAPL or DNAPL): 15.01 ft bt	oc Volume of Flow Through Cell ): <u>1,150</u> mL
Total Well Depth (btoc): 64.94 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is $\geq$ 4 feet,	Minimum Purge Volume =
Depth to Water (btoc): <u>49.93</u> ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =ft bt	oc (3 x Flow Through Cell Volume): 3,450 mL
Depth to LNAPL/DNAPL (btoc): <u>49.59</u> ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are $\geq$ 4ft,	Ambient PID/FID Reading: O, / ppm
Depth to Top of Screen (btoc):37.94 ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = <u>57,70</u> ft bi	oc Wellbore PID/FID Reading: 676 ppm
Screen Length:25ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = ft bto	

### PURGE DATA

Pump Type: _____ Monsoon Stainless Steel Submersible Pump

Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°°)	(mS/cm)	(NTUs)	(mg/L)	(mV)
4200	1356	49.74	51- yellow	petr-like	5.78	21.39	3.136	15.5	0.62	-33.9
5600 7000	<b>1400</b> 1404	49,74 49,74 <b>49</b> ,74	clear	1 t	5.62 5.46	21.04	3,143	4.7	0.59	- 32.4
2000	1404	49.74			5,46	20.91	3.116	4.6	0.58	-28.7
3400	1408	49.74		1	5,24	20.83	3.082	4,3	0.57	-11.5
9500	1412	1			5,08	20,88	3.082	4,4	8.57	with 4.8
11200	1410		<u> </u>		4,95	20.74	3,092	4,3	0.58	12.7
12600	1420				4,88	20,69	3,075	4.2	0,58	7.6
14000	1424	/	1		4.87	20,71	3.080	4.2	0,58	3.1
	,									
L	l				1					
Start Time:	1344		Elano	sed Time:	41		Mator Quality	/ Meter ID: YSI 6820		
otare rance.	,		Liap:	seu maie		····				<u> </u>
Stop Time:	1425		Aver	age Purge Rate (mL/n	nin): 35(	2	Date Calibrat	ed: 6/9/0	8	
				-3		<u>n</u>				
SAMPLING DA					ist and					
Sample Date:	69	08	Sam	ple Time:	1425		Lab Analysis	: VOC 8260		
Sample Method:	Monsoon / Low Flov	N	Sam	ple Flow Rate (mL/mi	n)	2 12	QA/QC:		1	
oumpio moniour			•••••	pierion rate (m2mm		700		DUP	(P53-000	<u>707D)</u>
COMMENTS:										
									-Sulfate:	ppm
								Ferrous from		
						, <u></u> , <u></u> ,		1 611043 1101	r tintered)	ppm
								Tatal During	- Mal	4260
								l otal Purg	<u> je Volume:7 ^</u>	<u>4350 mL</u>

JAR PID = 9968 ppm

.

#### LOW FLOW GROUNDWA: R SAMPLING DATA SHEET

PROJECT NAME: Route 111 & Rand Vicnity	PROJECT NUMBER: 21561979	FIELD PERSONNEL:	W. Pennington & S: Moore R. Wernia
DATE: $\omega/10/0\%$ WEATHER:	70s, sunny		C
MONITORING WELL ID: P-66	SAMPLE ID:	80010008	

#### INITIAL DATA

INITIAL DATA			
Well Diameter: 2in	Water Column Height (do not include LNAPL or DNAPL): 18,54 ft btoc Volume of Fl	ow Through Cell ): 1,150	mL
Total Well Depth (btoc): <u>59. 67</u> ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is ≥4 feet, Minimum Pu	rge Volume =	
Depth to Water (btoc): <u>41,13</u> ft		hrough Cell Volume): 3,450	mL
Depth to LNAPL/DNAPL (btoc): <u>40,99_ft</u> 米	✓ If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are ≥ 4ft, Ambient PID.	/FID Reading:	ppm
Depth to Top of Screen (btoc): <u>34.67 ft</u>	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = $50.24$ ft btoc Wellbore PID	)/FID Reading: / 8. 8	ppm
Screen Length: <u>35</u> ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = ft btoc		
Depth to Top of Screen (btoc): <u>34.67 ft</u>	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) = <u>50.24</u> ft btoc Wellbore PID		

#### PURGE DATA

Pump Type: Monsoon Stainless Steel Submersible Pump

Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pН	Temp	Cond. (mS/cm)	Turbidity (NTUs)	DO (mail)	ORP
1200	1312	41.04		· · · · · · · · · · · · · · · · · · ·		(00)	· · · · · ·		(mg/L)	(mV)
		41.04	cloudy	petro-like	<u>5.67</u> 5.57	21.84	1.583	68.5	0.90	-54,7
2400	1316	41,04				21.72	1.551 1.534	42.3	0.86	-48.1
<u>3600</u> 4800	1320	41.05			<u>5,50</u> 5,43	21.69	1.517	<u> </u>	0,82	-41.4
<u>4000</u>	1328	41.07			5.38		1.507	<u> </u>	0.81	-40.1
7200	1332	41.08	1		<u> </u>	21.80	1,503	<u> </u>	0.80	-37.7
8400	1336	41.00		· · · · · · · · · · · · · · · · · · ·	<u> </u>	21,76	1.502	64.C	0.30	-35.7
9600	1340	+	<u> </u>		<u> </u>	21.70	0.499	67.0	0,78	-33.4
	,									
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
	······				······					
tart Time:	1308	1	Elap	sed Time:	32 min	1	Water Qualit	y Meter ID: YSI 6820	l	.I
	1340	·		rage Purge Rate (mL/mi				ted: 6/10/0		
AMPLING DAT	ſA	l ac					···· · ····			
ample Date:	6/10	>/08	San	ple Time:	1340		Lab Analysis	s: VOC 8260		
ample Method:	Monsoon / Low Flo	w	San	ple Flow Rate (mL/min	1): <u> </u>	>	QA/QC:	يەندە بېيىيى	·····	
OMMENTS										
OMMENTS: & Product	tone di	ven by inte	erface prok	<u>erved</u> on ;	i to be fr	om sedimen	nt debris	Ferrous-Iro	-Sulfate:	ppm

Total Purge Volume: 960 mL

HEADSPACE PID = 26.1 ppm

~

#### LOW FLOW GROUNDWA

FIELD PERSONNEL: W. Pennington & S. Moore R. Wernig PROJECT NAME:Route 111 & Rand VicnityDATE:6/10/0%WEATMONITORING WELL ID:P-73 PROJECT NUMBER: 21561979 WEATHER: upper 70s, cloudy SAMPLE ID: P73-061008

#### INITIAL DATA

Well Diameter:4in	Water Column Height (do not include LNAPL or DNAPL):	16.4 ft btoo	Volume of Flow Through Cell ): 1,150	mL
Total Well Depth (btoc): <u> </u>	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is	s ≥4 feet,	Minimum Purge Volume =	
Depth to Water (btoc): <u>49,98</u> ft	Place Pump at: Total Well Depth - 0.5 (Screen Length + DNAPL Co		(3 x Flow Through Cell Volume): 3,450	mL
	✤ If Depth to Top of Screen is < Depth to Water AND Water Column	Height and Screen Length are $\geq$ 4ft,	Ambient PID/FID Reading: 0.0	ppm
Depth to Top of Screen (btoc): <u>41.38</u> ft	Place Pump at: Total Well Depth - (0.5 X Water Column Height + I	)NAPL Column Height) = <u>58,07</u> ft bto	c Wellbore PID/FID Reading:の, チ	ppm
Screen Length: <u>25</u> ft	If Screen Length and/or water column height is < 4 ft, Place Pump	at: Total Well Depth - 2 ft = ft btoo		

#### PURGE DATA

Pump Type: Monsoon Stainless Steel Submersible Pump

Purge Volume (mL)	Time	Depth to Water (ft)	Color	Ödor	рН	Temp (°C)	Cond. (mS/cm)	Turbidity (NTUs)	DO (mg/L)	ORP (mV)
1500	0920	50,00	relatively clean	- none	6.60	20,43	1.216	19.1	1,02	-108,4
2700	0924	50.02	1	1	6.53	20,56	1.226	19.2	0.70	-102.9
29.00	n928	50,06			6.45	20.60	1.235	16.5	0.58	-98,2
5100	c932	50.05			6,35	20.65	1,243	2.5	0.56	-92.0
6300	0936	50.05		1	6.32	20,76	1,247	3.8	0,58	- 89.0
7500	0940				10.28	20,69	1,250	3.9	0.56	- 89.0 - 83.1
	-									
Start Time:	0915		Elaps	ed Time:	28 min		Water Quality	/ Meter ID: YSI 6820	I	
Stop Time:	0943				min): <u> </u>			ed: 6/10/		
SAMPLING DA Sample Date:	TA 6/10/0	98	Samo	le Time:	0943		Lab Analysis	: VOC 8260		
	Monsoon / Low Flo			le Flow Rate (mL/m		00	QA/QC:		•	
COMMENTS:								-		
* Product	tone giver	by interf	iace probe : residue en	suspected	to be from	n sediment/	debris		-Sulfate	ppm
on surf	ace of un	ter. No	residue on	interfac	e probe.	Sheen poss	ible.	Ferrous Iror	1 (filtered):	ppm
<u>en such</u>	ace of ux	ster. No	residue on	interfac	e probe.	<u>Sheen poss</u>	ible.	Ferrous Iror	<del>1 (filtered):</del>	ppr

Total Purge Volume: 8400 mL

HEADSPACE PID = 216 ppm

#### LOW FLOW GROUNDWALL SAMPLING DATA SHEET

PROJECT NAME DATE: ムノ MONITORING W	0108	and Vicnity WEATHER:	80, partly	PROJECT NUMBER:		FIELD PER	SONNEL: W. Pe	nnington & <del>S. Mo</del>	ore R. Werniz	\$
INITIAL DATA										
Well Diameter: <u>4</u> Total Well Depth ( Depth to Water (bt Depth to LNAPL/D	btoc): <u>\$7.09</u> oc): <u>57.09</u> NAPL (btoc): <u>51.05</u> creen (btoc): <u>42.0</u> 5	_ft If Depth to Top _ft Place Pump at: _ft	of Screen is > Dept Total Well Depth – of Screen is < Dep Total Well Depth –	Ide LNAPL or DNAPL):_ h to Water AND Screen 0.5 (Screen Length + Dł th to Water AND Water ( (0.5 X Water Column He mn height is < 4 ft, Plac	NAPL Column Heigh Column Height and S eight + DNAPL Colum	t) = Screen Length are $\ge 4$ nn Height) = $57,03$	Mini ft btoc (3 ft, Ami	ume of Flow Throug imum Purge Volum x Flow Through Ce bient PID/FID Readi Ibore PID/FID Read	e = II Volume): <u>3,450</u> ng: <i>©, ©</i>	mL mL ppm ppm
PURGE DATA Pump Type:	Monsoon Stainless	s Steel Submersible Pur	np			HEADSPACE	PiD = a	214 ppm		
Purge Volume		Depth to				Temp	Cond,	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
1050	1020	51.14	clear	V. sl. petr.	6,10	23.28	1.972	14.9	0.73	- 63.2
2450	1024	51.14			6.06	23.26	1.976	10.8	0.62	-62.2
<u>3860</u>	1028				6.02	23.31	1.965	11.8	0.56	-60.1
<u>5250</u> 6650	1032 1034				<u>ie.00</u> 5.98	23.40	1.950	<u> </u>	0,52	-58.1
Start Time:	1017		Ela	psed Time:	23 min		Water Quality	y Meter ID: <u>YSI 68</u>	20	
Stop Time:	1040		Av	erage Purge Rate (mL/m	nin):350	2	Date Calibrat	ted: <u>/</u> /0	108	
SAMPLING DA Sample Date:	TA 6/10/	1 og	Sa	mple Time:	1040	,	Lab Analysis	S: VOC 8260		
Sample Method:	Monsoon / Low Flow	N	Sa	mple Flow Rate (mL/mi		00	QA/QC:	EB	(P75-0610	DOSEB)
COMMENTS: <u>X Product</u> Sheen	+one Asuspe	erwinisterface p ected to be Na residue	- from s	ecliment/debr ace probe.	<u>ns en su</u>	stace of w		-Ferrous In	Sulfate:	
								Total Pu	rge Volume: 84	2 <i>50</i> mL



# SOIL VAPOR SAMPLING - SUMMA CANISTER

A Print Print

#### URS CORPORATION RAND AVENUE REMEDIATION SITE 170 EAST RAND AVENUE / HARTFORD, ILLINOIS 62048

		MON	ITORING TEAN	I INFORMATIO	N							
Field Personnel:	Field Personnel:     M. Miller     S. Moure     Date:     G / 3/08       Job Number:     J1561974											
FIELD CONDITIONS												
Weather: Cloron			Temperature:		Low:		High:					
Wind Direction:	buth			Level of Protec		1 07						
		SUMMA (	CANISTER SAN									
Sample ID	Canister ID Number	Flow Regulater ID Number		r Vacuum ^{Mercury} [Hg]) I		nple Time 4 hours) I	Additional Comments					
		Number	Initial	Final	Start	Finish						
GP-12-4-860308	13389	FCB0580	29	8	0925	0955	NO					
GP-12-12-068508	33406	# NOTO COD2444	29	8	0929	(003	No					
GP-12-2-060308	31752	FC 00 494	29	7	0935	1007	No					
GP-12-D-060308	36564	5-200216	30	8	0940	1014	No					
6-P-11-4-060308	2186	FC00490	30	9	1345	1420	NO					
GP-11-5-060308	h 2033	FC00610	29	(0	1350	14128	No					
G-P-1(-B-060308-DUP	n2170	FC00434	29	6.5	1350	1428	No					
GP-11-C-060308	12032	FC00857	30	9	1355	1432	No					
6-P-11 - D-060308	3639(	FC00505	30	୧	1410	12420	No					
h												
		з.										







				FIELD DAT	Ά				1.
Sample ID	Sample Time (24 hrs)	Vacuum Reading (inches of H ₂ O)	Calculated Purge Volume (3 well volumes)	Actual Volume Purged	Purge Method	Tedlar Bag Collection Method	PID Reading	4-Gas Meter Reading	Additional Comments (Yes / No)
6-P-12-A-060308	0917	0,06	130 mb	130 mb	Syringe	Peristaltic Pump	0.1	011.6	No
GP-12-B-060308	0416	0,00	2(7 mL	22011	Syringe	Peristaltic Pump	6, O	010	NO
F-17-C-060308	0917	0.00	303 wL	305mL	Syringe	Peristaltic Pump	0.1	010	No
5-12-2-060308	0918	0,00	390 mb		Syringe	Peristaltic Pump	0.2	01°3.2	No
6-8-17-4-060308	(332	0,00	130 mL	130 mL	Syringe	Peristaltic Pump	2.4	tu,2	NO
G-P-11-B-060308	1333	0.00	260 mL		Syringe	Peristaltic Pump	2.6	0 0.3	No
6-P-4-C-060308	(334	0.01	303mL		Syringe	Peristaltic Pump	27 2.7	0.015 1 (10.0	Na
GP-11-D-060308	1335	0;00	390 mL	390 nL	Syringe	Peristaltic Pump	3.1	010-12-18	No
68-11-B-060308-Dup	1333	0 00 0	260 mL	260 m2	Syringe	Peristaltic Pump Peristaltic	2.6	oto.3	No
					Syringe	Peristaltic Peristaltic			
					Syringe	Peristaltic Peristaltic			
					Syringe	Peristaltic			
					Syringe	Peristaltic Peristaltic			
					Syringe	Peristaltic Pump Peristaltic			
					Syringe	Pump Peristaltic			
					Syringe	Pump Peristaltic			
					Syringe	Pump Peristaltic			
					Syringe	Pump Peristaltic			
NOTES:	Abbreviations:	I = liter: ml =	milliliter; N/A = N	lot Applicabl	Syringe	Pump			

6308

Page 2 of ____

# SOIL VAPOR SAMPLING - SUMMA CANISTER

#### URS CORPORATION RAND AVENUE REMEDIATION SITE 170 EAST RAND AVENUE / HARTFORD, ILLINOIS 62048

		MONI	TORING TEAN	I INFORMATIO	N		
Field Personnel:	M. Millior	(5. Moon	~			614/08	
			FIELD CON	DITIONS			
Weather:			Temperature:		Low:		High:
Wind Direction:				Level of Protec			
		SUMMA C		IPLE INFORMA			
Sample ID	Flow Regulater ID Number		⁻ Vacuum /lercury [Hg]) I		le Time nours) I	Additional Comments	
	Number	Number	Initial	Final	Start	Finish	
GP-13-A-060408	(5662)	FC00239	eg a	8,5	0850	0972	r a
GP-13-B-060408	33.9 (5074)	PC 00955	30	9	0855	0930	No
GP-136-060108	3297 (Se 64)	FC 00073	30	8	0900	0935	No
6-8-130-060408	1423	FC00741	27	7	0905	0936	No
GP-9-A-060 408	34153	FC00198	29	7	1045	11.15	No
GP-9-B-060408	36519	FCOUSSI	02	8.5	1050	1120	No
GP-9-8-060008	5052	FC 00 381	30	9	1855	1125	No
G-P-9- C-060408-D-P	Scaq	FC00575-	22.5	8.5	-055	1125	No
GP-9-D-060408	9358	FC00360	30	6	(115	1145	No

Page _____ of ____

# SOIL VAPOR SAMPLING - TEDLAR BAG

21.65315

#### URS CORPORATION RAND AVENUE REMEDIATION SITE 170 EAST RAND AVENUE / HARTFORD, ILLINOIS 62048

	MONITORING TEAM INFORMATION										
Field Personnel:	M. Mil	ler S.	Maar		-	Date: Job Number:	6/4/08				
			FIE	LD CONDIT	TIONS						
Weather:				Temperatur	re:	Low:		High:			
Wind Direction:					Level of Protec	tion:					
EQUIPMENT & CALIBRATION INFORMATION											
Meter Type:						Manufacturer:					
Model No.:											
				FIELD DAT	T <b>A</b>						
Sample ID	Sample Time (24 hrs)	Vacuum Reading (inches of H ₂ O)	Calculated <i>†</i> Purge Volume (3 well volumes)	Actual Volume Purged	Purge Method	Tedlar Bag Collection Method	PID Reading	4-Gas Meter Reading	Additional Comments (Yes / No)		
G-P-13-4-060408	0834	0,00	5152	155	Syringe	Peristaltic Pump	102	010	NO		
6-13-8-0600108	0835	9.00	260	200	Syringe	Peristaltic Pump	0.9	ofo	No		
EP-13-C-06040%	0836	0.00	368	370	Syringe	Peristaltic Pump	0.9	at 2:41	No		
G-P-13-D-060408	0837	0.00	20 4177	480	Syringe	Peristaltic Pump	1.2	0 0	No		
6-P-9-A-06040%	1027	0,00	5 152	155	Syringe	Peristaltic Pump	1,8	0/0.7	No		
6P-9-B-060408	1028	0.05	240	260	Syringe	Peristaltic Pump	1.2	010	No		
6-P-9-C-060408	1029	- 0.00	368	370.	Syringe	Peristaltic Pump	1.4	010.8	No		
6-P-9 - D-060408	1030	- 0.00	20 477	480	Syringe	Peristaltic Pump	0.9	013.8	No		
G-12-9-C-060408-DU?	1029	- 0,00	368	370	Syringe	Peristaltic Pump	1.4	2/0	No		
					Syringe	Peristaltic Pump					

CO H2S



# Analytical Report 305128

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue

Route 111 & Rand Avenue Vicinity / 21561979

18-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 51



18-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: **305128 900 S. Central Avenue** Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305128. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305128 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



Since 1990

# Certificate of Analysis Summary 305128 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

			Project Name	e: 901	0 S. Centra	al Aven	ue			
Project Id:	Route III & Rand Av	venue Vicin	nity / 2156		Dat	e Receiv	ed in Lab:	Jun-04-0	98 10:00 am	
Contact:	Wendy Pennington					Rep	ort Date:	18-JUN-	08	
<b>Project Location:</b>	Roxana, Illinois 6208	4				Project ]	Manager:	Debbie S	Simmons	
		Lab Id:	305128-00	1	305128-0	WATER     WAT       Jun-03-08 13:30     Jun-03-0       Jun-04-08 16:14     mg/L       mg/L     RL       16.6     2.00       Jun-11-08 09:24     Jun-11-0       Jun-11-08 13:33     Jun-11-0       mg/L     RL       mg/L     0.0050       0.0307     0.0010       0.02042     0.0010       0.02042     0.0010       0.01325     0.0020       0.0533     0.0010       0.1325     0.0020       0.1978     U       Jun-05-08 17:38     mg/L       mg/L     RL       Jun-04-08 15:04     mg/L       mg/L     RL       0.984     0.113       Jun-12-08 16:08				
Analysis Req	quested	Field Id:	Rt 111/Rand Ave-ID	₩ Soil I	Rt 111/Rand Ave-	IDW Wate	Trip Bla	ak		
		Depth:								
		Matrix:	SOIL		WATE	R	WATE	R	l	
		Sampled:	Jun-03-08 10	:45	Jun-03-08 1	3:30	Jun-03-08 (	00:00		
BOD by SM5210B		Extracted:		ļ						
		Analyzed:			Jun-04-08 1	6:14				
		Units/RL:			mg/L	RL				
Biochemical Oxygen Demand,					· · · · ·			L		
BTEX-MTBE by SW 8260B							Jun-11-08 (			
Analy					Jun-11-08		Jun-11-08 (	09:57		
	Units/RL:						RL			
MTBE							U	0.0050		
Benzene							U	0.0010		
Toluene							U	0.0010		·····
Ethylbenzene							<u> </u>	0.0010		
m,p-Xylene							U	0.0020		
o-Xylene						0.0010	U	0.0010		
Total Xylenes							U			
Total BTEX		5			0.5245		U			
COD by EPA 410.4		Extracted:			1 OC 00.1	7.20				
		Analyzed:							I	
COD - Chemical Oxygen Dema		Units/RL:					······································			
		Extracted:			57.0					
Inorganic Anions by	EPA 300	Analyzed:		-	100 04 08 1	5:04			1	
		Units/RL:				1			1	
Nitrate as N		0/11(3)/1(1).								
		Extracted:				0.115				
Oil and Grease by EF	'A 1664A	Analyzed:			Jun-12-08 1	6:08			l	
		Units/RL:			mg/L	RL				
Oil & Grease, Total Recovered					3.33 J	5.00				
TCLP Herbicides by	SW/9151	Extracted:	Jun-09-08 10:	:12						
ICLT HETDICIDES DY	5 W0131	Analyzed:	Jun-11-08 22;	:25						
		Units/RL:	ug/L	RL						
2,4,5-Tp			U	2.50						
2,4-D			U	2.50					·····	
		1								

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

 $\lambda \nabla \Sigma$ Carlos A. Castro, Ph.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Managing Director, Texas



# Certificate of Analysis Summary 305128 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

		Project Name: 90			(
Project Id: Route 111 & Rand A	venue Vicin	ity / 2156	Date Receiv		fun-04-08 10:00 am
Contact: Wendy Pennington			-		18-JUN-08
Project Location: Roxana, Illinois 6208	4		Project	Manager: J	Debbie Simmons
	Lab Id:	305128-001	305128-002	305128-0	03
Analysis Requested	Field Id:	Rt 111/Rand Ave-IDW Soil	Rt 111/Rand Ave-IDW Wate	Trip Blan	k
	Depth:				
	Matrix:	SOIL	WATER	WATEI	٤
	Sampled:	Jun-03-08 10:45	Jun-03-08 13:30	Jun-03-08 0	00:00
TCLP Metals by SW 6020A	Extracted:	Jun-09-08 10:05			
	Analyzed:	Jun-09-08 20:29			
	Units/RL:	mg/L RL	<u></u>		
Arsenic		U 0.010			
Barium		0.831 0.025			
Cadmium		U 0.005			
Chromium		0.009 J 0.015			
Lead		U 0.010			
Mercury		U 0.0020	······		
Selenium		U 0.015			
Silver	r	U 0.010			
TCLP Pesticides by SW8081A	Extracted:	Jun-09-08 10:15			
	Analyzed:	Jun-09-08 20:17			
	Units/RL:	ug/L RL			
Heptachlor Epoxide		U 0.250			
Chlordane		U 2.50			
Endrin		U 0.250			
Gamma-BHC (Lindane)		U 0.250			
Heptachlor		U 0.250			
Methoxychlor		U 0.250			
Toxaphene		U 2.50			
TCLP SVOCs by EPA 8270C	Extracted:	Jun-11-08 11:45			
2021 0. 000 29	Analyzed:	Jun-12-08 18:08			
	Units/RL:	mg/L RL			11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
1,4-Dichlorobenzene		U 0.010			
2,4-Dinitrotoluene		U 0.010		~~~~	
Hexachlorobenzene		U 0.010			
Hexachlorobutadiene		U 0,010			
Hexachloroethane		U 0.010			
2-methylphenol		U 0.010			
3&4-Methylphenol		U 0.010			
Nitrobenzene		U 0.010			
Pentachlorophenol		U 0.010			
Pyridine		U 0.010			
2,4,5-Trichlorophenol		U 0.010			
2,4,6-Trichlorophenol		U 0.010			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi



# Certificate of Analysis Summary 305128 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

	1	Project Nam	e: 90	0 S. Central Ave	nue	
Project Id: Route 111 & Rand A	venue Vicir	iity / 2156		Date Rece	ived in Lab:	Jun-04-08 10:00 am
Contact: Wendy Pennington				R	eport Date:	18-JUN-08
Project Location: Roxana, Illinois 620	34			Projec	t Manager:	Debbie Simmons
	Lab Id:	305128-00	1	305128-002	305128	3-003
Analysis Requested	Field Id:	Rt 111/Rand Ave-H	DW Soil	Rt 111/Rand Ave-JDW Wa	ite Trip B	łank
	Depth:					
	Matrix:	SOIL		WATER	WAT	ER
	Sampled:	Jun-03-08 10	):45	Jun-03-08 13:30	Jun-03-0	8 00:00
TCLP VOAs by EPA 8260B	Extracted:	Jun-12-08 14				
	Analyzed:	Jun-12-08 16				
	Units/RL:	mg/L	RL			
Benzene		U	0.025			
2-Butanone		U	0.250			
Carbon Tetrachloride		U	0.025			
Chlorobenzene		U	0.025			
Chloroform	······	U U	0.025			
1,2-Dichloroethane		U	0,025			
Tetrachloroethylene			0.025			
Trichloroethene		υ	0.025			
Vinyl Chloride		Ű	0.010			
	Extracted:			Jun-06-08 12:04		
TPH DRO by SW846-8015	Analyzed:			Jun-09-08 13:28		
	Units/RL:			mg/L RL		
TPH-DRO (Diesel Range Organics)				1.14 0.05	3	
TPH GRO by EPA 8015 Mod.	Extracted:			Jun-13-08 12:16		
IT II GRO by ELA 6015 mou.	Analyzed:			Jun-14-08 04:31		
	Units/RL:			mg/L RL		
TPH-GRO (Gasoline Range Organics)				3,30 0.05	0	
TSS by SM2540D	Extracted:					
	Analyzed:			Jun-09-08 17:14		
	Units/RL:			mg/L RL		
TSS				3090 5.0	0	·····
Total Lead by EPA 200.8	Extracted:			Jun-09-08 10:05		
	Analyzed:			Jun-09-08 19:03		
Y 4	Units/RL:			mg/L RL		
Lead	Extracted:			0.006 0.00		
pH, Electrometric by EPA 150.2	Analyzed:			Jun-04-08 16:02		
	Units/RL:			SU RL		
pH				7.71		
122.2				1.11		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

t D Carlos A. Castro, Ph.D., MBA

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Managing Director, Texas



Since 1990

# Certificate of Analysis Summary 305128 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rat Contact: Wendy Penningt		ity / 2156		Date Receive Rep	ed in Lab: oort Date:	Jun-04-( 18-JUN-	08 10:00 am 08		
Project Location: Roxana, Illinois	52084			Project l	Manager:	Debbie S	ie Simmons		
	Lab Id:	305128-00	01	305128-002	305128	3-003			
Analysis Requested	Field Id:	Rt 111/Rand Ave-II	DW Soil	Rt 111/Rand Ave-IDW Wate	Trip B	lank			
	Depth:								
	Matrix:	SOIL		WATER	WAT	ER			
	Sampled:	Jun-03-08 10	0:45	Jun-03-08 13:30	Jun-03-0	8 00:00			
Flash Point (CC) SW-846 1010	Extracted:								
	Analyzed:	Jun-12-08 12	2;45						
	Units/RL:	Deg F	RL						
Flash Point		> 150	50.0						
Reactive Cyanide by EPA 9010B	Extracted:								
	Analyzed:	Jun-09-08 23	3:18						
	Units/RL:	mg/kg	RL						
Cyanide		U	0.200						
Reactive Sulfide by EPA 9030B	Extracted:								
	Analyzed:	Jun-09-08 23	3:52						
	Units/RL:	mg/kg	RL						
Reactive Sulfide		U	50.0						
Soil pH by EPA 9045C	Extracted:								
<u>k</u>	Analyzed:	Jun-12-08 10	0:32						
	Units/RL:	SU	RL						
рН		8.67							

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Carlos A. Castro, Rh.D., MBA

Managing Director, Texas



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
1383 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

LAB	- (LO	CA	TIC	DN)			

11331 Meadowgien Ln; Ste L; Houston, TX

# Shell Oil Products Chain Of Custody Record

L'I XENCO ( <u>PH' 281-589.0592; EAX: 281-589.0595</u> )	بالمتنفض سنسدر	Pleas	e Check /	Аррі	opri	ate B	οx.		Prit	ot Bi	ilto	o Co	ntac	t Na	nei				l IN	CIDI	NT:	# (E)	₽V S	ERV	/ICES)	C CH	ECK IF NO INCIDENT # APPLIES
CALSCIENCE	ENV. SE	RVICES		10777/	ARETA	11.	SHEL	l Retail					KEV	IN DI	ER				9	ļ.	2	1	6		4 0		TE:6/3/08
SPL ()		SD&CM		CONSUL	LTANT			s						0.4						<u>.</u>		SA				1	
DOTHER ()	SHELL P	IPELINE		THER						i an	T T	1		<u>. 200</u>	<u></u>	ř	1	<u>iiiii</u>	<u>}::::</u>	<u></u>				<u></u>		PA	GE: of
CONSULTANT COMPANY:	L								500	US SITE	E ADOI	RESS	Street, C	tv end	Sister		1		3	4	0	0	6	1		l	
URS CORPORATION	ļ	URS COR	PORATION	• FIEL	.D OF	FICE			1			-		-													
ADDRESS: 1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300		170 E RA	ND AVENUE	:					9 CONS	OO S.	. CEN	TRAL CT CON	L AVE	NUE	ROX	ANA,	ILLING	DIS 62	084			CONS	ULTANT	PROJE	CT NAME / NO		-
	l			•					- N	VEND	Y PE	INNIN	1670	N											Rand A		nity / 21561979
ST. LOUIS, MISSOURI 63110			D, ILLINOIS	6204	48				5.054	PLERN	AME(\$) (	(Price):												1-1-2	54	BUSEC	MLY
TELEPHONE: OFF: 314-743-4166 OFF: 314-743-4166 OFF: 314-743-416 OELL: 314-452-8929 GELL: 314-452-8929	8	E-SAOL:	wendy pe	nnina	nion@	ursco	(p.com		1			٢.	). Pe			1n.o									5	$\mathcal{O}$	128-44
TURNAROUND TIME (CALENDAR DAYS):	A A						SULTS NEE	DED		-		u	J. 19	2017	mg	IC.V											
X STANDARD (10 DAY) S DAYS 3 DAYS		DAYS	24 KC				ONW	EEKEND	L		,									ESTE		IALY	515	,	<b></b>		
DELIVERABLES; CIEVEL 1 X LEVEL 2 CIEVEL 3			OTHER (SPECIF	<u>۳)                                    </u>													-			_						1	
TEMPERATURE ON RECEIPT C* Cooler#1 Z-0*C	Ccoler #2			Cooler	r #3				1g		9	20					803		0	A A		മ					
SPECIAL INSTRUCTIONS OR NOTES :				নি	HELLO	OVTRA	et rate ap	54 11¢¢	12		Peshicide	Herbicide			[		10	SM2540 D	lŏ	0.1/Grease 1664	ł	SM 5210					
Please provide "J"	vatuo	s in -	the			on na e			<u>م</u>	2	1.5	9	Metal	2	4		1	17	£ 300.	×	8	3	4	ŝ			~
Level 2 Report.									TCLP	20105	200	12	2	11.1	Corrosivity	Reachivity	ള്ദ	វ ចំ	19	26	200.8	۶		8015			
									d	10			1 1		SLi	<i><i>iii</i></i>	E 3	3  2	עו	3	26	5	410.	80			
2 2	SAMP			,	PR	ESERVA	TIVE		1	TULP	10	1	L P	21	8	3	뀠	-1 -0	1	উ		~					
ຊັ້ ຊີ ຕູ່ _{ປະຄ} ັ້ Field Sample Identification	DATE	TIME	MATRIX				ĺ	NO. OF CONT.	VOC 5208	15	TELP	TCLP	TCLP	Igni Hbili ty	3	ಷ	BTEX/MTBE	14	Nitrate		Lead	<b>B</b> 0 <del>B</del>	0	080 980	PID		<b>Container PID Readings</b>
OTIONEY				RCL	накоз	HZSO4	NONE OTH	ER	X	1	<u> </u>			·1				<u>ч</u>	<	0	Ľ	യ	Ū.	ውሻ	(ppn		or Laboratory Notes
R+ III/Round Ave-IDW Soil-Ow	308	1045	Soil				X	15	x	X	x	x	x	X	x	×										1	
¥.	6/3/08		WATER-								T									1							<u> </u>
Rt III/Rand Ave . IDW Water-o		1330	Water	X	x	Х	v	16	1		<u> .</u>						x x	x	x	r	x	Y	x	x			
	6/3/08	1000				~	^		+	+					-		<u> </u>		1		-		_		• • •		
	-13/08		WATER"																	-	<u> </u>						
			WATER.								<u> </u>																
			WATER																								
			WATER						Τ		$\square$	X					1			1							
								$\overline{\nu}$	17	pre	ᡟ		H				1	1		1							
			JA/ATER						<u>Ψ΄</u>	<u> </u>	<u> </u>	<u> </u>				_	<u> </u>	$\leftarrow$	<u> </u>	<u> </u>							
			WATER														Í		$\vdash$	$\vdash$			}				
									1			1											$\neg$	-j			
Actinguishes by: (Signature)			WATER Received by: 15	ignaturi			L		1	L	<u> </u>										Oals:		]	$\sim$		Time:	
Windy Periton																						12	0	<u>x</u>	<b>†</b>	- 1770	
Received by (Signature) FED EX																			0.0				<u> </u>	1	1730		
comparation pit forditation			2000-000-000 0)Y, (S	-gnatu/a	•,																Oale:					Time:	
									2	_	<u>~</u>																
Relinquished by: (Signatura)	•		Raceivad by: (S	ignature	"	Τ		$\square$	~	$\mathbb{J}$	0	_									Dalo:	7.	1	2	A	Time:	inon
J-EDEU					$\boldsymbol{\mathcal{Y}}$			×	(	$\mathcal{T}$			2	~				•			6	79	1	$\mathcal{O}$	$\mathcal{O}$		1000
······				7																							05/2/C6 Revision



Prelogin/Nonconformance Report- Sample Log-In

Client:	_URS
Date/ Time:	61418
Lab ID # :	305128-1-1
Initials:	

# Sample Receipt Checklist

/

		í á l			
#1	Temperature of container/ cooler?	Yes	No	N/A	2-0.c
#2	Shipping container in good condition?	Nes	No	None	
#3	Samples received on ice?	Ves	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	(Yes	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	(N/A)	
#6	Chain of Custody present?	Kes	No		
#7	Sample instructions complete of Chain of Custody?	Yes2	No	·	
#8	Any missing/extra samples?	Yes	NOX		<u> </u>
#9	Chain of Custody signed when relinquished/ received?	Yes	No		
#10	Chain of Custody agrees with sample label(s)?	(Yes)	No		<u> </u>
#11	Container label(s) legible and intact?	(Los)	No		
#12	Sample matrix/ properties agree with Chain of Custody?	Yesh	No		
#13	Samples in proper container/ bottle?	Ves /	No		
#14	Samples properly preserved?	Ves	No	N/A	
#15	Sample container intact?	Yes	No		
#16	Sufficient sample amount for indicated test(s)?	(Yes)	No		
<b>#17</b>	All samples received within sufficient hold time?	(Yes)	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	(Yes)	No	N/A	

# **Nonconformance Documentation**

Contact:	Contacted by:		Date/ <u>Time:</u>
Regarding:	Buton	COC 003	
, 			
Corrective Action Taker	ו:		
		······································	
			<u>.</u>
Check all that Apply:	Client understands	s and would like to proceed with a ad begun shortly after sampling e	nalysis vent

SOIL SAMPLE RESULTS:	<u>SDG 303978</u>	<u>SDG 304253</u>
	B-1-03	B-2-41
	B-2-04	B-1-27
	B-3-06	<u>SDG 304421</u>
	B-4-06	B-3-33
	GP-12(II)-04	B-5-27
	GP-7(II)-03	<u>SDG 304536</u>
	B-6-04	GP-12(II)-17
	B-5-04.5	GP-12(II)-17-Dup
	SDG 304173	B-4-35
	B-6-23	
	GP-7(II)-19	
	GP-7(II)-19-Dup	
SOIL VAPOR SAMPLE RESULTS:	<u>SDG 0806072</u>	<u>SDG 0806099</u>
	GP-12-A-060308	GP-13-A-060408
	GP-12-B-060308	GP-13-B-060408
	GP-12-C-060308	GP-13-C-060408
	GP-12-D-060308	GP-13-D-060408
	GP-11-A-060308	GP-9-A-060408
	GP-11-B-060308	GP-9-B-060408
	GP-11-B-060308-DUP	GP-9-C-060408
	GP-11-C-060308	GP-9-C-060408-DUP
	GP-11-D-060308	GP-9-D-060408
GROUNDWATER SAMPLE RESULTS:	SDG 305672	<u>SDG 305871</u>
	P58-060908	B1-061208
	P58-060908D	B2-061208
	P56-060908	B2-061208D
	P73-061008	B3-061208
	P75-061008	B4-061208
	P66-061008	B5-061308
	P54-061008	B6-061308
	P57-061108	<u>SDG 308728</u>
		P54072508


# **Rand Avenue Data Review**

Laboratory SDG: 303978

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
B-1-03	B-2-04
B-3-06	B-4-06
GP-12(II)-04	GP-7(II)-03
B-6-04	B-5-04.5
TB051508	

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank and method blank. The LCS recovery for methylene chloride and MS/MSD recoveries and MS/MSD RPDs were outside evaluation criteria. Samples were evaluated and qualified using professional judgment. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

## 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification

## 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
TB051508	VOCs	Methylene chloride	5.83	μg/L
509839-1-BLK	VOCs	Acetone	21.4	μg/L
509839-1-BLK	VOCs	Bromomethane	1.09	μg/L
509839-1-BLK	VOCs	1,3-Dichlorobenzene	1.13	μg/L
509839-1-BLK	VOCs	1,4-Dichlorobenzene	1.12	μg/L
509839-1-BLK	VOCs	Methylene chloride	8.59	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A		<u> </u>		

### 5.0 Laboratory Control Sample

*Were LCS recoveries within evaluation criteria?* 

No

LCS ID	Parameter	Analyte	LCS Recovery	RPD	LCS Criteria
509839-1-BKS	VOCs	Methylene chloride	160	N/A	75-125

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyt	e	Qualification
N/A				

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Quality control data associated with surrogate recoveries outside evaluation criteria did not require evaluation or qualification.

Field ID	Parameter Analyte Qualification	
N/A		

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample B-1-03 was spiked and analyzed for VOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD- Recovery	RPD	MS/MSD/RPD Criteria
B-1-03	VOCs	Bromoform	143/140	2	75-125/20
B-1-03	VOCs	2-Butanone	91/59	43	50-150/20
B-1-03	VOCs	Methyl tert-butyl ether	108/87	22	75-125/20
B-1-03	VOCs	Chloroethane	105/85	21	65-135/20
B-1-03	VOCs	1,1-Dichloroethane	96/72	29	75-125/20
B-1-03	VOCs	trans-1,2-dichloroethene	97/78	22	75-125/20
B-1-03	VOCs	cis-1,2-dichloroethene	97/ <b>73</b>	28	75-125/20
B-1-03	VOCs	2,2-dichloropropane	94/68	32	75-125/25

Analytical data that required qualification based on MS/MSD data are included in the table below. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

## 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

## 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

## **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples did not require a dilution.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

### 11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminants acetone and 2-butanone reported at concentrations less than two times (2X) the RL.

Field ID	Analyte	New RL	Qualification	Comments
B-2-04	Acetone	-	U	Professional Judgment
B-2-04	2-Butanone		U	Professional Judgment
B-4-06	Acetone	-	U	Professional Judgment

# Analytical Report 303978

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Avenue Vicinity / 21561979

04-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 32



04-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 303978 900 S. Central Avenue Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 303978. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 303978 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America





#### Project Name: 900 S. Central Avenue

Contact: Wendy Penningto	Project Id: Route 111 & Rand Avenue Vicinity / 2156   Contact: Wendy Pennington   roject Location: Roxana, Illinois 62084			Date Received in Lab: May-16-08 09:30 am   Report Date: 04-JUN-08   Project Manager: Debbie Simmons					
	Lab Id:	303978-0	01	303978-0	02	303978-0	03	303978-0	04
Analysis Requested	Field Id: Depth:	B-1-03		B-2-04		B-3-06		B-4-06	
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-14-08 (	00:00	May-14-08 (	00:00	May-14-08 (	00:00	May-15-08	09:45
Percent Moisture	Extracted:								
i ci centi infolisture	Analyzed:	May-22-08 (	08:03	May-22-08 (	May-22-08 08:04 May-22-		08:05 May-22-08 08:06		
	Units/RL:	%	RL	%	RL	%	RL.	%	RL
Percent Moisture		13,6	1.00	9.41	1.00	12,3	1.00	19.8	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hiability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, P.D., MBA

Managing Director, Texas

Jince 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi





Project Id:Route 111 & Rand Avenue Vicinity / 2156Contact:Wendy Pennington			Date Received in Lab: May-16-08 09:30 am Report Date: 04-JUN-08						
Project Location: Roxana, Ill	linois 62084			F	roject	Manager:	Debbie S	Simmons	
	Lab Id:	303978-00	01	303978-00	2	303978-6	003	303978-0	04
Analysis Requested	Field Id:	B-1-03		B-2-04		B-3-06	5	B-4-06	
	Depth:								
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-14-08 0	0:00	May-14-08 0	0:00	May-14-08	00:00	May-15-08 (	)9:45
VOAs by SW-846 8260B	Extracted:	May-19-08 I	1:35	May-19-08 1	1:43	May-19-08	14:14	May-19-08 1	11:47
· • • • • • • • • • • • • • • • • • • •	Analyzed:	May-19-08 1	2:41	May-19-08 14	4:02	May-19-08	18:36	May-19-08	14:42
	Units/RL:	ug/kg	RL	ugke	RL	ug/kg	RL	ug/kg	RL
Acetone		U	78. <b>3</b>	,0 KO 40.4 J	<b>U</b> 103	U	100	D. ON 019.75	JA 95.8
Benzene		υ	3.94	V	5.17	U	5.00		4.79
Bromobenzene		υ	3.94	บ	5.17	U	5.00	υ	4.79
Bromochloromethane		U	3,94	U	5.17	U	5.00	U	4.79
Bromodichloromethane		U	3.94	U	5.17	U	5.00	U	4.79
Bromoform		υ	3.94	υ	5.17	υ	5.00	υ	4,79
Bromomethane		U	3.94	-th	5.17	U	5.00	υ	4.79
2-Butanone		U	39.4	0.000 14:2 J	51.7	U	50.0	υ	47.9
MTBE		U	3.94	U	5.17	υ	5.00	U	4.79
tert-Butylbenzene		U	3.94	υ	5.17	υ	5.00	U	4.79
Sec-Butylbenzene		υ	3.94	υ	5.17	U	5.00	U	4.79
n-Butylbenzene	······································	υ	3.94	U	5.17	υ	5.00	υ	4.79
Carbon Disulfide		υ	39.4	U	51.7	U	50.0	U	47.9
Carbon Tetrachloride		υ	3.94	U	5.17	U	5.00	U	4.79
Chlorobenzene		U	3.94	υ	5.17	U	5.00	U	4.79
Chloroethane		U	7.87	υ	10,3	U	10.0	U	9,58
Chloroform		U	3.94	υ	5.17	U	5.00	U	4.79
Chloromethane		U	7.87	υ	10.3	U	10.0	U	9.58
2-Chlorotoluene		U	3.94	υ	5.17	U	5.00	U	4.79
4-Chlorotoluene		U	3,94	υ	5.17	U	5,00	U	4,79
p-Cymene (p-Isopropyltoluene)		U	3.94	υ	5.17	υ	5.00	υ	4.79
1,2-Dibromo-3-Chloropropane		U	3.94	υ	5,17	υ	5.00	U	4.79
Dibromochloromethane		U	3.94	U	5,17	υ	5.00	U	4.79
1,2-Dibromoethane		υ	3,94	U	5.17	U	5.00	υ	4.79
Dibromomethane		U	3.94	U	5.17	U	5.00	υ	4.79
1,2-Dichlorobenzene		U	3.94	υ	5.17	U	5.00	U	4.79
1,3-Dichlorobenzene		υ	3.94	<u> </u>	5.17	U	5.00	Ŭ	4.79
1,4-Dichlorobenzene		U	3.94	υ	5.17	U	5.00	U	4.79
Dichlorodifluoromethane		υ	3.94	U	5.17	U	5.00	U	4.79
1,2-Dichloroethane		υ	3.94	υ	5.17	υ	5.00	U	4.79
1,1-Dichloroethane		U	3.94	U	5.17	U	5.00	U	4.79
trans-1,2-dichloroethene		υ	3.94	U	5.17	U	5.00	U	4.79
cis-1,2-Dichloroethene		υ	3.94	U	5.17	υ	5.00	U	4.79
1,1-Dichloroethene		υ	3.94	υ	5.17	U	5.00	υ	4.79

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and nakes no waranny to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

x 13 Carlos A. Castro, Ph.D., MBA

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Managing Director, Texas





#### Project Name: 900 S. Central Avenue

•	oute 111 & Rand Avenue Vicin	nity / 2156		Dat				08 09:30 am	
Contact: Wendy Pennington					1	04-JUN-			
Project Location: Ro	oxana, Illinois 62084				Project	Manager:	Debbie S	Simmons	
	Lab Id:	303978-00	01	303978-0	02	303978-0	003	303978-(	004
Analysis Requ	ested Field Id:	B-1-03		B-2-04		B-3-06	5	B-4-06	5
	Depth:								
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-14-08 0	00:00	May-14-08 (	00:00	May-14-08	00:00	May-15-08	09:45
VOAs by SW-846 8260	B Extracted:	May-19-08 1	J:35	May-19-08	1:43	May-19-08	14:14	May-19-08	11:47
	Analyzed:	May-19-08 1	2:41	May-19-08	4:02	May-19-08	18:36	May-19-08	14:42
	Units/RL:	ug/kg	RL	ug/kg	RL	ug/kg	RL	ug/kg	RL
2,2-Dichloropropane		U	3,94	U	5.17	υ	5.00	U	4.79
1,3-Dichloropropane	Annual Farman and a survey of called Address Address and a state of the survey of the	U	3.94	υ	5.17	U	5.00	υ	4.79
1,2-Dichloropropane		U	3.94	U	5.17	U	5.00	U	4.79
trans-1,3-dichloropropene		U	3.94	υ	5.17	υ	5.00	υ	4.79
1,1-Dichloropropene		υ	3.94	U	5.17	υ	5.00	U	4.79
cis-1,3-Dichloropropene		υ	3.94	ប	5.17	U	5.00	U	4.79
Ethylbenzene		υ	3.94	U	5.17	υ	5.00	ប	4.79
Hexachlorobutadiene		υ	3,94	U	5.17	Ŭ	5.00	υ	4.79
2-Hexanone		υ	39.4	บ	51.7	U	50.0	U	47.9
Naphthalene		U	7.87	υ	10.3	ប	10.0	U	9.58
isopropylbenzene		U	3.94	U	5.17	υ	5.00	υ	4.79
Methylene Chloride		U	15.7	U	20.7	υ	20.0	υ	19.2
4 Methyl-2-Pentanone		U	39.4	U	51.7	υ	50,0	ប	47,9
pylbenzene		U	3.94	U	5.17	υ	5.00	U	4.79
Styrene		υ	3.94	U	5.17	U	5.00	U	4.79
1,1,1,2-Tetrachloroethane		U	3.94	U	5,17	U	5.00	υ	4.79
1,1,2,2-Tetrachloroethane		υ	3.94	υ	5.17	U	5.00	U	4.79
Tetrachloroethylene		υ	3.94	υ	5,17	υ	5.00	υ	4.79
Toluene		υ	3.94	U	5.17	υ	5.00	υ	4.79
1,2,4-Trichlorobenzene		υ	3.94	υ	5.17	U	5.00	U	4.79
1,2,3-Trichlorobenzene		υ	3.94	U	5,17	U	5.00	U	4,79
1,1,2-Trichloroethane		U	3.94	U	5,17	U	5.00	U	4.79
1,1,1-Trichloroethane		U	3.94	U	5.17	U	5.00	U	4.79
Trichloroethene		υ	3.94	υ	5.17	U	5.00	U	4.79
Trichlorofluoromethane		U	3.94	U	5.17	U	5.00	υ	4.79
1,2,3-Trichloropropane		υ	3.94	U	5.17	υ	5.00	U	4.79
1,2,4-Trimethylbenzene		υ	3.94	υ	5.17	U	5.00	U	4.79
1,3,5-Trimethylbenzene		υ	3.94	υ	5.17	U	5.00	ບ	4.79
Vinyl Chloride		U	1.57	U	2.07	U	2.00	υ	1.92
o-Xylene		υ	3.94	U	5.17	U	5.00	υ	4.79
m,p-Xylenes		U	7.87	U	10.3	υ	10.0	Ų	9.58

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Any hiability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ps.D., MBA

Managing Director, Texas

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi ..nce 1990





#### Project Name: 900 S. Central Avenue

Project Id:Route 111 & Rand Avenue Vicinity / 2156Contact:Wendy PenningtonProject Location:Roxana, Illinois 62084			Date Received in Lab:May-16-08 09:30 amReport Date:04-JUN-08Project Manager:Debbie Simmons						
	Lab Id:	303978-0		303978-0		303978-0	07	303978-0	008
Analysis Requested	Field Id:	GP-12(11)-04		GP-7(II)-0	13	B-6-04		B-5-04.5	
	Depth:								
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-15-08 1	0:25	May-15-08 I	1:15	May-15-08	12:50	May-15-08	13:45
Percent Moisture	Extracted:								
	Analyzed:	May-22-08 0	08:07	May-22-08 (	8:08	May-22-08 08:09		May-22-08 08:10	
	Units/RL:	%	RL	%	RL	%	RL	%	RL
Percent Moisture		24.7	1.00	5.04	1.00	18.3	1.00	20,9	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our Hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas



## Certificate of Analysis Summary 303978 URS Corporation-St. Louis, St. Louis, MO



	'n	- Non	00	) S. Centra	LANON				
Project Id: Route 111 & R		v	IC: 900			ed in Lab:	Mav-16-	08 09:30 am	
Project Id: Route 111 & Rand Avenue Vicinity / 2156 Contact: Wendy Pennington			2			04-JUN-			
Project Location: Roxana, Illinoi	-			3				Simmons	
Troject Education. Roxana, minos		303978-0	05	303978-0	,	303978-0		303978-	000
	Lab Id:					303978-0 B-6-04		303978- B-5-04	
Analysis Requested	Field Id:	GP-12(II)-	04	GP-7(II)-0	υ I	D-0-04		D-3-V4	
	Depth:	COB		SOIL		SOIL		SOII	
	Matrix:	SOIL May-15-08 1	0.25	SOIL May-15-08 I	1.15	May-15-08	1	May-15-08	
	Sampled:	May-15-08 1 May-19-08 1		May-13-08 1 May-19-08 1		May-13-08 May-19-08		May-13-08 May-19-08	
VOAs by SW-846 8260B	Extracted:	May-19-08 J		May-19-08 J	1	May-19-08 May-19-08	ł	May-19-08 May-19-08	
	Analyzed:	2	RL		9.38 RL	ug/kg	RL	ug/kg	20.19 RL
	Units/RL:	ug/kg U	кі 99.6	ug/kg U	100	Ug/kg U	78.2	Ug/kg U	99.6
Acetone							3.91	U	4,98
Benzene		U	4.98	<u>U</u>	5.01	<u>U</u>			
Bromobenzene		U	4.98	<u>υ</u>	5.01	U	3.91	U	4.98
Bromochloromethane		U	4.98	Ų	5.01	U 	3.91	U	4.98
Bromodichloromethane		U	4.98	<u> </u>	5.01	U U	3.91	U	4.98
Bromoform		<u> </u>	4,98	U	5.01			U	
Bromomethane		U	4.98	U	5.01	<u> </u>	3.91	U	4.98
2-Butanone		U	49.8	υ	50,1	U	39.1	U	49.8
MTBE		U	4.98	U	5.01	<u>υ</u>	3.91	U	4.98
tert-Butylbenzene		U	4.98	<u> </u>	5.01	U	3.91	U	4.98
Sec-Butylbenzene		<u>U</u>	4.98	U 	5.01	U	3.91	U	4.98
n-Butylbenzene		<u>U</u>	4.98	U	5.01	<u> </u>	3.91	<u> </u>	4.98
Carbon Disulfide		U	49.8	<u>U</u>	50.1	U	39.1	U	49.8
n Tetrachloride		U	4.98	U	5.01	U	3.91	U	4.98
Corobenzene		<u> </u>	4.98	<u>U</u>	5.01	U	3.91	U	4.98
Chloroethane		U	9.96	U	10.0	U	7.82	U	9.96
Chloroform		U	4.98	υυ	5.01	U	3.91	<u> </u>	4.98
Chloromethane		U	9.96	U	10.0	U	7.82	U	9.96
2-Chlorotoluene		U	4.98	<u> </u>	5.01	U	3.91	<u> </u>	4.98
4-Chlorotoluene		U	4.98	<u>υ</u>	5.01	U	3.91	<u>U</u>	4.98
p-Cymene (p-Isopropyltoluene)		<u> </u>	4.98	U	5.01	<u> </u>	3.91	U	4.98
1,2-Dibromo-3-Chloropropane		U	4.98	<u> </u>	5.01	<u> </u>	3.91	<u> </u>	4.98
Dibromochloromethane		U	4.98	<u>ບ</u>	5.01	U	3.91	<u>U</u>	4.98
1,2-Dibromoethane		<u> </u>	4.98	υ	5.01	U	3.91	U	4.98
Dibromomethane		U	4.98	U	5.01	<u> </u>	3.91	U	4.98
1,2-Dichlorobenzene	-,	U	4.98	U	5.0}	<u> </u>	3.91	<u> </u>	4.98
1,3-Dichlorobenzene		U	4.98	U	5.01	U	3.91	<u> </u>	4.98
1,4-Dichlorobenzene		U	4.98	U	5.01	U	3.91	U	4.98
DichlorodiAuoromethane		U	4.98	<u> </u>	5.01	U	3.91	Ŭ	4.98
1,2-Dichloroethane		U	4.98	υ	5.01	U	3.91	U	4.98
1,1-Dichloroethane		U	4.98	U	5.01	U	3.91	U	4.98
trans-1,2-dichloroethene		U	4,98	U	5.01	U	3.91	U	4,98
cis-1,2-Dichloroethene		U	4.98	U	5.01	υ	3.91	U	4.98
1,1-Dichloroethene		U	4.98	U	5.01	U	3.91	U	4.98

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, P.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi .e 1990

Managing Director, Texas





#### Project Name: 900 S. Central Avenue

Project Id: Route 111 &		0		Date			May-16-	08 09:30 am	
•	Contact: Wendy Pennington				Rep	ort Date:	04-JUN-	08	
Project Location: Roxana, Illin	-			P	roject ]	Manager:	Debbie S	immons	
	Lab Id:	303978-00	)5	303978-00	16	303978-0	007	303978-0	008
Analysis Requested	Field Id:	GP-12(II)-0	)4	GP-7(11)-03	3	B-6-04	1	B-5-04.	5
	Depth:								
	Matrix:	SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	May-15-08 1	0:25	May-15-08 1	1:15	May-15-08	12:50	May-15-08	13:45
VOAs by SW-846 8260B	Extracted:	May-19-08 1	4:18	May-19-08 1	4:20	May-19-08	11:55	May-19-08	14:24
VUAS by SW-840 8200B	Analyzed:	May-19-08 1	9:17	May-19-08 1	9:38	May-19-08	16:03	May-19-08	20:19
	Units/RL:	ug/kg	RL	ug/kg	RL.	ug/kg	RL	ug/kg	RL
2,2-Dichloropropane		U	4.98	U	5.01	υ	3.91	U	4.98
1,3-Dichloropropane		U	4.98	υ	5.01	U	3.91	U	4.98
1,2-Dichloropropane		U	4.98	υ	5.01	U	3.91	U	4.98
trans-1,3-dichloropropene		U	4.98	υ	5.01	U	3.91	U	4.98
1,1-Dichloropropene		υ	4.98	U	5.01	U	3.91	U	4.98
cis-1,3-Dichloropropene		U	4.98	υ	5.01	U	3.91	U	4.98
Ethylbenzene		U	4.98	υ	5.01	U	3.91	U	4.98
Hexachlorobutadiene		υ	4.98	U	5.01	υ	3.91	U	4.98
2-Hexanone		U	49.8	U	50.1	υ	39.1	υ	49.8
isopropylbenzene		υ	4.98	U	5.01	υ	3.91	U	4.98
Naphthalene		U	9.96	U	10.0	υ	7.82	U	9.96
Methylene Chloride		υ	19.9	U	20.0	υ	15.6	U	19.9
4-Methyl-2-Pentanone		U	49.8	U	50.1	U	39.1	U	49.8
opylbenzene		U	4.98	U	5.01	υ	3.91	U	4.98
Styrene		U	4,98	U	5.01	U	3.91	U	4.98
1,1,1,2-Tetrachloroethane		U	4.98	U	5.01	U	3.91	υ	4.98
1,1,2,2-Tetrachloroethane		U	4,98	U	5.01	υ	3.91	U	4.98
Tetrachloroethylene		U	4.98	U	5.01	U.	3.91	U	4.98
Toluene .		U	4.98	U	5.01	υ	3.91	U	4.98
1,2,4-Trichlorobenzene		υ	4.98	U	5.01	υ	3.91	U	4,98
1,2,3-Trichlorobenzene		U	4.98	υ	5.01	υ	3.91	U	4.98
1,1,2-Trichloroethane		U	4.98	U	5.01		3.91	U	4.98
1,1,1-Trichloroethane		UU	4.98	U	5.01	υ	3.91	U	4.98
Trichloroethene		υ	4.98	U	5,01	υ	3.91	<u> </u>	4.98
Trichlorofluoromethane		U	4.98	U	5.01	υ	3.91	U	4.98
1,2,3-Trichloropropane		U	4.98	U	5.01	υ	3.91	U	4.98
1,2,4-Trimethylbenzene		υ	4.98	υ	5.01	U	3.91	<u> </u>	4.98
1,3,5-Trimethylbenzene		U	4.98	υ	5.01	U	3.91	U	4.98
Vinyl Chloride		U	1.99	U	2,00	υ	1.56	U	1.99
o-Xylene		U	4.98	U	5.01	U	3.91	<u> </u>	4.98
m,p-Xylenes		U	9.96	υ	10.0	U	7.82	<u> </u>	9.96

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi .nce 1990





#### Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand Contact: Wendy Pennington	Avenue Vicini	roject Name: 900 S. ity/2156	Date Received in Lab: Report Date:	May-16-08 09:30 am 04-JUN-08
Project Location: Roxana, Illinois 62			Project Manager:	Debbie Simmons
	Lab Id:	303978-009		
Analysis Requested	Field Id:	TB051508		
S x	Depth:			
	Matrix:	WATER		
	Sampled:	May-15-08 00:00		
VOAc by SW 946 9260P	Extracted:	May-29-08 13:03		
VOAs by SW-846 8260B	Analyzed:	May-29-08 14:40		
	Units/RL:	ug/L RL		
Acetone		U 100		
Benzene		U 5.00		
Bromobenzene		U 5.00	······································	
Bromochloromethane		U 5.00		
Bromodichloromethane		U 5.00		
Bromoform		U 5.00		
Bromomethane	1	U 5.00		
2-Butanone		U 50.0		
MTBE		U 5,00		
n-Butylbenzene		U 5.00		
Sec-Butylbenzene		U 5.00		
tert-Butylbenzene		U 5,00		
Carbon Disulfide		U 50.0		<b>IN THE PERFORMANCE AND A DESCRIPTION OF A</b>
m Tetrachloride		U 5,00		
Chlorobenzene		U 5.00		
Chloroethane		U 10.0		
Chloroform		U 5.00		
Chloromethane		U 10.0		
2-Chlorotoluene		U 5.00		
4-Chlorotoluene		U 5.00		
p-Cymene (p-lsopropyltoluene)		U 5.00		
Dibromochloromethane		U 5.00		
1,2-Dibromo-3-Chloropropane		U 5.00		
1,2-Dibromoethane		U 5.00		
Dibromomethane		U 5.00		
1,2-Dichlorobenzene		U 5.00		
1,3-Dichlorobenzene		U 5.00		
1,4-Dichlorobenzene		U 5.00		
Dichlorodifluoromethane		U 5.00		
1,1-Dichloroethane		U 5.00		
1,2-Dichloroethane		U 5.00		
1,1-Dichloroethene		U 5.00		
cis-1,2-Dichloroethene		U 5.00		
trans-1,2-dichloroethene		U 5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Pb.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi .ice 1990

Managing Director, Texas





#### Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand A		10 jet Hame.	200.51 0	Date Receiv		May-16-(	08 09:30 am
Contact: Wendy Pennington					ort Date:	- 04-JUN-(	
Project Location: Roxana, Illinois 6208	4			F	Manager:	Debbie S	immons
	Lab Id:	303978-009					
Analysis Requested	Field Id:	TB051508					
Απαιγδιό Κειμεδιευ	Depth:						
	Matrix:	WATER					
	Sampled:	May-15-08 00:00					
	Extracted:	May-29-08 13:03					
VOAs by SW-846 8260B	Analyzed:	May-29-08 14:40					
	Units/RL:	ug/L R					
1,2-Dichloropropane	J		.00				Anno an de anno el 1974 (relativa el 1977) el 9797979 de anno fastantes an la 1
1,3-Dichloropropane		U 5	.00				
2,2-Dichloropropane	andrauk da 9 kor 4 m a	U 5	.00				
1,1-Dichloropropene		U 5	.00				
cis-1,3-Dichloropropene		U 5	.00				
trans-1,3-dichloropropene		U 5	.00				
Ethylbenzene		U 5	.00				
Hexachlorobutadiene		U 5	.00				
2-Hexanone		U 5	0.0				
isopropylbenzene		υ 5	.00				
Methylene Chloride		5.83 B 5	.00				
4-Methyl-2-Pentanone		U 5	0.0				
Maphthalene		U ŀ	0.0				
opylbenzene		U 5	.00				
Styrene		U 5	.00				
1,1,1,2-Tetrachloroethane		U 5	,00				
1,1,2,2-Tetrachloroethane		U 5	.00				
Tetrachloroethylene		U 5	.00				
Toluene		U 5	.00				
1,2,3-Trichlorobenzene		U 5	.00				
1,2,4-Trichlorobenzene		U 5	.00				
1,1,1 - Trichloroethane			.00				
1,1,2-Trichloroethane			.00				
Trichloroethene		U 5	.00				
Trichlorofluoromethane			.00				
1,2,3-Trichloropropane		·····	.00				
1,2,4-Trimethylbenzene			.00				
1,3,5-Trimethylbenzene			.00				
o-Xylene			.00				
m,p-Xylenes			0.0				
Vinyl Chloride		U 2	.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

ince 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Managing Director, Texas



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	rax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477



# Shell Oil Products Chain Of Custody Record

.

.

	ASCIENCE ()	$\sim \sim \sim$	: Elea	se:Chack	Appr	onnat	Box	\$		e Pr	int E	BIIL T	Con	tart.	Viniti	1. S. S. S.				K 7537	EN	÷ z.	JELD	100 m	111/0	THE OWNER	-		
	ST ANEAICA (	E ENV.	SERVICES		HOTIVA	NETAIL		) shell	RETAIL	Ĵ									··· 4		÷.	<u></u>	1602	<u>''SE</u>				NO INCLO	INT & APPLIES
	۲. ()		VA SDACN		CONSUL	TANT	6	3 LURES		1					OYEF	<b>.</b> 1995		20055	1	7	1		1 8		5 4	0	DATE:	5	15/08
Dσ	INER ()	D SHEL	FIFELINE		OTHER					-	1	<u> </u>	<u> </u>	<u></u>	7	<u> </u>	-	<u>.</u>	니		4	8	AP (		<u> </u>		PAGE:	1	of 1
[	STANT SOLOGUT				-					-		TE ADD							3	4	0		0 6	1			_		
신자유 (	CORPORATION		URS COL	PORATION	i - Fiel	D OFFH	ĊÆ			1																			
1001	HIGKLANDS PLAZA DRIVE WEST . SUITE 100	-	170 E. R.	ND AVENU	E				····	-	100 9	CEN	TRAL	VEN	UE; RO	QXAN	<b>4,</b> ILL	NOIS	62084										
ST 1	OUIS, MISSOURI 62110									- y	NEN	DY PE	NNING												ORCTH				
11189	CH4: 012 14144		MARTE G	RD, ILLINOI							PLER H	in the second se	adv	Pe	nnir	nat	5n						11694	100		1.Deri	VICION /	15510	
1000	CELL: STEASZARIE CELL: STEASZAR AROUND TIME (CALENCAR DAYS):	13	1	WERDY P	ensine (	លោយមក	coro.cz	) T				19	rer	.+-	Cra	çĭ.	211									131	$\supset \mathcal{C}$	97	84
द्भिज	ANDARD (10 DAY) S DAYS I SDAYS	0	2 DAYS	Пин	CURS	C		S HEEDE OH WEE		1					_				REQU	COT	= 1					19920		1.1	
DELIVI	MARLES: CLEVELS SELEVELS CLEVELS	ALEVEL	4 1	OTHER (SPEC		ED		UN TILL	ACAL)		T	1				1	<b>1</b> 1												
quat	RATURE ON RECEIPTO' CONFICT 2.3-	Geeist #2			Cogar	***		****		-	1																		
SPEC	IAL INSTRUCTIONS OR NOTES :						-		<b>.</b>	-									Í										
					œ sk	ELL CONT	RACTIN	TE APPLI	es	ł			1								1				1				
													Ì						1										
										m						i						1							
		RAN	PUNG		L	PR2511	VATA			\$260B			1							ł									
313	Field Sample Identification	DATE	TIME	MATRIX	$\square$	- 1		1	ND. 07 CONT.											ŀ									
isiis	3				HCL H	HOIHZS	H NONE	OTHER		20 N					[	1				ļ	-	1				PIO	CON OF	tainer P Lebora	iD Readings tory Notes
	B-1-03	6/14/02	r	WATER			1	3	4	X	-									+	┿╍	+-	+		<u>+</u>	(ppm)			
	B-2-04	1		WATER				3	ų	×	-	+				<u>+</u>				+	+	╋	+	┢	—				
in i	3-3-00		1				+	3		×		┼╼╾┼			+						<u> </u>	_	4	_		······			
101		dialer	0946	WATER	┟──┠╸		+	<del> </del>	4	· · · · · ·			<u> </u>		╉	<b>[</b> ]				ļ	<u> </u>	_	1_	<u> </u>				_	
	GP-12(II)-04	1		WATER	-			3	4	X		┟──┝		_	_					1									
	7		1025	WATER		_	1	3	4	X			_				ŀ					1	1						************
	<u>69-7(I)-03</u>		1115	WATER		_	1	3	4	X								Τ				T	T		1		-		······································
	B-6-04		1250	WATER			ł	3	4	X					T		1			1		Ť		1-	<u>†</u>				·····
	B-5-04.5	¥	1345	WATER			1	3	4	×								+	+			╞	+	<u>}</u>	<b></b>				
	TB051508			WATER			1			x				+			-+-				-	╞──	+	┝──	<u> </u>	·	·+		<u> </u>
										i i				┈┼╾╍			┉┾╸		+				+	<del> </del>					
Reingui	Print by: (Stiphelivite)		<u></u>	WATER	PTR((+)				l			LL	<u>_</u>	_					<u> </u>	<u> </u>				1	1				
U	Judy Penata					F	ed	$\mathcal{E}_{\mathcal{F}}$	k												512		e I.		/_ ==	· · · ·	54; J <b>– J</b> A		
Reinqui	shed by (Bignature)			Receival by fai	fotore)				<u>`</u>												PIL		<u> </u>	<u>ə /</u>	08		170	<u> </u>	
L											~															107	at .		
rengui	the by (bigsaber)			Reasoned by: (4)	n stare)		7-		7	<del>?</del>	-										<b>Care</b>								
	1 iscy				(			<b></b> ,	K,	-0	7	_ح	A	7							Ŝ,	1/	61	12	ぼ	1	09	~?/	0
					/									Clin .					•••••		1					- <u>.</u>	55/2/06 R	2 Contraction	

LAB	(LOCATION)
	11361 Maxdowgien Ln: Sie L: Housian, TX



Shell Oil Products Chain Of Custody Record

.

.

່ 🖸 🛛	1381 Maxdowgién Ln; Ste L; Housien, TX; NGO {	0.000.000				<u> </u>		<del>ر</del>	nie				100																			
	SCIENCE ()	101 and	SBAVICES	iss Checi	CAN	VA RETA	iato B			<u></u>	(P)	in)	BILT	αÇ	ónta	t Ri	<b>ini</b> éi:					<b>ING</b>	DEN	<b>3.</b> #)	EN	.SP	RVICI	ES) [	C) C) C) C) C) C) C) C) C) C) C) C) C) C	ALE NO IN		PLIP
D TE	T AMENICA (				-				SELL RE	TAIL					KS	VIN D	YER					9							DATE	. E	151	28
□ 3 th		· · · · · · · · · · · · · · · · · · ·	IVA ŠDECH			ULTART		Du	<b>HES</b>			*				RD:									AP	<u>.</u>	ंकेल				- <b>F</b> riti-F	
		SHE	1 PIPELINE		3 опна	R					]	T		1		1			Ť	Ť		3				تنتنت		T T	PAG	<u>:</u>	গ	
	ORPORATION										10	703	SITE AD	DREA	(Pured,	6/14 fty	(   \$410		- Andrew A			3 / 1	*   1			1	19.55	1.75				
ADORES	L			NFORATIOI		LDO	FFICE				-	100	1 S. CK	NTR:	11. AV	ENGE	• RO	CANA		unie.	#78#.											
1001 F	IIGHLANDS PLAZA DRIVE WEST - BUITE SOC	) 	\$70 E. R	AND AVEN	냳								ANCT PRO				r	220	1.06.16	1010	0.000			F	Fight P	ixt Hy	ort the	<del>34765</del>		<u></u>		
6T. L.C	UIS, MISSOURI 63110		HARTEO	RD, ILLINO	13 820	243					- ai	ᄮ	NDY P											_[	Rou	<u>e 444</u>	Lice	nd Ave	e Visini	y / 2154	1978	
TELEPH	DFF: \$16763-4158 FAX: OFF: 214-743-4	ift	E-4421;	_	· · ·	_							- We	inc	iy F	en	ŵŋ	gte	n									12	USE ON	50	÷. 6	,
TURN	CELL: STAASSASSA AROUND TIME (CALENDAR DAYS):		1	wendy	201021	1010040	_	<u>r.com</u> Ults N	(FA Pa			_		ör	ent	<u> </u>	rat	10	<u>n</u>									4	. <i>ب</i> ب	2/k	- <i>1-</i> C	: X
£	NDARD (10 CAY) 🗍 5 DAYS 🗍 3 DAYS		2 DAYS	C 241			_		WEEKI												REQ	UES'	TED .	ANA	YSI	\$						Reter
XE/IVE	MARCES; CARVELS SELEVELS DURVELS		14 🏋	COTHER (SPEC	3PY)	εï	50				1	T	1		T				T	T	-		<u> </u>	T	T			ñ	_			-
		Cools? #2			Coord	47 #3						1																	Í			
FEC	AL INSTRUCTIONS OR NOTES :				ra.					-	1	1			1		•															
					0	snat t	ONTRACT	F RATE /	VPLIES	i									ļ													
																		1	1													
											6			1								-					}					
		1 AI	XPLING	]	L	РА	ESFRYAT	ME			82508		-					{						Į								
	Field Sample Identification	DATE	TIME	MATAUK			T		<u> </u>	KO. OF CONT,	0						ł									ł				Contein.	r PID Re	
ONLY				Į <u> </u>	HCL	11403	K7506 N	0 1 1 10	E		ş														Į	1		₽/Đ (ppm)		orLab	oratory N	ାଦାମ Ctes
	B-1-03	6140	8	WATER				1	3	4	×	Γ		1	1				-			-	-	-			<del>`</del>	ppm				
	8-2-04	1	1	WATER					3	ч	×	┢		1	+				-+-		+					+		<b></b>				_
	B-3-00			1	$\dagger$		┉┼		3					-	+				-+-	-	+			+	+-	+	+		<u> </u>			
		diclo	0946	WATER	+-+			<del></del>	menden		×	<u> </u>								_	┥		1-	4	1		$\perp$		<u>_i</u> _			
	8-4-06	Distra		WATER	+-+	┝──┤				4	X			4	1					_									.			
1.1.1.	GP-12(II)-04	<b></b>	1025	WATER				1	3	4	X								ŀ							1	T					
	<u>6</u> P-7(I)-03		1116	WATER				1	3	4	X			Γ								1	1	1		+	1	-				
	8-6-04		1250	WATER		Π		1	3 .	4	x	1		1			1		╾┼╴	╈	+-	+	+	╧	+	$\vdash$	<del> </del>	<u> </u>	+			
	8-5-04.5	1	1345							<u> </u>			+		$\left  - \right $		-+			+		+	+	+	+	┿	+		<del>_</del>			
2011		<b></b>		WATER	┝┤				2	4	×	ļ		ļ										1								
	TB051508	Į	<u> </u>	WATER							$\boldsymbol{X}$			}	{				1				1			1	1					
				WATER			T		Τ				1	Γ				-	-	-1-	+	+-	+	1-	+	+	<u> </u>					
Reingun	And By: (dignelula)	<u>s</u> .		Reality by: (2	Honmers	n 1			_1.		Lł	L	1	<u> </u>						<u> </u>			- 0.0	╧	ĺ.,	<u> </u>	<u> </u>			<u>.</u>		_
11	Judy Perst						Fee	J A	- v	-													1.1		r 1.		1		line:			
Mangun	net sy. (Shrefuel)			Parental ay, (a	-puters					<b>.</b>			~~												וןכ	3	/08			700		
																							(Can	r				1	Sna:			-
keingun	nee by: [\$49nsture]			Rosa mare by: (6	ionality e			7			<del></del>	4	$\overline{}$																			
	F==1/ED			,,,,		. /			. 6	Ω	'n		2	هــ		7	_						014	-/	1	7	2	. "	-	1ar	> ~	
		· · · · · · · · · · · · · · · · · · ·				<u> </u>				~?		$\supset$	<del>,</del> _			Y							$ \mathcal{L} $	[ ]	61	1 6	$\mathcal{I}$	′ . [	Ą	72	iO	
					/																							-	01/	208 Revision	,	



Prelogin/Nonconformance Report- Sample Log-In

Client:	URS
Date/ Time:	5/16/8
Lab ID # :	3039,78-H
Initials:	

## Sample Receipt Checklist

		$\sim$			
#1	Temperature of container/ cooler?	(Yes)	No	N/A	2- 3.cl
#2	Shipping container in good condition?	(Yes	No	None	
#3	Samples received on ice?	Yes	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Yes	No	(N/A)	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	MA	
#6	Chain of Custody present?	(Yes)	No		
#7	Sample instructions complete of Chain of Custody?	(Yes	No	1	
#8	Any missing/extra samples?	Yes	No		
#9	Chain of Custody signed when relinquished/ received?	Nes	No		·····
#10	Chain of Custody agrees with sample label(s)?	(tes	No		
•1	Container label(s) legible and intact?	Yes	No	1	
	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#13	Samples in proper container/ bottle?	Nes	No	1	
#14	Samples properly preserved?	Yes	No	N/A	
#15	Sample container intact?	(Yes)	No		
#16	Sufficient sample amount for indicated test(s)?	Ves	No		
#17	All samples received within sufficient hold time?	Xes	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	(Yes)	No	N/A	

## Nonconformance Documentation

Contact:		Contacted by:	Date/ <u>Time</u> :
Regarding: _			
Corrective Actic	n Taken:		
			······
Check all that A	pply:	Client understands and would like Cooling process had begun short	



# **Rand Avenue Data Review**

Laboratory SDG: 304173

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
B-6-23	GP-7(II)-19
GP-7(II)-19 DUP	TB051408

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that the benzene results in samples GP-7(II)-19 and GP-7(II)-19 DUP exceeded the calibration range of the instrument; therefore, professional judgment was used to qualify benzene in both samples. Although not indicated in the laboratory case narrative, VOCs were detected in the trip blank and method blank. LCS recoveries for 2,2-dichloropropane were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

## 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

## 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
TB051408	VOCs	Methylene chloride	2.34	μg/L
509456-1-BLK	VOCs	Methylene chloride	6.02	μg/L
509521-1-BLK	VOCs	Methylene chloride	4.42	μg/L
509526-1-BLK	VOCs	Methylene chloride	5.67	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

## 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

				LCS		LCS
	LCSID	Parameter	Analyte	Decovery	RPD	Criteria
-	DESCENSION CONTRACTO			ACCOVELY	199010991000000000	Cificila
	509456-1-BKS	VOCs	2,2-Dichloropropane	70	N/A	75-125
-	509521-1-BKS	VOCs	2,2-Dichloropropane	72	N/A	75-125

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
B-6-23	VOCs	2,2-Dichloropropane	UJ
GP-7(II)-19	VOCs	2,2-Dichloropropane	UJ
GP-7(II)-19 DUP	VOCs	2,2-Dichloropropane	UJ

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogat	e Recove	ery Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID Parameter	Analyte	Qualification
N/A		

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
 N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

## 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

## Were laboratory duplicate sample RPDs within criteria?

N/A

		the second se	
	the second s	1. CONTRACTOR AND AND ADDRESS STORY AND ADDRESS ADDR ADDRESS ADDRESS ADDRES ADDRESS ADDRESS	A REAL PROPERTY AND
and the second	and the second	THEN REAL AND TO TO TO CONTROL OF STORE	
Lind III Parameter	Anginte	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		a service of the serv	2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C
	AND AND A SAME AND AND AND A SAME AND		
N			8
			C C
		E	

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

## 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
GP-7(II)-19	GP-7(II)-19 DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Parameter	Analyte	RPD	Qualification
N/A				

## **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples did not require a dilution.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter Dilution Factor
<u>N/A</u>	

## 11.0 Additional Qualifications

*Were additional qualifications applied?* 

Yes

Professional judgment was used to qualify benzene in samples GP-7(II)-19 and GP-7(II)-19 DUP. Benzene exceeded the calibration range of the instrument in these samples. The benzene results will be reported as > 150 in both samples.

Field ID	Analyte	Qualification	Comments
GP-7(II)-19	Benzene	J	Professional Judgment
GP-7(II)-19 DUP	Benzene	J	Professional Judgment

# **Analytical Report 304173**

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

05-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 31



05-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: **304173 900 S. Central Avenue** Project Address: Roxana, Illinois 62084

### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 304173. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 304173 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



## CASE NARRATIVE SUMMARY



Client Name: URS Corporation-St. Louis Project Name: Rand Avenue Site

Project ID:	Route 111 & Rand Ave Vic
Work Order Number:	304173

Report Date: 05-JUN-08 Date Received: 20-MAY-08

Benzene was found at high levels on samples 002 and 003. These samples were analyzed at 1x (no dilutions). Benzene has been reported with E-flags (estimated values).

50x dilutions were run from both, the methanol vial and sample jar . These results were below calibration and could not be reported. Both samples were also re-analyzed at 1x with similar over-calibration results.

Carlos Castro Managing Director, Texas





#### Project Name: 900 S. Central Avenue

Project Id: Route 111 & Ra Contact: Wendy Penning	-	Date			May-20-0 05-ЛЛN-0	8 09:45 am 8			
Project Location: Roxana, Illinois		Project Manager: Debbie Simmons							
	Lab Id:	304173-0	)]	304173-0	02	304173-0	03	304173-004	
Analysis Requested	Field Id:	B- 6- 23		GP-7 (II)-19		GP-7 (11) -9	-Dup	TB051408	
	Depth:								
	Matrix:	SOIL		SOIL		SOIL		WATER	
	Sampled:	May-19-08 1	2:05	May-19-08 1	6:35	May-19-08	16:35	May-19-08 00:00	
Percent Moisture	Extracted:								
ercent worstare	Analyzed:	May-22-08 0	8:27	May-22-08 0	8:38	May-22-08	08:29		
	Units/RL:	%	RL.	%	RL	%	RL		
Percent Moisture		8.63	1.00	3.55	1.00	3,37	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

ince 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas







Project Id: Route 111 & R	and Ave Vicinity /		ic. 90	Dat	e Recei	ved in Lab:	•		
Contact: Wendy Penning	_					port Date:	05-JUN-		
Project Location: Roxana, Illinoi	s 62084				Project	Manager:	Debbie S	immons	
	Lab Id:	304173-00	01	304173-0	02	304173	-003	304173-0	04
Analysis Requested	Field Id:	B- 6- 23		GP-7 (II)-	19	GP-7 (11) -	-9-Dup	TB05140	18
	Depth:								
	Matrix:	SOIL		SOIL		SOL	L	WATER	٤.
	Sampled:	May-19-08 I	2:05	May-19-08	16:35	May-19-08	8 16:35	May-19-08 (	00:00
VOAs by SW-846 8260B	Extracted:	May-23-08 1	2:04	May-21-08	14:46	May-21-08	8 14:48	May-23-08 1	11:57
10A3 by 511-040 62002	Analyzed:	May-23-08 1	3:55	May-21-08	17:22	May-21-08	8 17:43	May-23-08 1	12:16
	Units/RL:	ug/kg	RL	ug/kg	RL	ug/kg	RL	ug/L	RL
Acetone		υ	103	U	106	-	102	U	100
Benzene		U	5.13	>150-344E	<b>J*</b> 5.29	7150 -795 E	₽ <b>₽'J'3</b> .10	υ	5.00
Bromobenzene		U	5.13	U	5.29	υ	5.10	U	5.00
Bromochloromethane		U	5.13	U	5.29	U	5.10	U	5.00
Bromodichloromethane		υ	5.13	U	5.29	υ	5.10	υ	5.00
Bromoform		U	5,13	υ	5.29	U	5.10	U	5.00
Bromomethane		U	5.13	U	5.29	U	5.10	U	5.00
2-Butanone		U	51.3	U	52.9	ບ	51.0	U	50,0
MTBE		υ	5.13	υ	5.29	υ	5.10	υ	5.00
tert-Butylbenzene		υ	5.13	υ	5.29	υ	5,10	υ	5.00
Sec-Butylbenzene	-	U	5.13	υ	5.29	υ	5.10	υ	5.00
n-Butylbenzene		U	5.13	U	5.29	υ	5.10	υ	5.00
Carbon Disulfide		U	51.3	Ŭ	52.9	U	51.0	U	50.0
'arbon Tetrachloride		U	5.13	U	5.29	υ	5.10	U	5.00
Chlorobenzene	ļ	υ	5.13	υ	5.29	U	5.10	υ	5.00
Chloroethane		U	10.3	υ	10.6	υ	10.2	U	10.0
Chloroform		U	5.13	บ	5,29	U	5.10	υ	5.00
Chloromethane	ļ	U	10.3	บ	10.6	ប	10.2	U	10.0
2-Chlorotoluene		U	5.13	U	5.29	U	5.10	U	5.00
4-Chiorotoluene		U	5,13	U	5.29	U	5.10	υ	5.00
p-Cymene (p-Isopropyltoluene)		υ	5.13	υ	5.29	υ	5.10	υ	5.00
1,2-Dibromo-3-Chloropropane		υ	5.13	υ	5.29	υ	5.10	υ	5.00
Dibromochloromethane		U	5.13	υ	5,29	υ	5.10	U	5.00
1,2-Dibromoethane		U	5.13	U	5.29	U	5,10	U	5.00
Dibromomethane		U	5.13	υ	5.29	U	5.10	U	5.00
1,2-Dichlorobenzene		U	5.13	υ	5.29	υ	5.10	U	5.00
1,3-Dichlorobenzene		U	5.13	υ	5.29	υ	5.10	υ	5.00
1,4-Dichlorobenzene		Ð	5.13	υ	5,29	υ	5.10	U	5.00
Dichlorodifluoromethane		υ	5.13	υ	5.29	U	5.10	U	5.00
1,2-Dichloroethane		υ	5.13	U	5.29	υ	5,10	υ	5.00
1,1-Dichloroethane		υ	5.13	υ	5.29	U	5.10	υ	5.00
trans-1,2-dichloroethene		U	5,13	U	5.29	U	5.10	υ	5.00
cis-1,2-Dichloroethene		U	5.13	υ	5.29	υ	5.10	U	5,00
1,1-Dichloroethene		U	5.13	υ	5.29	υ	5.10	U	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warrantly to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas





Project Name: 900 S. Central Avenue

•	toute 111 & Rand Ave	Vicinity	2156197		Dat		ed in Lab:			
	Wendy Pennington					-		05-JUN-		
Project Location: F	Roxana, Illinois 62084					Project	Manager:	Debbie S	Simmons	
		Lab Id:	304173-00	01	304173-0	02	304173-4	003	304173-0	04
Analysis Requ	uested	Field Id:	B- 6- 23		GP-7 (II)-	19	GP-7 (ll) -9	)-Dup	TB05140	8
		Depth:								
		Matrix:	SOIL		SOIL		SOIL		WATER	٤
		Sampled:	May-19-08 1	2:05	May-19-08	16:35	May-19-08	16:35	May-19-08 (	0:00
VOAs by SW-846 8260		Extracted:	May-23-08 1	2:04	May-21-08	14:46	May-21-08	14:48	May-23-08 1	1:57
1023 59 511 640 6200	/	Analyzed:	May-23-08 1	3:55	May-21-08	17:22	May-21-08	17:43	May-23-08 1	2:16
	1	Units/RL:	ug/kg	RL	ug/kg	RL	ug/kg	RL	ug/L	RL
2,2-Dichloropropane			٢٠٠٠	<b>J</b> 3.13	عجلر	WJ5.29	عميد	<b>UT</b> 5 10	U	5.00
1,3-Dichloropropane			Ŭ	5,13	υ	5.29	υ	5.10	U	5,00
1,2-Dichloropropane			U	5.13	Ŭ	5.29	U	5.10	U	5.00
trans-1,3-dichloropropene			U	5.13	υ	5.29	υ	5,10	U	5.00
1,1-Dichloropropene			υ	5.13	υ	5.29	U	5.10	U	5.00
cis-1,3-Dichloropropene			υ	5.13	U	5.29	U	5.10	υ	5.00
Ethylbenzene			υ	5.13	U	5.29	υ	5.10	υ	5.00
Hexachlorobutaciene			υ	5.13	U	5.29	U	5.10	υ	5.00
2-Hexanone			υ	51,3	υ	52.9	υ	51.0	υ	50.0
Naphthalene			U	10.3	υ	10.6	U	10.2	ν	10.0
isopropylbenzene			U	5.13	U	5.29	U	5.10	10	5.00
Methylene Chloride			υ	20,5	υ	21.2	U	20.4	2.34 JB	5.00
4-Methyl-2-Pentanone		Ì	ប	51.3	U	52.9	υ	51.0	U	50.0
Propylbenzene			U	5.13	U	5.29	υ	5.10	υ	5.00
Styrene			U	5,13	υ	5.29	U	5,10	υ	5.00
1,1,1,2-Tetrachloroethane			υ	5.13	υ	5.29	υ	5.10	υ	5.00
1,1,2,2-Tetrachloroethane			U	5.13	υ	5.29	U	5.10	U	5.00
Tetrachloroethylene			U	5,13	U	5.29	U	5.10	U	5.00
Tolucne			υ	5.13	1.15 J	5.29	1.09 J	5.10	U	5.00
1,2,4-Trichlorobenzene			U	5.13	υ	5.29	U	5.10	υ	5.00
1,2,3-Trichlorobenzene			U	5.13	U	5.29	U	5.10	υ	5.00
1,1,2-Trichloroethane			U	5.13	U	5.29	υ	5.10	υ	5.00
1,1,1-Trichloroethane			U	5.13	U	5.29	υ	5.10	υ	5.00
Trichloroethene			U	5.13	ប	5.29	υ	5.10	υ	5.00
Trichlorofluoromethane			U	5.13	U	5.29	υ	5,10	υ	5.00
1,2,3-Trichloropropane			U	5,13	υ	5.29	U	5.10	U	5.00
1,2,4-Trimethylbenzene			υ	5.13	υ	5.29	υ	5,10	υ	5.00
1,3,5-Trimethylbenzene			U	5.13	U	5.29	U	5.10	U	5.00
Vinyl Chloride			U	2.05	U	2.12	U	2.04	U	2.00
o-Xylene		1	U	5,13	υ	5.29	U	5.10	U	5.00
m,p-Xylenes			U	10.3	U	10.6	υ	10.2	υ	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

LAB (L., ON) 11381 Meadowglen Ln; Sie L; Hauston, TX XENCO (			e Check										ame			Ddy F			SERV	(CES)			CIDENT # APP	
TEST AMERICA ()	ENV.	SERVICES		MOTIVA	RETAIL		SHELL	RETAIL	]			KEVIN I			• • • • • • • • •	9 7		1 6	1 1	4 0	ł		-/19/0	
SPL ()		A SD&CM		CONSUL	TANT		LUBES		]			PO						SAP #				·	<u>/ (1/)</u>	<u>- 0</u>
OTHER ()	C SHELL	PIPELINE		OTHER.					1			<u> </u>	T T		- fill	3 4	فيتشتهن	0 6	<u></u>		PAGE	≣: <u>{</u>	of/	<u> </u>
SULTANT COMPANY:									SOPU	SITE AD	DRESS (SI	roet, City at	nd Stete);	Ingen I	<u></u>	3 4	0	0 6	11		<u>.</u>			
RE33;		·	PORATION		D OFFIC	CE			90	S. CE	NTRAL	AVENU	E; ROXA	NA, ILL	INDIS 62	084								
HIGHLANDS PLAZA DRIVE WEST - SUITE 30	0	170 E. RA	ND AVENU	E									o).				T			T NAME / NO				
LOUIS, MISSOURI 63110			D, ILLINOI	IS 6204	8				SAMPLI	ER NAME(S							l.	_ Rout	<u>e 111 &amp;</u>	l LiA	ve Vicinit BUSE ONL	1.1		
OFF: 314-743-4185 OFF: 314-743- CELL: 314-452-8929 CELL: 314-452-		E-4441L:	wendy p	penning	ton@urs	corp.co	<u>اتا</u>		M	three	1 1	litter									SO4	1-7	23-1	6
RNAROUND TIME (CALENDAR DAYS): STANDARD (10 DAY) DS DAYS 3 DAY	s 🗂	2 DAY5	[] 24 H			RESULT			1						g	EQUEST			<u></u>		<u></u>	<u></u>		
	3 🖸 LEVEL		OTHER (SPEC				ON WEE	KEND	+			····												<del>Distancia</del> :
PERATURE ON RECEIPT C" Cooler #1 2.0	Cooler #2			Copier	#3			··· , ,	-		.													
CIAL INSTRUCTIONS OR NOTES :				- <u>i</u>					-															
				L S	HELL CONT	RACT RA	te appli	ies																
1									g															
Field Sample Identification	SAM	PLING	MATRIX		PRESE	RVATIVE	}	NO. 01	8260B															
Field Sample Identification	DATE	TIME	MATRIA					CONT.	X0C										-	PID	i 1		or PID Rea poratory N	
8-6-23	5/19/0	1002		HCL ()	HN03 H25		3	4	Ź			_					╌┼╌╌╌┠╸		┥──┤	(ppm				
1 (-P-7(I)-19	1 1	1635	Soll MATER			$-\frac{1}{1}$	3	2	1 <del>)</del>				+ +			<u> </u>	┼╼┼					20	: 4.	
G-P-7(IF)-19-DOP	+	1635	Soll	┼╌┽			3	<u>↓</u>														20	: 54	·
TB051408			WATER				12	4	8				<u></u>			<u> </u>			1		<u> </u>	20	<u>: 54</u>	$\square$
1,50507-00			WATER					1 (	X	_						ļ								`
			WATER		_		-	ļ	<b>_</b>	_														
			WATER	-		-	12																	
			WATER	$\square$			zn		1		-												****	
-			WATER		$\mathbf{H}$			ſ																
							]	1					† <u>†-</u> -				+ + +-						•• •	
			WATER	┾╍┼					+		+					╂	- <b> </b>  -				<u> </u>			
quished by: (Signature)		l	WATER	Signaturei		.			ΥL															
N/h_	<b></b> .								$\sim$								Date:				Time:			
rijst party (Signalu:e)			Received by: [5	- W ( Signature)	ex.												51	19/	7			500		
				-													Loate:				Time;			
quished by: (Signature)			Received by: (S	Signature)	7			$\rightarrow$			)				-		Date				Time:			
JED EX	-				k_		-4			Ļ	~		<u>`</u> ~~				5/2	~ /	00		DI	21	1	

•



Prelogin/Nonconformance Report- Sample Log-In

Client:	UNS
Date/ Time:	5/20/8
Lab ID # :	304173-67
Initials:	

## Sample Receipt Checklist

		0			
#1	Temperature of container/ cooler?	Yes	No	N/A	2-0°c
#2	Shipping container in good condition?	Yes	No	None	
#3	Samples received on ice?	Yes	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	(Yes)	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	/111/A)	
#6	Chain of Custody present?	1 Ces	No		
#7	Sample instructions complete of Chain of Custody?	Cles	No		
#8	Any missing/extra samples?	Yes	(No)		
#9	Chain of Custody signed when relinquished/ received?	Yes)	No		
#10	Chain of Custody agrees with sample label(s)?	Nes	No		
۰.	Container label(s) legible and intact?	(Yes)	No	·····	
	Sample matrix/ properties agree with Chain of Custody?	Xes	No		
#13	Samples in proper container/ bottle?	(Yes)	No		
#14	Samples properly preserved?	Nes	No	N/A	
#15	Sample container intact?	Nes	No		
#16	Sufficient sample amount for indicated test(s)?	Kes	No		
#17	All samples received within sufficient hold time?	Nes	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	Cles	No	N/A	

## Nonconformance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:	·····	notinini 1974 - 1	
Corrective Action	n Taken:		
Check all that A	oply:	Client understands and would like to pro Cooling process had begun shortly after	•



## **Rand Avenue Data Review**

Laboratory SDG: 304253

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
B-2-41	B-1-27
TB052008	

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

No, sample B-1-27 was designated as an MS/MSD sample on the COC to be analyzed for VOCs. The VOC MS/MSD data was not received as part of the data package. The laboratory was contacted and the data was requested.

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank and method blank. VOC LCS and surrogate recoveries for were outside evaluation criteria. Sample B-2-41 was analyzed at a dilution due to high levels of target analytes. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

## 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

ĺ	Field ID	Parameter	Analyte	Qualification
	N/A			
#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
TB052008	VOCs	Methylene chloride	3.03	μg/L
509521-1-BLK	VOCs	Methylene chloride	4.42	µg/L
509775-1-BLK	VOCs	Methylene chloride	30.4	μg/L
509839-1-BLK	VOCs	Acetone	21.4	μg/L
509839-1-BLK	VOCs	Bromomethane	1.09	μg/L
509839-1-BLK	VOCs	1,3-Dichlorobenzene	1.13	μg/L
509839-1-BLK	VOCs	1,4-Dichlorobenzene	1.12	µg/L
509839-1-BLK	VOCs	Methylene chloride	8.59	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
B-2-41	VOCs	Methylene chloride	-	U

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	RPD	LCS Criteria
509521-1-BKS	VOCs	2,2-Dichloropropane	72	N/A	75-125
509839-1-BKS	VOCs	Methylene chloride	160	N/A	75-125

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

B-1-27	VOCs	2,2-Dichlor	opropane	UJ
Field ID	Parameter	Anal	vte	Oualification

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
B-2-41	VOCs	4-Bromofluorobenzene	175	74-121
B-2-41	VOCs	1,2-Dichloroethane-d ₄	133	80-120
B-2-41	VOCs	Toluene-d ₈	171	81-117

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Quality control data associated with surrogate recoveries outside evaluation criteria did not require evaluation or qualification.

Field ID	Parameter	Analyte	Qualification
B-2-41	VOCs	Benzene	J
B-2-41	VOCs	tert-Butylbenzene	J
B-2-41	VOCs	sec-Butylbenzene	J
B-2-41	VOCs	n-Butylbenzene	J
B-2-41	VOCs	p-Cymene	J
B-2-41	VOCs	Isopropylbenzene	J
B-2-41	VOCs	Naphthalene	J
B-2-41	VOCs	Toluene	J
B-2-41	VOCs	1,3,5-Trimethylbenzene	J
B-2-41	VOCs	o-Xylene	J

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No, sample B-1-27 was designated as an MS/MSD sample on the COC to be analyzed for VOCs. The VOC MS/MSD data was not received as part of the data package.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria	
N/A						

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

## 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

#### 9.0 Field Duplicate Results

*Were field duplicate samples collected as part of this SDG?* 

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
B-2-41	VOCs	50

#### 11.0 Additional Qualifications

Were additional qualifications applied?

No

# **Analytical Report 304253**

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

05-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 30



05-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: **304253 900 S. Central Avenue** Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 304253. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 304253 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



## Certificate of Analysis Summary 304253 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

Project Id: Route 111 & Contact: Wendy Penni Project Location: Roxana, Illin	ngton	2156197		port Date: 05-JUN	-08 10:00 am -08 Simmons
Analysis Requested	Lab Id: Field Id: Depth:	304253-001 B-2-41	304253-002 B-1-27	304253-003 TB052008	
	Matrix: Sampled:	SOIL May-20-08 10:00	SOIL May-20-08 14:45	WATER May-20-08 00:00	
Percent Moisture	Extracted: Analyzed: Units/RL:	May-22-08 08:48 % RL	May-22-08 08:49 % RL		
Percent Moisture		6.89 1.00	2.96 1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas



### Certificate of Analysis Summary 304253 URS Corporation-St. Louis, St. Louis, MO



The second s

Project Name:	900 S.	Central	Avenue
---------------	--------	---------	--------

Project Id: Route 111 & Ra	nd Ave Vicinity /	2156197			e Receiv	ed in Lab:	•	
Contact: Wendy Penningt			-	•	05-JUN-	08		
Project Location: Roxana, Illinois	62084			]	Project	Manager:	Debbie S	Simmons
	Lab Id:	304253-00	1	304253-00	)2	304253-0	003	
Analysis Requested	Field Id:	B-2-41		B-1-27		TB0520	08	
	Depth:							
	Matrix;	SOIL		SOIL		WATE	R	
	Sampled:	May-20-08 10	:00	May-20-08 1	4:45	May-20-08	00:00	
VOAs by SW-846 8260B	Extracted:	May-28-08 16	:08	May-23-08 1	4:38	May-29-08	14:20	
	Analyzed:	May-28-08 18	:46	May-23-08 1	6:30	May-29-08	15:20	
	Units/RL:	ug/kg	RL	ug/kg	RL.	ug/L	RL.	
Acetone		υ	125	υ	115	U	100	
Benzene		92.7 - <b>5</b>	6.26	υ	5.75	υ	5.00	
Bromobenzene		Ŭ	6.26	υ	5,75	υ	5.00	
Bromochloromethane		U	6.26	U	5.75	υ	5.00	
Bromodichloromethane		υ	6.26	U	5.75	U	5.00	······································
Bromoform		υ	6.26	U	5.75	υ	5.00	······
Bromomethane		U	6.26	U	5.75	υ	5,00	
2-Butanone		U	62.6	υ	57.5	υ	50.0	
MTBE		υ	6.26	U	5.75	υ	5.00	
tert-Butylbenzene		13.6	6.26	U	5.75	U	5.00	······································
Sec-Butylbenzene		41.3-"[	6.26	U	5.75	υ	5.00	
n-Butylbenzene		91.3 <b>-"`J</b>	6.26	υ	5.75	U	5.00	
Carbon Disulfide		υ	62,6	U	57.5	U	50.0	
arbon Tetrachloride		U	6.26	U	5.75	U	5.00	
Chlorobenzene		U	6.26	U	5.75	U	5.00	
Chloroethane		υ	12.5	U	11.5	U	10.0	
Chloroform		U	6.26	U	5.75	υ	5.00	
Chloromethane		υ	12.5	υ	11.5	U	10.0	
2-Chlorotoluene		υ	6.26	U	5.75	υ	5.00	····
4-Chlorotoluene		U	6.26	Ŭ	5.75	υ	5.00	
p-Cymene (p-Isopropyltoluene)		25.1 <b>- J</b>	6.26	υ	5.75	U	5.00	**************************************
1,2-Dibromo-3-Chloropropane		U	6.26	U	5.75	υ	5.00	
Dibromochloromethane		U	6.26	υ	5.75	U	5.00	
1,2-Dibromoethane		U	6,26	U	5.75	U	5.00	
Dibromomethane		υ	6.26	υ	5.75	U	5.00	
1,2-Dichlorobenzene		υ	6,26	U	5.75	υ	5.00	
1,3-Dichlorobenzene		υ	6.26	U	5.75	υ	5.00	
1,4-Dichlorobenzene		U	6.26	υ	5.75	υ	5.00	· · · · · · · · · · · · · · · · · · ·
Dichlorodifluoromethanc		U	6.26	U	5.75	υ	5.00	
1,2-Dichloroethane		υ	6.26	υ	5.75	U	5.00	
1,1-Dichloroethane		υ	6.26	U	5.75	U	5.00	
trans-1,2-dichloroethene		υ	6.26	U	5.75	U	5.00	
cis-1,2-Dichloroethene		υ	6.26	U	5.75	U	5.00	
1,1-Dichloroethene		U	6.26	υ	5.75	U	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas



Since 1990

# Certificate of Analysis Summary 304253 URS Corporation-St. Louis, St. Louis, MO



Charles and the second second

And the second second second

Project Name:	900 S. Central Avenue
---------------	-----------------------

Project Id: Route 111		/ 2156197	ac. 90			ed in Lab:	May-21-	08 10:00 am
Contact: Wendy Per		Re	port Date:	05-JUN-	08			
Project Location: Roxana, II	linois 62084			i	Project	Manager:	Debbie S	Simmons
	Lab Id:	304253-0	01	304253-0	02	304253-	003	·····
Analysis Requested	Field Id:	B-2-41		B-1-27		TB0520	808	
· · · · · · · · · · · · · · · · · · ·	Depth:							
	Matrix:	SOIL		SOIL		WATE	ER	
	Sampled:	May-20-08 1	10:00	May-20-08 3	4:45	May-20-08	00:00	
VOAs by SW-846 8260B	Extracted:	May-28-08 1	16:08	May-23-08 I	4:38	May-29-08	14:20	
	Analyzed:	May-28-08 1	8:46	May-23-08 1	6:30	May-29-08	15:20	
	Units/RL:	ug/kg	RL	ug/kg	RL	ug/L	RL.	
2,2-Dichloropropane		υ	6.26	ا جملر	UB:75	υ	5.00	
1,3-Dichloropropane		U	6.26	ບ	5,75	U	5.00	
1,2-Dichloropropane		υ	6.26	υ	5.75	υ	5.00	
trans-1,3-dichloropropene		υ	6.26	U	5.75	U	5.00	
1,1-Dichloropropene		υ	6.26	υ	5.75	υ	5.00	
cis-1,3-Dichloropropene		U	6.26	U	5.75	υ	5.00	
Ethylbenzene		4390 D	328	2.08 )	5,75	U	5.00	
Hexachlorobutadiene		U	6.26	υ	5,75	υ	5.00	
2-Hexanone		υ	62.6	U	57.5	υ	50,0	
isopropylbenzene			<b>J"</b> 6.26	U	5.75	υ	5.00	
Naphthalene			<b>J</b> [*] 12.5	U	11.5		10.0	
Methylene Chloride	0,0	AD123 JEP	1 25.0	υ	23.0	3.03 JB	5.00	
4-Methyl-2-Pentanone			62.6	υ	57.5	W	50.0	
Propylbenzene		1730 D	328	υ	5.75	U	5.00	
yrene		Ų	6.26	U	5,75	υ	5.00	
1,1,1,2-Tetrachloroethane		υ	6.26	U	5.75	υ	5.00	
1,1,2,2-Tetrachloroethane		υ	6,26	υ	5.75	υ	5.00	• • • • • • • • • • • • • • • • • • •
Tetrachloroethylene		ប	6.26	υ	5.75	υ	5.00	
Toluene		13.6 2	<b>J ''</b> 6.26	2.04 J	5.75	U	5.00	
1,2,4-Trichlorobenzene		U	6.26	υ	5.75	υ	5.00	
1,2,3-Trichlorobenzene		υ	6.26	υ	5.75	υ	5.00	
1,1,2-Trichloroethane		U	6.26	U	5.75	U	5.00	
1,1,1-Trichloroethane		υ	6.26	υ	5,75	U	5.00	
Trichloroethene		υ	6.26	U	5.75	U	5.00	
Trichlorofluoromethane		υ	6.26	U	5,75	υ	5.00	
1,2,3-Trichloropropane		υ	6.26	U	5.75	ប	5.00	
1,2,4-Trimethylbenzene		5590 D	328	U	5.75	U	5.00	
1,3,5-Trimethylbenzene		184 -	<b>J</b> 6.26	U	5.75	U	5.00	
Vinyl Chloride		U	2.50	υ	2.30	U	2.00	
o-Xylene		24.6 -4	<b>] ⁴6.2</b> 6	υ	5.75	υ	5.00	
m,p-Xylenes		2450 D	655	U	11.5	U	10.0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranny to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone	Fax
(281) 589-0692	(281) 589-0695
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(770) 449-8800	(770) 449-5477
	(281) 589-0692 (214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500

	PI	ease:Check A								fCus	tody	Rec	ord			
	ENV. SERVICES		DITVA RETAIL			int Bill	To Cant	tact Nan	net			IDENT	# (	CEDWARK		
				SHELL RET	<u> </u>		ĸ	EVIN DY	ĒR		9	-	# ( <u>C</u> (#V	J J J J J J	CHECK IF	NO INCIDENT # APPLIES
<b></b>	SHELL PIPELINE		NSULTANT					PO #				7 2	1 5	6 4 (	DATE:	5-120/08
OHBULTANT COMPANY	LI SHELL PIPELINE		HER				- The second	121					SAP #		PAGE	1 1
	URS CO	DRPORATION - F			so	PUS SITE AD	DORESS (Stre	et, City and S	Hate):		3	4 0	06	1 38		of
101 HIGHLANDS PLAZA DRIVE WEST - SUITE 300		RAND AVENUE				300 S. CE	NTRAL A	VENUE; F	ROXANA.	ILLINOIS 6	2094					
LOUIS, MISSOURI 63110		ORD, ILLINOIS 62				VENDY P	ENNINGT	TON						T PROJECT NAME / H		
FAC         FAC           OFF: 314-743-4165         FAC           OELL: 314-425.8929         CELL: 314-455.8929	E-SKARL:					PLER RANE(S	i) (Psint);					{	Route	111 & Rend A	ve Vicinity (	21561979
STANDARD IME (CALENDAR DAYS):		wency penn	ington@ursco			_								14	$\frac{2}{1}$	21561979 ZSZ-f
LJ 3 DAYS	2 DAYS	24 HOURS	•	SULTS NEEDED ON WEEKEN	, ,					······				بنبنا		<u> 2507</u>
		OTHER (SPECIFY)				i				K	EQUES		ALYSIS			
ECIAL INSTRUCTIONS OR NOTES :	oler #2	Ceo	ler #3													· · · · · · · · · · · · · · · · · · ·
	SAMPLING DATE TIME DUAR (000 1445 1445 1445	MATRIX MATRIX SUITER SUITER SUITER SUITER WATER WATER WATER WATER WATER WATER WATER WATER		NO. COI	X X X X VOC 8260B									Pib (ppm) (92 4,7 4,7 4,7 4,7	or	ainer PID Readings Laboratory Notes
Sahes by: (Signature)		WATER				$\pm 1$				-+-+			┼╾┾╴			
med by (Bignaling		Fed B	×								1	0*** 5/20	1/08-	I		
hed by: (Signature)							<u> </u>					Date:	~0		1800	
FDEC		scelved by: (Signature)	7			7						Dete:	10		n#:	
			100	11/	1	-								1		~ (

-

.....

•



Prelogin/Nonconformance Report- Sample Log-In

Client:	NNS
Date/ Time:	5/21/8
Lab ID # :	30 4253-17
Initials:	

## Sample Receipt Checklist

____

#1	Temperature of container/ cooler?	(Yes)	No	N/A	Z • S • c
#2	Shipping container in good condition?	Ves	No	None	
#3	Samples received on ice?	Ves	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	(Yès)	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	(N/A)	
#6	Chain of Custody present?	Yes)	No		
#7	Sample instructions complete of Chain of Custody?	Yes	No	·	
#8	Any missing/extra samples?	Yes	NO)		<u> </u>
#9	Chain of Custody signed when relinquished/ received?	(Hes)	No		
#10	Chain of Custody agrees with sample label(s)?	Xes)	No		
Г <b>4</b>	Container label(s) legible and intact?	Xes)	No		
	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#13	Samples in proper container/ bottle?	Yes)	No		
#14	Samples properly preserved?	Yes	No	N/A	
#15	Sample container intact?	Yes	No		
#16	Sufficient sample amount for indicated test(s)?	Res	No		
#17	All samples received within sufficient hold time?	Xes	No	·····	
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	(Yes)/	No	N/A	
		استمر بينيسي مسيد			· · · · · · · · · · · · · · · · · · ·

## Nonconformance Documentation

Contact:	;	Contacted by:	Date/ <u>Time:</u>
Regarding:			
Corrective Action Taker	:		
Check all that Apply:		Client understands and would like to proceed with ar Cooling process had begun shortly after sampling ev	

Page 30 of 30



# **Rand Avenue Data Review**

Laboratory SDG: 304421

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
B-3-33	B-5-27
TB052108	

#### 1.0 Data Package Completeness

*Were all items delivered as specified in the QAPP and COC?* 

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank and method blank. VOC LCS and MSD recoveries and the surrogate recovery for 4-Bromofluorobenzene were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
TB052108	VOCs	Methylene chloride	2.90	μg/L
509521-1-BLK	VOCs	Methylene chloride	4.42	μg/L
509775-1-BLK	VOCs	Methylene chloride	30.4	µg/L
509839-1-BLK	VOCs	Acetone	21.4	μg/L
509839-1-BLK	VOCs	Bromomethane	1.09	μg/L
509839-1-BLK	VOCs	1,3-Dichlorobenzene	1.13	μg/L
509839-1-BLK	VOCs	1,4-Dichlorobenzene	1.12	μg/L
509839-1-BLK	VOCs	Methylene chloride	8.59	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
B-3-33	VOCs		-	U

#### 5.0 Laboratory Control Sample

*Were LCS recoveries within evaluation criteria?* 

No

LCSID	Parameter	Analyte	LCS Recovery	RPD	LCS Criteria
509521-1-BKS	VOCs	2,2-Dichloropropane	72	N/A	75-125
509839-1-BKS	VOCs	Methylene chloride	160	N/A	75-125

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
B-5-27	VOCs	2,2-Dichloropropane	UJ

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
B-3-33	VOCs	4-Bromofluorobenzene	126	74-121

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
B-3-33	VOCs	Toluene	J

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

*Were MS/MSD samples reported as part of this SDG?* 

Yes, sample B-3-33 was spiked and analyzed for VOCs.

*Were MS/MSD recoveries within evaluation criteria?* 

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
B-3-33	VOCs	Dichlorodifluoromethane	132/136	. 3	65-135/23
B-3-33	VOCs	1,2,4-Trichlorobenzene	83/73	13	75-135/25
B-3-33	VOCs	1,2,3-Trichlorobenzene	84/70	18	75-137/25

Analytical data that required qualification based on MS/MSD data are included in the table below. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analy	te	RPD	Criteria
N/A					

Data qualified due to outlying laboratory duplicate recoveries are identified below:

- Field ID	Parameter	Analyte	Qualification
N/A			

#### 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
N/A	

Were field duplicates within evaluation criteria?

N/A

Field ID Field Duplicate ID	Parameter Analyte	RPD Qualification
N/A		

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples did not require a dilution.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter Dilution Factor
N/A	

# 11.0 Additional Qualifications

Were additional qualifications applied?

.

No

# Analytical Report 304421

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

04-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 30



04-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 304421 900 S. Central Avenue Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 304421. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 304421 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



# Certificate of Analysis Summary 304421 URS Corporation-St. Louis, St. Louis, MO



#### Project Name: 900 S. Central Avenue

	· · · · ·			•					
Project Id: Route 111 & 1	Rand Ave Vicinity /	2156197		Date	e Receive	May-22-	08 10:00 am		
Contact: Wendy Pennis	igton	Report Date: 04-JUN-08 Project Manager: Debbic Simmons							
Project Location: Roxana, Illino									
	Lab Id:	304421-0	01	304421-0	02	304421	-003		
Analysis Requested	Field Id:	B-3-33		B-5-27		TB052108			
	Depth:								
	Matrix:	SOIL		SOIL		WAT	ER		
	Sampled:	May-21-08 1	1:00	May-21-08 1	4:00	May-21-0	8 00:00		
Percent Moisture	Extracted:								
i ci cent moistai c	Analyzed:	May-27-08 1	6:01	May-27-08 1	6:02				
	Units/RL:	%	RL	%	RL.				
Percent Moisture		2.68	1,00	7.72	1.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Are hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Pb.D., MBA

Managing Director, Texas



# Certificate of Analysis Summary 304421 URS Corporation-St. Louis, St. Louis, MO



#### Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand		2156197			e Receiv	ed in Lab: 1	May-22- )4-JUN-	
Contact: Wendy Pennington	104	Report Date: 04-JUN-08 Project Manager: Debbie Simmons						
Project Location: Roxana, Illinois 620			r					
	Lab Id:	304421-00	1	304421-0	02	304421-0		
Analysis Requested	Field Id:	B-3-33		B-5-27		TB052108		
	Depth:							
	Matrix:	SOIL		SOIL		WATE		
	May-21-08 1	1:00	May-21-08 14:00		May-21-08 00:00			
VOAs by SW-846 8260B	May-28-08 1	5:47	May-23-08 1	ł	May-29-08			
	Analyzed:	May-28-08 1	6:01	May-23-08 1	7:53	May-29-08	15:40	
	Units/RL:	ug/kg	RL	ug/kg	RL	ug/L	RL	
Acetone		U	113	U	107	υ	100	
Benzene		U	5,67	υ	5.33	U	5.00	
Bromobenzene		U	5.67	U	5,33	υ	5.00	
Bromochloromethane		υ	5.67	U	5.33	U	5.00	
Bromodichloromethane		U	5.67	U	5,33	<u> </u>	5.00	
Bromoform		U	5.67	U	5.33	U	5.00	
Bromomethane	.,,,	U	5.67	U	5,33	U	5,00	
2-Butanone		U	56.7	U	53,3	U	50.0	
MTBE		U	5,67	υ	5.33	U	5.00	
tert-Butylbenzene		U	5.67	υ	5,33	U	5.00	
Sec-Butylbenzene		υ	5.67	υ	5.33	U	5.00	
n-Butylbenzene		U	5.67	U	5.33	U	5.00	
bon Disulfide		U	56.7	U	53.3	U	50.0	
Jon Tetrachloride		U	5.67	U	5.33	U	5.00	
Chlorobenzene		U	5,67	UU	5.33	U	5.00	
Chloroethane		U	11.3	U	10.7	U	10.0	
Chloroform		U	5.67	<u> </u>	5.33	U	5.00	
Chloromethane		υ	11.3	U	10.7	U	10.0	
2-Chlorotoluene		U	5.67	U	5.33	U	5.00	
4-Chiorotoluene		U	5.67	υ	5,33	U	5.00	
p-Cymene (p-Isopropyltoluene)		U	5.67	U	5.33	U	5.00	
1,2-Dibromo-3-Chloropropane		U	5.67	U	5.33	U	5.00	
Dibromochloromethane		U	5.67	υ	5.33	U	5.00	
1,2-Dibromoethane		U	5,67	U	5.33	U	5.00	
Dibromomethane		U	5.67	υ	5.33	U	5.00	
1,2-Dichlorobenzene		U	5.67	υ	5,33	υ	5.00	
1,3-Dichlorobenzene		U	5.67	υ	5,33	U	5.00	
1,4-Dichlorobenzene		U	5.67	U	5.33	<u> </u>	5,00	
Dichlorodifluoromethane		U	5.67	υ	5.33	U	5.00	
1,2-Dichloroethane		υ	5.67	υ	5.33	U	5,00	
1,1-Dichloroethane		U	5.67	U	5.33	υ	5.00	
trans-1,2-dichloroethene		U	5.67	υ	5,33	υ	5.00	
cis-1,2-Dichloroethene		U	5.67	U	5,33	υ	5.00	
1,1-Dichloroethene		U	5,67	υ	5.33	U	5,00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. I liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Pb.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Managing Director, Texas



# Certificate of Analysis Summary 304421 URS Corporation-St. Louis, St. Louis, MO



Project Name:	900 S.	Central	Avenue
---------------	--------	---------	--------

Project Id: Route 111		Dat		ved in Lab:	-			
Contact: Wendy Per	e e					•	04-JUN	
Project Location: Roxana, Ill	inois 62084				Project	Manager:	Debbie	Simmons
	Lab Id:	304421-00	51	304421-0	102	304421-0	003	
Analysis Requested	Field Id:	B-3-33		B-5-27		TB052108		
	Depth:							
	Matrix:	SOIL		SOIL		WATE	R	
	Sampled:	May-21-08 1	1:00	May-21-08	14:00	May-21-08	00:00	
VOAs by SW-846 8260B	Extracted:	May-28-08 1	5:47	May-23-08	14:46	May-29-08	14:22	
	Analyzed:	May-28-08 1	6:01	May-23-08	17:53	May-29-08	15:40	
	Units/RL:	ug/kg	RL	ug/kg	RL.	ug/L	RL	
2,2-Dichloropropane		υ	5.67	• *لي	<b>WB</b> .33	U	5.00	
1,3-Dichloropropane		U	5.67	U	5,33	U	5.00	
1,2-Dichloropropane		U	5.67	U	5.33	U	5.00	
trans-1,3-dichloropropene		U	5.67	υ	5.33	υ	5.00	
1,1-Dichloropropene		U	5.67	υ	5.33	υ	5.00	
cis-1,3-Dichloropropene		U	5.67	υ	5.33	U	5,00	
Ethylbenzene		U	5,67	U	5.33	υ	5.00	
Hexachlorobutadiene		U	5.67	U	5.33	U	5.00	
2-Hexanone		U	56.7	U	53,3	υ	50.0	
Naphthalene		U	11.3	U	10.7	<u>A</u>	10.0	
isopropylbenzene		- M	5,67	ប	5.33	U	5.00	
Methylene Chloride	<u>م</u>	0.09.22-350	<b>L'</b> 22.7	υ	21.3	( 2.90 JB	5.00	······
4-Methyl-2-Pentanone			56.7	U	53.3	<u> </u>	/ 50.0	
-Propylbenzene		U	5.67	U	5.33		5.00	
Styrene		υ	5,67	<u>U</u>	5.33	U	5.00	
1,1,1,2-Tetrachloroethane		υ	5.67	U	5.33	U	5.00	
1,1,2,2-Tetrachloroethane		υ	5.67	U	5,33	U	5.00	
Tetrachloroethylene		υ <u>.</u>	5.67	υ	5.33	U	5,00	
Toluene		1.37&"]	5.67	υ	5.33	U	5.00	
1,2,4-Trichlorobenzene		U	5.67	U	5.33	U	5.00	
1,2,3-Trichlorobenzene		U	5.67	U	5.33	U	5.00	
1,1,2-Trichloroethane		U	5.67	υ	5.33	υ	5.00	
1,1,1-Trichloroethane		U	5.67	<u> </u>	5.33	U	5.00	
Trichloroethene		U	5.67	υ	5,33	U	5.00	
Trichlorofluoromethane		U	5.67	U	5.33	U	5.00	
1,2,3-Trichloropropane		<u> </u>	5.67	υ	5.33	U	5.00	
1,2,4-Trimethylbenzene		U	5.67	υ	5.33	U	5.00	
1,3,5-Trimethylbenzene		U	5,67	U	5.33	U	5.00	
Vinyl Chloride		U	2.27	υ	2.13	U	2.00	
o-Xylene		U	5,67	U	5,33	υ	5,00	
m,p-Xylenes		υ	11.3	υ	10.7	ប	10.0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Since 1990

X

Carlos A. Castro, Ph.D., MBA Managing Director, Texas



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

151

r.

Phone	Fax
(281) 589-0692	(281) 589-0695
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(770) 449-8800	(770) 449-5477
	(281) 589-0692 (214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500

EST AMERICA () PL () THER () ITANT COMPANY: CORPORATION ISS HIGHLANDS PLAZA DRIVE WEST - SUITE 300 OUIS, MISSOURI 63110 RONE: OFF: 314-743-4166 OFF: 314-743-4166 CELL: 314-452-829 CELL: 314-452-8 CELL: 314-		A SD&CM PIPELINE		MOTIVA F			) sheer a	L'IAIL	1								ŧ	- I -	1 . 1			4 0	D 4 7	r	1210	-
THER () ILTANT COMPARIT: CORPORATION 33: HIGHLANDS PLAZA DRIVE WEST - SUITE 300 OUIS, MISSOURI 63110 MONE: OFF: 314-743-4166 OFF: 314-743-4166	SHELL	PIPELINE	5 -	CONSULT.				,	<b></b>			ĸ	EVIN C	YER			1	9 7	2	1 6	6	4 0	UAL.	ر م ا	0110	3
NTANT COMPANY: CORPORATION 38 HIGHLANDS PLAZA DRIVE WEST - SUITE 300 OUIS, MISSOURI 63110 HONE: OFF: 314-743-4166 OFF: 314-743-4166	1				ANT		LUSES						PO	#						SAP #				_ 1		1
CORPORATION           38           HIGHLANDS PLAZA DRIVE WEST - SUITE 300           OUIS, MISSOURI 63110           HONE:           OFF: 314-743-4166           OFF: 314-743-4166		·		OTHER				·									<u>       </u>	3 4	0	0 6	4		PAG	£:	o!	~~~}
HIGHLANDS PLAZA DRIVE WEST - SUITE 300 OUIS, MISSOURI 63110 MORE: 0FF: 314-743-4166 0FF: 314-743-41		URS COR	PORATION	- FIELC	OFFIC	CE			307	PUS SITI	E ADDRE	\$5 (Stree	i, City ar	nd State):	ł,,	i, , , ,	<del>ا يە مەل</del>				, <u>.</u>					
HONE: OFF: 314-743-4166 FAX: OFF: 314-743-41	· · · · ·	170 E. RAI	ND AVENU	ε					- <u>-</u> 	900 S.	CENT	RAL A	VENUI T (Rapped in	E; ROX	ANA, IL	LINO	S 6208	4	_T	CONSULT	INT PROJE	CT NAME THO .:				
OFF: 314-743-4166 OFF: 314-743-41		HARTFOR	D, ILLINOI	S 62048	3	<u>.</u>							TON		·					Rout	<u>ə 111 ş</u>	Rand Ave	e Vicin Use on	ity / 2156	1979	
		E-ALAIL:	wendy p	enningte	on@urs	corp.co	2m															Š	$O^{C}$	10	21-4	
NAROUND TIME (CALENDAR DAYS): TANDARD (10 DAY) D 5 DAYS D 3 DAYS		2 DAYS	24 )+	OURS			S NEEDER									•••	REC	UEST	ED AN	ALYSI	s	<u>. المجمع ا</u>		<u>/////////////////////////////////////</u>	<u>(</u>	<u></u>
ERABLES; LEVEL 1 2 LEVEL 2 C LEVEL 3	C LEVEL	4	OTHER (SPECI	(FY)					+	Т	<u> </u>			TT					TT		T			****		
SRATURE ON RECEIPT C* Cooler #1 Z-OC	Cooter #2			Cooler #	\$3				1														ł			
	SAM	PLING			PRESE	RVATIVE		1	8260B																	
Field Sample Identification	DATE	TIME	MATRIX	HCL H	NOJ HZSI			NO, OF CONT,														P(D (ppm)			er PID Read	
B-3-33	5/21/08	1100	Soll WATER			{	3	4	1										†. †			(ppm)				<u> </u>
B-5-27	5/01/08	1400	Soil HINTER			l	3	4	Ŵ					•												
TB052108			WATER	1				1	X																	
	<u> </u>		WATER				<u> </u>						_													
51 51			WATER	-   -			<u> </u>										ļ									]
	<u> </u>		WATER																							
	<u> </u>		WATER					2								_										
	L		WATER		$\mathbf{X}$		122	m		1-																
N			WATER			$\mathbf{X}$																				
Jisted by: (Signature)			WATER					-																		
NA	• .		Received by: (3																Oate:	-1		1	Time:			
Sishey Gr. (Signature)	·······		Received by: (S	ed Z	21	-														5/2	( le	······································		700	<u>ں</u>	
				. ,		_					_	_							Date:				Time:			
Jishest by: (Signature)	1		Received by: (8	Signature)	/	7	2	/	1	<del>;</del>	$\left( - \right)$		2 -		· <u>-</u>		<u> </u>		Ostec	1			Time:			
<u> </u>					ي ا	L		K		<	5		-7	~					57	22	10	B	1	0	$\mathcal{O}\mathcal{O}$	'

.

• •



Prelogin/Nonconformance Report- Sample Log-In

Client:	URS
Date/ Time:	5/22/3
Lab ID # :	304421-4
Initials:	()

# Sample Receipt Checklist

. • .

	· · · · · · · · · · · · · · · · · · ·	1			~
#1	Temperature of container/ cooler?	Yes	No	N/A	P. Oc
#2	Shipping container in good condition?	Rest	No	None	
#3	Samples received on ice?	Tes	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Nes	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	(N/A)	
#6	Chain of Custody present?	Xes	No		
#7	Sample instructions complete of Chain of Custody?	Ares	No		
#8	Any missing/extra samples?	Yes	NO		
#9	Chain of Custody signed when relinquished/ received?	Yes)	No		
#10	Chain of Custody agrees with sample label(s)?	Yes)	No		
	Container label(s) legible and intact?	Yes)	No		1
#12	Sample matrix/ properties agree with Chain of Custody?	Kee	No		1
#13	Samples in proper container/ bottle?	Yes	No		
#14	Samples properly preserved?	Nes	No	N/A	1
#15	Sample container intact?	Nes	No		
#16	Sufficient sample amount for indicated test(s)?	Nez	No		
#17	All samples received within sufficient hold time?	Xes)	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	İ
	VOC samples have zero headspace?	Yes	No	N/A	
					<u> </u>

#### **Nonconformance Documentation**

Contact:		Contacted by:	Date/ <u>Time:</u>
Regarding:			
Corrective Action Taker	):		
Cinck all that Apply:		Client understands and would like to proceed with anal Cooling process had begun shortly after sampling ever	



# **Rand Avenue Data Review**

Laboratory SDG: 304536

**Reviewer:** Tony Sedlacek

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification # Sample Identification #				
B-4-35	GP-12(II)-17			
GP-12(II)-17-DUP	TB052208			

#### **1.0 Data Package Completeness**

Were all items delivered as specified in the QAPP and COC?

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank and method blank. The LCS recovery for methylene chloride was outside evaluation criteria. Samples were evaluated and qualified using professional judgment. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
509775-1-BLK	VOCs	Methylene chloride	30.4	μg/L
509839-1-BLK	VOCs	Acetone	21.4	μg/L
509839-1-BLK	VOCs	Bromomethane	1.09	μg/L
509839-1-BLK	VOCs	1,3-Dichlorobenzene	1.13	μg/L
509839-1-BLK	VOCs	1,4-Dichlorobenzene	1.12	μg/L
509839-1-BLK	VOCs	Methylene chloride	8.59	μg/L
509898-1-BLK	VOCs	Methylene chloride	21.6	μg/L
TB052208	VOCs	Methylene chloride	2.36	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
B-4-35	VOCs	Methylene chloride	-	U
GP-12(II)-17	VOCs	Methylene chloride		U
GP-12(II)-17-DUP	VOCs	Methylene chloride	-	U

#### 5.0 Laboratory Control Sample

*Were LCS recoveries within evaluation criteria?* 

No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
509839-1-BKS	VOCs	Methylene chloride	160	N/A	75-125

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surro	gate	Recovery	Criteria
N/A					

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Ana	ilyte	Qualification
N/A				

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

*Were laboratory duplicate sample RPDs within criteria?* 

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

#### 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

 Field ID	Field Duplicate ID
GP-12(II)-17	GP-12(II)-17-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples did not require a dilution.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

#### 11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminant acetone reported at concentrations less than two times (2X) the RL.

Field ID	Analyte	New RL	Qualification	Comments
GP-12(II)-17-DUP	Acetone		U	Professional Judgment

# Analytical Report 304536

for

# **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

04-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 30



04-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 304536 900 S. Central Avenue Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 304536. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 304536 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



# Certificate of Analysis Summary 304536 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

1 tojet Rane. 900 S. Central Avenue										
Project Id: Route 111 &	Date Received in Lab:			May-23-08 09:30 am						
Contact: Wendy Penn		Report Date: 04-JUN-08								
Project Location: Roxana, Illir	nois 62084	2084			Project Manager: Debbie Simmons					
	Lab Id:	304536-001 B-4-35		304536-002 GP-12(II)-17		304536-003 GP-12(II)-17-Dup		304536-004		
Analysis Requested	Field Id:							TB052208		
	Depth:									
	Matrix:	SOIL		SOIL		SOIL		WATER		
	Sampled:	May-22-08 09:35		May-22-08 14:25		May-22-08 14:25		May-22-08 00:00		
Percent Moisture	Extracted:									
e e contentoistar e	Analyzed:	May-29-08 13:04		May-29-08 13:05		May-29-08 13:06				
	Units/RL:	%	RL	%	RL	%	RL			
Percent Moisture		7,27	1.00	1.85	1,00	3.52	1.00			

This analytical report, and the entire data package if represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas



#### Certificate of Analysis Summary 304536 URS Corporation-St. Louis, St. Louis, MO



	P	roject Nan	ae. 90	0 S. Centra	I Aven	ne			
Project Id: Route 111 & R	and Ave Vicinity /	-	n., 70				May-23-0	08 09:30 am	
Contact: Wendy Pennin	=			~ ~ ~			04-JUN-		
Project Location: Roxana, Illinoi	-						Debbie S		
r	Lab Id:	304536-0	01			304536-4			
Averbasis Roomsected	Field Id:	504550-0 B-4-35	01	304536-002				304536-004	
Analysis Requested	Depth;	8-4-33		GP-12(11)-17		GP-12(II)-17-Dup		TB052208	
	Matrix:	SOIL		SOIL		SOIL		WATER	
	Sampled:	May-22-08 (	10-25	May-22-08 1	4.25				
	Extracted:	May-22-08 ( May-28-08 )		May-22-08		May-22-08 14:25 May-30-08 14:00		May-22-08 00:00	
VOAs by SW-846 8260B	Analyzed:	May-28-08 1 May-28-08 1		May-28-08 1 May-28-08 2		May-30-08 May-30-08	ł	May-29-08 14:24 May-29-08 16:00	
	Units/RL:	•	RL	•	RL	•		-	
	Units KL.	ug/kg U	118	ug/kg U		10.632.3 JF	RL ""/4"110	ug/L	RL
Acetone								U	100
Benzene		<u>ບ</u>	5.91	<u> </u>	5,49	U	5.50	<u> </u>	5.00
Bromobenzene			5.91	U	5.49	<u>U</u>	5.50	<u> </u>	5.00
Bromochloromethane		U	5.91	U	5.49	<u> </u>	5.50	<u>U</u>	5.00
Bromodichloromethane		U	5.91	U	5,49	<u>υ</u>	5.50	U	5.00
Bromoform		U	5.91	U	5.49	<u>ບ</u>	5.50	<u> </u>	5.00
Bromomethane		U	5.91	U	5.49	<u> </u>	5.50	U	5.00
2-Butanone		U	59.1	U	54.9	<u> </u>	55.0	υ	50.0
MTBE		υ	5,91	U	5.49	U	5.50	U	5,00
tert-Butylbenzene		U	5.91	U	5.49	υ	5.50	U	5.00
Sec-Butylbenzene		U	5.91	υ	5.49	U	5.50	U	5.00
n-Butylbenzene		υ	5.91	U	5,49	U	5.50	υ	5.00
Carbon Disulfide		U	59.1	U	54.9	U	55.0	υ	50.0
Carbon Tetrachloride		U	5.91	U	5,49	U	5.50	U	5.00
Chlorobenzene		U	5.91	U	5.49	U	5.50	U	5.00
Chloroethane		U	11.8	υ	11.0	U	J1.0	υ	10.0
Chloroform		U	5.91	U	5.49	U	5.50	υ	5.00
Chloromethane		U	11.8	U	11.0	U	11.0	U	10.0
2-Chlorotoluene		U	5.91	υ	5.49	U	5.50	υ	5.00
4-Chlorotoluene		υ	5.91	υ	5.49	U	5.50	υ	5.00
p-Cymene (p-Isopropyltoluene)		υ	5.91	U	5.49	υ	5.50	U	5.00
1,2-Dibromo-3-Chloropropane		υ	5.91	U	5.49	υ	5,50	υ	5.00
Dibromochloromethane		U	5.91	υ	5.49	ប	5,50	U	5.00
1,2-Dibromoethane		U	5.91	υ	5.49	υ	5.50	υ	5.00
Dibromomethane		U	5.91	υ	5.49	υ	5.50	υ	5.00
1,2-Dichlorobenzene		υ	5.91	υ	5.49	υ	5.50	U	5.00
1,3-Dichlorobenzene		υ	5,91	U	5.49	υ	5,50	U	5.00
1,4-Dichlorobenzene		U	5.91	υ	5.49	υ	5.50	υ	5.00
Dichlorodifluoromethane		υ	5.91	υ	5.49	υ	5.50	υ	5.00
1,2-Dichloroethane		υ	5.91	U	5.49	υ	5,50	U	5.00
1,1-Dichloroethane		U	5.91	υ	5.49	υ	5,50	υ	5.00
trans-1,2-dichloroethene		υ	5.91	υ	5.49	U	5.50	U	5.00
cis-1,2-Dichloroethene		U	5.91	υ	5.49	υ	5.50	U	5.00
I,I-Dichloroethene	İ	U	5,91	U	5.49	υ	5.50	υ	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi


### Certificate of Analysis Summary 304536 URS Corporation-St. Louis, St. Louis, MO



Project Name:	900 S.	<b>Central Avenue</b>
---------------	--------	-----------------------

	ite 111 & Rand Ave Vicinity / ndy Pennington	2156197			Rej	oort Date:	04-JUN-		
Project Location: Rox	cana, Illinois 62084			]	Project.	Manager:	Debbie S	immons	
	Lab Id:	304536-00	)1	304536-0	02	304536-	003	304536-0	04
Analysis Reques	sted Field Id:	B-4-35		GP-12(ll)-	17	GP-12(II)-1	7-Dup	TB05220	)8
	Depth:								
	Matrix:	SOIL		SOIL		SOIL		WATE	R
	Sampled:	May-22-08 0	9:35	May-22-08	14:25	May-22-08	14:25	May-22-08	00:00
VOAs by SW-846 8260B	Extracted:	May-28-08 1	6:12	May-28-08	16:16	May-30-08	14:00	May-29-08	14:24
VOAS DY 5 11-040 0200D	Analyzed:	May-28-08 I	9:51	May-28-08 2	20:34	May-30-08	15:16	May-29-08	16:00
	Units/RL:	ug/kg	RL.	ug/kg	RL	ug/kg	RL	ug/L	RL
2,2-Dichloropropane		U	5.91	υ	5.49	ບ	5.50	U	5.00
1,3-Dichloropropane		Ŭ	5.91	υ	5.49	υ	5.50	υ	5.00
1,2-Dichloropropane		U	5.91	υ	5.49	U	5.50	Ŭ	5.00
trans-1,3-dichloropropene		υ	5.91	U	5.49	υ	5.50	U	5.00
1,1-Dichloropropene		U	5,91	U	5.49	U	5.50	U	5.00
cis-1,3-Dichloropropene		U	5,91	υ	5,49	U	5.50	υ	5.00
Ethylbenzene		υ	5.91	1.32 J	5.49	Ŭ	5.50	υ	5.00
Hexachlorobutadiene		υ	5.91	U	5.49	U	5.50	U	5.00
2-Hexanone		υ	59.1	υ	54.9	υ	55.0	υ	50.0
Naphthalene		U	11.8	υ	11.0	U	11.0	υ	10.0
isopropylbenzene		U	5.91	ប	5,49	U	5.50	υ	5.00
Methylene Chloride	M	Y0.013.6 JB	U ¹ 23.6	p a010.9-18	U 22.0	0 0 206.05 JB	22.0	( 2.36 JB	5.00
4-Methyl-2-Pentanone		U	59.1	U U	54.9	<u> </u>	55.0		50.0
-Propylbenzenc		U	5.91	υ	5.49	ប	5.50	υ	5.00
Styrene		U	5.91	U	5,49	U	5.50	U	5.00
1,1,1,2-Tetrachloroethane		υ	5.91	ប	5.49	υ	5.50	υ	5.00
1,1,2,2-Tetrachloroethane		U	5.91	υ	5.49	U	5.50	υ	5.00
Tetrachloroethylene		U	5.91	υ	5,49	υ	5.50	υ	5.00
Toluene		1.76 J	5.91	2.06 J	5.49	1.16 J	5.50	U	5.00
1,2,4-Trichlorobenzene		U	5,91	υ	5.49	ប	5.50	Ŭ	5.00
1,2,3-Trichlorobenzene		υ	5,91	υ	5.49	U	5,50	ប	5.00
1,1,2-Trichloroethane		υ	5.91	υ	5.49	ប	5.50	U	5.00
1,1,1-Trichloroethane		υ	5.91	U	5,49	υ	5,50	U	5.00
Trichloroethene		υ	5.91	U	5.49	υ	5.50	υ	5.00
Trichlorofluoromethane		υ	5.91	U	5.49	ប	5.50	υ	5.00
1,2,3-Trichloropropane		υ	5.91	U	5.49	U	5.50	υ	5.00
1,2,4-Trimethylbenzene		υ	5.91	υ	5.49	U	5.50	U	5.00
1,3,5-Trimethylbenzene		υ	5.91	υ	5.49	υ	5.50	U	5.00
Vinyl Chloride		U	2.36	U	2.20	U	2.20	U	2.00
o-Xylene		υ	5.91	υ	5.49	U	5,50	υ	5.00
m,p-Xylenes		U	11.8	υ	11.0	U	11.0	υ	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

753 Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	rax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

XENCO ( <u>PH-281-589.0892; FAX: 281-589.0895</u> )     CALSCIENCE ()			e Check					<u> </u>	Print	Bill T	o Con	tact Na	met			્યુરાષ	CIDE	NT:# (E	NV S	ERVIC				NT # APPLIES	
] TEST AMERICA ()	ENV. SERV			MOTIVA F	ETAIL		SHELL R	ETAIL			1	KEVIN D	YER			9	7	2 1	6	6 4	0	DATE:	051	2268	
] SPL ()	MOTIVA S	DACM		CONSULT	ANT		LUBES					PQ	¥					SA	P #				1	of f	
] OTHER ()	SHELL PIP	ELINE		THER_					T		-	<u> </u>	T T			3	4	0 0	-			PAGE:		_ of	-
NSULTANT COMPANY:									SOPUS	SITE AD	ORESS (SU	eet, Gily er	of State);			3	4	0 0	6	1					_
S CORPORATION	U	RS COR	PORATION	• FIELD	OFFIC	E.																			
DRESS: 01 HIGHLANDS PLAZA DRIVE WEST - SUITE 30	0 17	70 E. RAI	ND AVENUE	1					CONSULT	S. CE	NTRAL	AVENUI CT (Report fo	<u>=; ROX/</u>	ANA, ILI		52084		201	SULTAN	ROJECT	AME / NO.:			·····	_
LOUIS, MISSOURI 63110	ін.	ARTFOR	D, ILLINOIS	6204B						NDY P	ENNING	TON	<u> </u>						Route 1	<u>11 &amp; R</u>	and Ave	Vicinity	/ 2156197	9	_
CLEPKONE: 0FF: 314-743-4168 FAX: 0FF: 314-743-4		E-MAIL						_	1													USE ONLY	53	6-1-	7
CELL: 314-452-8929 CELL: 314-452- FURNAROLIND TIME (CALENDAR DAYS);	8929		wendy p	enningto																	1	<u> :                                   </u>	. مصر میں 	0-7-	<i>[</i>
STANDARD (10 DAY)	5 🗌 2 5	ayş	🗌 24 HC	URS		RESULTS	I NEEDEC IN WEEK								1	REQU	ESTE		YSIS						ł
ELIVERABLES: CLEVEL 1 CLEVEL 2 CLEVEL	3 🖸 LEVEL 4		OTHER (SPECI	FY}						1			T	1			1	· · · · · ·	ŢĨ	1					-
MPERATURE ON RECEIPT C' Cooler #1 Z-0*	Cooler#2			Capter #	3																				
ECIAL INSTRUCTIONS OR NOTES :				j				<u> </u>														1			
				SHE 🖸	LL CONTR	ACT RAT	e applie	S					]												
														1											
																				ļ					
552-54			···						8																
Plate Passets to the off of	SAMPLI				PRESER	VATIVE		NO. OF	8260B																
Field Sample Identification	DATE	TIME	MATRIX	HOL HI	103 H250	4 NONE	OTHER	CONT.	20 V												PID (ppm)			PID Reading atory Notes	5
B-4-35	05/22/18 0	935	SU'II			1	3	ч	X				++-				1				<u></u>				-1
GP-12(II)-17	15/22/08 11	425	Soy!			1	3	ч	X										11				·		-
GP-12(I)-17-Dup		1425	Soll			1	3	И	x				$\uparrow \neg \uparrow$		+		-		++	-					
JB052208		(4)				·+		· · · ·					┼──┤╸		┉┼┈╍╌┟╌╸		++		╺┝┈┈┿						_
(D03880			WATER	1.				(	X		+		+						┥┈┥		<u></u>		<u></u>	<del> </del>	_
	~		WATER		_																				
			WATER				,																		
			WATER	1			7									+					•••••				$\neg$
·	+ -	$\overline{}$		1	nt-m	J#			F		- <u>+</u> +		++-		+		┼──┤		+						{
		$\rightarrow$	WATER	44		4	ļ		┡──┼				<b> </b>						<u> </u>						
		``	WATER																			Ì			
			X									·   ·	1-1			-1			1						
elinguished by: (Signature)	_ <u>_</u>		WATER Received by: 16	lgnalute)		1	I		<u>i</u>		<u> </u>	l	.l	L		<u> </u>	┸╍╍┟	Date:	1		···· · · · · · · ·	Time:			
N Mm_					~~ ,																				
Allman which the ISlamatical				ED	EX													0,5/	122	108		18	00		
ellevithes by: (Signature)		[	Received by: (S	igna (ure)														Oale;				Time:			-
						_			_		>						1						į		Į
eimquished by: (Signature)	•		Received by: (S	gneture)	/	7		/	1	-/-	0							Date:			·····	Time;	·		$\neg$
1-9/2/						/		Ľ			_		/				1	5/2	3/ r	B		0	5.3	0	
					-7							-					-			-		÷.	1 2	-	1

•

.

	<b>ICO</b> atories
	Prelogin/N
Client:	URS
Date/ Time:	5/23/8

Jonconformance Report- Sample Log-In

Lab ID #:

Initials:

Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes	No	N/A	240.c
#2	Shipping container in good condition?	(Tes)	No	None	
#3	Samples received on ice?	Nes	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	1 4es	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	INA	
#6	Chain of Custody present?	Yes	No	$r \rightarrow -$	1
#7	Sample instructions complete of Chain of Custody?	Les	No		
#8	Any missing/extra samples?	Yes	/No)		
# <del>9</del>	Chain of Custody signed when relinquished/ received?	Xes)	No		
#10	Chain of Custody agrees with sample label(s)?	XES	No		
#11	Container label(s) legible and intact?	Yes	No		
Γ	Sample matrix/ properties agree with Chain of Custody?	Xes	No		
#ı≾	Samples in proper container/ bottle?	(Yes)	No		
#14	Samples properly preserved?	Yes)	No	N/A	
#15	Sample container intact?	Yes	No		·····
#16	Sufficient sample amount for indicated test(s)?	Xez	No	· · · · · ·	
#17	All samples received within sufficient hold time?	Yes	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	Yes)	No	N/A	

304536-1

### Nonconformance Documentation

Contact:		Contacted by:	Date/ <u>Time:</u>
Regarding:	· · · · · · · · · · · · · · · · · · ·		
Corrective Action Taker	1:		
·····			
Check all that Apply:		Client understands and would like to proceed with analy Cooling process had begun shortly after sampling event	

### **Rand Avenue Data Review**

Laboratory SDG: 0806072A

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
GP-12-A-060308	GP-12-B-060308
GP-12-C-060308	GP-12-D-060308
GP-11-A-060308	GP-11-B-060308
GP-11-B-060308-DUP	GP-11-C-060308
GP-11-D-060308	

#### 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

*Were problems noted in the laboratory case narrative or cooler receipt form?* 

No, although not indicated in the laboratory case narrative, ethanol and 2-propanol results in several samples exceeded the calibration range of the instrument; therefore, professional judgment was used to qualify 2-propanol in these samples. Also, LCS recoveries were outside evaluation criteria. This issue is addressed further in the appropriate section below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Field ID	Parameter	Analyte	Qualification
N/A			

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below.

100000	Field ID	Parameter	Analyte	New RL	Qualification
	N/A				

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	RPD	LCS Criteria
0806072A-12A	TO-15	Chloromethane	134	N/A	70-130
0806072A-12A	TO-15	Hexachlorobutadiene	68	N/A	70-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
GP-12-A-060308	TO-15	Hexachlorobutadiene	UJ
GP-12-B-060308	TO-15	Hexachlorobutadiene	UJ
GP-12-C-060308	TO-15	Hexachlorobutadiene	UJ
GP-12-D-060308	TO-15	Hexachlorobutadiene	UJ
GP-11-A-060308	TO-15	Hexachlorobutadiene	UJ
GP-11-B-060308	TO-15	Hexachlorobutadiene	UJ
GP-11-B-060308-DUP	TO-15	Hexachlorobutadiene	UJ
GP-11-C-060308	TO-15	Hexachlorobutadiene	UJ
GP-11-D-060308	TO-15	Hexachlorobutadiene	UJ

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

MS/MSD samples are not applicable for air samples.

*Were MS/MSD recoveries within evaluation criteria?* 

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qua	lification
N/A				

#### 8.0 Laboratory Duplicate Results

*Were laboratory duplicate samples collected as part of this SDG?* 

Yes, sample GP-11-B-060308-DUP was duplicated by the laboratory and analyzed for TO-15.

Were laboratory duplicate sample RPDs within criteria?

Yes

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

### 9.0 Field Duplicate Results

*Were field duplicate samples collected as part of this SDG?* 

Yes

Field ID	Field Duplicate ID
GP-11-B-060308	GP-11-B-060308-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

#### 11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify ethanol and 2-propanol in several samples listed in the table below. Ethanol and 2-Propanol exceeded the calibration range of the instrument in these samples. The ethanol and 2-propanol results will be reported as > 200 in both samples.

Field ID	Analyte	Qualification	Comments
GP-11-A-060308	Ethanol	J	Professional Judgment
GP-11-A-060308	2-Propanol	J	Professional Judgment
GP-11-B-060308-DUP	2-Propanol	J	Professional Judgment
GP-11-C-060308	2-Propanol	J	Professional Judgment
GP-11-D-060308	2-Propanol	J	Professional Judgment



### Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- · Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



#### WORK ORDER #: 0806072A

Work Order Summary

CLIENT:	Mr. Mike Miller URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable OSP 2660 A Equiva Services/Shell Oil Products P.O. Box 4912 Houston, TX 77210-4720
PHONE:	314-566-3073	P.O. #	4700002383
FAX:		PROJECT #	21561979 Rte 111 & Rand Ave Vicinity
DATE RECEIVED: DATE COMPLETED:	06/04/2008 06/17/2008	CONTACT:	Brandon Dunmore

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	GP-12-A-060308	Modified TO-15	9.5 "Hg	15 psi
02A	GP-12-B-060308	Modified TO-15	8.0 "Hg	15 psi
03A	GP-12-C-060308	Modified TO-15	8.5 "Hg	15 psi
04A	GP-12-D-060308	Modified TO-15	7.5 "Hg	15 psi
05A	GP-11-A-060308	Modified TO-15	8.5 "Hg	15 psi
06A	GP-11-B-060308	Modified TO-15	10.0 "Hg	15 psi
07A	GP-11-B-060308-DUP	Modified TO-15	8.0 "Hg	15 psi
07AA	GP-11-B-060308-DUP Lab Duplicate	Modified TO-15	8.0 "Hg	15 psi
08A	GP-11-C-060308	Modified TO-15	8.5 "Hg	15 psi
09A	GP-11-D-060308	Modified TO-15	10.0 "Hg	15 psi
10A	Lab Blank	Modified TO-15	NA	NA
10B	Lab Blank	Modified TO-15	NA	NA
11A	CCV	Modified TO-15	NA	NA
11B	CCV	Modified TO-15	NA	NA
12A	LCS	Modified TO-15	NA	NA
12B	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>06/17/08</u>

DECEMBER

TATAL A X

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

Page 1 of 38



#### LABORATORY NARRATIVE Modified TO-15 URS Corporation Workorder# 0806072A

Nine 1 Liter Summa Canister samples were received on June 04, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	<pre><!--= 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</pre--></pre>
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

### **Receiving Notes**

There were no receiving discrepancies.

#### Analytical Notes

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

### **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.



- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



Client Sample ID: GP-12-A-060308

Lab ID#: 0806072A-01A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN					
File Name: 7061515 Date of Collection: 6/3/08					
Dil. Factor:	2.96	2.96 Date of Analysis: 6/15/0			
	Rot. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
Freon 12	1.5	Not Detected	7.3	Not Detected	
Freon 114	1.5	Not Detected	10	Not Detected	
Chloromethane	5.9	Not Detected	12	Not Detected	
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected	
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected	
Bromomethane	1.5	Not Detected	5.7	Not Detected	
Chloroethane	1.5	Not Detected	3.9	Not Detected	
Freon 11	1.5	Not Detected	8.3	Not Detected	
Ethanol	5.9	37	11	70	
Freon 113	1.5	Not Detected	11	Not Detected	
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected	
Acetone	5.9	32	14	75	
2-Propanol	5.9	10	14	26	
Carbon Disulfide	1.5	Not Detected	4.6	Not Detected	
3-Chloropropene	5.9	Not Detected	18	Not Detected	
Methylene Chloride	1.5	Not Detected	5.1	Not Detected	
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected	
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected	
Hexane	1.5	Not Detected	5.2	Not Detected	
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	1.5	4.0	4.4	12	
cis-1,2-Dichloroethene	1.5	1.5	5.9	6.0	
Tetrahydrofuran	1.5	7.3	4.4	21	
Chloroform	1.5	Not Detected	7.2	Not Detected	
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected	
Cyclohexane	1.5	Not Detected	5.1	Not Detected	
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected	
2,2,4-Trimethylpentane	1.5	Not Detected	6.9	Not Detected	
Benzene	1.5	Not Detected	4.7	Not Detected	
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected	
Heptane	1.5	Not Detected	6.1	Not Detected	
Trichloroethene	1.5	16	8.0	84	
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected	
1,4-Dioxane	5.9	Not Detected	21	Not Detected	
Bromodichloromethane	1.5	Not Detected	9.9	Not Detected	
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected	
4-Methyl-2-pentanone	1.5	Not Detected	6.1	Not Detected	
Toluene	1.5	2.5	5.6	9.4	
trans-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected	



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-12-A-060308

#### Lab ID#: 0806072A-01A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Elle Name Dil Factor	2 (061515 2 961 2 92		Date of Collection Date of Analysis	6/3/08 6/15/08/07/46 PM - R
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	5.9	Not Detected	24	Not Detected
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	Not Detected	6.8	Not Detected
Ethyl Benzene	1.5	Not Detected	6.4	Not Detected
m,p-Xylene	1.5	1.8	6.4	8.0
o-Xylene	1.5	Not Detected	6.4	Not Detected
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	Not Detected	7.3	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.3	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.3	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,4-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,2,4-Trichlorobenzene	5.9	Not Detected	44	Not Detected
Hexachlorobutadiene	5.9	Not Detected U J *	"UJ"63	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	116	70-130	
4-Bromofluorobenzene	108	70-130	



Client Sample ID: GP-12-B-060308

Lab 1D#: 0806072A-02A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN				
File Name:	7061516		Date of Collection:	6/3/08
Dill Factor: 2.76		Date of Analysis: 6/15/08 08:25 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.4	Not Detected	6.8	Not Detected
Freon 114	1.4	Not Detected	9.6	Not Detected
Chloromethane	5.5	Not Detected	11	Not Detected
Vinyl Chloride	1.4	Not Detected	3.5	Not Detected
1,3-Butadiene	1.4	Not Detected	3.0	Not Detected
Bromomethane	1.4	Not Detected	5.4	Not Detected
Chloroethane	1.4	Not Detected	3.6	Not Detected
Freon 11	1.4	Not Detected	7.8	Not Detected
Ethanol	5.5	57	10	110
Freon 113	1.4	Not Detected	10	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Acetone	5.5	43	13	100
2-Propanol	5.5	14	14	34
Carbon Disulfide	1.4	Not Detected	4.3	Not Detected
3-Chloropropene	5.5	Not Detected	17	Not Detected
Methylene Chloride	1.4	Not Detected	4.8	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Hexane	1.4	Not Detected	4.9	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.4	5.8	4.1	17
cis-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Tetrahydrofuran	1.4	8.0	4.1	23
Chloroform	1.4	Not Detected	6.7	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.7	Not Detected
2,2,4-Trimethylpentane	1,4	Not Detected	6.4	Not Detected
Benzene	1.4	1.4	4.4	4.4
1,2-Dichloroethane	1.4	Not Detected	5.6	Not Detected
Heptane	1.4	Not Detected	5.6	Not Detected
Trichloroethene	1.4	Not Detected	7.4	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.4	Not Detected
1,4-Dioxane	5.5	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.2	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.6	Not Detected
Toluene	1.4	2.7	5.2	10
trans-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
trans-1,0-pichioroproperie	1		2.0	



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-12-B-060308

#### Lab ID#: 0806072A-02A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

FUENAME CONTRACTOR	70615163 1276		Date of Collection Date of Analysis	6/3/08 6/15/08:08:25 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Tetrachloroethene	1.4	Not Detected	9.4	Not Detected
2-Hexanone	5.5	Not Detected	23	Not Detected
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.4	Not Detected
Ethyl Benzene	1.4	Not Detected	6.0	Not Detected
m,p-Xylene	1.4	1.9	6.0	8.2
o-Xylene	1.4	Not Detected	6.0	Not Detected
Styrene	1.4	Not Detected	5.9	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	Not Detected	6.8	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.5	Not Detected
Propylbenzene	1.4	Not Detected	6.8	Not Detected
4-Ethyltoluene	1.4	Not Detected	6.8	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	6.8	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	6.8	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.1	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,2,4-Trichlorobenzene	5.5	Not Detected	41	Not Detected
Hexachlorobutadiene	5.5	Not Detected	°"UJ' 59	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	88	70-130	
1,2-Dichloroethane-d4	115	70-130	
4-Bromofluorobenzene	100	70-130	



#### Client Sample ID: GP-12-C-060308

Lab 1D#: 0806072A-03A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

		D TO-15 GC/MS FULL	SCAN	
File Name Dill Fottor	7061517		Date of Collection Date of Analysis	
	Rot, Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.4	Not Detected	7.0	Not Detected
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	5.6	Not Detected +	'UJ'' 12	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detecter
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	1.4	Not Detected	5.5	Not Detecte
Chloroethane	1.4	Not Detected	3.7	Not Detected
Freon 11	1.4	Not Detected	7.9	Not Detecte
Ethanol	5.6	54	11	100
Freon 113	1.4	Not Detected	11	Not Detecte
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detecte
Acetone	5.6	40	13	94
2-Propanol	5.6	12	14	31
Carbon Disulfide	1.4	Not Detected	4.4	Not Detecte
3-Chloropropene	5.6	Not Detected	18	Not Detecte
Methylene Chloride	1.4	Not Detected	4.9	Not Detecte
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detecte
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detecte
Hexane	1.4	2.1,	5.0	7.5
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detecte
2-Butanone (Methyl Ethyl Ketone)	1.4	4.5	4.2	13
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detecte
Tetrahydrofuran	1.4	7.8	4.2	23
Chloroform	1.4	Not Detected	6.9	Not Detecte
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detecte
Cyclohexane	1.4	Not Detected	4.8	Not Detecte
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detecter
2,2,4-Trimethylpentane	1.4	Not Detected	6.6	Not Detected
Benzene	1.4	Not Detected	4.5	Not Detected
1.2-Dichloroethane	1.4	Not Detected	5.7	Not Detecte
Heptane	1.4	1.7	5.8	7.1
Trichloroethene	1.4	2.1	7.6	11
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.8	Not Detected
Toluene	1.4	2.6	5.3	9.6
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected



Contraction of



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-12-C-060308

.

#### Lab ID#: 0806072A-03A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and Stat	7061577		Date of ecilection Date of Analysis	6/3/08 6/15/08/09/11 PM+
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (ยG/m3)
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	Not Detected	9.6	Not Detected
2-Hexanone	5.6	Not Detected	23	Not Detected
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.5	Not Detected
Ethyl Benzene	1.4	Not Detected	6.1	Not Detected
m,p-Xylene	1.4	1.8	6.1	8.0
o-Xylene	1.4	Not Detected	6.1	Not Detected
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	Not Detected -	·	Not Detected
Cumene	1.4	Not Detected	6.9	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	Not Detected	6.9	Not Detected
4-Ethyltoluene	1.4	Not Detected	6.9	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8,5	Not Detected
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected UJ	""NJ" 60	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	88	70-130	
1,2-Dichloroethane-d4	120	70-130	
4-Bromofluorobenzene	100	70-130	



#### Client Sample ID: GP-12-D-060308

Lab ID#: 0806072A-04A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

PRINE Name DINFACTOR A	7061518		Date of Collection:	
DINFACIO	205.02.692		Date of Apalysisse	/15/08/10 04 PM
	Rpt. Limit	Amount	Rpt. Limit	- Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.6	Not Detected
Freon 114	1.3	Not Detected	9.4	Not Detected
Chloromethane	5.4	Not Detected -	יuĴ" 11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	3.0	Not Detected
Bromomethane	1.3	Not Detected	5.2	Not Detected
Chloroethane	1.3	Not Detected	3.5	Not Detected
Freon 11	1.3	Not Detected	7.6	Not Detected
Ethanol	5.4	49	10	93
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	5.4	54	13	130
2-Propanol	5.4	12	13	29
Carbon Disulfide	1.3	Not Detected	4.2	Not Detected
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	1.3	Not Detected	4.7	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Hexane	1.3	3.5	4.7	12
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	12	4.0	34
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Tetrahydrofuran	1.3	7.9	4.0	23
Chloroform	1.3	Not Detected	6.6	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Cyclohexane	1.3	27	4.6	93
Carbon Tetrachloride	1.3	Not Detected	8.5	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.3	Not Detected
Benzene	1.3	37	4.3	120
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Heptane	1.3	Not Detected	5.5	Not Detected
Trichloroethene	1.3	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
1,4-Dioxane	5.4	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.5	Not Detected
Toluene	1.3	2.6	5.1	9.8
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected

0060



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-12-D-060308

Lab ID#: 0806072A-04A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

tFile Names and States States IDIVE colora	<ul> <li>4.061518 (e) (c)</li> <li>4.06152 (c)</li> </ul>		Date of Collection Date of Analysis	. 6/3/087.2 6/15/08100041PM-5
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Tetrachloroethene	1.3	Not Detected	9.1	Not Detected
2-Hexanone	5.4	Not Detected	22	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	1.3	Not Detected	6.2	Not Detected
Ethyl Benzene	1.3	Not Detected	5.8	Not Detected
m,p-Xylene	1.3	2.0	5.8	8.9
o-Xylene	1.3	Not Detected	5.8	Not Detected
Styrene	1.3	Not Detected	5.7	Not Detected
Bromoform	1.3	Not Detected -	""" 14	Not Detected
Cumene	1.3	Not Detected	6.6	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.2	Not Detected
Propylbenzene	1.3	Not Detected	6.6	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.6	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.6	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.6	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	8.1	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	8.1	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	7.0	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	8.1	Not Detected
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected
Hexachlorobutadiene	5.4	Not Detected UJ ²	"UJ" 57	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	113	70-130	
4-Bromofluorobenzene	97	70-130	

78 S S S S S



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-A-060308

Lab 1D#: 0806072A-05A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

FileName Dir Factor	7061012		Date of Collection Date of Analysis (B	
SEALOR CLASS CONTRACTOR OF CONTRACTOR OF CONTRACT	Dat Limit	Amount	Rpt. Limit	
Compound	Rpt, Limit (ppbv)	Amount (ppbv)	(uG/m3)	Amount (uG/m3)
Freon 12	11 11	Not Detected	56 79	Not Detected
Freon 114	45	Not Detected		Not Detected
Chloromethane		Not Detected	93	Not Detected
Vinyl Chloride	11	Not Detected	29	Not Detected
1,3-Butadiene	11	Not Detected	25	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	11	Not Detected	30	Not Detected
Freon 11	11	Not Detected	63	Not Detected
Ethanol	45 <b>&gt; 200</b>	7800 E-Q	"J" 85	15000 E
Freon 113	11	Not Detected	87	Not Detected
1,1-Dichloroethene	11	Not Detected	45	Not Detected
Acetone	45	130	110	310
2-Propanol	45 <b>&gt; 200</b>	-21000 E-P	້" <b>ປີ"</b> 110	51000 E
Carbon Disulfide	11	Not Detected	35	Not Detected
3-Chloropropene	45	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	11	Not Detected	41	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	45	Not Detected
Hexane	11	Not Detected	40	Not Detected
1,1-Dichloroethane	11	Not Detected	46	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	33	Not Detected
cis-1,2-Dichloroethene	11	Not Detected	45	Not Detected
Tetrahydrofuran	11	Not Detected	33	Not Detected
Chloroform	11	Not Detected	55	Not Detected
1,1,1-Trichloroethane	11	Not Detected	62	Not Detected
Cyclohexane	11	Not Detected	39	Not Detected
Carbon Tetrachloride	11	Not Detected	71	Not Detected
2,2,4-Trimethylpentane	11	Not Detected	53	Not Detected
Benzene	11	Not Detected	36	Not Detected
1,2-Dichloroethane	11	Not Detected	46	Not Detected
Heptane	11	Not Detected	46	Not Detected
Trichloroethene	11	Not Detected	61	Not Detected
1,2-Dichloropropane	11	Not Detected	52	Not Detected
1,4-Dioxane	45	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	76	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	51	Not Detected
4-Methyl-2-pentanone	11	Not Detected	46	Not Detected
Toluene	11	24	40	92
trans-1,3-Dichloropropene	11	Not Detected	51	Not Detected
trans-1.9. Dictionohohiohene	.,	NOT DETECTED	01	WOLLIGUEU



(a) (a) (a) (a) (a)



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-A-060308

Lab ID#: 0806072A-05A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Elle Name gans de <b>Carse</b> ira Elle Factor	70616123.00 24 220000		Date of Collection: Date of Analysis 10	6/3/08 046/08/05/22/PM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	11	Not Detected	62	Not Detected
Tetrachloroethene	11	Not Detected	77	Not Detected
2-Hexanone	45	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	96	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	87	Not Detected
Chlorobenzene	11	Not Detected	52	Not Detected
Ethyl Benzene	11	Not Detected	49	Not Detected
m,p-Xylene	11	Not Detected	49	Not Detected
o-Xylene	11	Not Detected	49	Not Detected
Styrene	11	Not Detected	48	Not Detected
Bromoform	11	Not Detected	120	Not Detected
Cumene	11	Not Detected	56	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	78	Not Detected
Propylbenzene	11	Not Detected	56	Not Detected
4-Ethyltoluene	11	Not Detected	56	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	56	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	56	Not Detected
1,3-Dichlorobenzene	11	18	68	110
1,4-Dichlorobenzene	11	Not Detected	68	Not Detected
alpha-Chlorotoluene	11	Not Detected	58	Not Detected
1,2-Dichlorobenzene	11	Not Detected	68	Not Detected
1,2,4-Trichlorobenzene	45	Not Detected	340	Not Detected
Hexachlorobutadiene	45	Not Detected -	יינג <b>ז``</b> 480	Not Detected

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	89	70-130
1,2-Dichloroethane-d4	119	70-130
4-Bromofluorobenzene	102	70-130



Client Sample ID: GP-11-B-060308

Lab ID#: 0806072A-06A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dill Factor:	7061521 121	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	Date of Collection: Date of Analysis: 6	
UII. FACIO	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	60	Not Detected	300	Not Detected
Freon 114	60	Not Detected	420	Not Detected
Chloromethane	240	Not Detected	500	Not Detected
Vinyl Chloride	60	Not Detected	150	Not Detected
1,3-Butadiene	60	Not Detected	130	Not Detected
Bromomethane	60	Not Detected	230	Not Detected
Chloroethane	60	Not Detected	160	Not Detected
Freon 11	60	Not Detected	340	Not Detected
Ethanol	240	1800	460	3400
Freon 113	60	Not Detected	460	Not Detected
1,1-Dichloroethene	60	Not Detected	240	Not Detected
Acetone	240	Not Detected	570	Not Detected
2-Propanol	240	20000	590	50000
Carbon Disulfide	60	Not Detected	190	Not Detected
3-Chloropropene	240	Not Detected	760	Not Detected
Methylene Chloride	60	Not Detected	210	Not Detected
Methyl tert-butyl ether	60	Not Detected	220	Not Detected
trans-1,2-Dichloroethene	60	Not Detected	240	Not Detected
Hexane	60	Not Detected	210	Not Detected
1,1-Dichloroethane	60	Not Detected	240	Not Detected
2-Butanone (Methyl Ethyl Ketone)	60	Not Detected	180	Not Detected
cis-1,2-Dichloroethene	60	Not Detected	240	Not Detected
Tetrahydrofuran	60	Not Detected	180	Not Detected
Chloroform	60	Not Detected	300	Not Detected
1,1,1-Trichloroethane	60	Not Detected	330	Not Detected
Cyclohexane	60	Not Detected	210	Not Detected
Carbon Tetrachloride	60	Not Detected	380	Not Detected
2,2,4-Trimethylpentane	60	Not Detected	280	Not Detected
Benzene	60	Not Detected	190	Not Detected
1.2-Dichloroethane	60	Not Detected	240	Not Detected
Heptane	60	Not Detected	250	Not Detected
Trichloroethene	60	Not Detected	320	Not Detected
1,2-Dichloropropane	60	Not Detected	280	Not Detected
1,4-Dioxane	240	Not Detected	870	Not Detected
Bromodichloromethane	60	Not Detected	400	Not Detected
cis-1,3-Dichloropropene	60	Not Detected	270	Not Detected
4-Methyl-2-pentanone	60	Not Detected	250	Not Detected
Toluene	60	Not Detected	230	Not Detected
trans-1,3-Dichloropropene	60	Not Detected	270	Not Detected



#### Client Sample 1D: GP-11-B-060308

#### Lab ID#: 0806072A-06A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Elle Name 2007 States 5 Diffractor at	7061521 121		Date of Collection Date of Analysis	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	60	Not Detected	330	Not Detected
Tetrachloroethene	60	Not Detected	410	Not Detected
2-Hexanone	240	Not Detected	990	Not Detected
Dibromochloromethane	60	Not Detected	520	Not Detected
1,2-Dibromoethane (EDB)	60	Not Detected	460	Not Detected
Chlorobenzene	60	Not Detected	280	Not Detected
Ethyl Benzene	60	Not Detected	260	Not Detected
m,p-Xylene	60	Not Detected	260	Not Detected
o-Xylene	60	Not Detected	260	Not Detected
Styrene	60	Not Detected	260	Not Detected
Bromoform	60	Not Detected	620	Not Detected
Cumene	60	Not Detected	300	Not Detected
1,1,2,2-Tetrachloroethane	60	Not Detected	420	Not Detected
Propylbenzene	60	Not Detected	300	Not Detected
4-Ethyltoluene	60	Not Detected	300	Not Detected
1,3,5-Trimethylbenzene	60	Not Detected	300	Not Detected
1,2,4-Trimethylbenzene	60	Not Detected	300	Not Detected
1,3-Dichlorobenzene	60	Nol Detected	360	Not Detected
1,4-Dichlorobenzene	60	Not Detected	360	Not Detected
alpha-Chlorotoluene	60	Not Detected	310	Not Detected
1,2-Dichlorobenzene	60	Not Detected	360	Not Detected
1,2,4-Trichlorobenzene	240	Not Detected	1800	Not Detected
Hexachlorobutadiene	240	Not Detected U J	"int" 2600	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	120	70-130
4-Bromofluorobenzene	100	70-130

Contraction of the



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-B-060308-DUP

Lab ID#: 0806072A-07A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Riteinandos en de la companya de la companya de la companya de la companya de la companya de la companya de la Diferencia de la companya de la companya de la companya de la companya de la companya de la companya de la comp	7061522 1 7 7 1 22.1		SiDale of Collections ( Date of Analysis - 6)	0.08 A
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	11	Not Detected	55	Not Detected
Freon 114	11	Not Detected	77	Not Detected
Chloromethane	44	Not Detected	91	Not Detected
Vinyl Chloride	11	Not Detected	28	Not Detected
1,3-Butadiene	11	Not Detected	24	Not Detected
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	11	Not Detected	29	Not Detected
Freon 11	11	Not Detected	62	Not Detected
Ethanol	44	2500	83	4700
Freon 113	、 11	Not Detected	85	Not Detected
1,1-Dichloroethene	11	Not Detected	44	Not Detected
Acetone	44	83	100	200
2-Propanol	44 7200	-20000-E-P	"J" 110	48000 E
Carbon Disulfide	11	Not Detected	34	Not Detected
3-Chloropropene	44	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	38	Not Detected
Methyl tert-butyl ether	11	Not Detected	40	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	44	Not Detected
Hexane	11	Not Detected	39	Not Detected
1,1-Dichloroethane	11	Not Detected	45	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	32	Not Detected
cis-1,2-Dichloroethene	11	Not Detected	44	Not Detected
Tetrahydrofuran	11	Not Detected	32	Not Detected
Chloroform	11	Not Detected	54	Not Detected
1,1,1-Trichloroethane	11	Not Detected	60	Not Detected
Cyclohexane	11	Not Detected	38	Not Detected
Carbon Tetrachloride	11	Not Detected	70	Not Detected
2,2,4-Trimethylpentane	11	Not Detected	52	Not Detected
Benzene	11	Not Detected	35	Not Detected
1,2-Dichloroethane	11	Not Detected	45	Not Detected
Heptane	11	Not Detected	45	Not Detected
Trichloroethene	11	Not Detected	59	Not Detected
1,2-Dichloropropane	11	Not Detected	51	Not Detected
1,4-Dioxane	44	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	74	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	50	Not Detected
4-Methyl-2-pentanone	11	Not Detected	45	Not Detected
Toluene	11	13	42	50
trans-1,3-Dichloropropene	11	Not Detected	50	Not Detected





AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-B-060308-DUP

Lab 1D#: 0806072A-07A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	DIFIED EFA MELTO		USCAN	
FIGNER	me7060522.38		Date of Collection	6/3/03 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			Date opAnalysis	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,1,2-Trichloroethane	11	Not Detected	60	Not Detected
Tetrachloroethene	11	Not Detected	75	Not Detected
2-Hexanone	44	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	94	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	85	Not Detected
Chlorobenzene	11	Not Detected	51	Not Detected
Ethyl Benzene	11	Not Detected	48	Not Detected
m,p-Xylene	11	Not Detected	48	Not Detected
o-Xylene	11	Not Detected	48	Not Detected
Styrene	11	Not Detected	47	Not Detected
Bromoform	11	Not Detected	110	Not Detected
Cumene	11	Not Detected	54	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	76	Not Detected
Propylbenzene	11	Not Detected	54	Not Detected
4-Ethyltoluene	11	Not Detected	54	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	54	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	54	Not Detected
1,3-Dichlorobenzene	11	18	66	100
1,4-Dichlorobenzene	11	Not Detected	66	Not Detected
alpha-Chlorotoluene	11	Not Detected	57	Not Detected
1,2-Dichlorobenzene	11	Not Detected	66	Not Detected
1,2,4-Trichlorobenzene	44	Not Detected	330	Not Detected
Hexachlorobutadiene	44	Not Detected U-J	" <b>ແፓ``</b> 470	Not Detected U J

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	88	70-130	
1,2-Dichloroethane-d4	118	70-130	
4-Bromofluorobenzene	98	70-130	



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-11-B-060308-DUP Lab Duplicate

Lab 1D#: 0806072A-07AA

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	7061523 22.1		Date of Collection: Date of Analysis: 6	and the second states of the second states of the second states of the second states of the second states of the
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	11	Not Detected	55	Not Detected
Freon 114	11	Not Detected	77	Not Detected
Chloromethane	44	Not Detected	91	Not Detected
Vinyl Chloride	11	Not Detected	28	Not Detected
1,3-Butadiene	11	Not Detected	24	Not Detected
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	11	Not Detected	29	Not Detected
Freon 11	11	Not Detected	62	Not Detected
Ethanol	44	2500	83	4800
Freon 113	11	Not Detected	85	Not Detected
1,1-Dichloroethene	11	Not Detected	44	Not Detected
Acetone	44	79	100	190
2-Propanol	44	20000 E	110	50000 E
Carbon Disulfide	11	Not Detected	34	Not Detected
3-Chloropropene	44	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	38	Not Detected
Methyl tert-butyl ether	11	Not Detected	40	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	44	Not Detected
Hexane	11	Not Detected	39	Not Detected
1,1-Dichloroethane	11	Not Detected	45	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	32	Not Detected
cis-1,2-Dichloroethene	11	Not Detected	44	Not Detected
Tetrahydrofuran	11	Not Detected	32	Not Detected
Chloroform	11	Not Detected	54	Not Detected
1,1,1-Trichloroethane	11	Not Detected	60	Not Detected
Cyclohexane	11	Not Detected	38	Not Detected
Carbon Tetrachloride	11	Not Detected	70	Not Detected
2,2,4-Trimethylpentane	11	Not Detected	52	Not Detected
Benzene	11	Not Detected	35	Not Detected
1,2-Dichloroethane	11	Not Detected	45	Not Detected
Heptane	11	Not Detected	45	Not Detected
Trichloroethene	11	Not Detected	59	Not Detected
1,2-Dichloropropane	11	Not Detected	51	Not Detected
1,4-Dioxane	44	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	74	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	50	Not Detected
4-Methyl-2-pentanone	11	Not Detected	45	Not Detected
Toluene	11	14	42	53
trans-1,3-Dichloropropene	11	Not Detected	50	Not Detected



#### Client Sample ID: GP-11-B-060308-DUP Lab Duplicate

Lab ID#: 0806072A-07AA

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil: Factor	7061523 22.1		Date of Collection: 6/3/08 Date of Analysis: 6/16/08 02:42 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	11	Not Detected	60	Not Detected
Tetrachloroethene	11	Not Detected	75	Not Detected
2-Hexanone	44	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	94	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	85	Not Detected
Chlorobenzene	11	Not Detected	51	Not Detected
Ethyl Benzene	11	Not Detected	48	Not Detected
m,p-Xylene	11	Not Detected	48	Not Detected
o-Xylene	11	Not Detected	48	Not Detected
Styrene	11	Not Detected	47	Not Detected
Bromoform	11	Not Detected	110	Not Detected
Cumene	11	Not Detected	54	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	76	Not Detected
Propylbenzene	11	Not Detected	54	Not Detected
4-Ethyltoluene	11	Not Detected	54	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	54	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	54	Not Detected
1,3-Dichlorobenzene	11	16	66	100
1,4-Dichlorobenzene	11	Not Detected	66	Not Detected
alpha-Chlorotoluene	11	Not Detected	57	Not Detected
1,2-Dichlorobenzene	11	Not Detected	66	Not Detected
1,2,4-Trichlorobenzene	44	Not Detected	330	Not Detected
Hexachlorobutadiene	44	Not Detected U J	470	Not Detected U J

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	122	70-130	
4-Bromofluorobenzene	96	70-130	



Ellen

AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-C-060308

#### Lab ID#: 0806072A-08A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

DikFactor 49	22.6		Date of Collection	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	11	Not Detected	56	Not Detected
Freon 114	11	Not Detected	79	Not Detected
Chloromethane	45	Not Detected	93	Not Detected
Vinyl Chloride	11	Not Detected	29	Not Detected
1,3-Butadiene	11	Not Detected	25	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	11	Not Detected	30	Not Detected
Freon 11	11	Not Detected	63	Not Detected
Ethanol	45	4400	85	8300
Freon 113	11	Not Detected	87	Not Detected
1,1-Dichloroethene	11	Not Detected	45	Not Detected
Acetone	45	89	110	210
2-Propanol	45 7200	) - <del>17000 E</del>	<b>``Ţ`'</b> 110	41000 E
Carbon Disulfide	11	Not Detected	35	Not Detected
3-Chloropropene	45	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	11	Not Detected	41	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	45	Not Detected
Hexane	11	Not Detected	40	Not Detected
1,1-Dichloroethane	11	Not Detected	46	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	33	Not Detected
cis-1,2-Dichloroethene	11	Not Detected	45	Not Detected
Tetrahydrofuran	11	Not Detected	33	Not Detected
Chloroform	11	Not Detected	55	Not Detected
1,1,1-Trichloroethane	11	Not Detected	62	Not Detected
Cyclohexane	11	Not Detected	39	Not Detected
Carbon Tetrachloride	11	Not Detected	71	Not Detected
2,2,4-Trimethylpentane	11	Not Detected	53	Not Detected
Benzene	11	Not Detected	36	Not Detected
1,2-Dichloroethane	11	Not Detected	46	Not Detected
Heptane	11	Not Detected	46	Not Detected
Trichloroethene	11	Not Detected	61	Not Detected
1,2-Dichloropropane	11	Not Detected	52	Not Detected
1,4-Dioxane	45	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	76	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	51	Not Detected
4-Methyl-2-pentanone	11	Not Detected	46	Not Detected
Toluene	11	18	42	66
trans-1,3-Dichloropropene	11	Not Detected	51	Not Detected





AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-C-060308

Lab 1D#: 0806072A-08A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Namo Dille Factor States and States	57061524 7061524		Date of sollection Date of Aurilysiss	6/3/08 6/16/08 03:24/AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	11	Not Detected	62	Not Detected
Tetrachloroethene	11	Not Detected	77	Not Detected
2-Hexanone	45	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	96	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	87	Not Detected
Chlorobenzene	11	Not Detected	52	Not Detected
Ethyl Benzene	11	Not Detected	49	Not Detected
m,p-Xylene	11	Not Detected	49	Not Detected
o-Xylene	11	Not Detected	49	Not Detected
Styrene	11	Not Detected	48	Not Detected
Bromoform	11	Not Detected	120 ,	Not Detected
Cumene	11	Not Detected	56	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	78	Not Detected
Propylbenzene	11	Not Detected	56	Not Detected
4-Ethyltoluene	11	Not Detected	56	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	56	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	56	Not Detected
1,3-Dichlorobenzene	11	16	68	94
1,4-Dichlorobenzene	11	Not Detected	68	Not Detected
alpha-Chlorotoluene	11	Not Detected	58	Not Detected
1,2-Dichlorobenzene	11	Not Detected	68	Not Detected
1,2,4-Trichlorobenzene	45	Not Detected	340	Not Detected
Hexachlorobutadiene	45	Not Detected U-J	ካሊፓ``480	Not Detected U J

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	88	70-130	
1,2-Dichloroethane-d4	116	70-130	
4-Bromofluorobenzene	98	70-130	

Control of States in States in States



#### Client Sample 1D: GP-11-D-060308

#### Lab 1D#: 0806072A-09A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODI	MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN				
FILE Name E Total State P 7061525 State P Date of Collection (0/3/08) State Director Director Date of Analysis 2616/08/04 (14/04)					
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	300	Not Detected	1500	Not Detected	
Freon 114	300	Not Detected	2100	Not Detected	
Chloromethane	1200	Not Detected	2500	Not Detected	
Vinyl Chloride	300	Not Detected	770	Not Detected	
1,3-Butadiene	300	Not Detected	670	Not Delected	
Bromomethane	300	Not Detected	1200	Not Detected	
Chloroethane	300	Not Detected	800	Not Detected	
Freon 11	300	Not Detected	1700	Not Detected	
Ethanol	1200	2100	2300	3900	
Freon 113	300	Not Detected	2300	Not Detected	
1,1-Dichloroethene	300	Not Detected	1200	Not Detected	
Acetone	1200	Not Detected	2900	Not Detected	
2-Propanol	1200 <b>&gt; 2</b> 0	0 -370000E	J 3000	910000 E	
Carbon Disulfide	300	Not Detected	940	Not Detected	
3-Chloropropene	1200	Not Detected	3800	Not Detected	
Methylene Chloride	300	Not Detected	1000	Not Detected	
Methyl tert-butyl ether	300	Not Detected	1100	Not Detected	
trans-1,2-Dichloroethene	300	Not Detected	1200	Not Detected	
Hexane	300	Not Detected	1100	Not Detected	
1,1-Dichloroethane	300	Not Detected	1200	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	300	Not Detected	890	Not Detected	
cis-1,2-Dichloroethene	300	Not Detected	1200	Not Detected	
Tetrahydrofuran	300	Not Detected	890	Not Detected	
Chloroform	300	Not Detected	1500	Not Detected	
1,1,1-Trichloroethane	300	Not Detected	1600	Not Detected	
Cyclohexane	300	Not Detected	1000	Not Detected	
Carbon Tetrachloride	300	Not Detected	1900	Not Detected	
2,2,4-Trimethylpentane	300	Not Detected	1400	Not Detected	
Benzene	300	Not Detected	970	Not Detected	
1,2-Dichloroethane	300	Not Detected	1200	Not Detected	
Heptane	300	Not Detected	1200	Not Detected	
Trichloroethene	300	Not Detected	1600	Not Detected	
1,2-Dichloropropane	300	Not Detected	1400	Not Delected	
1,4-Dioxane	1200	Not Detected	4400	Not Detected	
Bromodichloromethane	300	Not Detected	2000	Not Detected	
cis-1,3-Dichloropropene	300	Not Detected	1400	Not Detected	
4-Methyl-2-pentanone	300	Not Detected	1200	Not Detected	
Toluene	300	Not Detected	1100	Not Detected	
trans-1,3-Dichloropropene	300	Not Detected	1400	Not Detected	





1. Sec. 2. 13

AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-11-D-060308

Lab ID#: 0806072A-09A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2 Post State State Dil Factor	17061525-0500 606	And the second second second second second second second second second second second second second second second	aterot Collection aterot Analysis	6/3/08 6/16/08/04 14/AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	300	Not Detected	1600	Not Detected
Tetrachloroethene	300	Not Detected	2000	Not Detected
2-Hexanone	1200	Not Detected	5000	Not Detected
Dibromochloromethane	300	Not Detected	2600	Not Detected
1,2-Dibromoethane (EDB)	300	Not Detected	2300	Not Detected
Chlorobenzene	300	Not Detected	1400	Not Detected
Ethyl Benzene	300	Not Detected	1300	Not Detected
m,p-Xylene	300	Not Detected	1300	Not Detected
o-Xylene	300	Not Detected	1300	Not Detected
Styrene	300	Not Detected	1300	Not Detected
Bromoform	300	Not Detected	3100	Not Detected
Cumene	300	Not Detected	1500	Not Detected
1,1,2,2-Tetrachloroethane	300	Not Detected	2100	Not Detected
Propylbenzene	300	Not Detected	1500	Not Detected
4-Ethyltoluene	300	Not Detected	1500	Not Detected
1.3.5-Trimethylbenzene	300	Not Detected	1500	Not Detected
1,2,4-Trimethylbenzene	300	Not Detected	1500	Not Detected
1 3 Dichlorobenzene	300	Not Detected	1800	Not Detected
1,4-Dichlorobenzene	300	Not Detected	1800	Not Detected
alpha-Chlorotoluene	300	Not Detected	1600	Not Detected
1,2-Dichlorobenzene	300	Not Detected	1800	Not Detected
1,2,4-Trichlorobenzene	1200	Not Detected	9000	Not Detected
Hexachlorobutadiene	1200	Not Detected U-0	uJ``13000	Not Detected U J

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

#### Container Type: 1 Liter Summa Canister

	wethou	
%Recovery	Limits	
84	70-130	
121	70-130	
99	70-130	
	84 121	

Mothod

- INTRODUCED IN THE PROPERTY OF THE PROPERTY OF



### **Rand Avenue Data Review**

Laboratory SDG: 0806072B

**Reviewer:** Tony Sedlacek

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
GP-12-A-060308	GP-12-B-060308
GP-12-C-060308	GP-12-D-060308
GP-11-A-060308	GP-11-B-060308
GP-11-B-060308-DUP	GP-11-C-060308
GP-11-D-060308	

#### 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

The laboratory case narrative and cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			
## 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below.

Field ID Parameter	Analyte	New RL	Qualification
N/A			

## 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Surrogates are not applicable for Method Modified ASTM D-1946.

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

MS/MSD samples are not applicable for air samples.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte 3	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

## 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

Yes, sample GP-11-B-060308-DUP was duplicated by the laboratory and analyzed for Modified ASTM D-1946.

Were laboratory duplicate sample RPDs within criteria?

N/A

 Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter 🖉 👘	Analyte	Qualification
N/A			

## 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
GP-11-B-060308	GP-11-B-060308-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

## 11.0 Additional Qualifications

*Were additional qualifications applied?* 

No



## Air Toxics Ltd. Introduces the Electronic Report

mank you for choosing Air Toxics Liu. To belief serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- · Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



#### WORK ORDER #: 0806072B

Work Order Summary

CLIENT:	Mr. Mike Miller URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable OSP 2660 A Equiva Services/Shell Oil Products P.O. Box 4912 Houston, TX 77210-4720
PHONE:	314-566-3073	<b>P.O.</b> #	4700002383
FAX:		PROJECT #	21561979 Rte 111 & Rand Ave Vicinity
DATE RECEIVED: DATE COMPLETED:	06/04/2008 06/17/2008	CONTACT:	Brandon Dunmore

			RECEIPT	FINAL
FRACTION #	NAME	TEST	<u>VAC./PRES.</u>	PRESSURE
01A	GP-12-A-060308	Modified ASTM D-1946	9.5 "Hg	15 psi
02A	GP-12-B-060308	Modified ASTM D-1946	8.0 "Hg	15 psi
03A	GP-12-C-060308	Modified ASTM D-1946	8.5 "Hg	15 psi
04A	GP-12-D-060308	Modified ASTM D-1946	7.5 "Hg	15 psi
04AA	GP-12-D-060308 Lab Duplicate	Modified ASTM D-1946	7.5 "Hg	15 psi
05A	GP-11-A-060308	Modified ASTM D-1946	8.5 "Hg	15 psi
06A	GP-11-B-060308	Modified ASTM D-1946	10.0 "Hg	15 psi
07A	GP-11-B-060308-DUP	Modified ASTM D-1946	8.0 "Hg	15 psi
08A	GP-11-C-060308	Modified ASTM D-1946	8.5 "Hg	15 psi
09A	GP-11-D-060308	Modified ASTM D-1946	10.0 "Hg	15 psi
10A	Lab Blank	Modified ASTM D-1946	NA	NA
11A	LCS	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 06/17/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08 Air Foxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

Page 1 of 18



#### LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder# 0806072B

vine 1 Liter summa Camster samples were received on June 04, 2008. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.



## **Receiving Notes**

There were no receiving discrepancies.

## Analytical Notes

There were no analytical discrepancies.

## **Definition of Data Qualifying Flags**

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

D - Compound present in laboratory orditic greater trian reporting innu-

- J Estimated value.
- E Exceeds instrument calibration range.
- 5 Saturateu peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- W Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-rite was requantined

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



#### Client Sample ID: GP-12-A-060308

#### Lab ID#: 0806072B-01A

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9060705 2.96	Date of Collection: 6/3/08 Date of Analysis: 6/7/08 09:36 AM
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.30	7.0
Nitrogen	0.30	81
Carbon Monoxide	0.030	Not Detected
Methane	0.00030	Not Detected
Carbon Dioxide	0.030	12
Ethane	0.0030	Not Detected
Ethene	0.0030	Not Detected



## Client Sample ID: GP-12-B-060308

## Lab ID#: 0806072B-02A

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: § Dil. Factor:		ollection: 6/3/08 nalysis: 6/7/08 09:58 AM
Сотроилd	Rpt. Limit (%)	Amount (%)
Oxygen	0.28	4.7
Nitrogen	0.28	80
Carbon Monoxide	0.028	Not Detected
Methane	0.00028	Not Detected
Carbon Dioxide	0.028	15
Ethane	0.0028	Not Detected
Ethene	0.0028	Not Detected



#### Client Sample ID: GP-12-C-060308

#### Lab ID#: 0806072B-03A

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9 Dil. Factor:	9060707 Date of Collection: 6/3/08 2.82 Date of Analysis: 6/7/08 10:20	
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.28	3.4
Nitrogen	0.28	80
Carbon Monoxide	0.028	Not Detected
Vethane	0.00028	0.00047
Carbon Dioxide	0.028	16
Ethane	0.0028	Not Detected
Ethene	0.0028	Not Detected

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-12-D-060308

#### Lab 1D#: 0806072B-04A

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

MATURAL GAS ANALISIS DT MODIFIED ASTIM D-1746			
File Name: Dil. Factor:	9060708 2.69	Date of Collection: 6/3/08 Date of Analysis: 6/7/08 10:43 AM	
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.27	2.9	
Nitrogen	0.27	80	
Carbon Monoxide	0.027	Not Detected	
Methane	0.00027	0.0014	
Carbon Dioxide	0.027	17	
Ethane	0.0027	Not Detected	
Ethene	0.0027	Not Detected	



Client Sample ID: GP-12-D-060308 Lab Duplicate

#### Lab 1D#: 0806072B-04AA

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9060714 2.69		
Compound	•	. Limit (%)	Amount (%)
Oxygen	(	).27	2.9
Nitrogen	(	).27	80
Carbon Monoxide	0	.027	Not Detected
Methane	0.0	0027	0.0014
Carbon Dioxide	0	.027	17
Ethane	0.	0027	Not Detected
Ethene	0.	0027	Not Detected



#### Client Sample ID: GP-11-A-060308

#### Lab ID#: 0806072B-05A

#### NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: ! Dil. Factor:	9060709 Date of Collection: 6/3/08 2.82 Date of Analysis: 6/7/08 11:05	
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.28	14
Nitrogen	0.28	80
Carbon Monoxide	0.028	Not Detected
Methane	0.00028	Not Detected
Carbon Dioxide	0.028	6.1
Ethane	0.0028	Not Detected
Ethene	0.0028	Not Detected

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-11-B-060308

## Lab 1D#: 0806072B-06A

#### NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 1 Dil. Factor:	9060710 Date of Collection: 6/3/08 3.03 Date of Analysis: 6/7/08 11:2	
Compound	Røt. Limit (%)	Amount (%)
Oxygen	0.30	13
Nitrogen	0.30	80
Carbon Monoxide	0.030	Not Detected
Methane	0.00030	Not Detected
Carbon Dioxide	0.030	6.9
Ethane	0.0030	Not Detected
Ethene	0.0030	Not Detected

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-11-B-060308-DUP

Lab ID#: 0806072B-07A

## NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9060711 2.76		
Compound	Ŕp	i. Limit (%)	Amount (%)
Oxygen		).28	13
Nitrogen	(	).28	80
Carbon Monoxide	C	.028	Not Detected
Methane	0.0	0028	Not Detected
Carbon Dioxide	C	.028	7.0
Ethane	0.	0028	Not Detected
Ethene	0.	0028	Not Detected



#### Client Sample ID: GP-11-C-060308

## Lab ID#: 0806072B-08A

#### NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: S Dil. Factor:		oliection: 6/3/08 nalysis: 6/7/08 12:15 PM
Compound	kpt, Limit (%)	Amount (%)
Oxygen	0.28	12
Nitrogen	0.28	80
Carbon Monoxide	0.028	Not Detected
Methane	0.00028	Not Detected
Carbon Dioxide	0.028	7.8
Ethane	0.0028	Not Detected
Ethene	0.0028	Not Detected

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-11-D-060308

Lab ID#: 0806072B-09A

#### NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9060713 3.03	Date of Collection: 6/3/08 Date of Analysis: 6/7/08 12:37 PM
Compound	крі. Limn (%)	Amount (%)
Oxygen	0.30	8.5
Nitrogen	0.30	82
Carbon Monoxide	0.030	Not Detected
Methane	0.00030	Not Detected
Carbon Dioxide	0.030	10
Ethane	0.0030	Not Detected
Ethene	0.0030	Not Detected



. .

## Sample Transportation Notice

Pelinquishing signature on this document indicates that sample is being shipped in compliance with sill explicable local. State. Federal, national, and international laws, regulations and ordinances of any kind. Var Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indermity Air Toxics Limited against any relaim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D OT Hotline (830) 467-4922

#### 180 BLUE RAVINE ROAD, SUITE 8 FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page 1 of 7

		and shares of seconds	<u></u>			_				
Project Manager <u>Seff Adams</u>	(thores-a	the second and	Froject inf	0:		Turn An Timi		وي العن موجعة	Only inized by	
Collected by: (Print and Sign) Michael Miller			P.O. #					·		·•
Company URS Corporation Email :	nichaimmille	-Consaip. ton				Norr	1	Date:	• • • •	
Address 1001 High but Plaza Dr City St Low	State 🛝	Zip 63110	Project # 🧾	11261979		🗅 Rust	וו	Press	urization	Gas
Phone 314 422-0100 Fax 314	<b>26-121-</b> 046	<u>م</u>	Project Nam	e Rife 111	& Raid Le Visity	3000	 *		<b>N₂ Н</b>	е.
	,	Date	Time	,			Canist	er Pres	sure/Vac	ามนเท
Lab I.D. Field Sample I.D. (Location)	Can #	of Collection	of Collection	i Ana	lyses Requested		nitial	Final	Receipt	Final
01A ====================================	13389	06-03-08	6925	50-15	8 ASIM D-M	1 <b>i</b> g	29	8		
02A GP-12-B-060308	334=6	06-43-08	0929	70-15	8 ATT D-1	146 2	9	8	, . ·	
03A 6P-12-2-060308	31752	06-03-05	6935	T0-15	8 ASTA D. 19	MG 2	9	7		
04A GP-12- 2-260303	36564	06-03-03	6440	7-2-15	& ASTM 0-190	46 3	ŝo	Ş	· · · ·	
05A GP-11-4-060308	12186	66-03-08	1345	70-15	& ASTM D-19	46 3	ic	9		: '
06A 6P-11-8-00-0308	n2033	66-03-08	1350	5-15	& ASTM 2-19	46 2	le j	(c		÷
074 61-11-B-06-0338-DUP	2120	06-03-28	1350	5-075	& ASTA 2-19	46 2	9	6.5	• •	
OSA 64 11- 6-360308	in 2032	-6-03.0r	1355	10-15	& ASTM D-19	86 3	0	7		÷
09A 6P-11-0-26023	36391	106-03-08	1410	50-15	& ASTM DIT	46 3	<del>c</del> :	9	۰.,	•
		1								
Relinquished by: (signature) Date/Time	Received	by: (signature)	Date/Time		Notes:					
06/08/08 F		1384								
Relinquished by: (signature) Date/Time	- I.M.	by: (signature)	Date/Time	non lala	1108 100					
Relinquished by: (signature) Date/Time		by: (signature)	Date/lime		qui					
Leta Shipper Name	推進 (11)	nen (Temp (	<b>;c)</b> , jeden (	Condition	Custody Se	als, loțacț	?	Work,	Qrder # _	9 2011)
Use FEDER 8640 374		MA	X	wd		None	·	·	0607	

Form 1285 (ex.: 1



## **Rand Avenue Data Review**

Laboratory SDG: 0806099A

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
GP-13-A-060408	GP-13-B-060408
GP-13-C-060408	GP-13-D-060408
GP-9-A-060408	GP-9-B-060408
GP-9-C-060408	GP-9-C-060408-DUP
GP-9-D-060408	

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, 2-propanol results in several samples exceeded the calibration range of the instrument; therefore, professional judgment was used to qualify 2-propanol in these samples. This issue is addressed further in the appropriate section below.

The cooler receipt form did not indicate any problems.

## 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

## 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

## 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below.

Field ID	Parameter Analyte Qualification	
N/A		

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below.

Field ID	Parameter	Anal	yte	Qualifica	tion
N/A					

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

MS/MSD samples are not applicable for air samples.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
N/A					

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A		]	

## 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analy	yte	RPD	Criteria
N/A	:				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

## 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
GP-9-C-060408	GP-9-C-060408-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

## **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

## 11.0 Additional Qualifications

*Were additional qualifications applied?* 

Yes

Professional judgment was used to qualify 2-propanol in several samples listed in the table below. The compound 2-propanol exceeded the calibration range of the instrument in these samples. The 2-propanol results will be reported as > 200 in both samples.

ł

Field ID	Analyte	Qualification	Comments
GP-13-A-060408	2-propanol	J	Professional Judgment
GP-13-C-060408	2-propanol	J	Professional Judgment
GP-9-A-060408	2-propanol	J	Professional Judgment
GP-9-B-060408	2-propanol	J	Professional Judgment
GP-9-C-060408	2-propanol	J	Professional Judgment
GP-9-C-060408-DUP	2-propanol	J	Professional Judgment
GP-9-D-060408	2-propanol	J	Professional Judgment



## Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



#### WORK ORDER #: 0806099A

Work Order Summary

CLIENT:	Mr. Mike Miller URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable OSP 2660 A Equiva Services/Shell Oil Products P.O. Box 4912 Houston, TX 77210-4720
PHONE:	314-566-3073	P.O. #	4700002383
FAX: DATE RECEIVED: DATE COMPLETED:	06/05/2008 06/18/2008	PROJECT # CONTACT:	21561979 Rte 111 & Rand Ave Vicinity Brandon Dunmore

ED & COMONI #	NI & NAV	TEST	RECEIPT VAC./PRES.	FINAL <u>PRESSURE</u>
FRACTION #	NAME			
01A	GP-13-A-060408	Modified TO-15	10.0 "Hg	15 psi
02A	GP-13-B-060408	Modified TO-15	9.0 "Hg	15 psi
03A	GP-13-C-060408	Modified TO-15	7.5 "Hg	15 psi
04A	GP-13-D-060408	Modified TO-15	9.0 "Hg	15 psi
05A	GP-9-A-060408	Modified TO-15	8.5 "Hg	15 psi
06A	GP-9-B-060408	Modified TO-15	9.0 "Hg	15 psi
07A	GP-9-C-060408	Modified TO-15	9.0 "Hg	15 psi
08A	GP-9-C-060408-DUP	Modified TO-15	8.5 "Hg	15 psi
09A	GP-9-D-060408	Modified TO-15	7.5 "Hg	15 psi
10A	Lab Blank	Modified TO-15	NA	NA
10B	Lab Blank	Modified TO-15	NA	NA
11A	CCV	Modified TO-15	NA	NA
11B	CCV	Modified TO-15	NA	NA
12A	LCS	Modified TO-15	NA	NA
12B	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>06/18/08</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020



## LABORATORY NARRATIVE Modified TO-15 URS Corporation Workorder# 0806099A

Nine 1 Liter Summa Canister samples were received on June 05, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	<pre><!--= 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</pre--></pre>
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

## **Receiving Notes**

There were no receiving discrepancies.

## Analytical Notes

There were no analytical discrepancies.

## **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.



- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



Client Sample ID: GP-13-A-060408

Lab ID#: 0806099A-01A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name des Distactors su su a des Signations	46061713 303		ate of Collection: ate of Amalysis	64/08. 5/17/08/07/03 PM 5 1
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	150	Not Detected	750	Not Detected
Freon 114	150	Not Detected	1000	Not Detected
Chloromethane	610	Not Detected	1200	Not Detected
Vinyt Chloride	150	Not Detected	390	Not Detected
1,3-Butadiene	150	Not Detected	340	Not Detected
Bromomethane	150	Not Detected	590	Not Detected
Chloroethane	150	Not Detected	400	Not Detected
Freon 11	150	Not Detected	850	Not Detected
Ethanol	610	Not Detected	1100	Not Detected
Freon 113	150	Not Detected	1200	Not Detected
1,1-Dichloroethene	150	Not Detected	600	Not Detected
Acetone	610	2700	1400	6300
2-Propanol	610 72	50 -220000 Et "J	1500	540000 E
Carbon Disulfide	150	Not Detected	470	Not Detected
3-Chloropropene	610	Not Detected	1900	Not Detected
Methylene Chloride	150	Not Detected	530	Not Detected
Methyl tert-butyl ether	150	Not Detected	550	Not Detected
trans-1,2-Dichloroethene	150	Not Detected	600	Not Detected
Hexane	150	Not Detected	530	Not Detected
1,1-Dichloroethane	150	Not Detected	610	Not Detected
2-Butanone (Methyl Ethyl Ketone)	150	Not Detected	450	Not Detected
cis-1,2-Dichloroethene	150	Not Detected	600	Not Detected
Tetrahydrofuran	150	Not Detected	450	Not Detected
Chloroform	150	Not Detected	740	Not Detected
1,1,1-Trichloroethane	150	Not Detected	830	Not Detected
Cyclohexane	150	Not Detected	520	Not Detected
Carbon Tetrachloride	150	Not Detected	950	Not Detected
2,2,4-Trimethylpentane	150	Not Detected	710	Not Detected
Benzene	150	Not Detected	480	Not Detected
1,2-Dichloroethane	150	Not Detected	610	Not Detected
Heptane	150	Not Detected	620	Not Detected
Trichloroethene	150	Not Detected	810	Not Detected
1,2-Dichloropropane	150	Not Detected	700	Not Detected
1,4-Dioxane	610	Not Detected	2200	Not Detected
Bromodichloromethane	150	Not Detected	1000	Not Detected
cis-1,3-Dichloropropene	150	Not Detected	690	Not Detected
4-Methyl-2-pentanone	150	Not Detected	620	Not Detected
Toluene	150	Not Detected	570	Not Detected
trans-1,3-Dichloropropene	150	Not Detected	690	Not Detected

0007



Client Sample ID: GP-13-A-060408

Lab ID#: 0806099A-01A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Rpt. Limit Amount R	Date o	of Collection: 6/4	/08
Compound(ppbv)(ppbv)(1,1,2-Trichloroethane150Not DetectedTetrachloroethane150Not Detected2-Hexanone610Not DetectedDibromochloromethane150Not Detected1,2-Dibromoethane (EDB)150Not DetectedChlorobenzene150Not DetectedEthyl Benzene150Not Detected0-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not Detected1,2,2-Tetrachloroethane150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Trimethylbenzene150Not Detected1,2-Trimethylbenzene150Not Detected1,2-Trimethylbenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150	Date o	of Analysis: 6/17	/08 07:03 PM
Tetrachloroethene150Not Detected2-Hexanone610Not DetectedDibromochloromethane150Not Detected1,2-Dibromoethane (EDB)150Not DetectedChlorobenzene150Not DetectedEthyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected <t< th=""><th></th><th>Rpt. Limit (uG/m3)</th><th>Amount (uG/m3)</th></t<>		Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Hexanone610Not Detected2ibromochloromethane150Not Detected1,2-Dibromoethane (EDB)150Not DetectedChlorobenzene150Not DetectedEthyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected<	ł	830	Not Detected
Dibromochloromethane150Not Detected1,2-Dibromoethane (EDB)150Not DetectedChlorobenzene150Not DetectedEthyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Horitorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Horitorobenzene150Not Detected <t< td=""><td>ł</td><td>1000</td><td>Not Detected</td></t<>	ł	1000	Not Detected
1,2-Dibromoethane (EDB)150Not DetectedChlorobenzene150Not DetectedEthyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Lichlorobenzene150Not Detected1,2-Lichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene	ł	2500	Not Detected
Chlorobenzene150Not DetectedEthyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trinethyloenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trinchlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	ł	1300	Not Detected
Ethyl Benzene150Not Detectedm,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trimethylbenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trinchlorobenzene150Not Detected1,2-A-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected	ł	1200	Not Detected
m,p-Xylene150Not Detectedo-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trinchlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	1	700	Not Detected
o-Xylene150Not DetectedStyrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected	ł	660	Not Detected
Styrene150Not DetectedBromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trichlorobenzene610Not Detected	ł	660	Not Detected
Bromoform150Not DetectedCumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	1	660	Not Detected
Cumene150Not Detected1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trichlorobenzene610Not Detected	1	640	Not Detected
1,1,2,2-Tetrachloroethane150Not DetectedPropylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trinethyloenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trichlorobenzene610Not Detected	1	1600	Not Detected
Propylbenzene150Not Detected4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	ł	740	Not Detected
4-Ethyltoluene150Not Detected1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-A-Trichlorobenzene610Not Detected	ł	1000	Not Detected
1,3,5-Trimethylbenzene150Not Detected1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detectedalpha-Chlorotoluene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Dichlorobenzene610Not Detected	ł	740	Not Detected
1,2,4-Trimethylbenzene150Not Detected1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detectedalpha-Chlorotoluene150Not Detected1,2-Dichlorobenzene150Not Detected1,2-Arrichlorobenzene610Not Detected	1	740	Not Detected
1,3-Dichlorobenzene150Not Detected1,4-Dichlorobenzene150Not Detectedalpha-Chlorotoluene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	1	740	Not Detected
1,4-Dichlorobenzene150Not Detectedalpha-Chlorotoluene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	1	740	Not Detected
alpha-Chlorotoluene150Not Detected1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	i	910	Not Detected
1,2-Dichlorobenzene150Not Detected1,2,4-Trichlorobenzene610Not Detected	i	910	Not Detected
1,2,4-Trichlorobenzene 610 Not Detected	1	780	Not Detected
1,2,4-Trichlorobenzene 610 Not Detected	1	910	Not Detected
November of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	I	4500	Not Detected
nexactivitobulatione 010 INOL Delected	1	6500	Not Detected

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	99	70-130



Client Sample ID: GP-13-B-060408

Lab ID#: 0806099A-02A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN					
File Name: b061709 7. Dil. Factor: 289			Date of Collection: 6/4/08 Date of Analysis: 6/17/08 02:56 PM		
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	140	Not Detected	710	Not Detected	
Freon 114	140	Not Detected	1000	Not Detected	
Chloromethane	580	Not Detected	1200	Not Detected	
Vinyl Chloride	140	Not Detected	370	Not Detected	
1,3-Butadiene	140	Not Detected	320	Not Detected	
Bromomethane	140	Not Detected	560	Not Detected	
Chloroethane	140	Not Detected	380	Not Detected	
Freon 11	140	Not Detected	810	Not Detected	
Ethanol	580	1100	1100	2000	
Freon 113	140	Not Detected	1100	Not Detected	
1,1-Dichloroethene	140	Not Detected	570	Not Detected	
Acetone	580	Not Detected	1400	Not Detected	
2-Propanol	580	32000	1400	79000	
Carbon Disulfide	140	Not Detected	450	Not Detected	
3-Chloropropene	- 580	Not Detected	1800	Not Detected	
Methylene Chloride	140	Not Detected	500	Not Detected	
Methyl tert-butyl ether	140	Not Detected	520	Not Detected	
trans-1,2-Dichloroethene	140	Not Detected	570	Not Detected	
Hexane	140	Not Detected	510	Not Detected	
1,1-Dichloroethane	140	Not Detected	580	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	140	Not Detected	430	Not Detected	
cis-1,2-Dichloroethene	140	Not Detected	570	Not Detected	
Tetrahydrofuran	140	Not Detected	430	Not Detected	
Chloroform	140	Not Detected	700	Not Detected	
1,1,1-Trichloroethane	140	Not Detected	790	Not Detected	
Cyclohexane	140	Not Detected	500	Not Detected	
Carbon Tetrachloride	140	Not Detected	910	Not Detected	
2,2,4-Trimethylpentane	140	Not Detected	680	Not Detected	
Benzene	140	Not Detected	460	Not Detected	
1,2-Dichloroethane	140	Not Detected	580	Not Detected	
Heptane	140	Not Detected	590	Not Detected	
Trichloroethene	140	Not Detected	780	Not Detected	
1,2-Dichloropropane	140	Not Detected	670	Not Detected	
1,4-Dioxane	580	Not Detected	2100	Not Detected	
Bromodichloromethane	140	Not Detected	970	Not Detected	
cis-1,3-Dichloropropene	140	Not Detected	660	Not Detected	
4-Methyl-2-pentanone	140	Not Detected	590	Not Detected	
Toluene	140	Not Detected	540	Not Detected	
trans-1,3-Dichloropropene	140	Not Detected	660	Not Detected	



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-13-B-060408

Lab 1D#: 0806099A-02A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Dil. Factor:	b061709 289		Date of Collection: Date of Analysis: 6	the rate of the second second second second second second second second second second second second second second
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	140	Not Detected	790	Not Detected
Tetrachloroethene	140	Not Detected	980	Not Detected
2-Hexanone	580	Not Detected	2400	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
1,2-Dibromoethane (EDB)	140	Not Detected	1100	Not Detected
Chlorobenzene	140	Not Detected	660	Not Detected
Ethyl Benzene	140	Not Detected	630	Not Detected
m,p-Xylene	140	250	630	1100
o-Xylene	140	Not Detected	630	Not Detected
Styrene	140	Not Detected	620	Not Detected
Bromoform	140	Not Detected	1500	Not Detected
Cumene	140	Not Detected	710	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	990	Not Detected
Propylbenzene	140	Not Detected	710	Not Detected
4-Ethyltoluene	140	140	710	710
1,3,5-Trimethylbenzene	140	Not Detected	710	Not Detected
1,2,4-Trimethylbenzene	140	150	710	730
1,3-Dichlorobenzene	140	Not Detected	870	Not Detected
1,4-Dichlorobenzene	140	Not Detected	870	Not Detected
alpha-Chlorotoluene	140	Not Detected	750	Not Detected
1,2-Dichlorobenzene	140	Not Detected	870	Not Detected
1,2,4-Trichlorobenzene	580	Not Detected	4300	Not Detected
Hexachlorobutadiene	580	Not Detected	6200	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	98	70-130



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-13-C-060408

Lab ID#: 0806099A-03A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

FOLONames States and States and States	6061714		Date of Collection	
Diff Factor as a single of the state of the second	269 3 5		Date of Analysis	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	130	Not Detected	660	Not Detected
Freon 114	130	Not Detected	940	Not Detected
Chloromethane	540	Not Detected	1100	Not Detected
Vinyl Chloride	130	Not Detected	340	Not Detected
1,3-Butadiene	130	Not Detected	300	Not Detected
Bromomethane	130	Not Detected	520	Not Detected
Chloroethane	130	Not Detected	350	Not Detected
Freon 11	130	Not Detected	760	Not Detected
Ethanol	540	Not Detected	1000	Not Detected
Freon 113	130	Not Detected	1000	Not Detected
1,1-Dichloroethene	130	Not Detected	530	Not Detected
Acetone	540	2800	1300	6700
2-Propanol	540 <b>&gt; 2</b>	280000E	<b>J''</b> 1300	700000 E
Carbon Disulfide	130	Not Detected	420	Not Detected
3-Chloropropene	540	Not Detected	1700	Not Detected
Methylene Chloride	130	Not Detected	470	Not Detected
Methyl tert-butyl ether	130	Not Detected	480	Not Detécted
trans-1,2-Dichloroethene	130	Not Detected	530	Not Detected
Hexane	130	Not Detected	470	Not Detected
1,1-Dichloroethane	130	Not Detected	540	Not Detected
2-Butanone (Methyl Ethyl Ketone)	130	Not Detected	400	Not Detected
cis-1,2-Dichloroethene	130	Not Detected	530	Not Detected
Tetrahydrofuran	130	Not Detected	400	Not Detected
Chloroform	130	Not Detected	660	Not Detected
1,1,1-Trichloroethane	130	Not Detected	730	Not Detected
Cyclohexane	130	Not Detected	460	Not Detected
Carbon Tetrachloride	130	Not Detected	850	Not Detected
2,2,4-Trimethylpentane	130	Not Detected	630	Not Detected
Benzene	130	Not Detected	430	Not Detected
1.2-Dichloroethane	130	Not Detected	540	Not Detected
Heptane	130	Not Detected	550	Not Detected
Trichloroethene	130	Not Detected	720	Not Detected
1,2-Dichloropropane	130	Not Detected	620	Not Detected
1.4-Dioxane	540	Not Detected	1900	Not Detected
Bromodichloromethane	130	Not Detected	900	Not Detected
cis-1,3-Dichloropropene	130	Not Detected	610	Not Detected
4-Methyl-2-pentanone	130	Not Detected	550	Not Detected
Toluene	130	Not Detected	510	Not Detected
trans-1,3-Dichloropropene	130	Not Detected	610	Not Detected
states the manual shares have				

0030



Client Sample ID: GP-13-C-060408

Lab ID#: 0806099A-03A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dij. Factor:	b061714 269		Date of Collection: Date of Analysis: 6	Country of Charles Control of State
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	130	Not Detected	730	Not Detected
Tetrachloroethene	130	Not Detected	910	Not Detected
2-Hexanone	540	Not Detected	2200	Not Detected
Dibromochloromethane	130	Not Detected	1100	Not Detected
1,2-Dibromoethane (EDB)	130	Not Detected	1000	Not Detected
Chlorobenzene	130	Not Detected	620	Not Detected
Ethyl Benzene	130	Not Detected	580	Not Detected
m,p-Xylene	130	Not Detected	580	Not Detected
o-Xylene	130	Not Detected	580	Not Detected
Styrene	130	Not Detected	570	Not Detected
Bromoform	130	Not Detected	1400	Not Detected
Cumene	130	Not Detected	660	Not Detected
1,1,2,2-Tetrachloroethane	130	Not Detected	920	Not Detected
Propylbenzene	130	Not Detected	660	Not Detected
4-Ethyltoluene	130	Not Detected	660	Not Detected
1,3,5-Trimethylbenzene	130	Not Detected	660	Not Detected
1,2,4-Trimethylbenzene	130	Not Detected	660	Not Detected
1,3-Dichlorobenzene	130	Not Detected	810	Not Detected
1,4-Dichlorobenzene	130	Not Detected	810	Not Detected
alpha-Chlorotoluene	130	Not Detected	700	Not Detected
1,2-Dichlorobenzene	130	Not Detected	810	Not Detected
1,2,4-Trichlorobenzene	540	Not Detected	4000	Not Detected
Hexachlorobutadiene	540	Not Detected	5700	Not Detected

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	100	70-130



Client Sample ID: GP-13-D-060408

Lab ID#: 0806099A-04A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODI	FIED EPA METHOL	<u>) TO-15 GC/MS FUL</u>	LSCAN	
File Name: Di): Factor:	b061710 289			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	140	Not Detected	710	Not Detected
Freon 114	140	Not Detected	1000	Not Detected
Chloromethane	580	Not Detected	1200	Not Detected
Vinyl Chloride	140	Not Detected	370	Not Detected
1,3-Butadiene	140	Not Detected	320	Not Detected
Bromomethane	140	Not Detected	560	Not Detected
Chloroethane	140	Not Detected	380	Not Detected
Freon 11	140	Not Detected	810	Not Detected
Ethanol	580	Not Detected	1100	Not Detected
Freon 113	140	Not Detected	1100	Not Detected
1,1-Dichloroethene	140	Not Detected	570	Not Detected
Acetone	580	Not Detected	1400	Not Detected
2-Propanol	580	38000	1400	94000
Carbon Disulfide	140	Not Detected	450	Not Detected
3-Chloropropene	580	Not Detected	1800	Not Detected
Methylene Chloride	140	Not Detected	500	Not Detected
Methyl tert-butyl ether	140	Not Detected	520	Not Detected
trans-1,2-Dichloroethene	140	Not Detected	570	Not Detected
Hexane	140	Not Detected	510	Not Detected
1,1-Dichloroethane	140	Not Detected	580	Not Detected
2-Butanone (Methyl Ethyl Ketone)	140	Not Detected	430	Not Detected
cis-1,2-Dichloroethene	140	Not Detected	570	Not Detected
Tetrahydrofuran	140	200	430	590
Chloroform	140	Not Detected	700	Not Detected
1,1,1-Trichloroethane	140	Not Detected	790	Not Detected
Cyclohexane	140	Not Detected	500	Not Detected
Carbon Tetrachloride	140	Not Detected	910	Not Detected
2,2,4-Trimethylpentane	140	Not Detected	680	Not Detected
Benzene	140	Not Detected	460	Not Detected
1,2-Dichloroethane	140	Not Detected	580	Not Detected
	140	Not Detected	590	Not Detected
Heptane Trichloroethene	140	Not Detected	780	Not Detected
1,2-Dichloropropane	140	Not Detected	670	Not Detected
-	580	Not Detected	2100	Not Detected
1,4-Dioxane Bromodichloromethane	140	Not Detected	970	Not Detected
cis-1,3-Dichloropropene	140	Not Detected	660	Not Detected
	140	Not Detected	590	Not Detected
4-Methyl-2-pentanone	140	Not Detected	540	Not Detected
Toluene trans-1,3-Dichloropropene	140	Not Detected	660	Not Detected



Client Sample ID: GP-13-D-060408

Lab ID#: 0806099A-04A

## MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	6061710 289		Date of Collection: Date of Analysis: 6	CONTRACTOR OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	140	Not Detected	790	Not Detected
Tetrachloroethene	140	Not Detected	980	Not Detected
2-Hexanone	580	Not Detected	2400	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
1,2-Dibromoethane (EDB)	140	Not Detected	1100	Not Detected
Chlorobenzene	140	Not Detected	660	Not Detected
Ethyl Benzene	140	Not Detected	630	Not Detected
m,p-Xylene	140	Not Detected	630	Not Detected
o-Xylene	140	Not Detected	630	Not Detected
Styrene	140	Not Detected	620	Not Detected
Bromoform	140	Not Detected	1500	Not Detected
Cumene	140	Not Detected	710	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	990	Not Detected
Propylbenzene	140	Not Detected	710	Not Detected
4-Ethyltoluene	140	Not Detected	710	Not Detected
1,3,5-Trimethylbenzene	140	Not Detected	710	Not Detected
1,2,4-Trimethylbenzene	140	Not Detected	710	Not Detected
1,3-Dichlorobenzene	140	Not Detected	870	Not Detected
1,4-Dichlorobenzene	140	Not Detected	870	Not Detected
alpha-Chlorotoluene	140	Not Detected	750	Not Detected
1,2-Dichlorobenzene	140	Not Detected	870	Not Detected
1,2,4-Trichlorobenzene	580	Not Detected	4300	Not Detected
Hexachlorobutadiene	580	Not Detected	6200	Not Detected

Container Type. I Eller Guinnia Gamolor		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1.2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	99	70-130


AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-9-A-060408

Lab 1D#: 0806099A-05A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Elie Name 200 Strategy 2017 - S D) Factor 2018 - 2018	113		ateloisCollection: ateloit Analysis ()	6/4/08 /4//08/05/38/AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	5.6	Not Detected	28	Not Detected
Freon 114	5.6	Not Detected	39	Not Detected
Chloromethane	23	Not Detected	47	Not Detected
Vinyl Chloride	5.6	Not Detected	14	Not Detected
1,3-Butadiene	5.6	Not Detected	12	Not Detected
Bromomethane	5.6	Not Detected	22	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	5.6	Not Detected	32	Not Detected
Ethanol	23	610	42	1200
Freon 113	5.6	Not Detected	43	Not Detected
1,1-Dichloroethene	5.6	Not Detected	22	Not Detected
Acetone	23	71	54	170
2-Propanol	23 > 2	200 - <del>2800 E</del> C "J"	56	7000 E
Carbon Disulfide	5.6	Not Detected	18	Not Detected
3-Chloropropene	23	Not Detected	71	Not Detected
Methylene Chloride	5.6	Not Detected	20	Not Detected
Methyl tert-butyl ether	5.6	Not Detected	20	Not Detected
trans-1,2-Dichloroethene	5.6	Not Detected	. 22	Not Detected
Hexane	5.6	Not Detected	20	Not Detected
1,1-Dichloroethane	5.6	Not Detected	23	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	5.6	Not Detected	22	Not Detected
Tetrahydrofuran	5.6	6.2	17	18
Chloroform	5.6	Not Detected	28	Not Detected
1,1,1-Trichloroethane	5.6	Not Detected	31	Not Detected
Cyclohexane	5.6	Not Detected	19	Not Detected
Carbon Tetrachloride	5.6	Not Detected	36	Not Detected
2,2,4-Trimethylpentane	5.6	Not Detected	26	Not Detected
Benzene	5.6	Not Detected	18	Not Detected
1,2-Dichloroethane	5.6	Not Detected	23	Not Detected
Heptane	5.6	Not Detected	23	Not Detected
Trichloroethene	5.6	Not Detected	30	Not Detected
1,2-Dichloropropane	5.6	Not Detected	26	Not Detected
1,4-Dioxane	23	Not Detected	81	Not Detected
Bromodichloromethane	5.6	Not Detected	38	Not Detected
cis-1,3-Dichloropropene	5.6	Not Detected	26	Not Detected
4-Methyl-2-pentanone	5.6	Not Detected	23	Not Detected
Toluene	5.6	12	21	46
trans-1,3-Dichloropropene	5.6	Not Detected	26	Not Detected

0050

Section 22



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-9-A-060408

Lab ID#: 0806099A-05A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	b061625 11.3		Date of Collection: Date of Analysis: 6	State of the second second second second second second second second second second second second second second
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	5.6	Not Detected	31	Not Detected
Tetrachloroethene	5.6	Not Detected	38	Not Detected
2-Hexanone	23	Not Detected	92	Not Detected
Dibromochloromethane	5.6	Not Detected	48	Not Detected
1,2-Dibromoethane (EDB)	5.6	Not Detected	43	Not Detected
Chlorobenzene	5.6	Not Detected	26	Not Detected
Ethyl Benzene	5.6	Not Detected	24	Not Detected
m,p-Xylene	5.6	Not Detected	24	Not Detected
o-Xylene	5.6	Not Detected	24	Not Detected
Styrene	5.6	Not Detected	24	Not Detected
Bromoform	5.6	Not Detected	58	Not Detected
Cumene	5.6	Not Detected	28	Not Detected
1,1,2,2-Tetrachloroethane	5.6	Not Detected	39	Not Detected
Propylbenzene	5.6	Not Detected	28	Not Detected
4-Ethyltoluene	5.6	Not Detected	28	Not Detected
1,3,5-Trimethylbenzene	5.6	Not Detected	28	Not Detected
1,2,4-Trimethylbenzene	5.6	Not Detected	28	Not Detected
1,3-Dichlorobenzene	5.6	12	34	73
1,4-Dichlorobenzene	5.6	Not Detected	34	Not Detected
alpha-Chlorotoluene	5.6	Not Detected	29	Not Detected
1,2-Dichlorobenzene	5.6	Not Detected	34	Not Detected
1,2,4-Trichlorobenzene	23	Not Detected	170	Not Detected
Hexachlorobutadiene	23	Not Detected	240	Not Detected

E = Exceeds instrument calibration range.

Container Type. T Eller Calinia Californi		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	96	70-130



14.00

AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-9-B-060408

Lab ID#: 0806099A-06A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Efile Name Din Factor	6060626 5780		neof Collection Neof Analysis	.6/4/08 /17/08 06 16 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	2.9	Not Detected	14	Not Detected
Freon 114	2.9	Not Detected	20	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	2.9	Not Detected	7.4	Not Detected
1,3-Butadiene	2.9	Not Detected	6.4	Not Detected
Bromomethane	2.9	Not Detected	11	Not Detected
Chloroethane	2.9	Not Detected	7.6	Not Detected
Freon 11	2.9	Not Detected	16	Not Detected
Ethanol	12	550	22	1000
Freon 113	2.9	Not Detected	22	Not Detected
1.1-Dichloroethene	2.9	Not Detected	11	Not Detected
Acetone	12	180	27	440
2-Propanol	12 >	200 -1600-EL 'J'	28	4000 E
Carbon Disulfide	2.9	Not Detected	9.0	Not Detected
3-Chloropropene	12	Not Detected	36	Not Detected
Methylene Chloride	2.9	Not Detected	10	Not Detected
Methyl tert-butyl ether	2.9	Not Detected	10	Not Detected
trans-1,2-Dichloroethene	2.9	Not Detected	11	Not Detected
Hexane	2.9	Not Detected	10	Not Detected
1,1-Dichloroethane	2.9	Not Detected	12	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.9	17	8.5	51
cis-1,2-Dichloroethene	2.9	Not Detected	11	Not Detected
Tetrahydrofuran	2.9	3.6	8.5	11
Chloroform	2.9	Not Detected	14	Not Detected
1,1,1-Trichloroethane	2.9	Not Detected	16	Not Detected
Cyclohexane	2.9	Not Detected	9.9	Not Detected
Carbon Tetrachloride	2.9	Not Detected	18	Not Detected
2,2,4-Trimethylpentane	2.9	Not Detected	14	Not Detected
Benzene	2.9	Not Detected	9.2	Not Detected
1,2-Dichloroethane	2.9	Not Detected	12	Not Detected
Heptane	2.9	Not Detected	12	Not Detected
Trichloroethene	2.9	Not Detected	16	Not Detected
1,2-Dichloropropane	2.9	Not Detected	13	Not Detected
1,4-Dioxane	12	Not Detected	42	Not Detected
Bromodichloromethane	2.9	Not Detected	19	Not Detected
cis-1,3-Dichloropropene	2.9	Not Detected	13	Not Detected
4-Methyl-2-pentanone	2.9	Not Detected	12	Not Detected
Toluene	2.9	9.9	11	37
trans-1,3-Dichloropropene	2.9	Not Detected	13	Not Detected

0064



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-9-B-060408

Lab ID#: 0806099A-06A

### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dili Factor:	b061626 5.78		Date of Collection: Date of Analysis: 6	A STATE OF A STATE OF A STATE OF A STATE
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	2.9	Not Detected	16	Not Detected
Tetrachloroethene	2.9	Not Detected	20	Not Detected
2-Hexanone	12	Not Detected	47	Not Detected
Dibromochloromethane	2.9	Not Detected	25	Not Detected
1,2-Dibromoethane (EDB)	2.9	Not Detected	22	Not Detected
Chlorobenzene	2.9	Not Detected	13	Not Detected
Ethyl Benzene	2.9	Not Detected	12	Not Detected
m,p-Xylene	2.9	Not Detected	12	Not Detected
o-Xylene	2.9	Not Detected	12	Not Detected
Styrene	2.9	Not Detected	12	Not Detected
Bromoform	2.9	Not Detected	30	Not Detected
Cumene	2.9	Not Detected	14	Not Detected
1,1,2,2-Tetrachloroethane	2.9	Not Detected	20	Not Detected
Propylbenzene	2.9	Not Detected	14	Not Detected
4-Ethyltoluene	2.9	Not Detected	14	Not Detected
1,3,5-Trimethylbenzene	2.9	Not Detected	14	Not Detected
1,2,4-Trimethylbenzene	2.9	Not Detected	14	Not Detected
1,3-Dichlorobenzene	2.9	11	17	69
1,4-Dichlorobenzene	2.9	Not Detected	17	Not Detected
alpha-Chlorotoluene	2.9	Not Detected	15	Not Detected
1,2-Dichlorobenzene	2.9	Not Detected	17	Not Detected
1,2,4-Trichlorobenzene	12	Not Detected	86	Not Detected
Hexachlorobutadiene	12	Not Detected	120	Not Detected

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	97	70-130



100 C

AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-9-C-060408

Lab ID#: 0806099A-07A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

EUE Nome, and the Base of the particular sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sec	289		Date of Collection Date of Analysis M	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	140	Not Detected	710	Not Detected
Freon 114	140	Not Detected	1000	Not Detected
Chloromethane	580	Not Detected	1200	Not Detected
Vinvi Chloride	140	Not Detected	370	Not Detected
1,3-Butadiene	140	Not Detected	320	Not Detected
Bromomethane	140	Not Detected	560	Not Detected
Chloroethane	140	Not Detected	380	Not Detected
Freon 11	140	Not Detected	810	Not Detected
Ethanol	580	Not Detected	1100	Not Detected
Freon 113	140	Not Detected	1100	Not Detected
1.1-Dichloroethene	140	Not Detected	570	Not Detected
Acetone	580	1000	1400	2500
2-Propanol	580	>200 -120000 E	" <b>J</b> " 1400	280000 E
Carbon Disulfide	140	Not Detected	450	Not Detected
3-Chloropropene	580	Not Detected	1800	Not Detected
Methylene Chloride	140	Not Detected	500	Not Detected
Methyl tert-butyl ether	140	Not Detected	520	Not Detected
trans-1,2-Dichloroethene	140	Not Detected	570	Not Detected
Hexane	140	Not Detected	510	Not Detected
1,1-Dichloroethane	140	Not Detected	580	Not Detected
2-Butanone (Methyl Ethyl Ketone)	140	Not Detected	430	Not Detected
cis-1,2-Dichloroethene	140	Not Detected	570	Not Detected
Tetrahydrofuran	140	Not Detected	430	Not Detected
Chloroform	140	Not Detected	700	Not Detected
1,1,1-Trichloroethane	140	Not Detected	790	Not Detected
Cyclohexane	140	Not Detected	500	Not Detected
Carbon Tetrachloride	140	Not Detected	910	Not Detected
2,2,4-Trimethylpentane	140	Not Detected	680	Not Detected
Benzene	140	Not Detected	460	Not Detected
1,2-Dichloroethane	140	Not Detected	580	Not Detected
Heptane	140	Not Detected	590	Not Detected
Trichloroethene	140	Not Detected	780	Not Detected
1,2-Dichloropropane	140	Not Detected	670	Not Detected
1,4-Dioxane	580	Not Detected	2100	Not Detected
Bromodichloromethane	140	Not Detected	970	Not Detected
cis-1,3-Dichloropropene	140	Not Detected	660	Not Detected
4-Methyl-2-pentanone	140	Not Detected	590	Not Detected
Toluene	140	Not Detected	540	Not Detected
trans-1,3-Dichloropropene	140	Not Detected	660	Not Detected

0079



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-9-C-060408

Lab ID#: 0806099A-07A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dill Factor:	b061712 289		Date of Collection: Date of Analysis: 6	A CONTRACTOR OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	140	Not Detected	790	Not Detected
Tetrachloroethene	140	Not Detected	980	Not Detected
2-Hexanone	580	Not Detected	2400	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
1,2-Dibromoethane (EDB)	140	Not Detected	1100	Not Detected
Chlorobenzene	140	Not Detected	660	Not Detected
Ethyl Benzene	140	Not Detected	630	Not Detected
m,p-Xylene	140	Not Detected	630	Not Detected
o-Xylene	140	Not Detected	630	Not Detected
Styrene	140	Not Detected	620	Not Detected
Bromoform	140	Not Detected	1500	Not Detected
Cumene	140	Not Detected	710	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	990	Not Detected
Propylbenzene	140	Not Detected	710	Not Detected
4-Ethyltoluene	140	Not Detected	710	Not Detected
1,3,5-Trimethylbenzene	140	Not Detected	710	Not Detected
1,2,4-Trimethylbenzene	140	Not Detected	710	Not Detected
1,3-Dichlorobenzene	140	Not Detected	870	Not Detected
1,4-Dichlorobenzene	140	Not Detected	870	Not Detected
alpha-Chlorotoluene	140	Not Detected	750	Not Detected
1,2-Dichlorobenzene	140	Not Detected	870	Not Detected
1,2,4-Trichlorobenzene	580	Not Detected	4300	Not Detected
Hexachlorobutadiene	580	Not Detected	6200	Not Detected

E = Exceeds instrument calibration range.

Container Type: T Ener Summa Sumster		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	100	70-130



AN ENVIRONMENTAL ANALYTICAL LABORATORY

#### Client Sample ID: GP-9-C-060408-DUP

Lab ID#: 0806099A-08A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

ElloNames en a succession en ello	b061711 282		elof(collection elof(Analysis)	.6/4/08 6/17/08:05:33PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	140	Not Detected	700	Not Detected
Freon 114	140	Not Detected	980	Not Detected
Chloromethane	560	Not Detected	1200	Not Detected
Vinyl Chloride	140	Not Detected	360	Not Detected
1,3-Butadiene	140	Not Detected	310	Not Detected
Bromomethane	140	Not Detected	550	Not Detected
Chloroethane	140	Not Detected	370	Not Detected
Freon 11	140	Not Detected	790	Not Detected
Ethanol	560	Not Detected	1100	Not Detected
Freon 113	140	Not Detected	1100	Not Detected
1,1-Dichloroethene	140	Not Detected	560	Not Detected
Acetone	560	1300	1300	3000
2-Propanol	560 >2	₩ ~ <u>94000 E</u> "J`'	1400	230000 E
Carbon Disulfide	140	Not Detected	440	Not Detected
3-Chloropropene	560	Not Detected	1800	Not Detected
Methylene Chloride	140	Not Detected	490	Not Detected
Methyl tert-butyl ether	140	Not Detected	510	Not Detected
trans-1,2-Dichloroethene	140	Not Detected	560	Not Detected
Hexane	140	Not Detected	500	Not Detected
1,1-Dichloroethane	140	Not Detected	570	Not Detected
2-Butanone (Methyl Ethyl Ketone)	140	Not Detected	420	Not Detected
cis-1,2-Dichloroethene	140	Not Detected	560	Not Detected
Tetrahydrofuran	140	140	420	420
Chloroform	140	Not Detected	690	Not Detected
1,1,1-Trichloroethane	140	Not Detected	770	Not Detected
Cyclohexane	140	Not Detected	480	Not Detected
Carbon Tetrachloride	140	Not Detected	890	Not Detected
2,2,4-Trimethylpentane	140	Not Detected	660	Not Detected
Benzene	140	Not Detected	450	Not Detected
1,2-Dichloroethane	140	Not Detected	570	Not Detected
Heptane	140	Not Detected	580	Not Detected
Trichloroethene	140	Not Detected	760	Not Detected
1,2-Dichloropropane	140	Not Detected	650	Not Detected
1,4-Dioxane	560	Not Detected	2000	Not Detected
Bromodichloromethane	140	Not Detected	940	Not Detected
cis-1,3-Dichloropropene	140	Not Detected	640	Not Detected
4-Methyl-2-pentanone	140	Not Detected	580	Not Detected
Toluene	140	Not Detected	530	Not Detected
trans-1,3-Dichloropropene	140	Not Detected	640	Not Detected

0089



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-9-C-060408-DUP

Lab ID#: 0806099A-08A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	b061711 282	a in the second second	Date of Collection: Date of Analysis: 6	N. 13 S. 14 19 19 19 19 19 19 19 19 19 19 19 19 19
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	140	Not Detected	770	Not Detected
Tetrachloroethene	140	Not Detected	960	Not Detected
2-Hexanone	560	Not Detected	2300	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
1,2-Dibromoethane (EDB)	140	Not Detected	1100	Not Detected
Chlorobenzene	140	Not Detected	650	Not Detected
Ethyl Benzene	140	Not Detected	610	Not Detected
m,p-Xylene	140	Not Detected	610	Not Detected
o-Xylene	140	Not Detected	610	Not Detected
Styrene	140	Not Detected	600	Not Detected
Bromoform	140	Not Detected	1400	Not Detected
Cumene	140	Not Detected	690	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	970	Not Detected
Propylbenzene	140	Not Detected	690	Not Detected
4-Ethyltoluene	140	Not Detected	690	Not Detected
1,3,5-Trimethylbenzene	140	Not Detected	690	Not Detected
1,2,4-Trimethylbenzene	140	Not Detected	690	Not Detected
1,3-Dichlorobenzene	140	Not Detected	850	Not Detected
1,4-Dichlorobenzene	140	Not Detected	850	Not Detected
alpha-Chlorotoluene	140	Not Detected	730	Not Detected
1,2-Dichlorobenzene	140	Not Detected	850	Not Detected
1,2,4-Trichlorobenzene	560	Not Detected	4200	Not Detected
Hexachlorobutadiene	560	Not Detected	6000	Not Detected

E = Exceeds instrument calibration range.

oonamer typer t and oanina cannot		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	99	70-130



AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-9-D-060408

Lab ID#: 0806099A-09A

#### MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Dil Factor	061708 2,69		Date of Collection	6/4/08 6/17/08 01:59 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.6	Not Detected
Freon 114	1.3	Not Detected	9.4	Not Detected
Chloromethane	5.4	Not Detected	11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	3.0	Not Detected
Bromomethane	1.3	Not Detected	5.2	Not Detected
Chloroethane	1.3	Not Detected	3.5	Not Detected
Freon 11	1.3	Not Detected	7.6	Not Detected
Ethanol	5.4	690 E	10	1300 E
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	5.4	83	13	200
2-Propanol	5.4	7200 -1900EC	<b>"ፓ"</b> 13	4600 E
Carbon Disulfide	1.3	Not Detected	4.2	Not Detected
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	1.3	Not Detected	4.7	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Hexane	1.3	Not Detected	4.7	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	4.6	4.0	14
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Tetrahydrofuran	1.3	3.7	4.0	11
Chloroform	1.3	Not Detected	6.6	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Cyclohexane	1.3	Not Detected	4.6	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.5	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.3	Not Detected
Benzene	1.3	Not Detected	4.3	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Heptane	1.3	Not Detected	5.5	Not Detected
Trichloroethene	1.3	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
1,4-Dioxane	5.4	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.5	Not Detected
Toluene	1.3	10	5.1	39
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected

0100



Client Sample ID: GP-9-D-060408

Lab 1D#: 0806099A-09A

# MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MODIFIED EFA METHOD TO TS GC/M3 FUEL SCAN						
File Name:	b061708		Date of Collection:	CALL CONTRACTOR OF A CALL OF A CALL OF A CALL OF A CALL OF A CALL OF A CALL OF A CALL OF A CALL OF A CALL OF A		
Dil. Factor:	2.69		Date of Analysis: 6			
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)		
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected		
Tetrachloroethene	1.3	Not Detected	9.1	Not Detected		
2-Hexanone	5.4	Not Detected	22	Not Detected		
Dibromochloromethane	1.3	Not Detected	11	Not Detected		
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected		
Chlorobenzene	1.3	Not Detected	6.2	Not Detected		
Ethyl Benzene	1.3	Not Detected	5.8	Not Detected		
m,p-Xylene	1.3	2.2	5.8	9.4		
o-Xylene	1.3	Not Detected	5.8	Not Detected		
Styrene	1.3	Not Detected	5.7	Not Detected		
Bromoform	1.3	Not Detected	14	Not Detected		
Cumene	1.3	Not Detected	6.6	Not Detected		
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.2	Not Detected		
Propylbenzene	1.3	Not Detected	6.6	Not Detected		
4-Ethyltoluene	1.3	Not Detected	6.6	Not Detected		
1,3,5-Trimethylbenzene	1.3	Not Detected	6.6	Not Detected		
1,2,4-Trimethylbenzene	1.3	Not Detected	6.6	Not Detected		
1,3-Dichlorobenzene	1.3	14	8.1	83		
1,4-Dichlorobenzene	1.3	Not Detected	8.1	Not Detected		
alpha-Chlorotoluene	1.3	Not Detected	7.0	Not Detected		
1,2-Dichlorobenzene	1.3	Not Detected	8.1	Not Detected		
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected		
Hexachlorobutadiene	5.4	Not Detected	57	Not Detected		

E = Exceeds instrument calibration range.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	110	70-130	
4-Bromofluorobenzene	98	70-130	



# **Rand Avenue Data Review**

Laboratory SDG: 0806099B

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
GP-13-A-060408	GP-13-B-060408
GP-13-C-060408	GP-13-D-060408
GP-9-A-060408	GP-9-B-060408
GP-9-C-060408	GP-9-C-060408-DUP
GP-9-D-060408	

# 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

The laboratory case narrative and cooler receipt form did not indicate any problems.

### 3.0 Holding Times

*Were samples extracted/analyzed within QAPP limits?* 

Yes

- 1	Field ID	Parameter	Analyte	Qualification
	N/A			

### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below.

Field ID	Parameter	Analyte	New RL	Oualification
N/A		<b>,</b>		

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Surrogates are not applicable for Method Modified ASTM D-1946.

Field ID	Parameter Surrogate Recovery C	l'riteria 🛛
N/A		

Analytical data that required qualification based on surrogate data are included in the table below.

Field ID	Parameter	A	nalyte	Qualifie	cation
N/A					j

# 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

MS/MSD samples are not applicable for air samples.

Were MS/MSD recoveries within evaluation criteria?

N/A

MS/MSD/ID P:	arameter Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD
N/A			L <u></u>	

Analytical data that required qualification based on MS/MSD data are included in the table below.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

*Were laboratory duplicate samples collected as part of this SDG?* 

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analy	te	RPD	Criteria
N/A					

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Construction and the second second second second second second second second second second second second second	
N//3		
		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR O

### 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
GP-9-C-060408	GP-9-C-060408-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
N/A		

### 11.0 Additional Qualifications

*Were additional qualifications applied?* 

No



# Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- · Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



#### WORK ORDER #: 0806099B

Work Order Summary

CLIENT:	Mr. Mike Miller URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable OSP 2660 A Equiva Services/Shell Oil Products P.O. Box 4912 Houston, TX 77210-4720
PHONE:	314-566-3073	P.O. #	4700002383
FAX:		PROJECT #	21561979 Rte 111 & Rand Ave Vicinity
DATE RECEIVED: DATE COMPLETED:	06/05/2008 06/17/2008	CONTACT:	Brandon Dunmore

FRACTION #	NAME	TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
2012/10/00/00				
01A	GP-13-A-060408	Modified ASTM D-1946	10.0 "Hg	15 psi
02A	GP-13-B-060408	Modified ASTM D-1946	9.0 "Hg	15 psi
03A	GP-13-C-060408	Modified ASTM D-1946	7.5 "Hg	15 psi
04A	GP-13-D-060408	Modified ASTM D-1946	9.0 "Hg	15 psi
05A	GP-9-A-060408	Modified ASTM D-1946	8.5 "Hg	15 psi
06A	GP-9-B-060408	Modified ASTM D-1946	9.0 "Hg	15 psi
07A	GP-9-C-060408	Modified ASTM D-1946	9.0 "Hg	15 psi
08A	GP-9-C-060408-DUP	Modified ASTM D-1946	8.5 "Hg	15 psi
09A	GP-9-D-060408	Modified ASTM D-1946	7.5 "Hg	15 psi
10A	Lab Blank	Modified ASTM D-1946	NA	NA
11A	LCS	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>06/17/08</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020



#### LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder# 0806099B

Nine 1 Liter Summa Canister samples were received on June 05, 2008. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run	these samples are	summarized in the table	below. Specific project
requirements may over-ride the ATL	modifications.		

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.



# **Receiving Notes**

There were no receiving discrepancies.

# Analytical Notes

There were no analytical discrepancies.

# **Definition of Data Qualifying Flags**

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



Client Sample ID: GP-13-A-060408

Lab ID#: 0806099B-01A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 906071 Dil: Factor: 3.0	-	Date of Collection: 6/4/08 Date of Analysis: 6/7/08 01:21 PM	
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.30	9.3	
Nitrogen	0.30	81	
Carbon Monoxide	0.030	Not Detected	
Methane	0.00030	0.00039	
Carbon Dioxide	0.030	10	
Ethane	0.0030	Not Detected	
Ethene	0.0030	Not Detected	



Client Sample ID: GP-13-B-060408

Lab ID#: 0806099B-02A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name Dill Factor		Date of Collection: 6/4/08 Date of Analysis: 6/7/08 01:48 PM	
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.29	6.5	
Nitrogen	0.29	81	
Carbon Monoxide	0.029	Not Detected	
Methane	0.00029	0.0026	
Carbon Dioxide	0.029	12	
Ethane	0.0029	Not Detected	
Ethene	0.0029	Not Detected	

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-13-C-060408

Lab ID#: 0806099B-03A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

	060717 Date of Collection: 6/4/08 2.69 Date of Analysis: 6/7/08 02:10 P		
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.27	4.9	
Nitrogen	0.27	81	
Carbon Monoxide	0.027	Not Detected	
Methane	0.00027	0.00084	
Carbon Dioxide	0.027	14	
Ethane	0.0027	Not Detected	
Ethene	0.0027	Not Detected	



#### Client Sample ID: GP-13-D-060408

Lab ID#: 0806099B-04A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:		of Collection: 6/4/08 of Analysis: 6/7/08 02:34 PM	
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.29	3.2	
Nitrogen	0.29	81	
Carbon Monoxide	0.029	Not Detected	
Methane	0.00029	0.0030	
Carbon Dioxide	0.029	16	
Ethane	0.0029	Not Detected	
Ethene	0.0029	Not Detected	

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-9-A-060408

#### Lab ID#: 0806099B-05A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name. Dil. Factor:	9060719 Date of Collection: 6/4/08 2.82 Date of Analysis: 6/7/08.02:57 PM		
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.28	8.9	
Nitrogen	0.28	83	
Carbon Monoxide	0.028	Not Detected	
Methane	0.00028	Not Detected	
Carbon Dioxide	0.028	8.5	
Ethane	0.0028	Not Detected	
Ethene	0.0028	Not Detected	



#### Client Sample ID: GP-9-B-060408

Lab ID#: 0806099B-06A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil: Factor:	the second second second second second second second second second second second second second second second se	Collection: 6/4/08 Analysis: 6/7/08 03:24 PM
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.29	7.5
Nitrogen	0.29	83
Carbon Monoxide	0.029	Not Detected
Methane	0.00029	Not Detected
Carbon Dioxide	0.029	9.2
Ethane	0.0029	Not Detected
Ethene	0.0029	Not Detected

Container Type: 1 Liter Summa Canister

138030



Client Sample ID: GP-9-C-060408

Lab ID#: 0806099B-07A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil: Factor:		Date of Collection: 6/4/08 Date of Analysis: 6/7/08 03:46 PM
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.29	7.0
Nitrogen	0.29	84
Carbon Monoxide	0.029	Not Detected
Methane	0.00029	Not Detected
Carbon Dioxide	0.029	9.5
Ethane	0.0029	Not Detected
Ethene	0.0029	Not Detected

Container Type: 1 Liter Summa Canister



#### Client Sample ID: GP-9-C-060408-DUP

#### Lab ID#: 0806099B-08A

# NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil: Factor:	9060722 2.82 Date of Collection: 6/4/08 Date of Analysis: 6/7/08 04		
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen	0.28	7.2	
Nitrogen	0.28	83	
Carbon Monoxide	0.028	Not Detected	
Methane	0.00028	Not Detected	
Carbon Dioxide	0.028	9.4	
Ethane	0.0028	Not Detected	
Ethene	0.0028	Not Detected	



#### Client Sample ID: GP-9-D-060408

#### Lab ID#: 0806099B-09A

#### NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

	9060723 Date of C	, Collection: 6/4/08
Dil Factor:		Analysis: 6/7/08 04:31 PM
Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.27	5.6
Nitrogen	0.27	84
Carbon Monoxide	0.027	Not Detected
Methane	0.00027	Not Detected
Carbon Dioxide	0.027	10
Ethane	0.0027	Not Detected
Ethene	0.0027	Not Detected



 ${}^{\circ}$ 

#### Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Foderal, national, and international laws, requiations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, randling or pripping of these samples. Refinguishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any daim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hot ne (800) 467-4922

#### **180 BLUE RAVINE ROAD, SUITE B** FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

{ of Page Project Manager Sef 42 12 34.15 adus Owners . cons) Lab Use Only Proisct Info: Turn Around Time: Pressurized by: Michnel Miller Collected by: (Print and Sign) P.O. # Alormat Date: Company 125 Corporation Email mithout miller & unsurp. 64 S. Th. 344 City Project # 2-1361979 Rush Address 100 History Plazer Zio 63116 Pressurization Gas: St. Low State BH 429-0462 Project Name PA M & Rud Ine Vaus 43- 81 63 Phone Fax 314 He enerity 27 Canister Pressure/Vacuum Date Time Lab LD. Field Sample I.D. (Location) of Collection of Collection Can # Analyses Requested Final laitiat Receipt Final ÓA 29 GP-13-4-060408 56 6.2 9850 8.5 06104165 TO-15 8. 4574 D+946 06/04/08 9 SC74 GP-13-B-060438 TO-15 & ASTM D-1946 30 0855 13A SCG4 06/04/08 8 68-13-6-060403 30 8-ASTA D-1946 0900 1423 7 69-13-D-01,040X 06104/08 コス 0905 9-0-15 8 ARTM P-1946 34153 50-15 8-ASDO N-1946 7-67-9-2-060408 06/04/08 29 1045 8.5 36579 e6/04/es TO-15-8-4574 D-1946 -8-060408 1050 30 5657 9 TO-15 & ASTM D-1946 9-6-060408 e6/04/08 1055 30 G-P-9-6-060408-DOP 295 8.5 5666 5610410X TO-15 & ASTM D-1946 1055 9358 69-9-D-062408 10-15 & ASTM D-1946 06/01/08 2115 30 6 Received by: (signature) Date/Time Notes: Relinquished by: (signature) Date/Time 614/08 1600 Fordex Reinauished by: (stanature) Date/Time Received by: (signature) Date/Time Ar 6/5/08 1000 Rolinquished by: (signature) Date/Time Received by: (signature) Date/Time Shipper Name Air Bill 第三一 Temp.(°C) Condition: . Custody Seals intact? -Work Order # -Lab Use. 8640 3796 9512 Yes A & D & 99 5va-"No[®] None FrAXX aco L Only-

Form 1280 rev.11



# **Rand Avenue Data Review**

Laboratory SDG: 305672

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
P58-060908	P58-060908D
P56-060908	P73-061008
P75-061008	P75-061008EB
P66-061008	P54-061008
P57-061108	TB061108

### 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank, equipment blank and method blank. VOC LCS, surrogate and MS/MSD recoveries and MS/MSD RPDs were outside evaluation criteria. Samples were diluted due to high levels of target analytes. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter An	alyte Qualification
N/A		

# 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
P75-061008EB	VOCs	Benzene	12.5	μg/L
P75-061008EB	VOCs	n-Butylbenzene	1.17	μg/L
P75-061008EB	VOCs	Ethylbenzene	3.79	μg/L
P75-061008EB	VOCs	Isopropylbenzene	1.1	μg/L
P75-061008EB	VOCs	Methylene chloride	1.64	μg/L
P75-061008EB	VOCs	Naphthalene	4.82	μg/L
P75-061008EB	VOCs	n-Propylbenzene	2.04	μg/L
P75-061008EB	VOCs	1,2,4-Trimethylbenzene	17	μg/L
P75-061008EB	VOCs	1,3,5-Trimethylbenzene	4.54	μg/L
P75-061008EB	VOCs	o-Xylene	1.96	μg/L
P75-061008EB	VOCs	<i>m,p</i> -Xylene	10.9	μg/L
TB061108	VOCs	Methylene chloride	2.39	μg/L
510737-1-BLK	VOCs	Methylene chloride	· 7.25	μg/L
511007-1-BLK	VOCs	Methylene chloride	2.92	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
P54-061008	VOCs	Benzene	6.29	U
P54-061008	VOCs	Ethylbenzene	-	U
P54-061008	VOCs	Methylene chloride	-	U
P75-061008	VOCs	1,2,4-Trimethylbenzene	38.2	U
P54-061008	VOCs	1,2,4-Trimethylbenzene		U
P75-061008	VOCs	1,3,5-Trimethylbenzene	10.8	U
P66-061008	VOCs	1,3,5-Trimethylbenzene	5.69	U
P75-061008	VOCs	o-Xylene	_	U
P75-061008	VOCs	<i>m</i> , <i>p</i> -Xylene	34.5	U
P66-061008	VOCs	<i>m</i> , <i>p</i> -Xylene	-	U

### 5.0 Laboratory Control Sample

### Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
510949-BKS	VOCs	Dichlorodifluoromethane	131	N/A	70-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
P58-060908	VOCs	Dichlorodifluoromethane	J
P58-060908D	VOCs	Dichlorodifluoromethane	J
P57-061108	VOCs	Dichlorodifluoromethane	J

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
P58-060908	VOCs	1,2-Dichloroethane-D4	61	80-120
P58-060908D	VOCs	1,2-Dichloroethane-D4	58	80-120

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. The compound benzene was reported from the diluted analysis for samples P58-060908 and P58-060908D and all diluted analysis surrogate recoveries were within evaluation criteria; therefore, benzene was not qualified.

Field ID	Parameter	Analyte	Qualification
P58-060908	VOCs	All VOC detects/nondetects	J/UJ
P58-060908D	VOCs	All VOC detects/nondetects	J/UJ

# 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, samples P66-061008 and P54-061008 were spiked and analyzed for VOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID-	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
P54-061008	VOCs	Dichlorodifluoromethane	131/121	8	70-130/23
P54-061008	VOCs	1,1-Dichloropropene	68/70	3	75-125/20
P54-061008	VOCs	Methylene chloride	73/73	0	75-125/35
P66-061008	VOCs	Benzene	124/ <b>190</b>	42	66-142/21
P66-061008	VOCs	Bromomethane	<b>61</b> /74	19	70-130/20
P66-061008	VOCs	Methyl tert-butyl ether	252/276	9	75-125/20
P66-061008	VOCs	Chloroethane	67/84	23	70-130/20
P66-061008	VOCs	2,2-Dichloropropane	74/90	20	75-125/20
P66-061008	VOCs	Ethylbenzene	<b>108</b> /156	36	75-125/20
P66-061008	VOCs	Isopropylbenzene	85/129	41	75-125/20
P66-061008	VOCs	Naphthalene	89/123	32	75-125/20
P66-061008	VOCs	Vinyl chloride	73/85	15	75-125/20

Analytical data that required qualification based on MS/MSD data are included in the table below. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD Criteria
N/A			L

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

# 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
P58-060908	P58-060908D

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
 N/A					

### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
P58-060908	VOCs	10000
P58-060908D	VOCs	10000
P56-060908	VOCs	5
P73-061008	VOCs	100
P75-061008	VOCs	50
P66-061008	VOCs	10
P57-061108	VOCs	10000

# 11.0 Additional Qualifications

Were additional qualifications applied?

No

# Analytical Report 305672

for

**URS Corporation-St. Louis** 

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

24-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 43


24-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 305672 900 S. Central Avenue Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305672. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305672 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



## Sample Cross Reference 305672



## URS Corporation-St. Louis, St. Louis, MO

100 C

CARL CONTRACTOR

900 S. Central Avenue

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
P58-060908	W	Jun-09-08 14:25		305672-001
P58-060908D	W	Jun-09-08 14:25		305672-002
P56-060908	W	Jun-09-08 16:15		305672-003
P73-061008	W	Jun-10-08 09:43		305672-004
P75-061008	W	Jun-10-08 10:40		305672-005
P75-061008EB	W	Jun-10-08 11:25		305672-006
P66-061008	W	Jun-10-08 13:40		305672-007
P54-061008	W	Jun-10-08 16:12		305672-008
P57-061108	W	Jun-11-08 13:10		305672-009
TB061108	W	Jun-11-08 00:00		305672-010





Project Name: 900 S. Central Avenue

Project Id: Route 111 & Ra	nd Ave Vicinity /	-		201	Date	Receiv	ved in Lab:		09:50 am	
Contact: Wendy Penning Project Location: Roxana, Illinois					1		port Date: Manager:	24-JUN-0 Debbie Si		
· · · · · · · · · · · · · · · · · · ·	Lab Id: Field Id:	305672- P58-060			305672-00 P58-060908	)2	305672- P56-060		305672-0 P73-0610	
Analysis Requested	Depth:	138-000	1908		138-000900	<u>,</u>	130-000	906	P73-0610	18
	Matrix:	WATI	ER		WATER		WATE	ER	WATER	ι
	Sampled:	Jun-09-08	3 14:25		Jun-09-08 14	4:25	Jun-09-08	16:15	Jun-10-08 0	9:43
VOAs by SW-846 8260B	Extracted:	Jun-18-08	16:16		Jun-18-08 10	5:18	Jun-17-08	16:49	Jun-18-08 1	3:05
, i i i i i i i i i i i i i i i i i i i	Analyzed:	Jun-18-08	8 18:38		Jun-18-08 19	9:00	Jun-17-08	17:33	Jun-18-08 1	4:03
	Units/RL:	ug/L	RI		ug/L	RL	ug/L	RL	ug/L	RL.
Acetone		Ð	10	00	ช	1000	U	100	U	100
Benzene		349000 D	500		348000 D	50000	383 D	25.0	4000 D	500
Bromobenzene		<u> </u>	-"iB	0.0	<u> </u>	រ្ <b>រី``</b> 50.0	U	5.00	U	5.00
Bromochloromethane		ų	50	0.0		50.0	ບ	5.00	υ	5.00
Bromodichloromethane		<u>4</u>	50	0.0	¥	50.0	υ	5.00	υ	5,00
Bromoform		ų	50	0.0	<u> </u>	50.0	ប	5,00	υ	5.00
Bromomethane		<u> </u>	50	0.0	ų į	50.0	U	5.00	υ	5.00
2-Butanone		<u> </u>		00	ψ.	500	υ	50.0	U	50.0
MTBE		¥		arreada		<b>WJ</b> 50.0	U	5.00	U	5.00
n-Butylbenzene		18.9	<b>~J~</b> 50		21.2		9.40	5,00	25.5	5.00
Sec-Butylbenzene			- "W]30			" <b>UJ</b> 0.0	U	5.00	19.9	5.00
teri-Butylbenzene			<b>~J``</b> 50		42.5		U	5.00	47.8	5.00
Carbon Disulfide		ų.	·WJ 'S	00	<u>ч</u> "t	<b>\$</b> 300	υ	50,0	U	50.0
'arbon Tetrachloride		ψ	50	0.0	ų.	50.0	U	5.00	U	5.00
.hlorobenzene		<u> </u>	50	).0	ψ	50.0	U	5.00	3.12 }	5.00
Chloroethane		<u> </u>	1	00	Ų.	100	υ	10.0	U	10.0
Chloroform		Ý	50	0.0	ų į	50.0	υ	5.00	U	5.00
Chloromethane		Ŷ	1	00	Ϋ́	100	υ	10.0	Ŭ	10.0
2-Chlorotoluene		Ý	50	0.0	Ϋ.	/ 50.0	U	5.00	υ	5.00
4-Chlorotoluene		Ų.	50	0.0	ψų	J 30.0	U	5.00	U	5.00
p-Cymene (p-Isopropyltoluene)		ψ̈́	50	0.0	11.8		4.15 J	5.00	12.4	5.00
Dibromochloromethane		Ų	50	).0	Ų · V	<b>J</b> \$0.0	υ	5.00	υ	5.00
1,2-Dibromo-3-Chloropropane		ų	50	).0	ψ	50,0	υ	5.00	υ	5.00
1,2-Dibromoethane		Ч	50	0,0	b	50.0	υ	5.00	υ	5.00
Dibromomethane		ų	50	0.0	Ų	50.0	U	5.00	U	5.00
1,2-Dichlorobenzenc		Ŭ	50	0.0	U	50.0	υ	5.00	U	5.00
1,3-Dichlorobenzene		ų	<b>↓</b> 50		Ų I	50.0	υ	5.00	U	5.00
1,4-Dichlorobenzene			~ <b>~J</b> \$0			<b>J</b> 50.0	U	5.00	υ	5.00
Dichlorodifluoromethane			<b>~`T`</b> 50		122		υ	5.00	U	5.00
1,1-Dichloroethane		ψ,	"UJ 30	0.0	ψ·ι	J 30.0	U	5.00	υ	5.00
1,2-Dichloroethane		ψ	50		Ų ·	50.0	U	5.00	U	5.00
1,1-Dichloroethene		Ŷ	50	1	ψ	50,0	υ	5.00	U	5.00
cis-1,2-Dichloroethene		ţ	<b>¥</b> 50		ų e	50.0	υ	5.00	υ	5.00
trans-1,2-dichioroethene		<b>f</b> .	"UJ 30	0.0	ų., h	<b>j`</b> ʻ50.0	U	5.00	υ	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi





Project Name: 900 S. Central Avenue

Project Id: Route 111 & Ra	and Ave Vicinity /	2156197		Date	e Receiv	ved in Lab:	Jun-12-0	8 09:50 am	
Contact: Wendy Penning	ton				Re	port Date:	24-JUN-	38	
Project Location: Roxana, Illinois	62084			1	Project	Manager:	Debbie S	immons	
	Lab Id:	305672-0	100	305672-0	02	305672-	-003	305672-0	)04
Analysis Requested	Field Id:	P58-0609	08	P58-06090	8D	P56-060	908	P73-0610	08
	Depth:								
	Matrix:	WATE	R	WATER	2	WATI	ER	WATE	R
	Sampled:	Jun-09-08	4:25	Jun-09-08 1	4:25	Jun-09-08	16:15	Jun-10-08 (	)9:43
VOAs by SW-846 8260B	Extracted:	Jun-18-08	6:16	Jun-18-08 I	6:18	Jun-17-08	16:49	Jun-18-08	3:05
	Analyzed:	Jun-18-08	8:38	Jun-18-08 1	9:00	Jun-17-08	17:33	Jun-18-08	4:03
	Units/RL:	ug/L	RL	ug/L	RL	ug/L	RL.	ug/L	RL
1,2-Dichloropropane		Ų-	WJ 30.0	4-,	<b>u I</b> 50.0	U	5,00	U	5.00
1,3-Dichloropropane		ų	50.0	ų	50,0	U	5.00	υ	5.00
2,2-Dichloropropane		۲.	50.0	ų	50.0	υ	5.00	U	5.00
1,1-Dichloropropene		ų	50.0	ų	50.0	U	5.00	U	5.00
cis-1,3-Dichloropropene		ų	50.0	ų v	<b>5</b> 50.0	U	5.00	U	5.00
trans-1,3-dichloropropene			<b>UJ 3</b> 0.0		<b>Ŋ"</b> 50.0	υ	5.00	U	5.00
Ethylbenzene	······		J		<b>]*</b> 50.0	1670 D	100	890 D	50,0
Hexachlorobutadiene			WJ50.0		<b>J 3</b> 0.0	υ	5.00	U	5.00
2-Hexanone			<b>WJ 300</b>		<b>w</b> 500	U	50.0	U	50.0
isopropylbenzene			<b>J *</b> 50,0		<b>J `</b> 50.0	61.1	5.00	49.7	5.00
Methylene Chloride			<b>W</b> 30.0		J 30.0	υ	5.00	υ	5.00
4-Methyl-2-Pentanone		<u>.</u>	<b>4J'300</b>		J 300	υ	50.0	U	50.0
Naphthalene		179 *	<b>T</b> " 100	202 ``;	<b>] , </b> 100	180 D	50.0	145	10.0
Propylbenzene			<b>J.</b> ° 50.0		<b>J **</b> 50.0	86.9	5.00	80.9	5.00
Jyrene		<u>ψ.</u>	<b>W</b> 50.0	עייע	<b>J"</b> 50.0	U	5.00	บ	5.00
1,1,1,2-Tetrachloroethane		Į	50.0	<u> </u>	50.0	υ	5.00	U	5.00
1,1,2,2-Tetrachloroethane		<u> </u>	\$ 50.0	ψ.	50.0	υ	5.00	υ	5.00
Tetrachloroethylene			<b>J</b> 50.0		J 30.0	U	5.00	υ	5.00
Toluene			<b>J</b> 50.0		* 50.0	490 D	25.0	1370 D	50.0
1,2,3-Trichlorobenzene			<b>£</b> 3 30.0	ייע	<b>J</b> \$0.0	υ	5.00	U	5.00
1,2,4-Trichlorobenzene			50.0		50.0	U	5.00	U	5.00
1,1,1-Trichloroethane		<u> </u>	50.0		50.0	U	5.00	υ	5.00
1,1,2-Trichloroethane		<u> </u>	50.0	U U	50.0	U	5.00	U	5.00
Trichloroethene		<u> </u>	50.0	¥	50.0	· U	5.00	U	5.00
Trichlorofluoromethane		I'	50.0		50.0	U	5.00	U	5.00
1,2,3-Trichloropropane		· · · · ·	1 50.0		<b>4 ]</b> 50.0	U	5.00	υ	5,00
1,2,4-Trimethylbenzene			<b>5</b> 2	820		388 D	25.0	596 D	50.0
1,3,5-Trimethylbenzene			<b>J-</b> 50.0	129		93.7	5.00	137	5.00
o-Xylene			<b>J' '</b> 50,0	168*		233 D	25.0	520 D	50.0
m,p-Xylenes			J ** 100	805 ** 7		2220 D	200	1760 D	100
Vinyl Chloride		ઝગ	J 20.0	J" V.	J 20.0	U	2.00	υ	2.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, P.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miamí - Latin America - Atlanta - Corpus Christi





Project Name: 900 S. Central Avenue

Project Id: Route 111 & R	and Ave Vicinity /	2156197	ic. 900		Receiv	ed in Lab:	Jun-12-6	08 09:50 am	
Contact: Wendy Pennin	gton			Rej	port Date:	24-JUN	-08		
Project Location: Roxana, Illinoi	s 62084			F	Project	Manager:	Debbie	Simmons	
	Lab Id:	305672-00	)5	305672-00	)6	305672-0	007	305672-0	008
Analysis Requested	Field Id:	₽75-06100	8	P75-061008	EB	P66-0610	908	P54-0610	108
	Depth:								ŀ
	Matrix:	WATER		WATER		WATE	R	WATE	R
	Sampled:	Jun-10-08 10	):40	Jun-10-08 11	1:25	Jun-10-08	13:40	Jun-10-08 1	16:12
VOAs by SW-846 8260B	Extracted:	Jun-18-08 14	4:34	Jun-16-08 13	3:20	Jun-18-08	11:03	Jun-16-08 1	2:27
TOAS NJ DITIONO ODOUD	Analyzed:	Jun-18-08 1	5:08	Jun-16-08 14	4:14	Jun-18-08	12:37	Jun-16-08 1	2:47
	Units/RL:	ug/L	RL	ug/L	RL.	ug/L	RL	ug/L	RL
Acetone		U	200	U	100	U	100	U	100
Benzene		3620 D	250	(12.5)	5.00	659 D	50.0	ND0.06.2901	u"-5.00
Bromobenzene		υ	10.0	υ	5,00	U	5.00		5.00
Bromochloromethane		U	10.0	U	5.00	U	5.00	υ	5.00
Bromodichloromethane		υ	10.0	U	5.00	U	5.00	U	5.00
Bromoform	Í	υ	10.0	U	5.00	U	5.00	υ	5.00
Bromonsethane		υ	10.0	U	5.00	U	5.00	υ	5.00
2-Butanone		υ	100	υ	50.0	U	50.0	U	50.0
MTBE		125	10,0	U	5.00	U	5.00	υ	5,00
n-Butylbenzene		26.8	10.0	(1.17 J	5.00	17.5	5.00	υ	5.00
Sec-Butylbenzene		24.1	10.0	U	5,00	19.6	5.00	υ	5.00
lert-Butylbenzene		4.96 J	10.0	U	5.00	5.96	5.00	U	5.00
Carbon Disulfide		υ	100	U	50,0	υ	50.0	U	50.0
Parbon Tetrachloride		υ	10.0	υ	5.00	υ	5.00	U	5.00
nlorobenzene		U	10.0	υ	5.00	U	5.00	υ	5.00
Chloroethane	1	U	20.0	υ	10.0	υ	10.0	υ	10.0
Chloroform	İ	U	10.0	υ	5.00	U	5.00	U	5.00
Chloromethanc		υ	20.0	U	10,0	U	10.0	υ	10.0
2-Chlorotoluenc		U	10.0	U	5.00	U	5.00	U	5.00
4-Chlorotoluenc		υ	10.0	υ	5.00	υ	5.00	υ	5.00
p-Cymene (p-Isopropyltoluene)		3.98 J	10.0	υ	5.00	4.45 J	5.00	Ŭ	5.00
Dibromochloromethane		υ	10.0	U	5.00	U	5.00	U	5,00
1,2-Dibromo-3-Chloropropane		υ	10.0	U	5,00	U	5.00	U	5.00
I,2-Dibromoethane		υ	10.0	ប	5.00	υ	5.00	υ	5.00
Dibromomethane		υ	10.0	ΰ	5.00	U	5.00	U	5.00
1,2-Dichlorobenzene		U	10.0	υ	5.00	υ	5.00	U	5.00
1,3-Dichlorobenzene		υ	10.0	υ	5.00	υ	5.00	ប	5.00
,4-Dichlorobenzene		U	10.0	U	5.00	U	5.00	υ	5.00
Dichlorodifluoromethane		υ	10.0	U	5.00	V	5.00	U	5.00
,1-Dichloroethane		U	10.0	U	5.00	υ	5.00	υ	5.00
,2-Dichloroethane		U	10.0	υ	5.00	U	5.00	U	5.00
1,1-Dichloroethene		U	10.0	υ	5.00	U	5.00	U	5.00
cis-1,2-Dichloroethene		U	10.0	U	5.00	U	5.00	U	5.00
rans-1,2-dichloroethene		υ	10.0	U	5.00	υ	5.00	υ	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Carlos A. Castro, Ph.D., MBA

Houston - Dalłas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Ca

Managing Director, Texas





#### Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand				Date		ved in Lab:	Jun-12-	08 09:50 am	
Contact: Wendy Pennington					Re	eport Date:	24-JUN	-08	
Project Location: Roxana, Illinois 620	)84			P	rojec	t Manager:	Debbie	Simmons	
	Lab Id:	305672-0	05	305672-00	6	305672-	007	305672-0	008
Analysis Requested	Field Id:	P75-06100	08	P75-061008E	5B	P66-061	800	P54-0610	208
	Depth:								
	Matrix:	WATER	<b>L</b>	WATER		WATE	R	WATE	R
	Sampled:	Jun-10-08 1	0:40	Jun-10-08 11	:25	Jun-10-08	13:40	Jun-10-08	16:12
VOAs by SW-846 8260B	Extracted:	Jun-18-08 J	4:34	Jun-16-08 13	:20	Jun-18-08	11:03	Jun-16-08	12:27
	Analyzed:	Jun-18-08 1	5:08	Jun-16-08 14	:14	Jun-18-08	12:37	Jun-16-08	12:47
	Units/RL:	ug/L	RL	ug/L	RL	ug/L	RL	ug/L	RL.
1,2-Dichloropropane		υ	10.0	U	5.00	υ	5.00	U	5.00
1,3-Dichloropropane		υ	10.0	υ	5.00	U	5,00	U	5.00
2,2-Dichloropropane		U	10.0	υ	5.00	υ	5.00	υ	5,00
1,1-Dichloropropene		U	10.0	υ	5.00	U	5.00	υ	5.00
cis-1,3-Dichloropropene		υ	10.0	U	5.00	U	5.00	υ	5.00
trans-1,3-dichloropropene		υ	10.0	Ŭ	5.00	U	5.00	U	5.00
Ethylbenzene		83.6	10.0	(3.79 J	5.00	288 D	50,0	uD0.0-1-01-je	"4 [#] 5.00
Hexachlorobutadiene		U	10,0	U	5.00	U	5.00	υ	5.00
2-Hexanone		U	100	U	50,0	υ	50.0	υ	50.0
isopropylbenzene		126	10.0	(1.10]	5,00	91.5	5.00	-#	5.00
Methylene Chloride		U	10.0	(1.64 JB)	5.00	υ	5,00	NO:02:07 JB	"U"5.00
4-Mcthyl-2-Pentanone		U	100	<u> </u>	50.0	U	50.0	υ	50.0
Naphthalene		162	20.0	4.821	10.0	75.5	10.0	U	10.0
-Propylbenzene		60.7	10.0	(2.04J)	5,00	114	5.00	U	5.00
утеле		υ	10.0	U	5.00	υ	5.00	Ŭ	5,00
1,1,1,2-Tetrachloroethane		U	10.0	υ	5.00	υ	5.00	υ	5.00
1,1,2,2-Tetrachloroethane		U	10.0	νU	5.00	υ	5.00	υ	5,00
Tetrachloroethylene		υ	10.0	υ	5.00	υ	5.00	υ	5.00
Toluene		46.4	10.0	υ	5.00	1.67 J	5.00	U	5.00
1,2,3-Trichlorobenzene		U	10,0	U	5.00	ប	5.00	υ	5.00
1,2,4-Trichlorobenzene		V	10.0	υ	5,00	U	5.00	υ	5.00
1,1,1-Trichloroethane		υ	10.0	υ	5,00	υ	5.00	υ	5.00
1,1,2-Trichloroethane		ប	10.0	U	5.00	U	5.00	U	5.00
Trichloroethene		U	10.0	υ	5.00	U	5.00	U	5.00
Trichlorofluoromethane		υ	10.0	υ	5.00	υ	5.00	υ	5.00
1,2,3-Trichloropropane		υ	10,0	U	5.00	υ	5.00	U	5.00
1,2,4-Trimethylbenzene		UD 0.0-38-20 'Y			5.00	90.3	5.00	vDO.02.945 "	<b>* '</b> 5.00
1,3,5-Trimethylbenzene		ND 0.0 +0.8 U	10.00		5.00	N& 0 20 - 5.6944	U'S 29	υ	5.00
o-Xylene	٨	0 0.0 <del>6.74 1</del>	0.01 <b>" م</b>	(1.96)	5.00	U	5.00	U	5.00
m,p-Xylenes	~	0 0.0 34-3 ⁹ U	-20.0	WS (10.9)	10.0	100,0-3-87-1 ⁰ 4	<b>U</b> # 10.0	U	10.0
Vinyl Chloride		U	4.00	U	2.00	U	2,00	U	2.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order antess otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi





Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand		2156197	ic. 901			ed in Lab:	Inn-12-	08 09:50 am
Contact: Wendy Penningto		2100171		Dan		port Date:	24-JUN	
Project Location: Roxana, Illinois 6				1	-	Manager:		Simmons
	Lab Id:	305672-00	19	305672-0				1
Analysis Requested	Field Id:	P57-06110		TB06110				
Analysis Requested	Depth:	131 00110	· •	1.500110				
	Matrix:	WATER		WATER				
	Sampled:	Jun-11-08 13	1	Jun-11-08 00	1			
	Extracted:	Jun-18-08 10		Jun-16-08 1				
VOAs by SW-846 8260B	Analyzed:	Jun-18-08 18	1	Jun-16-08 14				
	Units/RL:		RL	ug/L	*:55 RL			
Acetone	Omis/iL.	ug/L U	1000	ະ ບັ	100		··· · · · ·	
Benzene		257000 D	50000	ບ 	5.00		·	
Bromobenzene		U	50.0	ບ 	5.00			
Bromochloromethane		<u>บ</u>	50.0	ບ 	5.00			
Bromodichloromethane		U	50.0	ບ 	5.00			
Bromoform			50.0	ບ 	5.00			
Bromomethane		ບ	50.0	U	5.00	······································		
2-Butanone		U	500	ບ	50,0			
MTBE			50.0	υ	5.00			
n-Butylbenzene		υ	50.0	<u></u> U	5.00			
Scc-Butylbenzene		U	50.0	υ	5.00			1
tert-Butylbenzene			50.0	υ	5.00			
Carbon Disulfide		<u>0</u>	500	ບ	50.0			
Parbon Tetrachloride		ບ	50.0	ບ	5.00		<u></u>	 
alorobenzene		U	50.0	Ŭ	5.00			
Chloroethane			100	U	10.0			
Chloroform		Ŭ	50.0	U	5.00			
Chloromethane	·····	U	100	U	10.0			
2-Chlorotoluene		 ປ	50.0	U	5.00			
4-Chlorotoluene		υ	50.0	U	5.00			
p-Cymene (p-Isopropyltoluene)		υ	50,0	 ບ	5.00			
Dibromochloromethane			50,0	ບ	5.00			
1,2-Dibromo-3-Chloropropane		υ	50.0	υ	5.00			
1,2-Dibromoethane		υ	50.0	υ	5.00			
Dibromomethane		U	50.0	υ	5.00		· · · · · · ·	
1,2-Dichlorobenzene		U	50.0	υ	5.00			
1,3-Dichlorobenzene	}	υ	50.0	U	5.00			
1,4-Dichlorobenzene		U	50.0	U	5.00			······
Dichlorodifluoromethane		127 "3	50.0	υ	5.00			
1,1-Dichloroethane	·····	υ	50.0	υ	5.00			
1,2-Dichloroethane		U	50.0	ប	5.00			
1,1-Dichloroethene		υ	50.0	U	5.00			
cis-1,2-Dichloroethene		υ	50.0	υ	5.00			
trans-1,2-dichloroethene		υ	50.0	U	5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

- Pr Carlos A. Castro, P.D., MBA

Managing Director, Texas





Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand A		2156195				ed in Lab:	Jun-12-	08 09:50 am
Contact: Wendy Pennington					Re	port Date:	24-JUN	-08
Project Location: Roxana, Illinois 620	84			I	Project	Manager:	Debbie	Simmons
	Lab Id:	305672-00	)9	305672-01	0			
Analysis Requested	Field Id:	P57-06110	8	TB061108	:			
· ····································	Depth:							
	Matrix:	WATER	.	WATER				
	Sampled:	Jun-11-08 13	3:10	Jun-11-08 00	00:00			
VOAs by SW-846 8260B	Extracted:	Jun-18-08 16	5:14	Jun-16-08 13	3:22			
VOAS by 511-040 02000	Analyzed:	Jun-18-08 18	8:16	Jun-16-08 14	1:35			
	Units/RL:	ug/L	RL	ug/L	RL			
1,2-Dichloropropane		υ	50.0	U	5.00			
1,3-Dichloropropane		U	50.0	U	5.00			
2,2-Dichloropropane		υ	50.0	U	5.00			
1,1-Dichloropropene		U	50.0	υ	5,00			
cis-1,3-Dichloropropene		U	50.0	U	5,00			
trans-1,3-dichloropropene		U	50,0	U	5.00	,		
Ethylbenzene		624	50.0	υ	5.00			
Hexachlorobutadiene		U	50.0	U	5.00			
2-Hexanone		U	500	U	50.0			
isopropylbenzene		18.3 J	50.0	υ	5.00			
Methylene Chloride		U	50.0	2.39 JB	5.00			
4-Methyl-2-Pentanone		U	500	U	50.0			
Naphthalene		65.0 J	100	U	10.0			
opylbenzene		17.1 3	50.0	U	5.00			
yrene		<u> </u>	50.0	U	5.00			
1,1,1,2-Tetrachloroethane		U	50.0	U	5.00			
1,1,2,2-Tetrachloroethane		U	50.0	υ	5.00			·····
Tetrachioroethylene		U	50.0	U	5.00			
Toluene		133	50.0	U	5.00			
1,2,3-Trichlorobenzene		U	50.0	U	5.00			
1,2,4-Trichlorobenzene		U	50.0	U	5.00			
1,1,1-Trichloroethane		U	50.0	U	5.00			
1,1,2-Trichloroethane		U	50.0	υ	5.00			
Trichloroethene		υ	50,0	υ	5.00			
Trichlorofluoromethane		υ	50.0	U	5.00			
1,2,3-Trichloropropane		U	50.0	U	5.00			
1,2,4-Trimethylbenzene		106	50.0	U	5.00			
1,3,5-Trimethylbenzene		28.5 J	50.0	U	5.00			
o-Xylene		117	50.0	U	5.00			
m,p-Xylenes		760	100	U	10.0			
Vinyl Chloride		U	20.0	U	2.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our Hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

x0X KK P Carlos A. Castro, P.D., MBA

Managing Director, Texas

ace 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- k. The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

95
39
35
33
55
77

LAB (LL .ON) 4143 Greenbriar Dr.; Stafford, TX 77477 XENCO (				Q	Ŋ	Shel	0 1	11 2	-rod	luç	ts (	ha	in (	Of	Cu	sto	dy	Red	or	d						
			se Check			<b>x:</b>			ot Bill 1												RV	ICES)				
TEST AMERICA ()	2 ENV. 5	ERVICES		MOTIVA RE	TAIL [	🗍 SHELL RET	AIL				KEV	IN DY	FR					7 2		1 1				(a) 1		
SPL ()	MOTTV	A SD&CM		CONSULTA	<b>мт</b> [	LUBES					•	O #							SA	F	<u>-</u>	4 0	UATE:		10	,0
	SHELL	PIPELINE		OTHER					í í		1	<del>i i</del>	<u></u>	<u>.</u>		r-i	<u> </u>	<u></u>	<u></u>		<u></u>		PAGE:		_ of _	2
CGHAILTANT COMPANY								SOP	US SITE AD	ORESS	Street C						3	4 0	0	6	1		······			
URS CORPORATION		URS COR	PORATION	- FIELD	OFFICE																					
1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 30	0	170 E. RA	ND AVENU	E				91 CONSI	00 S. CE	NTRA	L AVE	NUE;	ROXA	NA, IL	LINO	S 6208	4		CON	SULTANT P	RO.EC	T NAME / NO .				
ST. LOUIS, MISSOURI 83110		HARTFOR	RO, ILLINOIS	5 62048					ENDY PLEA NAME(S		NGTON	1							L_R	oute 11	<u>11 &amp;</u>	Rand Ave	Vicinity	/ 2155197	'9	
TELEPHONE SAX OFF: 314-743-4166 SAX OELL: 314-452-823 CELL: 314-452- CELL: 314-452-823		E.W.L	wendy p	enningtor	Qurscorp.c	50m			ω.	Pan	nin	ote	341	Ť.	R	().	<u>.</u>	1				30	ŌŚ	67	Z	14
TURNAROUND TIME (CALENDAR DAYS):	s 🗇	2 DAYS	□ z4 H	oues	🔲 RESUL	LTS NEEDED				1		<u> </u>	· / {			REC	1155	TED A	NATY					<u></u>		<u>.</u>
DELIVERABLES: LEVEL 1 TELEVEL 2 LEVEL	3 KOLEVEL				DO	ON WEEKE	NU.		r	- <del></del>	r	<del></del> r						* ****			<u>.</u>					
TEMPERATURE ON RECEIPT C' Cooler#1 Z . S"	Cooler #2			Copier #3		-																				
SPECIAL INSTRUCTIONS OR NOTES :				C00101 #3	· · · · · · · · · · · · · · · · · · ·													1								
Please include "J" values on Level 2 Reports				🖸 Shen	L CONTRACT R	RATE APPLIES																				
																					ļ					
												Í			ľ								ł			
	SAM	PLING	1	T	PRESERVATIV	<u></u>		8260B																		
E Field Sample Identification		T	MATRIX	<u> </u>	-ALSCHVATIV		NO. OF	82																		
( USS ONLY	DATE	TIME					CONT.	X 0 0														PID		ontainer P		
P58-060408	6/ ci/c8	MAR			03 H2504 NO			· · · ·	┝╌╌┥╍╸						—					┝──┼-	_	(ppm)		or Labors	Nory N	otes
2.2.1.1.1.1	1. 1/08		WATER				3_	<u>×</u>			<u>   </u>			_	_							9963	8			
P68-060908D	- <del> </del>	1425	WATER				3	×		_										996	68	-80,0	3 June	, ,		
P56.060908	<u> </u>	1015	WATER	×			3	×													T	80.3				
P73 ·061008	1/10/08	0943	WATER	$\left  \right\rangle$			3	X		1				1	-				-		+	216				
P75-061008	1	1040	WATER	X			3	$\mathbf{x}$		-	+ +	-+		+					-	<u> </u>	+	214				
P75 DUIDOZEB		1125	WATER	X		┉┼┉┈┍╋┉	3	x			+ +	-+		1					+	┢╼╍╉╼	-+-	<u> </u>				
P66-061008		1340	WATER	×			3	×				-	+-				-		+	┝━┿╸		26,1				
P54-061008MS		1340	12 WATER	X			3	X						-			-				-+-	aw, 1				
PSH-OWIDO8MSD		1340	12 WATER	χ			3	×		-									+	┝━╍┝╸	-					
P5H - 061008 Relinquished by (Bignature)	Ţ	1612	WATER	×	-	·	3	×		-					+				-							
	<u>    i                             </u>		Received by: (S	1 1	<u></u>			<u> </u>										D.		i		0,2	lime:			
Windy Pring	t.	:																		1.1	~5					
Relinquistes by (Signature)			Received by (S	Signature)			<u></u>		FED EX							·····			ue/	<u>  n/i</u>	$\underline{v}$	<u>، ا</u>		1800	2	
																			<b>.</b>				87748)			
Relinquished by (Signature	-		Received by. (5	Signalure) -	-7		Ą.			$\rightarrow$				,												
Ratinguished by (Signature) Sin DEC			/	/		K	e se a se a se a se a se a se a se a se			1	L.	-						Dif	; 7	10	T.	T	kme,	nor	$\sim$	
					~	_ ~_	·		$ \rightarrow $	~	/-	$\boldsymbol{\succ}$	-					6	r [	12.1	0	0	$\rho$	195	$\mathcal{O}$	

/

05/2/08 Revision

LAB (L.CON) 4143 Greenbriar Dr.; Stafford, TX 77477 ZENCO (			Ľ.	2	She	II C	)il i	-10	du	cts	Ch	ain	Of	Cu	sto	dy	Re	coi	ď							
		lease Check			the second second second second second second second second second second second second second second second s		Pri	nt Bill	To C	Conta	ct Na	met			80	INC	IDEN	T:#:(	ENV	SER	VICES)	Па	eck if no in	CIDENT	# 40017	50
TEST AMERICA ()	ENV. SERVICE		MOTIVA RE	TAIL	SHELL RE	TAIL				KE		YER						2 1		1 3	4 0	1	TE: LO	1 1 1	0	
□ SPL ()	MOTTVA SD&C		CONSULTAN	σ	🗌 LUBES						PO	_			840			*****	4P#	L	<b></b>	-		1	·	
CTHER ()	SHELL PIPELIN		OTHER					ŤŤ	<u></u>		1	Î Î	<u> </u>		<u></u>				i i i i i i i i i i i i i i i i i i i	<u>,</u>	Extension and	PA	GE:	'	of	2
CONSULTANT CEAPANY.	3						SOP	US SITE	ACORES	j SS (Stree	City an	d State)				3	4 (	0 0	6	1		9				
URS CORPORATION	URS	CORPORATION	- FIELD (	OFFICE																						
1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300	170 E	RAND AVENU	E				CONS	ULTANT P	ROJECT	CONTACT	(Report to	; ROX	ANA, 31	LINO	IS 620	84		c0	HSULTAN	«1 ряол	ECT NAME / H	<b>o</b> .				
ST. LOUIS, MISSOURI 63110	HART	FORD, ILLINOI	S 62048				<u> </u>	VENDY	PENI E(S) (Pres	NINGT	ÓN								Route	<u>.111 (</u>	& Rand A	ve Vic	nity / 2150	1979		
TELEPHONE:         FAX:           OFF: 314-743-4156         FAX:           CELL: 314-452-8929         CELL: 314-452-8	186 829		ennington	@urscorp	<u>com</u>		1	ω.	Per	nni	100	bin	1		R III	110						2 ()	si S6	7-2	ې بې بې	4
TURNAROUND TIME (CALENDAR DAYS):	2 DAYS	🗆 24 н	OURS	🗌 RESU	UTS NEEDED ON WEEK		1								RE		STED	ΔΝΔΙ	YSIS					4		<u></u>
DELIVERABLES: CLEVEL 1 CLEVEL 2 CLEVEL 3	U LEVEL 4	OTHER (SPECE	FY) EC	00		200	+	ТТ	1		- <u></u>	[		· ·	T 1					<del></del>		·····				
TEMPERATURE ON RECEIPT C. Cooler #1	Cooler #2		Cooler #3			· · · · ·	1															4				
SPECIAL INSTRUCTIONS OR NOTES :			·				1												}							
Please include "J" values on Level 2 Reports			SHELL	CONTRACT :	RATE APPLIES	5			ł																	
												Ì														
							0																			
	SAMPLING		,	RESERVATIV	<u>z</u> T		8260B																			
Field Sample Identification	DATE TIN	MATRIX		TT		NO. OF CONT.	80																			
Contra Contra Contra		E	HCL HNO	3 H2504 NO	NE OTHER	CONT,	VOC														PIC		Contair or La		Readi ry Not	
Field Sample Identification Field Sample Identification P57-061108 TB061108	6/11/08 131	O WATER	X			3	×				1			1	++						(ppn 194				-	
TBOGIC8	4	WATER				1	X				-			1		+			-	$\left  - \right $		<u></u>				••••
<u>د</u> ی		WATER			·   ·		Ť.	††						+					+	┢─┤	<u> </u>			····		
		WATER						+	$\dashv$	<del>۱ -</del>	+				┼──┤				+	┝──┥						. <u></u>
		WATER					-	-Al	11	廾	+	┝╼┼		+	$\left  \right $					$\left  - \right $				•••••		·
	1			•		1		14	<u>v</u>  -		+					+										
		WATER			++		$\sim$							$\rightarrow$		-			-	<b></b>						
		WATER			-													-								
	ļ	WATER																		$\vdash$						
		WATER													1	-+			+				····	•		
Reinquisted by: (Signature)		WATER												1										<u> </u>		
		Received by. [S	ignature)									. <u> </u>		- 1	<u></u>	<u> </u>	Di	ite:		<u> </u>	·	Time				
Relinquished by: (Signature)		Received by: (0						FED E	x																	
		mecenved by: [0	igneture)														Ő	£10.				Time:				
Reinquished by: (Signatura)		Received by: (S	ignature)	7		~	<u> </u>		$\sim$	<del></del>							Di	ete:		·		Time		_		
			Â	<i>,</i> ,	(	Ľ		0	L	e	•	$\sum$					(	6/	12	(0	90	(	099	50	>	
		/	/			-												· · · · ·					05/2/08 Ravi	llon	******	*****



2

0

Ð

5672.

Prelogin/Nonconformance Report- Sample Log-In

Client:

Date/ Time:

Lab ID # :

Initials:

### Sample Receipt Checklist

r		-			
#1	Temperature of container/ cooler?	Nos.)	No	N/A	12.5°c
#2	Shipping container in good condition?	Ves	No	None	
#3	Samples received on ice?	Nes	D No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Nes	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	NA	
#6	Chain of Custody present?	(Yes)	No		
#7	Sample instructions complete of Chain of Custody?	(es	No		
#8	Any missing/extra samples?	Yes	(No)		
#9	Chain of Custody signed when relinquished/ received?	Kes	No		
#10	Chain of Custody agrees with sample label(s)?	Yes)	No	······	
#11	Container label(s) legible and intact?	Yes	No		
-	Sample matrix/ properties agree with Chain of Custody?	Yes)	No	•••••	
#13 ⁻	Samples in proper container/ bottle?	Xes	No		
#14	Samples properly preserved?	(Yes)	No	N/A	
#15	Sample container intact?	Yes)	No		
#16	Sufficient sample amount for indicated test(s)?	Nes	No		
	All samples received within sufficient hold time?	Yes	No		
	Subcontract of sample(s)?	Yes	No	N/A	
*********	VOC samples have zero headspace?	Yes)	No	N/A	
				• • • / * • • •	

## Nonconformance Documentation

Contact:		Contacted by:	Date/ <u>Time:</u>
Regarding:			
Corrective Action Take	ר:		
Check all that Apply:		Client understands and would like to proceed with analy Cooling process had begun shortly after sampling even	/sis t



## **Rand Avenue Data Review**

Laboratory SDG: 305871

**Reviewer: Tony Sedlacek** 

Date Reviewed: 7/22/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification #	Sample Identification #
B1-061208	B2-061208
B2-061208D	B3-061208
B4-061208	B5-061308
B6-061308	B6-061308EB
TB061308	

#### **1.0** Data Package Completeness

*Were all items delivered as specified in the QAPP and COC?* 

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

No, although not indicated in the laboratory case narrative, VOCs were detected in the trip blank, equipment blank and method blank. VOC MS/MSD recoveries and MS/MSD RPDs were outside evaluation criteria. Samples were diluted due to high levels of target analytes. In addition, samples were evaluated and qualified using professional judgment. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter	Analyte	Qualification
N/A			

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
511007-1-BLK	VOCs	Methylene chloride	2.92	μg/L
511068-1-BLK	VOCs	Methylene chloride	2.48	μg/L
511068-1-BLK	VOCs	Toluene	1.46	μg/L
B6-061308EB	VOCs	Methylene chloride	1.67	μg/L
TB061308	VOCs	Methylene chloride	5.77	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
B1-061208	VOCs	Methylene chloride	-	U
B4-061208	VOCs	Methylene chloride	-	U
B5-061308	VOCs	Methylene chloride	5.18	U
B6-061308	VOCs	Methylene chloride	-	U

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

LCSID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
N/A					

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

*Were MS/MSD samples reported as part of this SDG?* 

Yes, samples B1-061208 and B3-061208 were spiked and analyzed for VOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
B1-061208	VOCs	Bromomethane	63/46	31	70-130/20
B1-061208	VOCs	2-Butanone	74/6	170	60-140/20
B1-061208	VOCs	Chloroethane	69/53	26	70-130/20
B1-061208	VOCs	Chloromethane	63/58	8	70-130/20
B1-061208	VOCs	Vinyl Chloride	65/57	13	75-125/20
B3-061208	VOCs	Acetone	36/40	11	40-160/21
B3-061208	VOCs	Bromomethane	66/75	13	70-130/20
B3-061208	VOCs	2-Butanone	56/61	9	60-140/20
B3-061208	VOCs	Vinyl Chloride	70/68	3	75-125/20

Analytical data that required qualification based on MS/MSD data are included in the table below. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

#### 9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
B2-061208	B2-061208D

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
N/A					

#### **10.0** Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
B2-061208	VOCs	50
B2-061208D	VOCs	50

#### 11.0 Additional Qualifications

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminant methylene chloride reported at concentrations less than two times (2X) the RL.

Field ID	Analyte	New RL	Qualification	Comments
B2-061208	Methylene chloride	42.2	U	Professional Judgment
B2-061208D	Methylene chloride	47.2	U	Professional Judgment

## Analytical Report 305871

for

## **URS Corporation-St. Louis**

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

26-JUN-08





E84880

4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 37



26-JUN-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 305871 900 S. Central Avenue Project Address: Roxana, Illinois 62084

#### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305871. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305871 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



## Sample Cross Reference 305871



## URS Corporation-St. Louis, St. Louis, MO

900 S. Central Avenue

Sample Id	Matr	ix Date Collected	Sample Depth	Lab Sample Id
B1-061208	W	Jun-12-08 10:45		305871-001
B2-061208	W	Jun-12-08 12:45		305871-002
B2-061208D	W	Jun-12-08 12:45		305871-003
B3-061208	W	Jun-12-08 15:00		305871-004
B4-061208	W	Jun-12-08 16:30		305871-005
B5-061308	W	Jun-13-08 10:05		305871-006
B6-061308	W	Jun-13-08 12:00		305871-007
B6-061308EB	W	Jun-13-08 13:30		305871-008
TB061308	~ W	Jun-13-08 00:00		305871-009





	'n	A			,				
Project Id: Route 111 & R			ie: 900	S. Centra			Jun 14 0	8 09:51 am	
Contact: Wendy Pennin	•	2150197		Dan			26-JUN-(		
Project Location: Roxana, Illinoi	0						Debbie S		
	······································	200001 0							
An atomic Descented	Lab Id:	305871-0		305871-0	)	305871-0		305871-0	
Analysis Requested	Field Id:	B1-06120	8	B2-06120	8	B2-06120	180	B3-0612	38
	Depth:	×4	-	×.			<u> </u>	Ť	
	Matrix:	WAINS	0.40	WATER	-	WATE		WATE	
	Extracted:	Jun-12-08 1 Jun-17-08 1		Jun-12-08 1		Jun-12-08		Jun-12-08	
VOAs by SW-846 8260B	Analyzed:	Jun-17-08 1		Jun-19-08 1		Jun-19-08		Jun-20-08 1	
	Units/RL:			Jun-19-08 1		Jun-19-08		Jun-20-08 1	
Acetone	Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Chi	ug/L U	RL 100	ug/L. U	RL	ug/L	RL	ug/L	RL
Benzene		1.01 J	5.00	1100 D	500 250	U 1120 D	500	U	100
Bromobenzene		U.011	5.00	U 010	25.0		250	1.59 J U	5.00
Bromochloromethane		U	5,00	<u></u>	25.0	U	25.0	ບ ບ	5.00
Bromodichloromethane		υ	5.00		25.0	υ	25.0	U	5.00
Bromoform		υ	5.00	ບ	25.0	ບ ບ	25.0	ບ	5.00
Bromomethane			5.00	υ	25.0	U	25.0	U	5.00
2-Butanone		U	50.0	<u>u</u>	250	Ū	25.0	U	50.0
MTBE		4.38 J	5.00	ບ	25.0	ບ	25.0	υ υ	5.00
n-Butylbenzene	·····	U	5.00	υ	25.0	ບ	25.0	2.69 J	5.00
Sec-Butylbenzene		ບ	5.00	<u>.</u>	25,0	υ	25.0	2.29 J	5,00
teri-Butylbenzene		 ບ	5.00	Ŭ	25.0	U	25.0	2.16 J	5.00
Carbon Disulfide		U	50.0	U	250	Ŭ	250	U	50.0
'arbon Tetrachloride		υ	5.00	υ	25.0	<u>-</u> U	25,0	U	5.00
hlorobenzene		U	5,00	U	25.0	U	25.0	U	5.00
Chloroethane		U	10.0	υ	50.0	υ	50.0	U	10.0
Chloroform		υ	5.00	υ	25.0	U	25.0	U	5.00
Chloromethane		υ	10.0	U	50.0	U	50.0	U.,	
2-Chlorotoluene		υ	5.00	U	25.0	U	25.0	υ	5.00
4-Chlorotoluene		U	5.00	υ	25.0	U	25.0	υ	5.00
p-Cymene (p-Isopropyltoluene)		U	5.00	υ	25.0	U	25.0	U	5.00
Dibromochloromethane		υ	5.00	U	25.0	U	25.0	υ	5.00
1,2-Dibromo-3-Chloropropane		υ	5.00	υ	25.0	U	25.0	U	5.00
1,2-Dibromoethane		υ	5.00	U	25.0	U	25.0	U	5.00
Dibromomethane		U	5.00	υ	25.0	U	25.0	υ	5.00
1,2-Dichlorobenzene		υ	5.00	υ	25.0	U	25.0	υ	5.00
1,3-Dichlorobenzene		υ	5.00	υ	25.0	U	25.0	U	5.00
1,4-Dichlorobenzene		υ	5.00	U	25.0	υ	25.0	U	5.00
Dichlorodifluoromethane		البقمر	<b>\$</b> .00	اببهجلر	<b>L</b> J 25.0	U	25.0	υ	5.00
1,1-Dichloroethane		U	5.00	υ	25.0	υ	25.0	υ	5.00
1,2-Dichloroethane		υ	5.00	U	25.0	U	25.0	υ	5.00
1,1-Dichloroethene		υ	5.00	Ŭ	25.0	υ	25.0	U	5.00
cis-1,2-Dichloroethene		U	5.00	U	25.0	U	25.0	υ	5.00
trans-1,2-dichloroethene		υ	5.00	υ	25.0	υ	25.0	U	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XEINCO Laboratories XEINCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

jalidate.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Carlos A. Castro, Ph.D., MBA Managing Director, Texas





-14-08 09:51 am RUN-08 obie Simmons 305871-004 B3-061208
RJN-08 obie Simmons 305871-004
305871-004
305871-004
53-001208
337.6 2020
WATER
5 Jun-12-08 15:00 8 Jun-20-08 11:30
8 Jun-20-08 11:30 9 Jun-20-08 12:04
25.0 U 5. 25.0 U 5.
25.0 U 5.
25.0 U 5.
25.0 U 5.
250 7.97 5.
25.0 U 5.
250 U 50
25.0 29.5 5.
25 0 U S.
250 Jan 250 50
50.0 U 10
25.0 54.9 5.
25.0 U 5.
25.0 U 5.
25.0 U 5.
25.0 U 5.4
250 50.1 5.0
25.0 U 5.0
25.0 U 5.0
25.0 U 5.0
25.0 U 5,0
25.0 U 5.0
25.0 U 5.0
25.0 U 5.0
250 U 5.(
25.0 U 5.0
250 7.00 5.0
500 89.4 10
10,0 U 2.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi





Project Name: 900 S. Central Avenue

Project Id: R	oute 111 & Rand Ave Vicinity	/ 2156197	10. 90			ed in Lab:	Jun-14-0	8 09:51 am	
Contact: W	endy Pennington				Re	port Date:	26-JUN	08	
Project Location: R	oxana, Illinois 62084				Project	Manager:	Debbie S	Simmons	
	Lab Id:	305871-0	05	305871-0	006	305871-	-007	305871-	-008
Analysis Requ	ested Field Id:	B4-06120	8	B5-0613	08	B6-061	308	B6-0613	08EB
	Depth:								
	Matrix:	WATEF	۲.	WATE	R	WATI	ER	WATI	ER
	Sampled:	Jun-12-08 1	6:30	Jun-13-08	10:05	Jun-13-08	12:00	Jun-13-08	13:30
VOAs by SW-846 8260	B Extracted:	Jun-17-08 1	2:06	Jun-17-08	12:08	Jun-17-08	14:28	Jun-17-08	14:30
VOAS DY 511-040 0200	Analyzed:	Jun-17-08 1	4:20	Jun-17-08	14:42	Jun-17-08	15:03	Jun-17-08	15:25
	Units/RL:	ug/L	RL	ug/L	RL	ug/L	RL	ug/L	RL
Acetone		U	100	U	100	υ	100	υ	100
Benzene		U	5.00	33.8	5,00	U	5.00	U	5.00
Bromobenzene		υ	5.00	U	5.00	U	5.00	U	5.00
Bromochloromethane		U	5.00	U	5.00	U	5.00	U	5.00
Bromodichloromethane		υ	5.00	υ	5.00	U	5.00	υ	5.00
Bromoform		υ	5.00	υ	5.00	U	5.00	υ	5.00
Bromomethane		U	5.00	U	5,00	U	5,00	U	5.00
2-Butanone	~~	υ	50.0	υ	50.0	U	50.0	υ	50.0
мтве		U	5.00	υ	5.00	1.04 J	5.00	U	5.00
n-Butylbenzene		U	5,00	U	5.00	U	5.00	U	5.00
Sec-Butylbenzene	······································	U	5.00	U	5.00	υ	5.00	U	5.00
tert-Butylbenzene		U	5.00	1.72 J	5.00	U	5.00	U	5.00
Carbon Disulfide	s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U	50.0	U	50.0	υ	50,0	U	50.0
on Tetrachloride	·····	U	5.00	U	5.00	U	5.00	υ	5.00
.orobenzene		U	5,00	U	5.00	U	5.00	U	5,00
Chloroethane		U	10.0	<u> </u>	10.0	U	10.0	U	10.0
Chloroform		U	5.00	U	5.00	U	5,00	U	5.00
Chloromethane		U	10.0	<u> </u>	10.0	U	10.0	U	10.0
2-Chlorotoluene		U	5.00	<u>υ</u>	5.00	UU	5.00	U	5.00
4-Chlorotoluene	· · · · · · · · · · · · · · · · · · ·	υ	5,00	υ	5.00	U	5.00	U	5.00
p-Cymene (p-Isopropyltoluene)		U	5.00	U	5.00	U	5.00	υ	5.00
Dibromochloromethane		U	5.00	<u> </u>	5.00	U	5.00	<u> </u>	5.00
1,2-Dibromo-3-Chloropropane		U	5.00	U	5.00	<u> </u>	5.00	U	5.00
1,2-Dibromoethane		U	5,00	U	5,00	U	5.00	U	5.00
Dibromomethane		<u> </u>	5.00	<u> </u>	5.00	<u> </u>	5.00	<u> </u>	5.00
1,2-Dichlorobenzene		U	5.00	U	5.00	U	5.00	<u> </u>	5.00
1,3-Dichlorobenzene		U	5.00	U	5.00	U	5.00	U	5.00
1,4-Dichlorobenzene		U	5.00	<u>ບ</u>	5.00	U	5.00	υ 	5.00
Dichlorodifluoromethane		U	5.00	U	5.00	<u> </u>	5.00	U	5.00
1,1-Dichloroethane		U V	5.00	U	5,00	U 	5.00	U	5.00
1,2-Dichloroethane		U	5.00	U	5.00	<u> </u>	5.00	U	5.00
1,1-Dichloroethene		U U	5.00	U	5.00	U	5.00	<u> </u>	5.00
cis-1,2-Dichloroethene	·····	U	5.00	U	5.00	<u>U</u>	5,00	<u>U</u>	5.00
trans-1,2-dichloroethene		U	5.00	U	5.00	U	5.00	U	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

WARD Carlos A. Castro, Ph.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi ce 1990

Managing Director, Texas





	0.12		<b>^</b>						24	1 10 1 201
Dustant Ide	Route 111 & Rand Ave Vicini		•	ie: 90	0 S. Centra		ue ed in Lab:	hun 14 00	3 09:51 am	
Contact:		uy / 2	130197		Dat		ort Date:	26-JUN-0		
						-		Debbie Si		
Project Location:	Roxana, Illinois 62084						Manager:			
	Lab i	1	305871-00		305871-0		305871-		305871-00	
Analysis Re	quested Field )	ld:	B4-06120	8	B5-06130	8	B6-0613	308	B6-061308E	3B
	Dept	th:								
	Matri	ix:	WATER		WATE	۶	WATE	ER	WATER	
	Sample	ed:	Jun-12-08 1	6:30	Jun-13-08 1	0:05	Jun-13-08	12:00	Jun-13-08 13	8:30
VOAs by SW-846 82	60B Extracte	ed:	Jun-17-08 1	2:06	Jun-17-08 1	2:08	Jun-17-08	14:28	Jun-17-08 14	4:30
,	Analyze	ed:	Jun-17-08 1	4:20	Jun-17-08 1	4:42	Jun-17-08	15:03	Jun-17-08 15	5:25
	Units/R	<i>L</i> :	ug/L	RL	ug/L	RL	ug/L	RL	ug/L	RL
1,2-Dichloropropane			U	5.00	U	5.00	υ	5.00	U	5.00
1,3-Dichloropropane			U	5.00	υ	5.00	υ	5.00	U	5.00
2,2-Dichloropropane			U	5.00	U	5.00	υ	5.00	U	5.00
1,1-Dichloropropene	-		U	5.00	U	5.00	U	5.00	U	5.00
cis-1,3-Dichloropropene			U	5.00	U	5.00	U	5.00	UU	5.00
trans-1,3-dichloropropenc			U	5.00	υ	5.00	U	5.00	U	5,00
Ethylbenzene	y - man ay an an an ay ay ay a a da an an an an an an an an an an an an an		U	5.00	3.00 J	5.00	U	5.00	U	5.00
Hexachlorobutadiene			UU	5,00	U	5.00	υ	5.00	U	5.00
2-Hexanone			U	50.0	U	50.0	U	50,0	U	50.0
isopropylbenzene				5.00	1.93 J	5.00	U	5.00	$\longrightarrow$	5.00
Methylene Chloride		10	0009-82-59	i, <u>*5.00</u>	ND 0.0 (-5.180	1 5.18	VD 0.057	"L1'5.00	(1.67)	5.00
4-Methyl-2-Pentanone			Ú	50.0	U	50.0	บ	50.0	υ	50,0
Naphthalene			U	10.0	υ	10.0	U	10.0	U	10.0
^o ropylbenzene			υ	5.00	2.57 J	5.00	ប	5.00	υ	5.00
.yrene		İ	U	5,00	U	5.00	U	5.00	U	5.00
1,1,1,2-Tetrachloroethane			U	5.00	U	5.00	υ	5.00	υ	5.00
1,1,2,2-Tetrachloroethane			U	5.00	U	5.00	U	5.00	υ	5.00
Tetrachloroethylene			U	5.00	U	5.00	υ	5.00	U	5.00
Toluene			U	5.00	6.17	5.00	υ	5.00	U	5.00
1,2,3-Trichlorobenzene			U	5.00	υ	5.00	υ	5.00	U	5.00
1,2,4-Trichlorobenzene	······		U	5.00	U	5.00	U	5.00	ប	5,00
1,1,1-Trichloroethane			U	5,00	U	5.00	U	5.00	U	5.00
1,1,2-Trichloroethane	· · · · · · · · · · · · · · · · · · ·		U	5.00	U	5.00	υ	5.00	υ	5.00
Trichloroethene			U	5.00	U	5.00	U	5.00	υ	5.00
Trichlorofluoromethane			U	5.00	υ	5.00	υ	5.00	U	5.00
1,2,3-Trichloropropane			U	5.00	υ	5.00	υ	5.00	U	5.00
1,2,4-Trimethylbenzene			U	5,00	U	5.00	υ	5.00	υ	5.00
1,3,5-Trimethylbenzene			U	5.00	υ	5.00	U	5.00	U	5.00
o-Xylene			U	5.00	υ	5.00	Ŭ	5.00	υ	5,00
m,p-Xylenes			υ	10.0	7.99 3	10.0	U	10.0	U	10.0
Vinyl Chloride			U	2.00	υ	2.00	U	2.00	U	2.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi





Project Name: 900 S. Central Avenue

Project Id: Route 111 Contact: Wendy Pe	& Rand Ave Vicinity /	roject Name: 900 3 2156197	Date Received in Lab: Report Date:	Jun-14-08 09:51 am 26-JUN-08
Project Location: Roxana, II			Project Manager:	Debbie Simmons
	Lab Id:	305871-009		[
Analysis Requested	Field Id:	TB061308		
	Depth:			
	Matrix:	WATER		
	Sampled:	Jun-13-08 00:00		
N/C 4 - L. CW 046 0260D	Extracted:	Jun-17-08 12:04		
VOAs by SW-846 8260B	Analyzed:	Jun-17-08 13:59		
	Units/RL:	ug/L RL		
Acetone		U 100		
Benzene		U 5.00		
Bromobenzene		U 5.00		
Bromochloromethane		U 5.00		
Bromodichloromethane		U 5.00		
Bromoform		U 5.00		
Bromomethane		U 5.00		
2-Butanone		U 50.0		
MTBE		U 5.00		
n-Butylbenzene		U 5.00		
Sec-Butylbenzene		U 5.00		
tert-Butylbenzene		U 5.00		
Carbon Disulfide		U 50.0		
on Tetrachloride		U 5.00		
orobenzene		U 5.00		
Chloroethane		U 10.0		
Chloroform		U 5.00		
Chloromethane		U 10.0		
2-Chlorotoluene		U 5.00		
4-Chlorotoluene		Ų 5.00		
p-Cymene (p-lsopropyltoluene)		U 5.00		
Dibromochloromethane		U 5.00		
1,2-Dibromo-3-Chloropropane		U 5.00		
1,2-Dibromoethane		U 5.00		
Dibromomethane		U 5.00		
1,2-Dichlorobenzene		U 5.00		· · · ·
1,3-Dichlorobenzene		U 5.00		
1,4-Dichlorobenzene		U 5.00		
Dichlorodifluoromethane		U 5.00		
1,1-Dichloroethane		U 5.00		
1,2-Dichloroethane		U 5.00		
1,1-Dichloroethene		U 5.00		
cis-1,2-Dichloroethene		U 5.00 ·		
trans-1,2-dichloroethene		U 5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

χP Carlos A. Castro, Ph.D., MBA

Managing Director, Texas





Project Name: 900 S. Central Avenue

Project Id: Route 111 & Rand A		•	Date Received in Lab	: Jun-14-08 09:51 am
Contact: Wendy Pennington	Report Date:	26-JUN-08		
Project Location: Roxana, Illinois 62084			Project Manager:	Debbie Simmons
	Lab Id:	305871-009		
Analysis Requested	Field Id:	TB061308		
	Depth:			
	Matrix:	WATER		
	Sampled:	Jun-13-08 00:00		
VOAs by SW-846 8260B	Extracted:	Jun-17-08 12:04		
10133 by 511 010 0200D	Analyzed:	Jun-17-08 13:59		
	Units/RL:	ug/L RL		
1,2-Dichloropropane		U 5.00		
1,3-Dichloropropane		U 5.00		
2,2-Dichloropropane		U 5.00		
1,1-Dichloropropene		U 5.00		
cis-1,3-Dichloropropene		U 5.00		
trans-1,3-dichloropropene		U 5.00		
Ethylbenzene		U 5.00		
Hexachlorobutadiene		U 5.00		
2-Hexanone		U 50.0		
isopropylbenzene		U 5.00		
Methylene Chloride		5.77 5.00		
4-Methyl-2-Pentanone		U 50.0		
Naphthalene		U 10.0		
opylbenzene		U 5.00		
, .yrene		U 5.00		
1,1,1,2-Tetrachloroethane		U 5.00		
1,1,2,2-Tetrachloroethane		U 5.00		
Tetrachloroethylene		U 5.00		
Toluene		U 5.00		
1,2,3-Trichlorobenzene		U 5.00		
1,2,4-Trichlorobenzene		U 5.00		
1,1,1-Trichloroethane		U 5.00		
1,1,2-Trichloroethane		U 5.00		
Trichloroethene		U 5.00		
Trichlorofluoromethane		U 5.00		
1,2,3-Trichloropropane		U 5.00		
1,2,4-Trimethylbenzene		U 5.00		
1,3,5-Trimethylbenzene		U 5.00		
o-Xytene		U 5.00		
m,p-Xylenes		U 10.0		
Vinyl Chloride		U 2.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

Managing Director, Texas

oce 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L. The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

	LAB (L ; ON) 4145 Greenbriar Dr.; Stafford, TX 77477 XENCO (241-240-4200; FAX: 281-240-4280				2	D	S	hell	Oi	1 7	rod	ucts	s Ch	ain	Of	Cust	tody	y R	ecc	ord							
	CALSCIENCE ()		::::Elea	se:Chack			Box		· F	rint	BillT	o Cont	act N	inie		·····					SER	VICES	·1		INCIDENT		<u> </u>
	TEST AMERICA ()	ENV. S			MOTIVA RE	TAIL	<u> </u>	IELL RETAIL					EVIN E				9	-		1 6			1				
	SPL ()		A SD&CM	[0	CONSULTA	N7	ω	BES					PO						÷	SAP#	لسوجو معصو المراجع	4 0		ATE:	613	100	-
	OTHER ()	SKELL	PIPELINE		OTHER					- Y	<u> </u>	1			<u> </u>		44.		i i i i i i i i i i i i i i i i i i i		<u> : : : :</u>		PA	GE:	1 .	e 1	
CONS	SULTANT COMPANY:												1				3	4	0	0 6	1						-
	CORPORATION		URS COF	PORATION	- FIELD	OFFICE				50703	STE AUG	RESS (Sin	iet, City ar	od State):													٦
1001	HIGHLANDS PLAZA DRIVE WEST - SUITE 30	)		ND AVENU	·			·	-	900 OHSULT	S. CEN	TRAL A	VENUE	E: ROX	ANA, IL	LINOIS 6	2084			CONELL TA	UNT PROJ	ECT NAME / NO		<u> </u>			
ST. 1	LOUIS, MISSOURI 63110		HARTFO	RD, ILLINO	\$ 62048			******		WE	NDY PE	ENNING	TON							Rout	<del>ə 111</del> 7	& Rand A	ve Vic	inity / 2	561979		
	PMONE: FAX: OFF: 314-743-4166 FAX: OFF: 314-743-4 CELL: 314-452-8929 CELL: 314-452-		E-MAIL:		enningtor	Dursco	prp.com		1				How	्रतः	$\mathcal{P}$	Wer.	in in					1.54	BUSEA	ONLY.	71-j	2	
TVF	RNAROUND TIME (CALENDAR DAYS): TANDARD (10 DAY) 5 DAYS 3 DAYS		2 DAYS				ESULTS NE	EDED		_~~		minic	(ior		<u> A</u>	$\frac{\mathcal{D}\mathcal{D}}{\mathcal{D}}$	riig					120	90.	2:0:	$l:l \sim f$		<u> </u>
				24 %			ON	WEEKEND			_,	<del></del>				ł	REQUI	ESTE	D AN/	LYSIS	3						
			4 2	OTHER (SPEC	(FY) <u>E</u>															Τ			1				۳.
	CIAL INSTRUCTIONS OR NOTES :	Cooler #2		·	Cooler#3																						Ι,
	lease include "J" values on Level 2 Reports				E SHEL	L CONTRA	CT RATE A	PPITES																			K
r,	aase moude a values on Level 2 Reports																										V
																											K
Gaine		· · · · · · · · · · · · · · · · · · ·							1	n						] [											
р Д		SAM	PLING			PRESERV	ATIVE		100	10020																	2
	Field Sample Identification	DATE	TIME	MATRIX				NO. C	уг. 7. (	$\tilde{s}$										Į				Cont	alner PID	Readinos	J
က် ကို						3 H2SO4	NONE OT	HER	3	<u>×</u>	_											PID (ppn			aborator		R
о, о,	B1-061208	6/12/08	1045	WATER	X			3	⊳	<										1		0.0					-
ß	B2-061208		12,45	WATER	X			3	1	X						<u> </u>  -		1-	<u> </u>			108				· · · · · · · · · · · · · · · · · · ·	-
	B2-061208D		1245	WATER	X			3		x				┟╌╍┤╸				{						<u></u>			4
	B3-061208	+	1600						ť				_ <u>  </u>			<u> </u>				_		/08					
		+ +		WATER	$ \times $			3	12	<		┢╍┝╸										10.7	z				
Щ	B4-061208	4	1630	WATER	$ \times $	_		3	×													0.0	)				1
	B5-0101308	6/13/08	1005	WATER	$ \boldsymbol{\chi} $			3	X	<			1								++	4,8	2				-{
	36-061308	1	1200	WATER	X			3		<b>c</b>					-						+			*******			-
	99		1330		+							<u>├</u> ─── <u>├</u> ──								_	+	15,4	†		·		_
	B6-061308EB	¥	1320	WATER				3	_>																		
	TBOGIZOS			WATER						6											$\square$			····		·····	1
				- the last	<u> </u>				┢	<u>-</u>	•	<u> </u>							<u> </u>								4
Reinq	uished by: (Signature)			WATER Received by: (5	(Instruct)				<u></u>		_																
		2		Necented by: (a	-gratore)														Date;		<u>نى</u>		Time:		·		1
Relloc	Windy Prings	~								FE	DEX								le.	13	10	8		16	,30		
				Received by: (8	ignature}														Date:	t	<u> </u>		nme:				-
<u> </u>																											
Relinq	vished by: (Signature)			Received by: (9	ignalure)														Date;		<u> </u>		Time:				4
	Fel GA:			-	Cont	1	-												61				9	1.5/			
		······································			-1/		<del>}</del>						<u></u>						61.	410	'X'		11	10			1

.

.

.

05/2/06 Revision



Prelogin/Nonconformance Report- Sample Log-In

Client:	URS corporation
Date/ Time:	6/14/08
Lab ID # :	305871-4
Initials:	Far

## Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes	No	N/A	2.3.0
#2	Shipping container in good condition?	Yes	No	None	
#3	Samples received on ice?	Yes	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Yes	No	N/A	1
#5	Custody Seals intact on sample bottles/ container?	Yes	NO	N/A	
#6	Chain of Custody present?	Yes>	No		
#7	Sample instructions complete of Chain of Custody?	Yes>	No		
#8	Any missing/extra samples?	Yes	No		
#9	Chain of Custody signed when relinquished/ received?	Yes	No		
#10	Chain of Custody agrees with sample label(s)?	Yes	No		
#11	Container label(s) legible and intact?	Yes	No		
	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#13	Samples in proper container/ bottle?	Yas	No		
#14	Samples properly preserved?	Yes	No	N/A	
#15	Sample container intact?	Ýøs	No		
#16	Sufficient sample amount for indicated test(s)?	Yés	No		
#17	All samples received within sufficient hold time?	Yes	No		
#18	Subcontract of sample(s)?	Yes	No	N/A	
#19	VOC samples have zero headspace?	Yes	No	N/A	

## Nonconformance Documentation

Contact:		Contacted by:	Date/ Time:		
Regarding:					
Corrective Action Taker	1:				
			· · · · · · · · · · · · · · · · · · ·		
Check all that Apply:		Client understands and would like to proceed with ana Cooling process had begun shortly after sampling eve			

.



## **Rand Avenue Data Review**

Laboratory SDG: 308728

**Reviewer: Tony Sedlacek** 

Date Reviewed: 8/04/2008

Guidance: National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Route 111/Rand Avenue Vicinity Investigation Work Plan.

Sample Identification # P54072508

#### 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative the MS recovery for acetone and the LCS recovery for chloroethane were outside evaluation criteria. Also, the sample was evaluated and qualified using professional judgment. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

<ul> <li>Respectively, and an expectation management of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s</li></ul>		(1) 2019年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	12/57/25/20/8354/35222-19	なわれ、はいたものに創造的なものとなったなななない。
	Daramatar	Anotu	10	(hughticotion )
	1 al americi	1. S. S. S. S. J. M. 41 Y.		Vuannation
			I	u u
N1/A				9
INVA I				1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			I	1
			· . · · · · · · · · · · · · · · · · · ·	

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

Blank ID	Parameter	Analyte	Concentration	Units
N/A				

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	RPD	LCS Criteria
512967-1-BKS	VOCs	Chloroethane	139	N/A	70-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

Field ID	Parameter	Surrogate	Recovery	Criteria
N/A				

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Anal	yte	Qualification
N/A				

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample P54072508 was spiked and analyzed for VOCs.

*Were MS/MSD recoveries within evaluation criteria?* 

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
P54072508	VOCs	Acetone	<b>39</b> /43	10	40-160/21

Analytical data that required qualification based on MS/MSD data are included in the table below. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

#### 8.0 Laboratory Duplicate Results

*Were laboratory duplicate samples collected as part of this SDG?* 

No

Were laboratory duplicate sample RPDs within criteria?

N/A

ield ID	Parameter	Analyte	RPD	Criteria
N/A				

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter	Analyte	Qualification
N/A			

#### 9.0 **Field Duplicate Results**

Were field duplicate samples collected as part of this SDG?

No

Field ID	Field Duplicate ID
 N/A	

Were field duplicates within evaluation criteria?

N/A

- 11	Field ID	Field Duplicate ID	Parameter	Analyte	Qualification
	N/A				

#### 10.0 **Sample Dilutions**

For samples that were diluted and nondetect, were undiluted results also reported?

The sample did not require a dilution.

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run was not reported:

Field ID	Parameter Dilution Factor
N/A	

#### 11.0 **Additional Qualifications**

Were additional qualifications applied?

Yes

Professional judgment was used to qualify the common laboratory contaminant methylene chloride reported at concentrations less than two times (2X) the RL.

Field ID	Analyte	New RL	Qualification	Comments
P54072508	Methylene chloride	-	U	Professional Judgment

## Analytical Report 308728

for

**URS Corporation-St. Louis** 

**Project Manager: Wendy Pennington** 

900 S. Central Avenue Route 111 & Rand Ave Vicinity / 21561979

30-JUL-08





4143 Greenbriar Dr., Stafford, TX 77477 Ph:(281) 240-4200 Fax:(281) 240-4280

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 16


30-JUL-08



Project Manager: Wendy Pennington URS Corporation-St. Louis 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110

Reference: XENCO Report No: 308728 900 S. Central Avenue Project Address: Roxana, Illinois 62084

### Wendy Pennington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 308728. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 308728 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Carlos Castro Managing Director, Texas

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



# Sample Cross Reference 308728



URS Corporation-St. Louis, St. Louis, MO

900 S. Central Avenue

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
P54072508	W	Jul-25-08 14:30		308728-001



# Certificate of Analysis Summary 308728 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

Project Id: Route 111 & R: Contact: Wendy Penning	and Ave Vicinity / ton	•	900 5.	Date Received in Lab: Report Date:	30-JUL-08
Project Location: Roxana, Illinois	62084			Project Manager:	Debbie Simmons
	Lab Id:	308728-001			
Analysis Requested	Field Id:	P54072508			
	Depth:				
	Matrix:	WATER			
	Sampled:	Jul-25-08 14:	30		
VOAs by SW-846 8260B	Extracted:	Jul-29-08 12:	57		
10/13 by 511 010 02000	Analyzed:	Jul-29-08 12:	57		
	Units/RL:	ug/1.	RL		
Acetone		υ	100		
Benzene		U	5.00		
Bromobenzene		υ	5.00		
Bromochloromethane		υ	5.00		
Bromodichloromethane		U	5.00		
Bromoform		υ	5.00		
Bromomethane		U	5.00		
2-Butanone		U	50.0		
MTBE		U	5.00		
n-Butylbenzene		υ	5.00		
Sec-Butylbenzene		U	5.00		
tert-Butylbenzene		U	5.00		99999999999999999999999999999999999999
Carbon Disulfide		U	50.0		
on Tetrachloride		υ	5.00		
srobenzenc		U	5.00		
Chloroethane		υ	10.0		
Chlorofoлm		υ	5.00		
Chloromethane		U	10.0		
2-Chlorotoluene		υ	5.00		
4-Chlorotoluene		U	5.00		
p-Cymene (p-Isopropyltoluene)		υ	5.00		
Dibromochloromethane		υ	5.00		
1,2-Dibromo-3-Chloropropane		U	5.00		
1,2-Dibromoethane		υ	5.00		
Dibromomethane		U	5.00		er et anserer verer verbelek dele fakte dele af del andra af valande kan mit ada de kan mit anna makan man man
1,2-Dichlorobenzene		υ	5.00		
1,3-Dichlorobenzene		U	5.00		
1,4-Dichlorobenzene		υ	5.00		
Dichlorodifluoromethane		U	5.00		
1,1-Dichloroethane		U	5.00		
1,2-Dichloroethane		U	5.00		
1,1-Dichloroethene		υ	5.00		
cis-1,2-Dichloroethene		υ	5.00		*****
trans-1,2-dichloroethene		U	5.00	· · · · · · · · · · · · · · · · · · ·	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Carlos A. Castro, Ph.D., MBA

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi .e 1990

Managing Director, Texas



# Certificate of Analysis Summary 308728 URS Corporation-St. Louis, St. Louis, MO



Project Name: 900 S. Central Avenue

Project Id: Route	111 & Rand Ave Vicinity /	2156197	900 5. (	Date Receive		Jul-26-0	8 09:00 am
Ū.	y Pennington			Rep	ort Date:	30-JUL-	08
Project Location: Roxan				Project M		Debbie 3	Simmons
~	Lab Id:	308728-001					
Analysis Requeste		P54072508					
marysis nequeste	Depth:						
	Matrix:	WATER					
	Sampled:	Jul-25-08 14:30					
	Extracted:	Jul-29-08 12:57					
VOAs by SW-846 8260B	Analyzed:	Jui-29-08 12:57					
	Units/RL:	ug/L RI					
1,2-Dichloropropane		U 5.	00				
1,3-Dichloropropane		U 5.	00				
2,2-Dichloropropane		U 5.	00				
1,1-Dichloropropene		U 5	00				
cis-1,3-Dichloropropene		U 5.	00				
trans-1,3-dichloropropene		U 5.	00				
Ethylbenzene		υ 5.	00				
Hexachlorobutadiene		U 5.	00				
2-Hexanone		U 50	).0				
isopropylbenzene		U 5.	00				
Methylene Chloride		3.84 J 5.	00				
4-Methyl-2-Pentanone		U 50	),0				
Naphthalene		U 10	0.0				
opylbenzene		U 5.	00				
rene		U 5.	00				
1,1,1,2-Tetrachloroethane		U 5.	00				
1,1,2,2-Tetrachloroethane		U 5.	00		1		
Tetrachloroethylene		U 5.	00				
Toluene		U 5.	00				
1,2,3-Trichlorobenzene		U 5.	00				
1,2,4-Trichlorobenzene		υ 5.	00				······································
1,1,1-Trichloroethane	-	U 5.	00				
1,1,2-Trichloroethane		U 5.	00				
Trichloroethene		U 5.	00				
Trichlorofluoromethane		U 5.	00				
1,2,3-Trichloropropane		U 5.	00				
1,2,4-Trimethylbenzene		U 5.	00				
1,3,5-Trimethylbenzene		U 5.	00				
o-Xylene		U 5.	00				
m,p-Xylenes		U 10					·
Vinyl Chloride		U 2.	00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories, XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Carlos A. Castro, Ph.D., MBA

ice 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Managing Director, Texas



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L. The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

CALSCIENCE ()	Ple	ase Check	Appro	priate E	Box:	ell C	Pri	nt Bill T	o Cont	act Na	me							(EN)	/ CE	RVICE	(2)			*****
TEST AMERICA ()	ENV. SERVICES		MOTEVA	RETAIL	🗋 знец	RETAIL	1	• • • •									1			1		CHECK IF	NO INCIDER	
C SPL ()	MOTTVA SD&CM		CONSULT	TANT		5			<u>к</u>	EVIN D					9	7		<u>1   E</u>		4	0	DATE:	7/2	<u>5/0</u>
OTHER ()	SHELL PIPELINE		CTHER				4			PO	#							SAP #	ŧ.			PAGE:	1	
CONSULTANT COMPANY			OTHER_				_								3	4	0	0 6	1			PAGE:	<u> </u>	1
RS CORPORATION	URS CO	RPORATION	J. EIEL C				SOP	US SITE ADD	RESS (Stre	et, City an	nd Stele}:						<u> </u>		<u></u>	1.250	2016			
1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300		·······		J OFFICE			- 9	00 S. CEI	TRAL A	VENUE	E: ROX	ΔΝΔ Β		15 620	24									
DTY T	170 E. R	AND AVENU	1E				CONS	ULTANT PROJ	ECT CONTAC	T (Report to)	1)			10 020		······		ONBULT	ANT PRO	DJECT NAL	E / NO :			
T. LOUIS, MISSOURI 63110	HARTFO	RD, ILLINOI	S 62048	8 ·				ENDY P	ENNINGT	TON	···							Rout	te 111	& Ran	d Ave V	/Icinity/	2156197	9
TELEPHONE OFF: 314-743-4166 CELL: 314-452-5929 CELL: 314-452-5929						·	4			_											LABUS	EONLY	77	~~~
TURNAROUNO THE COLLENDAD ON CELL: 314-452-89	the second second second second second second second second second second second second second second second s	<u>wendy p</u>	enninoto	on@ursco					W.	Per	۱۸۱۱	10 HE	m	4 :	5.	M	A.A	10			51	ノイ	$+\epsilon$	8-1
STANDARD (10 DAY) S DAYS	2 DAYS	🛄 24 H	OURS	🗌 R8	ESULTS NEED	ED EKENO	1				المرادية ويترك	-9-14	<u> </u>	RE	310	STED	6 NI A	1 1 1 1	c .					
ELIVERABLES I LEVEL 1 ALEVEL 2 I LEVEL 3	CJ LEVEL 4	CTHER (SPECT	IFY) E	DD				1 1	1	· · ·	T+						~~~~~							
EMPERATURE ON RECEIPT C* Cooler #1 2-00	Ccoler #2		Cooler #				-																	
PECIAL INSTRUCTIONS OR NOTES :	<u> </u>		Cuoler #				-																	
			🖸 SHE	ELL CONTRAC	T RATE APPL	LJES																		
																						1		
													1											
	SAMPLING						g																	
Field Sample Identification	SAMPLING	-	ļ	PRESERVA	TIVE		8260B																	
nasii hara garribia Maurringariou	DATE TIME	MATRIX				NO. OF CONT	1															1 00	ntainer P	
	# ~~ /			VO3 H2SO4	NONE OTHE		N N N														PID ppm)		r Laborat	tory Note
P54072508	125/08 1430	WATER	X			3	X						1				1	+-		+	<u> (1949)</u>	+		
		WATER				1			┝╌╴┼╍╸		$\vdash$		+	+										
			<u>†</u>				+		┝		┝─┝									<u> </u>	····			
		WATER	┼╌╌┼╌╸						<u> </u>															
		WATER	ļ											IT						1		1		
		WATER	†			. 15	[]	$\Sigma$					+	┼┈┼						┥		•		
		WATER			17	1116						-+		┼╌┤						<u> </u>				
		1	<del>  -</del> -			<u> V V </u>	<del>    </del>			+				↓↓										
+		WATER	<u>↓                                      </u>			- <u> </u>					$\vdash$													
	1	1	1	1 1	1								1			_	1		+	1	···	+		
		WATER		1	1	f								· · ·	1					1		1		
							$\vdash$							<del>  T</del>	-	$\leq -$								
		WATER WATER											+			+				1		+	······	
																$\neq$	$\leq$	$\downarrow$				-		
inquished by (Signeture)		WATER	ignature)																/					
intrusted by (Signeture) When the P		WATER WATER	ignature)													0.				1 - 6	×			
incurred by (Signature)	the second	WATER WATER																-/2	5/	108	× ×	. /	60	0
inquisted by (Signature)	the	WATER WATER Received by (St														0.		/2	5	108	ζ Tim		60	0
inquisted by (Signature)	- La	WATER WATER Received by (S) Received by (S)	rgnaturaj													D.		/2	5	108	λ Tim		60	0
insuites by (Signature)	the second	WATER WATER Received by (St	rgnaturaj		2-											Da	7	12	,			•	60	0

L



Prelogin/Nonconformance Report- Sample Log-In

Client:	UNS
Date/ Time:	7/26/8
Lab ID # :	308728-61
Initials:	

# Sample Receipt Checklist

#1	Temperature of container/ cooler?	T res	No	N/A	7-0°C
#2	Shipping container in good condition?	Tes	No	None	<u>  C-0°C</u>
#3	Samples received on ice?	Yes	No	N/A	DIMANT
#4	Custody Seals intact on shipping container/ cooler?	Nes	No	N/A N/A	Blue/Water
#5	Custody Seals intact on sample bottles/ container?	Yes	NO	N/A	
#6	Chain of Custody present?	Yes	No		
#7	Sample instructions complete of Chain of Custody?	The search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a search is a se	No		
#8	Any missing/extra samples?	Yes	NO		
#9	Chain of Custody signed when relinquished/ received?	Yes	No		
#10		Yes	No		
11-4-4	Container label(s) legible and intact?	Yes	No		
	Sample matrix/ properties agree with Chain of Custody?	Xes	No		
#13	Samples in proper container/ bottle?	Aes)	No		
	Samples properly preserved?	Yes	No		
	Sample container intact?	Yes	No	N/A	
	Sufficient sample amount for indicated test(s)?	Yes			
	All samples received within sufficient hold time?	Yes	No		
	Subcontract of sample(s)?		No		
	VOC samples have zero headspace?	Yes	No	N/A	
		(Yes)	No	N/A	

# **Nonconformance Documentation**

Contact:		Contacted by:	Date/ Time:
Regarding:	······································		
	·····		
Corrective Action Take	า:		
Check all that Apply:		Client understands and would like to proceed with a Cooling process had begun shortly after sampling e	analysis event

**REFERENCE**: ATC Associates Inc., 2007; *Subsurface Investigation Report on #1 and #4 Dock Lines Report*; Prepared for ConocoPhillips – Wood River Refinery; dated April 24, 2007.





ConocoPhillips – Wood River Refinery Subsurface Investigation Report On #1 and #4 Dock Lines Illinois Route 111 and Rand Avenue Roxana, Illinois ATC Project Number 30.75233.0710 T-1

# Prepared for:

Mr. Eric Petersen ConocoPhillips Company P.O. Box 76 Roxana, Illinois 62084

April 24, 2007

### TABLE 1

#### SOIL ANALYTICAL RESULTS (ug/Kg) CONOCOPHILLIPS WOOD RIVER REFINERY ILLINOIS ROUTE 111 AND RAND AVENUE ROXANA, ILLINOIS

				EPA	Method 82601	3 (ug/Kg)	· · · · · · · · · · · · · · · · · · ·							EF	A Method 8	270 (ug/Kg)	)						
Sample Name	Date Sampled	Depth Interval (ft)	Benzene	Ethylbenzene	MTBE	Toluene	Total Xylene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorenc	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
B-1	03/07/07	12'-14'	1.7	<6.3	<2.5	<6.3	<6.3	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	05/07/07	22'-24'	<1.1	<5.4	<2.1	<5.4	<5.4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
		14'-16'	287	548	<56.4	<141	<141	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	9	<4	<4
B-3	03/01/07		#21,900	8,220	<389	<972	7,890	87	19	21	<4	<4	<4	<4	<4	<4	<4	4	74	<4	173	166	12
			3.710.22	<138	<55.2	<138	420	7	<3	7	8	<3	4	<3	<3	11	<3	13	11	<3	28	40	19
B-5	02/28/07	14'-16'	1.0	<5.0	<2.0	<5.0	<5.0	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	0,0,07		2165,000*	1,500	<64.7	1,260	4,170	735	10	44	31	13	20	4	8	27	<4	202	317	5	11,000	400	122
B-6	03/01/07	12'-14'	16.8	<4.9	<2.0	<4.9	<4.9	<4	<4	<4	· <4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
L		34'-36'	1,220	<138	<55.2	<138	154	17	4	17	28	27	32	19	17	31	11	54	26	16	49	71	56
<u>B-6 (D)</u>	03/01/07	34'-36'	1,400	821	<51.0	481	4,370	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	NA

Industrial/ Commercial	as Julhalation a SciulPAKe)	121.000	1.2.1000007-4	2018-3010 A	630000	20000	10.55 A			NS					NS.		NS.	NS.		7/0000		
	Ingestion (ug/Kg)	100,000	2.0 x 10 ⁸	2.0 x 10 ⁷	4.1 x 10 ⁸	1.0 x 10 ⁹	1.2 x 10 ⁸	6.1 x 10 ⁷	6.1 x 10 ⁸	8,000	800	8,000	6.1 x 10 ⁷	78,000	780,000	800.	8.2 x 10 ⁷	8.2 x 10 ⁷	8,000	4.1 x 10 ⁷	6.1 x 10 ⁷	6.1 x 10 ⁷
Construction Worker	Inhalation (ug/Kg)	2,200	5.8 x 10 ⁴	1.4 x 10 ⁵	4.2 x 10 ⁴	3.2 x 10 ⁵	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.8 x 10 ³	NS	NS
	Ingestion (ug/Kg)	2.3 x 10 ⁶	2.0 x 10 ⁷	2.0 x 10 ⁶	4.1 x 10 ⁸	4.1 x 10 ⁸	1.2 x 10 ⁸	6.1 x 10 ⁷	6.1 x 10 ⁸	1.7 x 10 ⁵	1.7 x 10 ⁴	1.7 x 10 ⁵	6.1 x 10 ⁷	1.7 x 10 ⁶	1.7 x 10 ⁷	1.7 x 10 ⁴	$8.2 \times 10^{7}$	8.2 x 10 ⁷	1.7 x 10 ⁵	4.1 x 10 ⁶	6.1 x 10 ⁷	6.1 x 10 ⁷
Soil component of the Groundwater Ingestion	Class I (ug/Kg)	30	13,000	320	12,000	150,000	570,000	24,000	1.2 x 10 ⁷	2,000	8,000	5,000	$3.2 \times 10^7$	49,000	160,000	2,000	4.3 x 10 ⁶	560,000	14,000	12,000	220,000	$4.2 \times 10^{6}$
Exposure Route	Class II (ug/Kg)	170	19,000	320	29,000	150,000	2.9 x 10 ⁶	120,000	5.9 x 10 ⁷	8,000	82,000	25,000	1.6 x 10 ⁸	250,000	800,000	7,600	$2.1 \times 10^{7}$	2.8 x 10 ⁶	69,000	18,000	1.1 x 10 ⁶	$2.1 \times 10^{7}$

Notes:

Results reported in ug/Kg

<: Analyte was not detected at or above the reporting limit, as shown.

NS: No standard; soil remediation objective not defined for listed compound.

NA: Not analyzed for this parameter; insufficient volume of sample recovered to collect moisture or PNA jar of duplicate sample.

Shaded values indicate exceedance of TACO Tier 1 soil remediation objective (SRO) for the inhalation pathway for the industrial/commercial worker on industrial/commercial property.

,

## TABLE 2

## GROUNDWATER ANALYTICAL RESULTS CONOCOPHILLIPS (ug/L) WOOD RIVER REFINERY ILLINOIS ROUTE 111 AND RAND AVENUE ROXANA, ILLINOIS

		v	OLATI	LES -826	50B (ug/l	L)							]	PNAs - 8	270 (ug/)	L)			<u></u>			-
Well ID:	Collection Date:	Benzene	Ethylbenzene	Methyl t-butyl ether (MTBE)	Toluene	Xylenes, Total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
B-1	03/07/07	<b>%1:040</b>	<250	<100	<250	<250	0.29	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	< 0.26	<0.26	0.34	<0.26	<0.26
B-3	03/02/07	65,300	<5,000	<2,000	<5,000	8,100	1.76	0.32	0.17	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	1.59	<0.10	\$402 k	0.92	<0.10
B-3 (D) ¹	03/02/07	NA	NA	NA	NA	NA	2.15	0.44	0.23	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.78	<0.10	475	1.33	<0.10
B-5	03/01/07	27,300	<1,000	<400	<1,000	<1,000	26.8	0.6	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	3.12	<0.10	41910ž	0.2	<0.10
$B-5(D)^{1}$	03/01/07	23,200	<1,000	<400	<1,000	<1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TACO Tier 1	Class I	5	700	70	1,000	10,000	420	210	2,100	0.13	0.2	0.18	210	0.17	1.5	0.3	280	280	0.43	140	210	210
GROs	Class II	25	1,000	70	2,500	10,000	2,100	1,050	10,500	0.65	2	0.9	1,050	0.85	7.5	1.5	1,400	1,400	2.15	220	1,050	1,050

Notes:

Results reported in ug/L.

<: Analyte was not detected at or above the reporting limit, as shown.

NA: Not analyzed for this parameter.

Shaded values indicate exceedance of TACO Tier 1 groundwater remediation objective (GRO) for Class I.

¹ B-5 duplicate PNA bottle broke in transit to laboratory. Therefore, Volatiles (8260B) duplicate was collected from B-5, while PNA (8270) duplicate was collected from B-3.

.



#### APPENDIX H-1 SUMMARY OF 2006 GROUNDWATER ANALYTICAL DETECTIONS AND SCREENING

EXCEEDANC	CES HIGHLIGHTED IN	YELLOW									
An	alyte (Results in	mg/L)	Benzene	Ethylbenzene	Toluene	Xylenes (total)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	Bromomethane	Carbon disulfide
Ingesti	on Screening Val	ues (mg/L)	0.005	0.7	1.0	10	0.35*	0.35*	0.7	130**	0.7
Location	Sample ID	Date									
COP WEL	LS										
P-57	P5703030601	3/3/2006	177	1.12	<1.0	<3.0	<1.0	<1.0	<50.0	<1.0	<1.0
P-58	P5803020601	3/2/2006	409 RL5	<5.0	<5.0	<15.0	<5.0	<5.0	<250	<5.0	<5.0
1-50	P5803020602	3/2/2006	464 RL5	<5.0	<5.0	<15.0	<5.0	<5.0	<250	<5.0	<5.0
P-66	P6603020601	3/2/2006	<u>0.0116 U</u>	<0.001	0.00199	<0.003	0.00125	<0.001	<0.050	<0.001	<0.001
P-73	P7303020601	3/2/2006	22.4	1.74	8.5	4.53	0.928	0.155	<0.050	<0.001	<0.001
P-75	P7503030601	3/3/2006	2.78	0.0296	0.0169	0.0393	0.0664	0.0146	<0.050	<0.001	<0.001
P-93A	P93A03030601	3/3/2006	506	<5.0	<5.0	<15.0	<5.0	<5.0	<250	<5.0	<5.0
P-93B	P93B03030601	3/3/2006	370	<5.0	<5.0	<15.0	<5.0	<5.0	<250	<5.0	<5.0
GROUND	NATER PROFILE	SAMPLING									
P-93-02	P9302GWP43	4/5/2006	1,310 RL1	6.2 RL1,J	29.5 RL1	26.4 RL1,J	9.8 RL1,J	<10.0	<500	<10.0	<10.0
1-33-02	P9302GWP59	4/5/2006	264 RL1	10.9 RL1	56.5 RL1	48.9 RL1	16.6 RL1	4.6 RL1,J	<500	<10.0	<10.0
P-93-03	P9303GWP40	4/6/2006	348	0.534	0.123 J	1.61	0.129 <u>J</u>	<0.001	<0.050	<0.001	<0.001
1-33-03	P9303GWP59	4/7/2006	3.65	0.153	0.00463	0.262	0.167	0.0482	<0.050	<0.001	0.00108
P-93-05	P9305GWP45	4/7/2006	1,460	0.0058 <u>J</u>	0.0147 J	0.0147 <u>J</u>	0.00537 <u>J</u>	0.00352 <u>J</u>	<0.050	<0.001	<0.001
1-33-03	P9305GWP58	4/7/2006	52.2	0.203	0.233	0.488 <u>J</u>	0.103 <u>J</u>	0.0408 <u>J</u>	<0.050	<0.001	<0.001
P-93-06	P9306GWP50	4/7/2006	1,310	<1.0	<1.0	<3.0	0.00431 <u>J</u>	0.00305 <u>J</u>	<0.050	<0.001	<0.001
1-33-00	P9306GWP62.5	4/10/2006	827	0.401 E <u>J</u>	491 E	0.791 E <u>J</u>	0.164 <u>J</u>	0.0563 <u>J</u>	0.325 <u>J</u>	0.00432 <u>J</u>	<0.001
	P9309GWP52	4/11/2006	250	1.26	0.0685	2.34	1.77	0.485	<0.50	<0.010	<0.010
P-93-09	P9309GWP66	4/11/2006	629 E1	0.74	0.156 J	0.502 <u>J</u>	0.137 <u>J</u>	0.035 <u>J</u>	<0.050	<0.001	<0.001
	P9309GWP66D	4/11/2006	569	0.698	0.13	0.548	0.131	0.0342	<0.50	<0.010	<0.010
	P9311GWP41	4/5/2006	1,060 RL1	<10.0	17.5 RL1	16.5 RL1,J	6.4 RL1,J	<10.0	<500	<10.0	<10.0
P-93-11	P9311GWP59	4/6/2006	11.8	0.0926	0.182	0.295	0.0526	0.0172	<0.050	<0.001	<0.001
	P9311GWP59D	4/6/2006	13.1	0.0876	0.183	0.278	0.0507	0.0169	< 0.050	< 0.001	< 0.001

Analyte (Results in mg/L)			Dibromomethane	Isopropyl benzene	Methyl tert-Butyl Ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	tert-Butylbenzene
Ingestion Screening Values (mg/L)			0.07*	5,200**	0.07	0.14	0.24***	0.24***		0.24***	0.24***
Location	Sample ID	Date									
COP WELL	_S										
P-57	P5703030601	3/3/2006	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0
P-58	P5803020601	3/2/2006	<5.0	<5.0	<5.0	<25.0	<5.0	<5.0	<5.0	<5.0	<5.0
	P5803020602	3/2/2006	<5.0	<5.0	<5.0	<25.0	<5.0	<5.0	<5.0	<5.0	<5.0
P-66	P6603020601	3/2/2006	<0.001	0.125	0.107	<0.005	0.0131	0.142	<0.001	0.0181	<0.001
P-73	P7303020601	3/2/2006	<0.001	0.088	0.04	0.25	<0.001	0.149	0.0131	0.0237	0.056
P-75	P7503030601	3/3/2006	<0.001	0.103	0.191	0.0286	0.03	0.156	<0.001	<0.020	<0.020
P-93A	P93A03030601	3/3/2006	<5.0	<5.0	<5.0	<25.0	<5.0	<5.0	<5.0	<5.0	<5.0
P-93B	P93B03030601	3/3/2006	<5.0	<5.0	<5.0	<25.0	<5.0	<5.0	<5.0	<5.0	<5.0
GROUNDV	VATER PROFILE S	SAMPLING									
P-93-02	P9302GWP43	4/5/2006	<10.0	<10.0	<10.0	<50.0	<10.0	<10.0	<10.0	<10.0	<10.0
	P9302GWP59	4/5/2006	<10.0	<10.0	<10.0	<50.0	<10.0	<10.0	<10.0	<10.0	<10.0
P-93-03	P9303GWP40	4/6/2006	<0.001	0.0154 <u>J</u>	0.036 J	0.0702 <u>J</u>	<0.001	0.0261 J	<0.001	<0.001	<0.001
	P9303GWP59	4/7/2006	<0.001	0.016	<0.001	0.0214	<0.001	0.0406	<0.001	<0.001	0.00621
P-93-05	P9305GWP45	4/7/2006	<0.001	0.00376 <u>J</u>	R	0.00489 J	<0.001	0.00271 J	<0.001	<0.001	<0.001
	P9305GWP58	4/7/2006	<0.001	0.026 <u>J</u>	<0.001	0.0242 <u>J</u>	<0.001	0.0596 J	<0.001	0.00587 <u>J</u>	0.00632 <u>J</u>
P-93-06	P9306GWP50	4/7/2006	0.00143 <u>J</u>	<0.001	R	0.00343 J	<0.001	<0.001	<0.001	<0.001	<0.001
	P9306GWP62.5	4/10/2006	<0.001	0.0454 <u>J</u>	18.6	0.104 <u>J</u>	0.00405 <u>J</u>	0.118 J	<0.001	<0.001	<0.001
P-93-09	P9309GWP52	4/11/2006	<0.010	0.123	10.1	0.215	<0.010	0.31	0.0696	0.117	0.0328
	P9309GWP66	4/11/2006	<0.001	0.0154 <u>J</u>	8.57	0.0531 <u>J</u>	<0.001	0.0262 J	0.00439 J	0.00454 <u>J</u>	0.00059 <u>J</u>
	P9309GWP66D	4/11/2006	<0.010	<0.010	8.73	0.0362	<0.010	0.0213	<0.010	0.0052	<0.010
P-93-11	P9311GWP41	4/5/2006	<10.0	<10.0	<10.0	<50.0	<10.0	<10.0	<10.0	<10.0	<10.0
	P9311GWP59	4/6/2006	<0.001	0.00618	0.00449	0.0208	<0.001	0.0116	<0.001	<0.001	0.00418
	P9311GWP59D	4/6/2006	<0.001	0.00608	0.00464	0.0214	<0.001	0.0112	<0.001	<0.001	0.0042

#### NOTES:

1) Screening values shown above are the Tier 1 Groundwater Remediation Objectives for the Groundwater Component of the Ingestion Route. 2) <### Denotes the result was not detected below the indicated reporting limit.

3) BOLD indicates the analytical detection of the analyte.

FEDANCES HIGHLIGHTED IN VELLOW

Well sample ID explanation --> PXXDDDDDD --> PXX is the well location at which the sample was collected; DDDDDD is the sample date.
Profile sample ID explanation --> P93XXGWPZZZ --> P93XX is the profile location at which the sample was collected; GWP stands for groundwater profiling; ZZZ is the depth at which the sample was collected.

#### REFERENCES

- Illinois Environmental Protection Agency (IEPA); Tiered Approach to Corrective Action Objectives (TACO); Title 35 of the Illinois Administrative Code, Part 742, Appendix B, Table E.
- * IEPA; Tiered Approach to Corrective Action Objectives (TACO); Groundwater Remediation Objectives for Chemicals not listed in TACO; May 1, 2007.

** U.S. Environmental Protection Agency (USEPA); Region 6 Human Health Medium-Specific Screening Levels; December 2007.

*** U.S. Environmental Protection Agency (USEPA), Region 9; Preliminary Remediation Goals (PRGs) Table; October 2004.

#### LAB QUALIFIERS

B = A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.

D = The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.

E = Concentration exceeds the calibration range and therefore result is semi-quantitative.

E1 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.

- J = The target analyte was positively identified below the RL and above the MDL.
- RL1 = Reporting limit raised due to sample matrix effects.

RL5 = Reporting limit raised due to high single peak analyte.

#### URS QUALIFIERS

- <u>J</u> = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R = Data rejected during validation efforts.