Mr. James K. Moore, P.E.
Manager, Corrective Action Unit
Illinois Environmental Protection Agency
Bureau of Land
1021 North Grand Avenue East
Springfield, Illinois 62794

Subject: Village of Roxana Benzene Assessment - 2012 Roxana, Illinois 119115002 - Madison County
 Equilon Enterprises LLC d/b/a Shell Oil Products US

Dear Mr. Moore:
On behalf of Shell Oil Products US (SOPUS), URS Corporation is submitting the enclosed report for your review. Based on discussion with the Illinois Attorney General's Office, Illinois Environmental Protection Agency, and Phillips 66 (P66), SOPUS agreed to conduct simultaneous vapor monitor port sampling at specific locations within the residential area of the Village of Roxana, Roxana Public Works Yard, and the adjoining portions of the Wood River Refinery. Vapor monitoring port sampling was conducted in conjunction with ambient air sampling by P66.
If you have any questions during your review, please contact Kevin Dyer, SOPUS Principal Program Manager, at kevin.dyer@shell.com (618/288-7237), or me at bob.billman@urs.com (314/743-4108).

Sincerely,
URS Corporation, on behalf of Shell Oil Products US

Kelly Hurst
Senior Environmental Scientist

Robert Billman, P.G.
Senior Project Manager

Enclosures: Report
Cc: Kevin Dyer, SOPUS

VILLAGE OF ROXANA BENZENE ASSESSMENT 2012

Roxana, Illinois

Prepared for:
Shell Oil Products US
17 Junction Drive
PMB\#399
Glen Carbon, Illinois 62034

October 2012
URS
URS Corporation
1001 Highlands Plaza Drive West, Suite 300
St. Louis, MO 63110
(314) 429-0100

Project 21562735.10100

TABLE OF CONTENTS

SECTION 1 INTRODUCTION 1-1
SECTION 2 SOIL VAPOR SAMPLING AND ANALYTICAL PROCEDURES 2-1
2.1 Vapor Monitoring Port Sampling 2-1
2.2 Health \& Safety, Decontamination and Investigation Derived Waste 2-5
2.3 Sample Handling and Laboratory Testing 2-6
2.4 Data Quality Review and Data Management 2-7
SECTION 3 SOIL VAPOR SAMPLING RESULTS 3-1
3.1 Data Quality Review Results 3-1
3.2 Soil Vapor Analytical Results 3-1
SECTION 4 SUMMARY 4-1

List of Tables

Table 1
Table 2

Table 4
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4

Table 3 Week 1-8 Cumulative Summary of Tentatively Identified Compounds
Week 1-8 Cumulative Summary of Soil Vapor Analytical Results - VOCS Week 1-8 Cumulative Summary of Soil Vapor Analytical Results - Natural Gases Soil Vapor Sampling - Tedlar Sampling Data

Sampling Area Location Map
Vapor Monitoring Point Sampling Locations
Soil Vapor Sampling Configuration
Summary of Benzene Soil Vapor Analytical Results

List of Appendices
Appendix A Data Review and Laboratory Analytical Reports

Based on the May 23, 2012 meeting held between Illinois Environmental Protection Agency (IEPA), the Illinois Attorney General's (IAG) Office and Phillips 66 (P66) ${ }^{1}$, P66 implemented a monitoring program ${ }^{2}$ to determine whether there were ambient air benzene levels above background levels at or near the west fence line of the WRB Refining, LP (WRB) ${ }^{3}$ Wood River Refinery (WRR), and if so, to try to determine the source. The WRR established an air monitoring program to be conducted over a three-month period. Multiple fixed sampling location stations were established within and outside the refinery. P66 retained Center for Toxicology and Environmental Health, LLC (CTEH) to implement this program.

Based on discussion with the IAG, IEPA, and P66, Shell Oil Products US (SOPUS) agreed to conduct simultaneous vapor monitor port (VMP) sampling at specific locations within the residential area of the Village of Roxana (Village), Roxana Public Works Yard, and the adjoining portions of the WRR (Figure 1).

[^0]From August 8, 2012 through September 28, 2012 soil vapor sampling was performed concurrently with ambient air sampling conducted by CTEH.

2.1 VAPOR MONITORING PORT SAMPLING

Seven VMP locations were included in the SOPUS program, listed below and shown on Figure 2. The following VMPs were sampled at the first interval vapor port, which is color coded yellow.

VMP Location	VMP Depth
Village of Roxana	
VMP-4	5-foot depth
VMP-21	5-foot depth
VMP-42	10-foot depth
Roxana Public Works Yard	
VMP-10	5-foot depth
VMP-11	5-foot depth
VMP-13	5-foot depth
WRR - Main Property	
VMP-16	5-foot depth

VMP Sampling

The sampling was performed in accordance with SOP No. 44R2 - Soil Vapor Purging and Sampling and ASTM D-7663-12. These procedures are summarized below.

Prior to VMP sampling, an initial stainless-steel canister vacuum check was performed. A designated pressure gauge provided by the laboratory was attached to the stainless-steel canister inlet, and the stainless-steel canister valve was opened completely. The pressure gauge reading was recorded as "Initial Vacuum Reading" on the stainless-steel canister tag and the field form. This demonstrated that the canister showed a vacuum of 26 to 30 inches of mercury (Hg). If the canister displayed an initial vacuum of less than 26 inches of Hg , the canister was set aside and returned to the laboratory.

In addition, each flow controller was subjected to an isolated vacuum check to ensure that connectors did not leak. This was conducted by attaching a plug to one end of the flow controller and a barbed connector to the other. A 15 mL hand pump with a vacuum gauge was then attached to the barb. The hand pump evacuated the air inside the flow controller until a vacuum of at least 10 inches Hg was achieved. If the vacuum change over five minutes was less than or equal to 0.5 inches of Hg , the controller was considered acceptable for sampling use.

The following steps were used to collect each VMP sample:

- Upon arrival at a sampling location, the sampling crew opened the vapor port vault and checked the integrity of each individual VMP. This included checking that each VMP was closed with either a Swagelok ${ }^{\circledR}$ stainless-steel reducer and plug or a 4-way stopcock, and each VMP was properly labeled to identify the proper depth. The shallowest VMP (labeled yellow) was used during this sampling event.
- The sample train was set up as shown in Figure 3. A hose barb connector was connected directly to the VMP using compression ferrule connections. The sample train was then attached using Tygoprene ${ }^{\circledR}$ tubing. A flow controller, provided by the laboratory, was then connected to the stainless-steel canister inlet. Flow controllers were not reused during the sampling event. Each flow controller is pre-set by the laboratory to collect the sample over a half-hour period. For a 1-Liter stainless-steel canister, one half-hour is a standard collection time ($\sim 28 \mathrm{ml} / \mathrm{min}$). Once the sample train was assembled, a vacuum leak check was performed. The stainless-steel canister and Valve \#1 were kept in the "off" or "closed" position. Valve \#2 was then turned to the "open" position. A 15 mL hand pump was attached to sample train at Valve \#2. Air was withdrawn from the sampling apparatus until a vacuum between 15 and 20 inches Hg was achieved. The vacuum was observed for at least five minutes, and if the change in vacuum over five minutes was less than or equal to 0.5 inch Hg , the sample train was acceptable. If the change in vacuum over five minutes was greater than 0.5 inch Hg the fittings and connections were checked, tightened or replaced and leak check was repeated.
- An enclosure was then placed over the VMP and assembled sample train as shown in the photo below. The enclosure has openings for:
- The introduction of tracer gas (i.e., helium);
- Pressure relief to the atmosphere and access for a tracer gas monitoring device;
- Tygoprene ${ }^{\circledR}$ tubing to connect to the peristaltic pump for Valve \#1 (out) and Valve \#2 (out and in).

- The enclosure has sufficient glove access to open or close all valves within. The enclosure was sealed to the ground at each location with a hydrated bentonite seal.
- Helium gas was introduced into the enclosure by manually controlling the regulator on the helium tank until the atmosphere reached a concentration of approximately 50\% helium.
- Three well volumes were purged from each VMP prior to sampling using a 15 mL hand pump ${ }^{4}$. After purging was completed, a Tedlar bag sample was collected using a peristaltic pump. A Dielectric Technologies MGD-2002 field analyzer was then used to detect if helium was present in the Tedlar bag sample. This process assessed the vacuum of the sample train and integrity of the VMP. If the helium concentration in the Tedlar bag sample was greater than or equal to 10% concentration of the helium in the enclosure, the Tedlar bag sample was additionally screened for methane by using a Landtec landfill gas detector. The presence of methane can cause a false positive helium reading on the MGD-2002 field analyzer.

[^1]- Once the initial helium leak check was completed, the stainless-steel canister valve was opened to collect a sample for approximately 30 minutes or until a vacuum gauge reading of 5 inches Hg was observed. After sample completion, the stainless-steel canister valve was closed (isolating it from the sample train) and soil vapor was bypassed to the second Tedlar bag sample.
- Field duplicates were collected by including an additional T-connection in the sample train and attaching a second stainless-steel canister with a separate flow controller. Both the original and duplicate samples were started at the same time.
- The second Tedlar bag was filled following the completion of the stainless-steel canister sampling. Soil vapor readings were taken from the Tedlar bag sample for total volatile organics with a MiniRae 3000 photoionization detector (PID) and a Thermo Scientific TVA 1000 Vapor Analyzer - Flame Ionization Detector (FID); and for carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, lower explosive limit (LEL), and oxygen $\left(\mathrm{O}_{2}\right)$ with a Landtec GEM 2000 landfill gas meter. Readings were also obtained and recorded for helium with a MGD-2002 field analyzer. This check was used to verify the sample train integrity during and at the completion of sampling. If the helium readings were greater than or equal to 10% of the concentration of the helium in the enclosure, the VMP is required to be resampled.
- At the completion of sampling, the stainless-steel canister and flow controller were removed and separated from the sample train and a final vacuum reading was taken with a designated pressure gauge provided by the laboratory. The VMP plug was reinstalled or the 4 -way stopcock was closed to maintain port integrity. The stainlesssteel canisters were then maintained in a safe location to minimize temperature change and protected from damage prior to shipping.
- Field data pertaining to canister identification data (ID), start and finish time, initial and final vacuum readings, purge volumes, and leak checks for each VMP were recorded in field logbooks. Data from portable field analyzers, such as, a PID, FID, landfill gas meter, and helium gas detector, were recorded in the field logbook.

Additional Notes on VMP Sampling

Saturated VMP Screens - During this sampling program, there were no VMPs that held a vacuum or produced water.
21562735. 10100

Resamples - During this sampling program, there were no sample canisters that required resampling due to laboratory analysis for helium and found to exceed 10% of the helium in the shroud.

Helium Leaks - VMP-4-5 and VMP-16-5 failed to pass the helium leak check in the field when sampling was initially attempted. Resampling was reattempted on the same day and valid samples were obtained.

2.2 HEALTH \& SAFETY, DECONTAMINATION, AND INVESTIGATION DERIVED WASTE

Health \& Safety

The sampling activities were performed and governed by the Roxana / Route 111, WRR, and Rand Avenue Investigation and Remediation Health and Safety Plan, dated July 2012 (URS, 2012a), as prepared by URS.

Prior to beginning site work and at the start of work each day, a daily safety meeting was held. The purpose of this meeting was to discuss the day's planned activities and to address any potential health and safety concerns. As a part of the daily safety meeting, job hazard analyses (JHAs) were reviewed to address task specific safety concerns.

URS field personnel primarily wore U.S. Environmental Protection Agency (USEPA) modified Level D personal protective equipment (PPE), which included hard hat, steel-toed boots, safety glasses, and safety vests. In addition, work within the WRR was performed wearing flame retardant clothing (FRCs) per WRR requirements, where required.

A PID with a 10.6 electron volt (eV) probe, combustible gas indicator (CGI), UltraRAE with benzene specific measuring tubes, and individual hydrogen sulfide gas detectors (for locations inside WRR) were used during the field activities to monitor air quality. Field instruments were calibrated prior to use each day in accordance with the manufacturer's specifications.

Decontamination

Field personnel and equipment underwent decontamination procedures to ensure the health and safety of those present, to maintain sample integrity, and to minimize cross contamination. Nondisposable/reusable sampling equipment (e.g., compression fittings) was decontaminated prior to the collection of each analytical sample by spraying with Alconox or Liquinox and distilled water. For vapor sampling equipment, a 15 mL hand pump was attached to the sampling apparatus and ambient air was pumped into the sampling apparatus to remove any internal dust particles or moisture. Personnel and small equipment decontamination was performed at the sample locations.

Investigation Derived Waste

Investigation derived waste (IDW) for this sampling event included PPE and expendable materials (e.g., gloves and tubing), which has a low probability of impact. The expendable materials were collected in trash bags and disposed with municipal waste.

2.3 SAMPLE HANDLING AND LABORATORY TESTING

Sample Handling

Stainless-steel canisters were labeled with a sample ID, site name, sampler initials, sample date and time, the parameters to be analyzed, and pre- and post- sampling vacuum readings. After collection, the samples were logged on a chain of custody (COC) form and packaged in a UN certified box to prevent damage during shipment. The samples were then delivered under the proper COC documentation to the laboratory. Due to the potential flammable nature of the vapor in the stainless-steel canisters, some soil vapor samples were shipped as hazardous materials according to applicable International Civil Aviation Organization (ICAO) regulations.

Laboratory Testing

Eurofins Air Toxics, Inc. (Eurofins) of Folsom, California provided canisters for this program and conducted the laboratory testing using the following test methods:

- Volatile Organic Compounds (VOCs) via Modified USEPA Total Organic-15 (TO-15) (including butane and isopentane) for soil vapor ${ }^{5}$, and
- Natural gases (defined for purposes of this report as oxygen, nitrogen, carbon monoxide, methane, carbon dioxide, ethane, and ethene) via Modified ASTM D-1946 + helium.

The laboratory reported results between the method detection limit (MDL) and reporting limit (RL). Although results reported in this range are "J"-flagged as estimated, these data may be beneficial in cases where analytes would otherwise be reported as non-detect at elevated RLs. The laboratory provided URS with a list of their "base" RL capability for target analytes. Sample RLs are a product of base RL, pressurization dilution factor, and analytical dilution factor. Thus the sample RL will increase with increases in dilution factor. Results that were reported below the RLs but above the MDL were " J "-flagged as estimated concentrations by the laboratory.

[^2]
2.4 DATA QUALITY REVIEW AND DATA MANAGEMENT

Laboratory data were provided in electronic form, and analytical data were independently reviewed and qualified by URS. One hundred percent of the data were subjected to a data quality review (Level III review). Evaluation of the data followed procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008). Specific criteria reviewed included sample receipt condition and holding times, method blanks, surrogate spike recoveries, laboratory control samples, results reported from dilutions, and field duplicate results. The laboratory assigned data qualifiers on the basis of their quality control or to indicate sample analysis information (e.g., dilutions). Data qualifiers were also added by URS, as appropriate, and are included on the data tables and laboratory result pages. Laboratory data reports along with data reviews are included in Appendix A.

Field data and documentation collected as part of this scope of work became part of the project file. URS maintains the files for the site and the database management system.

The following documentation was completed and supplements the COC records:

- Field logbooks;
- Field equipment calibration forms; and
- Safety documentation

3.1 DATA QUALITY REVIEW RESULTS

A total of 56 investigative and 6 field duplicate samples were collected for analysis. Compounds qualified by URS due to method blank contamination, field duplicate results, and quality control sample recoveries are specified in the data reviews (Appendix A). Based on method blanks, laboratory control sample recoveries, results reported from dilutions, and field duplicate results, soil vapor results reported for the analyses performed were accepted for their intended use.

3.2 SOIL VAPOR ANALYTICAL RESULTS

The following TO-15 analytes were detected in soil vapor during this sampling program:
TO-15 Detections

Acetone	Heptane
Benzene	Hexane
Butane	Isopentane
2-Butanone	Isopropylbenzene (Cumene)
Carbon disulfide	4-Methyl-2-pentanone
Chlorobenzene	2-Propanol
Chloroform	Propylene
Chloromethane	Tetrachloroethene
Cyclohexane	Tetrahydrofuran
1,3 Dichlorobenzene	Toluene
1,4 Dichlorobenzene	Trichloroethene
1,2 Dichloroethane	$1,2,4-T r i m e t h y l b e n z e n e ~$
Trans-1,3-Dichloropropene	$1,3,5-T r i m e t h y l b e n z e n e ~$
1,4-Dioxane	$2,2,4-$ Trimethylpentane
Ethanol	m,p-Xylene
Ethylbenzene	o-Xylene
4-Ethyltoluene	

Cumulative tabular summaries of the analytical results are presented in Table 1. A cumulative tabular summary of the results for natural gases are presented in Table 2. Cumulative tabular summaries of the tentatively identified compound results are presented in Table 3. Field measurements from this event are presented on Table 4. The laboratory analytical reports for the soil vapor samples collected from August 8, 2012 through September 28, 2012 can be viewed in Appendix A.

Benzene was selected as the key analyte to characterize soil vapor, in the paragraphs below.

Village

Benzene concentrations from the three locations within the Village ranged from an estimated $0.0017 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-21-5) on August 14, 2012 and (VMP-42-10) on September 27, 2012 to $0.26 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-4-5) on August 30, 2012. The cumulative results for benzene in soil vapor for samples collected in the Village are depicted on Figure 4.

Roxana Public Works Yard

Benzene concentrations from the three locations within the Roxana Public Works Yard ranged from an estimated $0.00073 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-10-5) on August 15,2012 to $0.14 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-11-5) on August 31, 2012. The cumulative results for benzene in soil vapor for samples collected in the Roxana Public Works Yard are depicted on Figure 4.

WRR

Benzene concentrations from one location sampled within the WRR ranged from a not detected at a reporting limit of $0.025 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-16-5) on August 14,2012 to an estimated $11 \mathrm{mg} / \mathrm{m}^{3}$ (VMP-16-5) on September 17, 2012. The cumulative results for benzene in soil vapor for samples collected in the WRR are depicted on Figure 4.

URS conducted soil vapor sampling on behalf of SOPUS in the Village, Roxana Public Works Yard, and WRR in conjunction with CTEH ambient air sampling. Soil vapor samples were collected from seven VMPs from August 8, 2012 through September 28, 2012 concurrently during ambient air sampling that was conducted by CTEH.
21562735. 10100

Week 1-8 cumulative summary of soli vapor analytical results: vocs

Location	Depth	Sample ID	Sample Date	Acetone			Ally chioride (3-			alpha-Chlorotoluene			Benzene			Bromodichioromethane			Bromotorm			Bromomethane			1,3-Butadiene		
				Result $\left(\mathrm{mg} 9 \mathrm{~m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \text { (mg/m } \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Resulut } \\ (\text { mga } \end{array}$	Lab Quals	$\underset{\text { Quals }}{\text { Quts }}$	Result $\left(\mathrm{m} q / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	Result $\left(\mathrm{m} 9 / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Uuals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$
VMP-4	5 t	VMP-4.5-080812	8/822012	0.077			<0.012	U		<0.0051	U		0.077			${ }^{20.0066}$	U		0.0024	J		<0.038	U		<0.0022	U	
		VMP-4.5-081412	${ }_{\text {81/4/2012 }}$	${ }_{0}^{0.11}$		J	<0.017	U		<0.0071 <0.0078	U		0.0089			$\underset{<-0.0092}{<0.01}$	U		${ }_{<0}^{<0.014}$	U		$\underset{<0.054}{<0.054}$	U		${ }_{<0}^{<0.003}$	U	
		VMP-4.5-083012	833012012	0.067	j	J	$<_{<0.024}$	U		${ }_{<0}^{<0.001}$	U		${ }_{0}^{0.0 .26}$			${ }_{<0}^{20.013}$	U		${ }_{<0}^{<0.022}$	U		$\stackrel{<0.059}{<0.075}$	U		${ }^{20.00034}$	U	J
		VMP-4.5-0900512	9,5/2012	0.037			<0.018			<0.0077			${ }_{0}^{0.035}$			<0.0099	-		<0.015	U		<0.057	U		$<{ }^{20.0033}$	U	
		VMP-4-5-091112	9/11/2012	0.056			<0.018	U		<0.0073	U		0.08			<0.0094	U		<0.014	U		<0.055	U		<0.0031	U	
		VMP-4.5-091712	9,1712012	${ }^{0.026}$	J		${ }_{<0}^{<0.019}$	U		${ }_{<0}^{<0.0078}$	U		0.08 0.011			${ }_{<0}^{<0.0084}$	u		${ }_{<0}^{<0.016}$	U		${ }_{<0}^{<0.059}$	U		${ }_{<}^{<0.0034}$	U	
	5 H	VMP-10.5-08090912	${ }^{\text {9/271/2012 }}$	${ }_{0}^{0.035}$			${ }_{<0 \text { <0.016 }}^{<0.011}$	U		${ }_{0}^{20.00085}$	J		0.0097			${ }^{2} \mathbf{2 0 . 0 0 0 6 1}$	U		${ }_{<0.0094}$	U		<0.036	U		$\stackrel{<0.0028}{<0.002}$	U	
VMP-10		VMP-10-5.081512	$81 / 512012$	0.02	J		<0.012	U		0.0016	J		0.00073	J		${ }^{2} 0.0065$	U		$\stackrel{0}{<0.01}$	U		$\underbrace{<0.067}_{<0.037}$	U		${ }_{<0.0021}$	U	
		VMP-10-5.082112	812112012	0.012	J	J	<0.019	U		<0.0078	U		0.0029	J		<0.01	U		<0.016	U		<0.059	U		<0.0034	U	UJ
		VMP-10-5.083112	$8 / 3112012$	0.026	J	J	<0.018	U		<0.0075	U		0.039			<0.0097	U		<0.015	U		<0.056	U		<0.0032	U	
		VMP-10-5-090612	${ }^{96612012}$	0.085			<0.019	U		<0.008	U		0.037			<0.01	U		<0.016	U		$\stackrel{\square}{<0.06}$	U		${ }^{20.0034}$	U	
		VMP-10-5-091212	9/1212012	0.035	J		<0.02	U		<0.0082	J	u	${ }^{0.0084}$			${ }_{<0.011}$	U		<0.016	U		${ }_{0}<0.062$	U		${ }_{20.0035}$	U	
		VMP-10-5-091812	9/18/2012	0.03	J		<0.018	U		<0.0075	U		0.015			${ }^{20.0097}$	U		<0.015	U		<0.056	U		<0.0032	U	
		VMP-10.5-092812	- ${ }_{\text {9/2882012 }}^{9 / 282012}$	0.041			<0.019	U		<0.008	J	U	0.00011 0.0043	J		${ }^{0.0016}$	J		${ }^{<20.016}$	U			U		$<{ }^{20.0034}$	V	
VMP-11	5 t	VMP-11-5-080912	899/2012	0.018			<0.012	U		<0.0049	U		0.013			${ }^{2} 0.0064$	U		<0.0099			<0.037					
		VMP-11-5.081512	8/15/2012	0.0081	J		<0.014	U		<0.006	U		0.0011	J		${ }^{2} 0.0077$	U		<0.012	U		<0.045	U		<0.0025	U	
		WMP-11-5-082112	8/2112012	0.014	J	J	<0.018	U		0.0016	J		0.0065			<0.0094	U		<0.014	U		<0.055	U		<0.0031	U	UJ
		VMP-11-5-082112-Dup	$8 / 2112012$	0.0098	,	J	<0.018	U		<0.0073	U		0.0082			<0.0094	U		0.0034	J		<0.055	,		<0.0031	U	us
		VMP-11-5-083112	$8 / 3112012$	0.035	J	J	<0.018	U		<0.0073	U		0.14			0.0039	J		0.014	J		0.0037	J		<0.0031	U	
		VMP-11-5-900612	${ }^{\text {9/6/2012 }}$	${ }^{0.088}$			${ }_{<}^{<0.0019}$	u		${ }_{<}^{<0.0078}$	u		${ }^{0.00037}$	J		${ }^{<0.01}$	u		${ }_{<0}^{<0.016}$	U		${ }^{<0.059}$	U		${ }_{<}^{<0.00034}$	u	
		VMP-11-5-991212	9/1/22012	${ }_{0}^{0.044}$	J		$\underset{\ll 0.018}{\ll 0.018}$	U		${ }_{<-2.0077}^{<0.0074}$	u		O.014			co.0099 00.0996	U		\ll <0.015	U		${ }_{<}^{<0.057}$	U		co.0033 <0.0032	U	
		VMP-11-5-092812	9/88/2012	0.015	J		<0.018	U		<0.0077	U		0.011			<0.0099	U		<0.015	U		<0.057	U		<0.0033	U	
	5 H	VMP-11-5-0928812-Dup	$\frac{9 / 2812012}{8902012}$	${ }_{0}^{0.017}$	J		$\stackrel{<0.018}{<0.015}$	U		<0.0075	U		0.014			${ }_{-0.0097}^{<0.0079}$	U		${ }_{<0}^{20.015}$	U		${ }_{<}^{<0.056}$	U		${ }_{<0}^{<0.0032}$	U	
VMP-13		VMMP-13-5-5.081512	${ }^{8 / 195152012}$	${ }_{0}^{0.0022}$	J		$\stackrel{<0.0015}{<0.015}$	u		${ }_{0}^{0.000064}$	u		${ }^{0.0048}$			${ }^{2} \mathbf{2 0 . 0 0 0 8 2}$	U		${ }_{<0}^{20.013}$	U		${ }_{<0}^{<0.048}$	-		${ }_{<0}^{20.00027}$	U	
		VMP-13-5-082112	${ }^{8121 / 2012}$	${ }_{0} 0.025$	J	J	${ }_{<0}$	U		${ }_{0}^{20.0016}$	J		${ }_{0}^{0.0026}$			<0.0097	U		<0.015	U		<0.056	U		<0.0032	U	UJ
		VMP-13-5.083112	$8 / 3112012$	0.033	J	J	<0.018	U		<0.0075	U		0.12			<0.0097	U		<0.015	U		<0.056	U		<0.0032	U	
		VMP-13-5-090612	966/2012	0.06			<0.015	U		<0.0063	U		0.013			<0.0081	U		<0.012	U		<0.047	U		<0.0027	U	
		VMP-13-5-0991212	9/1/212012	0.061			<0.019	U		<0.0078	U		0.0099			<0.01	U		<0.016			<0.059	U		<0.0034	U	
		VMP-13-5-091212-Dup	9/1212012	0.045			<0.016	U		<0.0068	U		0.0055			${ }^{<0.0088}$	U		<0.014	u		<0.051	U		$<{ }^{20.0029}$	U	
		VMP-13-5.991812	9/1882012	${ }_{0}^{0.021}$	J		<0.019	U		<0.0078 0.0048	U		0.003 0.024	J		${ }_{<-20.01}^{\text {coind }}$	U		<0.016	J		$\underset{<-0.058}{<-0.058}$	U			U	
VMP-16	5 t	VMP-16-5.080812	88812012	$\stackrel{4.4}{ }$	U		$\stackrel{-2.3}{ }$	U		$\bigcirc 0.97$	U		0.094	J		<1.2	U		<1.9	U		${ }^{<7.3}$	U		<0.41	U	
		VMP-16-5.081412	81412012	0.026	J	J	<0.1	\cup		<0.041	\cup		${ }^{<0.025}$	\cup		${ }^{<0.053}$	U		<0.082	U		${ }^{<0.31}$,		<0.018		
		VMP-16-5.082012	812012012	0.13	J	J	<0.32	U		<0.13	U		0.27		J	<0.17	U		<0.27	U		<1			<0.057	U	UJ
		VMP-16-5.083012		0.28	J		${ }_{<00.76}$	u		${ }^{<0.31}$	u		${ }^{<0.19}$	U		<0.4	u		${ }_{\text {coib2 }}^{40.5}$	U		$\stackrel{<2.3}{45}$	u		${ }^{<0.13}$	U	
		VMP-16-5.090512	${ }_{\text {9, }}^{\text {9/1/2012 }}$	$\stackrel{54}{\text { c0.35 }}$			<18 <0.18 <8	u		${ }_{<-17.7}^{<0.077}$	u		7.4 0.012			- ${ }_{\text {co.999}}$	U		$\stackrel{<15}{<0.15}$	U			U			U	
		VMP-16-5-0991712	9/17/2012	¢	j		$\stackrel{\substack{<0.18 \\<71}}{\text { ci }}$	U		$\stackrel{<-29}{<29}$	U		${ }^{0.011}$	J			U		$\stackrel{\text { < }}{\substack{\text { < } 58 \\ \hline}}$	U		$\stackrel{<-207}{<220}$	U				
		VMP-16-5-092712	9/272012	0.11			<0.017	U		<0.007	U		0.0088			<0.009	U		<0.014	U		<0.052	U		<0.003	U	
vMP-21	5 H	VMP-21-5-080812	8882012	0.69			<0.016	U		<0.0064	U		0.0024	J		0.0012	J		<0.013	U		<0.048	U		20.0028	U	
		WMP-21-5.081412	${ }^{8 / 14 / 2012}$	${ }^{0.019}$	J		<0.012	U		<0.0049	U												U		${ }^{20.0021}$	U	
		VMPP-21-5-0882012	${ }^{812020012}$	${ }_{0}^{0.0028}$	J		\ll0.022	U		${ }_{20}^{20.0092}$	U		${ }_{0}^{0.00087}$	J		${ }_{<}^{20.0009} \times$	u		${ }_{<0}^{20.012}$	u		<0.046	U		20.0026 <0.0039	U	uJ
		VMP-21-5-083012	$8 / 3012012$	0.027	J	J	<0.019	U		<0.0078	U		0.018			<0.01	U		<0.016	U		<0.059	U		<0.0034	U	
		VMP-21-5-090512	955/2012	0.029	J		<0.019	U		<0.0078	U		0.014			<0.01	U		<0.016	U		<0.059	U		<0.0034	U	
		VMP-21-5-091112	${ }^{\text {9/11/20212 }}$	${ }^{0.042}$			${ }^{<0.0018}$	U		${ }^{<0.0077}$	U		${ }^{0.00088}$			${ }^{<0.0099}$	U		<0.014	,		<0.055	U		${ }^{20.00331}$	U	
		VMP-21-5-091712	$9 / 17712012$	0.02	,		<0.018	U		<0.0073	U		0.0028	J		<0.0095	U		<0.015	U		<0.055	U		<0.0031	U	
		VMP-21-5-0997712	$\frac{9 / 27 / 2012}{8882012}$	$\frac{0.025}{0.14}$	J		$\stackrel{<0.017}{<0.012}$	U		$\underset{<-20077}{<0.0051}$	J	U	${ }_{0}^{0.0041}$	J		$\stackrel{0.0092}{-0.0066}$	u		<0.014	U		${ }_{\text {< }}^{20.054}$	U		<0.003	U	
VMP-42	10t	VMP-42-10-081412	$8141 / 2012$	0.032			${ }_{<0}<0.012$	U		<0.0052	u		0.0057			${ }^{20.0067}$	U		$\stackrel{+0.01}{ }$	u		$\stackrel{0}{0} 0.039$	U		<0.0022	U	
		VMP-42-10.082012	8/2012012	${ }^{0.021}$	J	J	<0.019	U		0.0028	J		0.0074			<0.01	U		<0.016	U		<0.06	J	U	<0.0034	U	UJ
		VMP-42-10.083012	${ }^{8 / 3012012}$	-0.043	J	J	${ }_{-0.02}^{<0.018}$	U		$\xrightarrow{<0.0082}$	U		0.028			${ }_{-}^{<0.0011}$	U		\ll	U		${ }_{<-0.062}^{<0.057}$	U			U	
		VMP-42-10-091112	9/11/2012	0.05			\bigcirc	U		<0.0078	u		0.014			- <0.01	U		<0.016	U		<0.059	u		${ }_{2} 20.0034$	U	
		VMP-42-10-091712	9/1772012	0.027	J		${ }^{<0.0018}$	U		<0.0077	U		0.045			${ }^{20.0096}$	U		<0.015	U			U		<0.0032	U	
		VMPP-42-10-0927712-Dup	9 92772012	0.024	J		<0.016	U		$\stackrel{<100067}{<0.0067}$	U		0.00017	J		$\stackrel{<20.0086}{ }$	U		$\stackrel{<2014}{ }$	U		$\stackrel{<-0.05}{<0.05}$	U		${ }_{<0.0028}^{20.003}$	U	

$\mathrm{B}=$ Componing
$J=$ Estimated detection
$U J=$ Estimated non-detec
$\mathrm{UJ}=$ Estimated non-detect

WeEk 1-8 Cumulative summary of soli vapor analytical results: vocs

Location	Depth	Sample id	Sample Date	Butane			2-Butanone			Carbon disulfide			Carbon tetrachloride			Chlorobenzene			Chlorodibromomethane			Chloroethane			rm			Chloromethane		
				Result $\left(\mathrm{mg} 9 / \mathrm{m}^{3}\right)$	Lab Quals	URS Quals	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right. \end{array}$	Lab Quals	${ }_{2}^{\text {URS }}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Uuals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\underset{\text { Quals }}{\text { Quts }}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	Lab Quals	$\underset{\text { URS }}{\text { Quals }}$	$\begin{array}{\|l\|} \hline \text { Result } \\ (\text { mga } \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	Result $\left(\mathrm{m} 9 / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	Lab Qu	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} 9 / \mathrm{m}^{3}\right. \end{array}$	Lab Quals	URS Quals
VMP-4	5 H	VMP-4.5-080812	8882012	0.005	J		0.03			<0.012	J	U	<0.0062	U		<0.0045	J	U	<0.0083	U		<0.01	U		0.0012	J		<0.02	U	
		VMP-4.5-081412	${ }_{\text {8/14/2012 }}$	${ }_{\text {coin }}^{0.0 .32}$	U		0.033 0.083			0.011 <0.019	J	U	${ }_{<0}^{20.0087}$	U		<0.0064 <0.007	J	U	${ }_{<}^{<0.0012}$	U		< 20.014	U		${ }^{20.00067}$	J		$\underset{\substack{<0.028 \\<0.031}}{\text { coin }}$	U	
		VMP-4.5-083012	833012012	0.024			${ }_{0}^{0.096}$			0.0077	J	,	${ }^{<0.012}$	U		${ }^{0.0082}$	J		<0.016	U		${ }_{<0}<0.02$	U		${ }^{0.00019}$	J		${ }_{4}<0.04$	U	
		VMP-4.5-0909512	$95 / 2012$	<0.014	U		${ }_{0}^{0.012}$	J		<0.018	J	U	<0.0093	U		<0.0068	J	U	<0.013	U		<0.016	U		<0.0072	U		<0.03	U	
		VMP-4.5-0.991112	${ }^{9 / 1 / 1 / 2012}$	$\stackrel{0.018}{0.0014}$			0.023	J		$\xrightarrow{0.0052}$	u		<0.0089	u		0.0053 0.007	J	u	${ }_{<0.0012}^{<0.013}$	u		${ }_{<0}^{20.015}$	u		0.0069 00.0074	u		$\underset{\substack{<0.029 \\<0.031}}{ }$	u	
		VMP-4-5-5-092712	${ }^{9 / 27712012}$	${ }_{20.012}^{20.012}$	u		0.015			${ }_{0}^{20.0037}$	J		<0.0079	U		${ }_{<0}^{20.0058}$	J	U	<0.011	U		<0.013	U		0.0009	J		${ }_{<0}$	U	
vMP-10	5 t	VMP-10-5-080912	89912012	0.0046	J		0.01	J		<0.011	J	U	<0.0058	U		<0.0042	J	U	<0.0078	U		<0.0096	U		<0.0045	U		<0.019	U	
		VMP-10-5-081512	81/5/2012	0.0049	J		<0.011	u		<0.012	J	U	<0.0061	U		<0.0044	J	U	<0.0082	U		<0.01	U		<0.0047	U		<0.02	U	
		VMP-10-5-082112	82112012	<0.014	U		<0.018	U		<0.019	J	U	<0.0095	U		<0.007	J	U	<0.013	U		<0.016	U		<0.0074	U		<0.031	U	
		VMP-10-5-083112	8/3112012	<0.014	U		0.034			0.0071	J	J	<0.0091	U		<0.0066	J	U	<0.012	U		<0.015	U		<0.007	U		<0.03	U	
		VMP-10-5-090612	96/12012	<0.015	U		0.042			<0.019	J	u	<0.0098	U		<0.0072	J	U	<0.013	U		<0.016	U		<0.0076	U		<0.032	U	
		VMP-10-5.591212	91/1212012	${ }_{<0}^{<0.015}$	u		${ }_{<0.0019}^{<0.017}$	u		${ }_{\substack{0.0057 \\<0.018}}$	J	U	${ }_{<0.001}^{<0.0091}$	u		<0.0073 <0.0066	J	U	<0.014	u		$\stackrel{<0.017}{<0.015}$	U		<0.0078 <0.007 8	U		0033003	u	
		VMP-10-5-5-998812	9/81820212	${ }^{<0.0014}$	U		$\stackrel{<0.017}{0.012}$	J		${ }_{<0 \text { <0.019 }}$	J	u	${ }_{<}^{20.00099}$,		${ }_{<0.00081}^{20.006}$		U	${ }^{<0.0012}$	u		${ }_{20.0015}^{20.016}$	u		${ }_{<0.0076}^{20.07}$,	u	$\stackrel{<0.03}{<0.032}$	u	
		VMP-10-5.092812-Dup	9/282012	<0.014	U		0.009	J		<0.019	J	U	<0.0095	U		<0.0078		U	<0.013	U		<0.016	U		<0.0074	,	U	\bigcirc	U	
VMP-11	5 th	VMP-11-5.080912	$\frac{89972012}{815 / 2012}$	${ }_{0}^{0.0087}$	u		${ }_{\text {O }}^{0.0047}$	U		${ }_{\substack{<0.012 \\<0.014}}$	J	u	${ }_{<}^{<0.006}$	U		${ }_{<0}^{<0.0044}$	J	U	${ }^{20.0081}$	u		<0.01	U		${ }^{0.000064}$	J		${ }^{<0.02}$	U	
		VMPP-11-5-082112	${ }^{8121 / 12012}$	${ }_{\text {coin }}^{<0.011}$	u		$\stackrel{<0.014}{<0.017}$	u		${ }_{<}^{<0.014}$	J	u	${ }_{2}^{20.00089}$	u		${ }_{<0.00065}^{20.0053}$	J	U	${ }_{<0}^{20.0009}$	u		${ }_{2}^{20.012}$	U		${ }_{0}^{20.0096}$	J		$\stackrel{<0.024}{<0.029}$		
		VMP-11-5.-822112-Dup	$8 / 2112012$	<0.013	U		<0.017	U		<0.018	J	U	<0.0089	U		<0.0065	J	U	<0.012	U		<0.015	-		0.001	,		<0.029	U	
		VMP-11-5-083112	$8 / 3112012$	<0.013	U		0.043			0.0098	J	J	<0.0089	U		<0.0065		U	0.006	J		<0.015	U		0.0041	J		<0.029	U	
		VMP-11-5.-90612	${ }^{9,6 / 12012}$		u		0.044 0.0096			${ }_{0}^{<0.0019}$	J	U	${ }_{<0}^{20.0095}$	u		${ }_{<0.007}^{<0.0068}$	J	U	${ }^{20.013}$	u		${ }_{<0.0016}^{20.0}$	u		${ }^{20.0074}$	U		${ }_{<0.031}^{<0.031}$	u	
		VMPP-11-5-0991812	91/22012	${ }_{\text {coiol }}^{\text {<0.014 }}$	U		${ }_{0}^{0.00996}$	J		${ }^{0.00056}$	J	U	${ }_{<0}^{<0.00093}$	U		${ }_{<0.00066}^{20.008}$	J	U	${ }_{<0.012}^{20.013}$	u		${ }^{20.0016}$	U		${ }_{\text {< }}^{20.0002}$	U		$\stackrel{<0.03}{<0.03}$	u	
		VMP-11-5-092812	9/882012	<0.014	U		<0.017	U		0.0032	J		<0.0093	U		<0.0088	J	U	<0.013	U		<0.016	U		0.00097	J		<0.03	U	
		VMP-11-5-092812-Dup	9/2882012	<0.014	U		0.0047	J		${ }^{0.0031}$	J		<0.0091	U			J	U	-0.012	U		<0.015	U		<0.007	U			U	
VMP-13	5 t	VMP-13-5.080912	$889 / 2012$	<0.017	U		<0.014	U		0.014	J		<0.0074	U		<0.0054	J	U	<0.01	U		<0.012	U		${ }^{0.0052}$	J		<0.024	U	
		VMPP-13-5-5.082112	${ }^{8 / 1 / 21 / 2012}$	${ }_{\text {coiol }}^{<0.014}$	u		0.0034 0.0045	J		$\frac{0.0083}{0.012}$	J		${ }_{<0}^{<0.00097}$	U		${ }_{<0.00066}$	J	U	${ }_{<0.012}^{20.012}$	U		${ }_{<0}^{20.015}$	U		${ }_{0}^{0.0003}$	J		$\underset{<-0.03}{\ll 0.025}$	U	
		VMP-13-5.083112	${ }^{8 / 3112012}$	<0.014	U		0.036			0.012	J	J	<0.0091	U		<0.0066	J	U	<0.012	U		<0.015	U		0.0026	J		<0.03	U	
		VMP-13-5.909612	${ }^{\text {9/6/2012 }}$	${ }^{<0.0012}$	u		${ }^{0.026}$			${ }_{0}^{<0.015}$	J	U	${ }_{<0.00076}^{<0.0095}$	U		$\begin{array}{r}<0.0056 \\ \hline 0.007 \\ \hline 8\end{array}$	J	u	${ }_{<0}^{<0.01}$	u		${ }_{<0}^{<0.013}$	u		${ }^{0.0004}$	J			U	
		VMP-13-5-991212	9/1/22012	${ }_{\text {coicle }}^{<0.012}$	U		${ }^{0.009}$	J		${ }^{0.0019} 0$	J		${ }_{2}^{20.0095}$	U		${ }_{<0.00061}^{20.07}$	J	U	${ }_{<0.0011}^{20.013}$	U		${ }_{<0}^{<0.016}$	U		${ }_{0}^{0.0031}$	J		$\stackrel{<0.0027}{<0.027}$	U	
		VMP-13-5.091812	9/182012	<0.014	U		<0.018	U		0.0074	J		<0.0094	U		<0.0069	J	U	<0.013	U		<0.016	U		0.0017	J		<0.031	U	
		VMP-13-5.092812	9/2882012	${ }_{<0.013}^{18}$	U		${ }^{0.022}$	u		$\frac{0.0093}{0.61}$	J		$\frac{20.0089}{-12}$	U		$\frac{0.017}{0.43}$	J		${ }_{<0.012}^{16}$	U		<0.015	U		${ }_{0}^{0.0044}$	J		$\stackrel{0.013}{\sim}$	J	
VMP-16	5 t	VMP-16-5.081412	8/14/2012	<0.076	U		<0.094	U		0.024	J	J	<0.05	U		0.023	J	J	<0.068			<0.084	U		0.0054	J	J	<0.16		
		VMP-16-5.082012	822012012	0.45		J	<0.3	U		0.056	J	J	<0.16	U		0.074	J	J	<0.22	U		<0.27	U		<0.13	U		<0.53	U	
		VMP-16-5.083012	8/3012012	<0.58	U		<0.71	U		0.48	J		<0.38	U		0.26	J		<0.52	U		<0.64	U		<0.3	U		0.23	J	
		VMP-16-5-090512	9 95/2012	64			<17	U		${ }^{10}$	J		<9.3	U		${ }^{6}$	J		$<^{<13}$	U		<16	U		<7.2	U		<30	U	
		VMP-16-5-091112	${ }^{9 / 111 / 2012}$	${ }^{<0.14}$	U		${ }_{<0.17}^{<67}$	U		${ }^{0.025}$	J		${ }^{<0.093}$	U		${ }^{0.041}$	J		${ }^{<0.13}$	U		${ }_{-0.16}^{<0}$	U		${ }^{<0.072}$	U		-0.3	U	
		VMMP-16-5-0.092712	${ }^{917 / 772012}$		U		${ }_{0}^{6.035}$	U		${ }_{0}^{0.0028}$	j			U		${ }^{18}$	B	U	${ }_{<0.011}^{<048}$	U		${ }_{\text {coin }}^{60014}$	U		¢ 28 0.0079	U		-	U	
vMP-21	5 tt	VMP-21-5.080812	8882012	<0.012	U		0.015			0.024			<0.0078	U		<0.0057	J	U	<0.011	U		20.013	U		0.0015	J		0.0097	J	
		VMP-21-5.08412	${ }^{8 / 442012}$	<0.0091	U		${ }_{0}^{0.0062}$	J		<0.012	J	U	<0.006	U		0.0034	J		${ }_{0}^{20.0081}$	U		<0.01	U		${ }^{20.0047}$	U			U	
		VMP-21-5.-082012	8812012012	<0.017	U		\bigcirc	j		$\stackrel{0}{0} 0.022$	J		$\underset{<0.011}{<0.006}$	U		${ }_{<0}^{20.00081}$	J	-	${ }_{<0.015}^{20.015}$	U		${ }^{20.019}$	U		20.00086 <0.0	U		${ }_{<0}^{20.036}$	U	
		VMP-21-5-083012	8/30/2012	<0.014	U		0.043			<0.019	J	U	<0.0095	U		<0.007	J	U	<0.013	U		<0.016	U		<0.0074	U		<0.031	U	
		WMP-21-5-090512	$95 / 2012$	<0.014	\checkmark		0.019			<0.019	J	\cup	<0.0095	U		<0.007	J	U	<0.013	U		<0.016	U		<0.0074	U		<0.031	U	
		VMP-21-5.091112	91/11/2012	<0.013	U		0.0099 0.011	J		${ }_{\text {0.0027 }}{ }_{<0.018}$	J	U	< $<$ <0.0089	U		<0.0065 <0.0065	J	U	${ }_{<0}^{<0.012}$	U		< $<$ <0.015	U		<0.0069 <0.0069	U		$\underset{<-0.029}{<-209}$	U	
		VMP-21-5-092712	9/2772012	<0.013	U		0.016	J		<0.017	U		<20.0087	U		<0.0064	J	U	<0.012	U		<0.014	U		${ }^{2} 0.0067$	U		<0.028	U	
vmP-42	10 H	VMP-42-10.080812	8882012	<0.0093	U		0.034			0.01	J		0.0013	J		<0.0053		U	<0.0083	U		0.0072	J		0.0084			0.032		
		VMP-42-10-081412	$\frac{81442012}{882012012}$	<0.0096	U		0.02 0.052			<-0.012	J	U	20.0063 <0.0098	U		<0.0046 <0.0072	J	U	${ }_{<0.0086}^{20.013}$	u		< 20.011	u		${ }_{0}^{0.0034}{ }_{0}^{0.0041}$	J		0021	U	
		VMP-42-10-083012	883012012	<0.015	U		0.076			$\stackrel{\square}{<0.02}$	J	U	<0.01	U		<0.0073	J	U	<0.014	U		<0.017	U		0.0034	J		<0.033	U	
		VMP-42-10.090512	$\frac{9 / 5 / 2012}{9}$	<0.014	U		${ }^{0.027}$			${ }^{<0.0018}$	J	U	${ }^{<0.0093}$	U		$\xrightarrow{<0.0008}$	J	U	${ }_{<}^{<0.013}$	U		$\stackrel{<2016}{<0.016}$	u		${ }^{0.0041}$	J		$\xrightarrow{<0.03}$	u	
		VMP-42-10-091112	9/11/2012		U		0.026 0.012			${ }^{0.0036}$	J	U	$\stackrel{<0.0095}{<0.009}$	U		${ }_{<0.0066}^{<0.07}$	J	U	${ }_{<0.0 .012}^{<0}$	U		${ }_{<}^{<0.0016}$	u		${ }_{0}^{0.0058}{ }_{0}^{0.0066}$	J		$\stackrel{<0.031}{<0.03}$	u	
		VMP-42-10-092712	9/27/2012	<0.013	U		0.01	J		0.0023	J		<0.0085	U		<0.007	B	U	<0.011	U		<0.014	U		0.005	J		${ }^{<0.028}$	U	
		VMP-42-10-092712-Dup	92772012													<0.0059														

$J=$ Estimated detection
$\mathrm{UJ}=$ Estimated non-detec
$\mathrm{UJ}=$ Estimated non-detect

					Cyclohexane		1,2-2	Dibromoeth		1,2-Di	chloroben		1,3-D	ichloroben		1,4-0.	Dichloroben		Dichlor	odifluorom	thane	1,1-0.	Dichioroeth		1,2-2	ichloroeth		1,1-1	Dichloroeth	ene
Location	Depth	Sample ID	Sample Date	Result $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Result } \\ \left(\mathrm{mg} 9 / \mathrm{m}^{3}\right. \end{array}$	Lab Quals	$\underset{\text { Quals }}{\text { Quals }}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg}_{\mathrm{m}} \mathrm{~m}^{2}\right. \end{aligned}$	Lab Quals	URS	$\begin{aligned} & \text { Result } \\ & \left(\begin{array}{c} \left(m g / m^{3}\right) \end{array}\right. \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right. \end{array}$	Lab Quals	$\begin{aligned} & \hline \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg}_{2} \mathrm{~m}^{3}\right) \end{aligned}$	Lab Quals	URS	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\underset{\text { Quals }}{\text { Quas }}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{m}_{\mathrm{m} / \mathrm{m}^{2}}\right. \end{aligned}$	Lab Quals	$\begin{aligned} & \hline \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Result } \\ \text { (mg } 9 / m^{3} \end{array}$	Lab Quals	URS Quals
		VMP-4.5-080812	8882012	0.002	J		<0.0075	U		<0.0059	J	U	0.0019	J		<0.0059	J	U	0.0025	J		<0.004	U		0.00052	J		<0.0039	U	
		VMP-4-5-081412	${ }^{81 / 412012}$	0.048			${ }^{<0.011}$	U		<0.0083	U		<0.0083	,		<0.0083	J	U	${ }^{0.003}$	J	J	<0.0056	U		0.00072	J		<0.0055	,	
		VMP-4-5-082012	812012012	<0.0052	U		<0.012	U		0.0017	J		<0.0091	J	U	<0.0091	J	U	0.0038	J		<0.0061	U		<0.0061	U		<0.006	U	
VMP-4		VMP-4.5-083012	${ }^{813012012}$	<0.0067	u		<0.015	U		<0.012	J	\cup	<0.012	J	u	<0.012	J	U	0.003	J	J	<0.0078	,		<0.0078	,		${ }^{20.0077}$	U	
VMP-4	5π	VMP-4.-5-090512	9,5/2012	<0.0051	U		0.0035	J		<0.0089	U		<0.0089	J	U	<0.0089	J	U	${ }_{0}^{0.0027} 0$	J		${ }_{<0}^{<0.0066}$	U		${ }_{<0.00067}^{<0.006}$	U		${ }_{<}^{00.00059}$	U	
		VMP-4.5-091112	9/1/172012	20.0048 00.052	U		$\stackrel{<0.011}{<0.012}$	U		0.0016 <0.0091	J		${ }_{\text {co. }}^{0.0039}$	U		${ }_{0}^{0.0026}$	J		${ }_{0}^{0.0022}$	J		${ }_{<0.0061}^{20.0057}$	U		${ }^{20.00057}$	U		${ }^{20.0006}$	U	
		VMP-4-5-092712	91272012	0.0007	J		<0.0097	U		<0.0076	U		<0.0076	U		<0.0076	J	U	0.0027	J		<0.0051	U		<0.0051	U		<0.005	U	
		VMP-10-5.080912	89912012	0.0011	J		<0.007	U		<0.0055	J	U	0.0014	J		<0.0055	J	U	0.0024	J		<0.0037	U		0.00058	J		<0.0036	U	
		VMP-10-5.081512	${ }_{\text {81/512012 }}^{8(12012}$	${ }_{0}^{0.0017}$	J		<0.0074	U		${ }_{\text {coil }}^{20.0058}$	J	U	${ }^{0.00015}$	J		<0.0058 000091	J	U	${ }^{0.0035}$	J	J	<0.0039	U		\ll0.0039	U		-0.0038	U	
		VMP-10-5.083112	8 831/2012	${ }_{4} 0.005$	U		${ }^{20.012}$	U		<0.0087	U		<0.0087	U		${ }_{20.0087}$	J	U	0.0022	J	J	<0.0058	U		${ }^{20.0058}$	U		${ }^{20.0057}$	U	
VMP-10	5 H	VMP-10-5-090612	916/2012	0.0016	J		<0.012	U		<0.0093	J	U	<0.0093	J	U	<0.0093	J	U	0.0023	J		<0.0063	U		0.00094	J		<0.0062	U	
		VMP-10-5-091212	9/1212012	0.0021	J		<0.012	U		<0.0096	U		<0.0096	U		${ }^{<0.0096}$	J	U	${ }^{0.0024}$	J		<0.0064	U		<0.0064	U		${ }^{20.00063}$	U	
		VMP-10-5.091812	9/1812012	<0.005	U		<0.011	U		<0.0087	U		<0.0087	U		<0.0087	U		0.002	J		<0.0058	U		<0.0058	U		${ }^{<0.0057}$	U	
		VMP-10-5-092812	9/282012	<0.0054	U		<0.012	U		<0.0093	J	U	<0.0093	J	U	<0.0093	J	U	0.0028	J		<0.0063	U		<0.0063	U		<0.0062	U	
		VMP-10-5-092812-Dup	9/2812012	<0.0052	U		<0.012	U		<0.0091	J	U	<0.0091	J	U	<0.0091	J	U	0.0022	J		<0.0061	U		<0.0061	,		<0.006	U	
		VMP-11-5.080912	8992012	0.0047			<0.0073	U		<0.0057	U		0.0018	J		<0.0057	,	U	${ }^{0.0029}$	J		<0.0039	U		${ }_{0}^{0.00064}$	U			U	
		VMP-11-5.081512	$\frac{81 / 512012}{881 / 2012}$	${ }_{0}^{0.00011}$	J		$\xrightarrow{<0.0088}$	U		- ${ }_{\text {co.0069 }}^{0.0017}$	U		<0.0069	J	U	<0.0069 <0.0085	J	u	${ }_{0}^{0.0028}$	J	J	${ }_{<0}^{20.0046}$	U		${ }_{2}^{20.00046}$,		${ }^{20.0046}$	u	
		VMP-11-5-082112-Dup	82/1/2012	${ }_{<0} 2.0048$	U		${ }_{<0.011}^{20.011}$	U		<0.0085	u		${ }_{<0}$ <0.0085	U		<0.0085	J	U	0.0037	J		<0.0057	U		<0.0057	J	U	<0.0056	U	
vmp-11	5t	VMP-11-5.083112	${ }^{8 / 31 / 12012}$	${ }^{20.0048}$	U		${ }^{<0.011}$	U		<0.0085	U		<0.00085	U		<0.0085	J	U	${ }^{0.0034}$	J	J	<0.00077	U		${ }^{<0.00057}$	U		${ }^{20.00056}$	u	
UMP-11	5	VMP-11-5-090612	96/12012	0.0022	J		<0.012	U		<0.0091	J	U	<0.0091	J	U	<0.0091	J	U	${ }^{0.0022}$	J		<0.0061	U		<0.0066	U		${ }^{<0.006}$	U	
		VMP-11-5-991212	${ }^{9 / 1 / 212012}$	${ }^{0.0022}$,		${ }^{<0.011}$	"		<0.0089	,		<0.0089	J	U	${ }_{<0}^{0} 0.0089$	J	U	${ }^{0.0021}$	J		<0.006	U		${ }^{<0.0066}$	U		${ }^{20.00059}$	U	
		VMP-11-5-099812	9/1812012	0.0022	J		<0.011	U		<0.0086	U		<0.0086	,		${ }^{20.0086}$	U		0.0018	J		<0.00058	U		${ }^{<0.00058}$	U		${ }_{<0}^{20.00057}$	U	
		VMP-11-5-092812	${ }^{\text {9/882012 }}$	<0.0051 0.005	U		${ }_{<0 \text { <0.011 }}^{<0.011}$	U			U		${ }^{<0.0089} \times 0.0087$	U		<0.0089 <0.0087	U	U	${ }^{0.0028} 0$	J		${ }_{<0.0058}^{20.068}$	U			U		${ }^{20.0059} \times 20057$		
		VMP-13-5.080912	8992012	0.01			<0.0091	U		<0.0071	U		0.002	J		<0.0071	J	U	0.0036	J		<0.0048	U		<0.0048	U		<0.0047	U	
		VMP-13-5.081512	${ }^{81 / 1512012}$	<0.0042	U		<0.0094	U		<0.0074	U		<0.0074	U		<0.0074	J	U	${ }^{0.00033}$	J	J	<0.005	U		<0.005	U		${ }^{20.0049}$	U	
		VMP-13-5.082112	$\frac{81212012}{831 / 2012}$	${ }_{0}^{0.0016}$	J		\ll	U			J	U	<0.0087	J	u	<0.0087	J	U	${ }_{0}^{0.0038} 0$	J	J	<0.0058	U		-20.0058	U			U	
VMP-13	5tr	VMP-13-5.0906612	9/6/2012	<0.0042	U		<0.0093	U		<0.0073	J	U	<0.0073	J	U	<0.0073	J	U	0.003	J		<0.0049	U		<0.0049	U		<0.0048	U	
		VMP-13-5-091212	9/1212012	<0.0052	U		<0.012	,		<0.0091	U		<0.0091	J	U	<0.0091	J	U	0.0026	J		<0.0061	U		<0.0061	,		<0.006	U	
		VMP-13-5-091212-Dup	9/1212012	<0.0045	U		<0.01	U		<0.0079	U		<0.0079	J	U	<0.0079	J	U	0.0026	J		<0.0053	U		<0.0053	U		<0.0052	U	
		VMP-13-5-091812	9/18/2012	<0.0052	U		<0.012	U		<0.009	U		<0.009	U		0.0011	J		0.0018	J		<0.0061	U		<0.0061	U		${ }^{<0.0059}$	U	
		VMP-13-5-092812	$\frac{9 / 282012}{8882012}$	0.0017	U		$\frac{0.01}{\text { ¢ } 14}$	U		${ }^{0.0076}$	J		$\frac{0.01}{\text {-11 }}$			$\frac{0.012}{11}$			${ }_{0}^{0.0025}$	U		${ }^{0.0008}$	U		${ }^{20.0057}$	U		${ }^{00.0056}$	U	
		VMP-16-5-5.081412	$\frac{88820012}{8 / 142012}$	${ }_{0}^{\text {<0.0642 }}$	J	J	${ }_{<-0.961}^{<0.4}$	U		${ }_{\substack{<0.048 \\<0.1}}$	U		${ }_{\substack{<0.048 \\<0.1}}$	U		${ }_{<0 \text { <0.048 }}$	U		${ }_{<0.039}^{20.92}$	U		${ }_{<0}^{<0.732}$	U		${ }_{<0.032}^{0.082}$	U		${ }_{<0}^{<0.032}$	U	
		VMP-16-5.082012	812012012	${ }_{0} 0.57$		J	<0.2	U		$\stackrel{+1}{<0}$	-		${ }_{<0}<0.16$	U		<0.16	U		<0.13	U		<0.1	U		<0.1	U		<0.1	U	
VMP-16	5t	VMP-16-5.083012	${ }^{\text {8/30/2012 }}$ 9,	${ }_{<0.21}^{<5.1}$	U		¢	U		$\stackrel{-0.36}{<8.9}$	U		$\underset{\substack{<0.36 \\<8.9}}{\substack{\text { ce }}}$	U		$\frac{0.048}{2}$	J		$\stackrel{<0.3}{<7.3}$	U		$\stackrel{<0.24}{<6}$	U		<0.24 1.6 1	U		<	U	
		VMP-16-5-0991112	9/11/2012	<0.051	U		<0.11	U		${ }^{<0.089}$	U		$<{ }^{20.089}$	U		<0.089	U		<0.073	U		<0.06	U		$\stackrel{0}{ }<$	U		$\stackrel{0.059}{ }$	U	
		VMP-16-5-091712	911712012		U		<43	U		<34	U		<34	U		<34	U			U			U			U				
		VMP-16-5-092712	9/2772012	<0.0046	U		<0.01	U		<0.0081	U		<0.0081	U		<0.0081	J	U	0.0031	J		<0.0054	U		<0.0054	U		<0.0053	U	
		VMP-21-5-080812	8882012	${ }^{0.0016}$	J		${ }^{0.003}$	J		<0.0075	J	U	0.0018	J		<0.0075	J	U	${ }^{0.00033}$	J		<0.005	U		${ }^{<0.005}$	U		${ }^{20.0049}$	U	
		VMP-21-5.084412	$\frac{81412012}{8 / 1412012}$	<0.0033 <0.004	U		<0.0073 <0.009	U		- ${ }_{\text {< }}^{\text {<0.0057 }}$	u		${ }^{0.00014} \times 0.0071$	J		${ }_{\text {< }}^{\text {<0.0057 }}$ <0.071	u	U	0.0027 0.0039	J	J	${ }_{<0}^{<0.0039}$	U		<0.0039 00.0048	u		${ }^{20.0038}{ }_{0}^{20.046}$	u	
		VMP-21-5-082012	822012012	<0.0061	U		<0.014	U		<0.011	U		<0.011	J	U	<0.011	J	U	0.0034	J		<0.0072	U		<0.0072	u		<0.007	U	
VMP-21	5 H	VMP-21-5-083012	8, ${ }^{8 / 3012012}$	${ }_{0}^{0.000093}$	J		${ }_{0}^{<0.0012}$	U		$\underset{\substack{<0.0091 \\<0.0091}}{ }$	J	U	${ }_{<0}^{<0.0099}$	J	U	<0.0091 <0.0091	J	U	$\frac{0.0024}{0.0027}$	J	J	${ }_{<0.00601}^{20.001}$	U		${ }_{\text {coine }}^{20.0061}$	J		${ }_{<}^{<0.006}$	u	
		VMP-21-5-091112	9/11/2012	0.0015	,		${ }^{<0.011}$	U		<0.0085	U		<0.0085	J	U	<0.0085	J	U	0.0019	J		<0.0057	U		<0.0057	U		<0.0056	U	
		VMP-21-5-091712	$9117 / 2012$	<0.0049	U		<0.011	U		<0.0085	U		<0.0085	U		0.0013	J		0.0014	J		<0.0057	U		<0.0057	U		<0.0056		
		VMP-21-5-092712	9/27/2012	${ }^{20.0048}$	U		${ }^{<0.011}$	U		<0.0083	J	U	<0.0083	J	\cup	<0.0083	J	U	${ }^{0.0023}$	J		<0.0056	U		${ }^{00.0056}$	\cup		${ }^{20.0055}$	U	
		VMP-4-4-10-080812	$\frac{888 / 2012}{8 / 14 / 2012}$	co.0034 0.0018	U		$\stackrel{0.002}{ }$	U		<0.0059	J	U	0.0017	J		<0.0059 <0.006	J	U	${ }_{0}^{0.0026}{ }_{0}^{0.0035}$	J	J	${ }_{<0.0041}^{20.004}$	U		${ }^{0.00045}$	J		${ }_{<}^{20.00099}$	U	
		VMP-42-10-082012	8/2012012	<0.0054	U		<0.012	U		<0.0093	U		<0.0093	J	u	<0.0093	J	U	${ }^{0.003}$	J		<0.0063	U		<0.0083	U		<0.0062	U	
		VMP-42-10-083012	${ }^{8330120212}$	<0.0055	U		<0.012	U		<0.0096	,	U	<0.0096	,		0.0038	J		0.0034	J	J	<0.0064	U		<0.0064	U		${ }^{<0.0063}$	U	
vmp-42	10tt	VMP-42-10-090512	9/5/12012	${ }_{<0.0051}^{20.0052}$	U		${ }_{<0}^{0.0034}$	U		${ }_{\text {coin }}^{20.0099}$	J	U	${ }_{<0.0099}$	J	U	${ }_{<0}^{20.0099}$	J	U	${ }_{0}^{0.00025}$	u		${ }_{<0.0061}^{20.061}$	U		${ }_{0}^{0.00061}$	J	u	${ }_{<}^{<0.00069}$	u	
		VMP-42-10-091712	911712012	0.0057			<0.011	U		<0.0086	u		<0.0086	U		0.0016	J		0.0024	J		<0.0058	U		${ }^{20.0058}$	U		${ }^{20.0057}$	U	
		VMP-42-10-092712	97/772012	${ }_{\text {coin }}^{20.0046}$	u		$\stackrel{<0.01}{<0.0099}$	U		<0.00878	U	U	$\stackrel{\substack{<0.0081 \\<0.0078}}{ }$	U	U	$\stackrel{20.0081}{<0.0078}$	J	u	${ }_{0}^{0.0026}$	J		$\stackrel{\substack{<0.0054 \\<0.0052}}{ }$	U		-	U		-	U	

$J=$ Estimated detection
$U J=$ Estimated non-deteci
UJ $=$ Estimated non-detect

$J=$ Estimated detection
$U J=$ Estimated non-deteci
UJ $=$ Estimated non-detect

WeEk 1－8 Cumulative summary of soli vapor analytical results：vocs

Location	Depth	Sample ID	Sample Date	Ethylbenzene			4 －EEthyltoluene			Freon 113			Freon 114			Heptane			Hexachlorobutadiene			Hexane			2－Hexanone（Methyl N － $\mathrm{Butyl}^{\text {l }}$			Isopentane		
				Result $\left(\mathrm{mg} 9 / \mathrm{m}^{3}\right)$	Lab Quals	URS Quals	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	${ }_{2}^{\text {URS }}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	URS Quals	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\underset{\text { Quals }}{\text { Quts }}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \text { (mg/m } \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	Result $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} 9 \mathrm{~m}^{3}\right) \end{aligned}$	－ab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	URS Quals
VMP－4	5 t	VMP－4．5－080812	8882012	0.005			0.0025	J		＜0．0075	U		＜0．0068	U		0.012			＜0．042	U		0.0028	J		0.0043	J		0.006	J	
		VMP－4．5－081412	${ }_{\text {81／42012 }}$	${ }_{0}^{0.0034}$	J		${ }_{0}^{0.0018}$	J		$\underset{<0.01}{<0.012}$	U		$\underset{\substack{<0.0096 \\<0.01}}{\text { coid }}$	U		${ }^{0.0015}$	u		＜0．059	U		0.24 0.004	J		$\stackrel{<0.023}{<0.025}$	U		0.55 0.006	J	
		VMP－4．5－083012	833012012	0.0039	，		0.0067	J		<0.015	U		<0.014	U		＜0．0079	u		<0.082	U		0.0032	J		<0.032	U		0.032		
		VMP－4－5－090512	915／2012	0.0026	J		<0.0073	U		<0.011	U		$\bigcirc 0.01$	U		＜0．0061	U		<0.063	，		0.001	J		＜0．024	U		<0.017	U	
		VMP．－4－5－091112	${ }^{\text {9／1／1／2012 }}$	${ }_{0}^{0.0021}$	J		${ }_{\text {O }}^{0.0046}$	u		＜0．011	U		$\underset{\substack{<0.0098 \\<0.01}}{\text { coid }}$	U		0.0038 0.0032 	J		${ }_{<0.006}^{<0.065}$	U		${ }^{<0.005}$	U		${ }_{<0}^{<0.023}$	U		${ }^{0.03}$	U	
		VMP－4－5－0992712	9／2772012	${ }_{0}^{0.001}$	J		＜0．0062	U		${ }^{20.0096}$	U		＜0．0088	U		0.00096	J		<0.054	U		<0.0044	U		<0.021	U		<0.015	U	
vMP－10	5 t	VMP－10－5080912	89912012	＜0．004	U		＜0．0045	U		＜0．007	U		＜0．0064	U		0.0053			＜0．039	U		0.0044			<0.015	U		${ }^{0.00068}$	J	
		VMP－10－5081512	${ }^{81 / 1512012}$	＜0．0042	J	\cup	<0.0047	U		＜0．0074	U		<0.0067	U		${ }^{<0.004}$	U		<0.041	U		0.0013	J		${ }^{<0.016}$	U		${ }^{0.00058}$	J	
		VMP－10－5．082112	8 821／2012	0.00011	J		＜0．0074	U		<0.012	U		＜0．01	U		＜0．0062	U		＜0．065	U		0.0022	J		＜0．025	U		0.0073	J	
		VMP－10－5．083112	${ }^{8 / 3112012}$	0.0022	J		0.0038	J		<0.011	U		<0.01	U		＜0．0059	U		${ }^{<0.0062}$	u		＜0．0051	U		＜0．024	U		<0.017	U	
		VMP－10－5－90612	9，${ }^{\text {9／1／212012 }}$	${ }^{0.0028}$	J		${ }^{0.0024}{ }_{0}^{0.0034}$	J		${ }_{<}^{<0.012}$	U		$\stackrel{<0.011}{<0.011}$	U		${ }^{0.0031} 0$	J		${ }_{\substack{<0.066 \\<0.068}}$	U		${ }^{0.0003}$	J		＜0．025	U		${ }_{0}^{0.0077} 0$	J	
		VMP－10－5－091812	9／1882012	＜0．0063	U		<0.0071	U		<0.011	U		\bigcirc	U		0.0012	J		<0.062	U		0.0012	J		<0.024	U		<0.017	U	
		VMP－10－5－092812	9／2882012	<0.0088	U		0.002	J		＜0．012	U		＜0．011	U		0.0021	J		<0.066	，		0.0014	J		＜0．025	U		0.0046	J	
		VMP－10．5－092812－Dup	$\frac{9 / 28 / 2012}{89}$		U		${ }_{0}^{20.0074}$	U		${ }_{<0}^{<0.0012}$	U		${ }_{<0.001}^{<0.0067}$	U		${ }^{0.00028}$	，		${ }^{<0.0065}$	U		0.0019	J		${ }^{<0.025}$	U		＜0．018	U	
vMP－11	5 th	VMP－ $11-5.808912$	8／19／2012	${ }_{<0.0041}^{20.005}$	J	U	$\xrightarrow{20.0047}$	U		20.0073 00.0088	U		${ }_{<0.0007}^{<0.008}$	U		${ }^{0.0 .00047}$	U		${ }_{<0}^{<0.049}$	U		－0．0028	J		${ }_{<0}^{<0.016}$	U		－0．0089	J	
		VMP－11－5－0822112	8 821／2012	<0.0061	U		<0.0069	U		<0.011	u		<0.0098	U		<0.0058	U		<0.06	U		<0.005	J	u	<0.023	U		0.0044	J	
		WMP－11－5－0822112－Dup	${ }^{821 / 12012}$	＜0．0061	U		<0.0069	U		<0.011	U		<0.0098	U		0.0015	J		<0.06	U		0.0026	J		<0.023	U		0.0048	J	
		VMP－11－5－083112	8 83112012	0.0023	J		0.0026	J		<0.011	U		<0.0098	U		0.0019	J		<0.06	U		<0.005	U		<0.023	U		<0.017	U	
		VMP－11－5－090612	9／6／12012	${ }_{\text {coiol }}^{0.0026}$	u		${ }_{<}^{20.0074}$	U		$\underset{<0.012}{<0.011}$	U		＜0．01	U		－	u		0065	u		＜0．0053	U		0025	U		0.023 0.0069		
		VMP－${ }^{\text {WMP }-1-5-5-09121812}$	91／822012	${ }_{0}^{20.00064}$	J			J		${ }_{<0}^{<0.011}$	u		${ }_{<-20.01}^{<0.01}$	U		${ }_{0}^{20.0026}$	J		$<_{<0.061}^{<0.031}$	U		${ }_{0}^{20.00057}$	J		${ }_{<0}^{<0.023}$	U		${ }_{0}^{0.0069}$	J	
		VMP－11－5－092812	9／882012	<0.0064	U		＜0．0073	U		<0.011	U		<0.01	U		<0.0061	U		<0.063	U		0.0016	J		＜0．024	U		<0.017	U	
		VMP－11－5－092812－Dup	9／28／2012		U		${ }^{20.0071}$	U		＜0．011	U		${ }_{\text {coiol }}^{<0.0082}$	U		＜0．0059	U		＜0．062	U		$\stackrel{<0.0051}{0.0025}$	U		$\underset{<}{<0.024}$	U		${ }^{0.0064}$	J	
VMP－13	5 H	VMMP－13－5．－08991512	${ }^{8,1915 / 20012}$	${ }_{<0.0053}^{20.005}$	U	U	${ }_{0}^{0.0000}$	u		${ }_{<00.0094}^{<0.09}$	u		${ }_{2}^{20.0086}$	U		${ }^{20.0016}$	J		${ }_{<0}$	U		${ }_{\text {coiol }}$	U		${ }_{<0}$	U		${ }_{0}^{0.00059}$	J	
		VMP－13－5．－082112	82／1／2012	${ }_{<0} 2.00063$	U		${ }^{20.0071}$	U		$\stackrel{20.011}{ }$	U		$\stackrel{20.01}{<0.01}$	U		0.0044	J		<0.062	U		0.0036	J		<0.024	U		0.02		
		VMP－13－5．083112	883112012	0.0024	J		<0.0071	U		<0.011	U		<0.01	U		0.0033	J		<0.062	U		0.0023	J		<0.024	U		0.0043	J	
		VMP－13－5．090612	9612012	＜0．0052	J	U	0.0029	，		＜0．0093	U		＜0．0084	U		＜0．005	U		<0.052	U		0.0013	J		${ }^{<0.02}$	U		＜0．014	U	
		VMP－13－5．－991212	99／12／2012	0.0006 0.0015	J		＜2．0074 <0.0065 0	U		$\underset{<-0.012}{<0.01}$	U		${ }_{<0}^{<0.0092}$	U		${ }_{\substack{<0.0062 \\<0.0054}}^{\text {coin }}$	U		${ }_{<0}^{<0.0055}$	u		－0．0015	J		$\underset{<0.025}{<0.022}$	U		$\stackrel{<0.018}{0.004}$	U	
		VMPP－13－5－0．091812	9／1820012	${ }_{0}^{0.00065}$	u		${ }_{2}^{20.00065}$	u		${ }_{<0.011}^{<0.011}$	u		$\stackrel{<2009}{<0.01}$	U		${ }_{0}^{20.0019}$	，		$<_{<0.064}^{<0.066}$	U		0.0016	J		${ }_{<0}^{<0.024}$	U		\bigcirc	U	
		VMP－13－5．092812	9／2882012	0.0017	J		0.0031	，		<0.011	U		<0.0098	U		0.0043	J		$\bigcirc 0.06$	U		0.003	J		<0.023	U		0.005	，	
VMP－16	5 t	VMP－16－5．080812	${ }^{88182012}$	${ }^{<0.81}$	U		<0.92	U		${ }^{11.4}$	U		<1.3	U		${ }^{<0.77}$	U		${ }^{<8}$	U		${ }^{<0.66}$	，		＜3．1	U		3.4		
		VMP－16－5．081412	${ }^{81 / 412012}$	＜0．034	\cup		＜0．039	U		${ }^{<0.061}$	U		＜0．056	\checkmark		＜0．032	U		＜0．34	\checkmark		<0.028	U		${ }^{<0.13}$	U		${ }^{0.085}$	J	J
		VMP－16－5．082012	8／2012012	${ }^{<0.11}$	U		＜0．13	U		${ }^{<0.2}$	U		＜0．18	U		＜0．11	U		＜1．1	U		＜0．091	U		＜0．42	U		9.9		J
		VMP－16－5－083012		<0.26	U		＜0．3	u		<0.46	U		<0.42	U		＜0．25	U		<2.6	U		<0.21	U		<0.99	U		1.2		
		VMP－16－5．－90512	9，5／20012	$\stackrel{1.8}{<0.064}$	J		${ }_{<0.07 .3}^{<-0.73}$	U		$\stackrel{<11}{<0.11}$	U		－	U		${ }_{<0.061}^{<0.1}$	U			U		${ }_{<0}^{<0.052}$	U			U		1600 0.19		
		VMP－16－5．091712	911712012	${ }^{24}$	U		${ }^{288}$	U		<43	U		${ }^{<39}$	U		＜23	U		<240	U		＜20	，		－92	U		1500		
	5 tt	VMPP－16－5－092712	91／772012	${ }_{0}^{0.0004}$	U		${ }_{<0 \text { e0．0066 }}^{20.061}$	U		$\stackrel{<0.01}{<0.0995}$	U			U		${ }_{\text {＜}}^{<0.0055}$	U		$\underset{<0.057}{<0.057}$	U		＜0．0047	U		${ }_{<0}^{<0.022}$	U		${ }^{0.0288}$		
vMP－21		VMP－21－5－081412	${ }^{81 / 4412012}$	＜0．0041	U		0.017			${ }^{20.0073}$	U		<0.0007	U		${ }^{0.0024}$	J		<0.041	U		0.00098	J		<0.016	U		<0.011	U	
		WMP－21－5－081412－Dup	${ }^{81 / 41 / 2012}$	${ }^{00.0051}$	U		0.018			<0.009	U		＜0．0082	U		0.0055			<0.05	U		<0.0041	U		<0.019	U		<0.014	U	
		VMP－21－5．－882012	${ }^{812 / 2012012}$	${ }^{0.0014}$	J		${ }^{0.0022}$	J		－	U		001200	U		0.002 0.0011 0	J		${ }_{<0}^{<0.076}$	U		${ }_{<000053}^{<0.0062}$	J	U	${ }_{<0}^{<0.029}$	U		${ }_{<0}^{<0.021}$		
		VMP－21－5－090512	${ }^{9} 9512012$	${ }_{<0.0066}$	J	U	0.0021	J		＜0．012	U		$\stackrel{-0.01}{ }$	U		${ }_{0}^{0.0027}$	J		$<_{<0.065}$	U		${ }^{\text {¢ }} 0$	J		${ }^{20.025}$	U		0．0075	J	
		VMP－21－5－091112	9／11／2012	0.003	J		0.0055	J		<0.011	U		＜0．0098	U		0.0024	J		＜0．06	U		0.0016	J		<0.023	U		0.0062	J	
		VMP－21－5－091712	911712012	0.0017	J		0.0018	J		<0.011	U		＜0．0099	U		0.0025	J		<0.06	U		0.00098	J		＜0．023	U		<0.017	U	
		VMP－21－5－092712	$\frac{9 / 27 / 2012}{8882012}$	${ }^{0.0018}$	J		${ }^{0.0023}$	J		－${ }_{-0.01}^{000075}$	U		＜0．0096	U		${ }^{<0.0056} 0$	U		＜0．059	U		${ }^{0.000052}$	J		${ }^{<0.023}$	U		＜0．016	U	
vMP－42	10tt	VMP－42－10－081412	8／14／2012	${ }_{20.0044}$	J	U	0.0021	J		${ }^{20.0077}$	U		$\stackrel{\text {＜0007 }}{ }$	U		${ }^{0.0036}$	J		<0.043	u		0.00014	J		${ }_{<0}^{00.016}$	U		<0.012	U	
		VMP－42－10－082012	8／2012012	0.0027	J		0.0042	J		<0.012	u		<0.011	U		0.0035	J		<0.066	U		0.0025	J		<0.025	U		0.008	J	
		VMP－42－10．083012	${ }^{813012012}$	${ }^{0.0015}$	J		${ }^{0.0056}$	J		＜0．012	U		＜0．011	U		0.0092 00068			${ }_{<0}^{<0.0088}$	U		${ }^{0.0036}$	J		$\underset{\substack{<0.026 \\<0.024}}{ }$	U		＜－0．019		
		VMP－42－10－091112	9／11／2012	0.004	J		0.0046	J		<0.012	U		<0.01	U		0.0039	J		<0.065	U		<0.0053	U		<0.025	U		0.0065	J	
		VMP－4－2－10－091712	${ }_{\text {9／17／2012 }}$	${ }^{0.0023}$	J		$\begin{array}{r}0.0025 \\ \hline 80.0066 \\ \hline\end{array}$	u		$0011 c001$	U		${ }^{<0.01}$	U		－	U		${ }_{<0}^{<0.061}$	U		0．00089	J		${ }_{<0}^{<0.023}$	U		${ }^{0.021}$		
		VMP－42－10－0927712－Dup	9／27／2012	＜0．0056	U		<0.0063	U		＜0．0099	U		$\stackrel{4}{ }<$	U		0.00073	J		＜0．055	U		＜0．0045	U		<0.021	U		<0.015	U	

$J=$ Estimated detection
$U J=$ Estimated non－deteci
$\mathrm{UJ}=$ Estimated non－detect

				Isopropy	ylbenzene (umene)	4-Methyl	2-pentanon	(Methy	Methyl ter	t-Butyl Eth	(MTBE		2-Propanol			Propylbenze			Propylene			Styrene		1,1,2,2,	Tetrachloro	thane		rachloroeth	
Location	Depth	Sample ID	Sample Date	$\begin{array}{\|l\|l} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	Lab Quals	$\begin{aligned} & \text { URI } \\ & \text { anals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\begin{array}{l} \text { (mg } \left.9 / m^{3}\right) \end{array}\right. \end{aligned}$	Lab Quals	$\begin{aligned} & \text { Quas } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	Result $\left(\mathrm{mg} 9 / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Result } \\ \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Uuals } \end{aligned}$
		VMP-4.5-080812	8182012	0.07			0.17			<0.0035	U		0.03			0.0016	J		<0.0067	U		0.0038	J		<0.0067	U		<0.0066	J	U
		VMP--4.5-081412	${ }^{8 / 14 / 2012}$	0.02 0.14			0.08 0.27			${ }_{+0.005}^{<0.0055}$	U		0.024 0.044			${ }^{<0.00068}{ }_{0}$	U		$\stackrel{<0.0095}{<0.01}$	U		${ }^{0.00019} 0$	J		$\stackrel{<0.0095}{<0.01}$	U		$\stackrel{\text { co.0094 }}{<0.01}$	J	U
VMP-4	5 tt	VMP-4.5-083012	8/30/2012	0.17			0.33			<0.007	U		0.086			0.0024	J		<0.013	U		0.0044	,		<0.013	U		0.0031	J	
vmp-4	5 H	VMP-4.5-090512	915/2012	0.0054	J		0.037			<0.0053	U		${ }^{0.04}$			<0.0073	U		${ }^{<0.01}$	U		${ }^{<0.0063}$	U		${ }^{<0.01}$	U		${ }^{<0.01}$	U	
		VMP-4.5-099112	${ }^{9 / 1112012}$	${ }^{0.0038}$			-0.27			$\begin{array}{r}<0.0051 \\ <0.0055 \\ \hline\end{array}$	U		0	J		${ }^{0.00017}$	J		0.0047 0.01 8	J		-0.0029	u		<0.0097	U		-0.048	U	
		VMP-4-5-092712	9/27/2012	0.018			0.076			<0.0045	u		0.0067	J		<0.0062	U		0.0032	J		$<{ }^{20.0054}$	u		<0.0086	U		<0.0085	U	
		VMP-10-5.080912	89912012	<0.0045	U		<0.0037	U		<0.0033	U		0.0027	J		<0.0045	U		<0.0063	U		<0.0039	U		<0.0063	U		<0.0062	U	
		VMP-10-5.081512	81/5/2012	<0.0047	U		<0.004	U		<0.0035	U		0.0015	J		<0.0047	U		<0.0066	U		<0.0041	U		<0.0066	U		<0.0065	U	
		VMP-10-5.082112	821/2012	<0.0074	U		0.0027	J		<0.0055	U		<0.015	U		<0.0074	U		<0.01	U		<0.0064	U		<0.01	U		<0.01	U	
		VMP-10-5.0833112	8/31/2012	0.065			0.11			<0.0052	U		0.023			0.0012	J		<0.0099	U		0.0018	J		<0.0099	U		<0.0098	U	
VMP-10	5 tt	VMP-10-5.090612	996/2012	0.077			${ }^{0.16}$			<0.0056	U		0.057			0.0014	J		<0.011	U		0.0017	J		<0.011	U		0.0063	J	
		VMP-10-5.091212	9/12/2012	<0.0078	U		<0.0065	U		<0.0058	U		<0.016	U		<0.0078	U		<0.011	U		<0.0068	U		0.0014	J		<0.011	J	U
		VMP-1-5-5-91812	91/182012	${ }_{\text {colo }}^{20.0071}$	U		${ }_{<0}^{<0.00059}$	U		<0.0052	U		<0.014	U		<0.0071	U	U	<0.0099 0.0029	U		${ }^{<20.0062}$	u		${ }_{\text {co.0099 }}^{0.0015}$	U		${ }_{\text {< }}^{\substack{0.00988 \\ 0.0034}}$	U	
		VMP-10-5-092812-Dup	$92 / 882012$	${ }^{20.0074}$,		<0.0062	U		<0.0055	U		0.0059	J		<0.0074	J	U	${ }^{0.00298}$	J		${ }^{20.00664}$	U			U		0.003	J	
		VMP-11-5.080912	89912012	0.00074	J		<0.0039	U		<0.0034	U		${ }_{0}^{0.00053}$	J		0.00081	J		${ }^{20.0066}$	U		${ }^{<0.00041}$	U		${ }^{20.0006}$	U		${ }^{20.0065}$	J	U
		VMP-11-5-082112	8151012	${ }_{0}^{20.00096}$	J		${ }_{20}^{20.0058}$	u		${ }_{2}^{20.00551}$	U		${ }_{0}^{0.0028}$	u		${ }^{<0.00069}$	u		${ }_{20}^{20.00097}$	U		${ }_{<0}^{<0.0006}$	U		${ }_{<0}<0.0097$	u		${ }_{<0}^{20.0096}$	J	U
		VMP-11-5-082112-Dup	812112012	<0.0069	U		<0.0058	U		<0.0051	U		0.0023	J		<0.0069	U		0.0021	J		<0.006	U		0.0013	,		<0.0096	U	
VMP-11	5 tt	VMP-11-5-083112	$8 / 3112012$	0.061			0.14			<0.0051	U		0.035			0.0016	,		<0.0097	U		0.0014	J		<0.0097	U		<0.0096	U	
	54	VMP-11-5-090612	${ }^{\text {9/6/2012 }}$	${ }^{0.055}$			${ }_{0}^{0.0 .14}$			${ }_{\text {< }}^{20.00555}$	u		0.066 0.0044			${ }_{\text {co. } 0.0014}$	J		-	U			u		<0.01	u		${ }^{0.003}$	J	
		VMP-11-5-991212	9/1/22012	${ }^{0.0007}$	J		0.0064 0.052			<0.0053	U		$\frac{0.0044}{0.012}$	J		<0.0073	J		${ }_{<0.0098}^{<0.01}$	U		${ }_{<0.00063}^{20.061}$	u		$\stackrel{<0.009}{<0.0098}$	U		${ }^{0.0096}$	U	
		VMP-11-5.092812	9/882012	<0.0073	U		<0.0061	U		<0.0053	U		0.0026	J		<0.0073	U		0.0026	J		<0.0063	U		<0.01	U		<0.01	U	
		VMP-11-5-092812-Dup	9/28/2012	20.0071	U			U			U		0.0027	J		<0.0071	U		<0.0099	U			U		<0.0099	U		<0.0098	U	
		VMP-13-5.080912	8972012	-0.00088	U		<0.0048	U		<0.0042	U		${ }^{0.0092}$	J		<0.0058	U		<0.0081	,		<0.005	U		${ }^{0.0014}$	J		<0.008	U	
		VMPP-13-5-5-085112	${ }_{8}^{8121 / 2012}$	${ }^{<0.0006}$	J		$<{ }^{<0.0059}$	U		${ }_{<0}^{20.0054}$	U		${ }_{<0}^{<0.014}$	U		${ }_{0}^{20.000611}$	J		${ }_{0} 0.0025$	J		${ }_{<0}^{20.00062}$	U		<0.0099	U		${ }_{<0.00898}^{20.008}$	U	
		VMP-13-5.083112	$8 / 3112012$	0.074			0.14			<0.0052	U		0.032			0.0011	J		<0.0099	U		0.0017	J		<0.0099	U		<0.0098	U	
VMP-13	5 tt	VMP-13-5.090612	${ }^{9 / 6 / 12012}$	${ }^{0.0078}$						[0.0044	u		0.041 0.0027			${ }^{0.0011}$	u		20.0083 0.0051	U		${ }^{0.00017}$	u		$\underset{\substack{<0.0083 \\<0.01}}{\substack{\text { cose }}}$	U		${ }^{00.0082}$	U	
		VMP-13-5-0991212	9/1/22012	${ }^{20.0074}$	U		$\stackrel{<0.0062}{0.002}$	J		${ }_{<0 \text { <0.0055 }}^{20.048}$	U		${ }^{0.0027} 0$	J		${ }_{\text {<0.0074 }}^{<0.0065}$	U		${ }^{0.0051} 0$	J		${ }^{20.0064}$	u		$\stackrel{<0.0091}{ }$	U		${ }_{<0.009}^{20.0}$	J	U
		VMP-13-5.091812	9/182012	<0.0074	U		<0.0061	U		<0.0054	U		<0.015	U		<0.0074	U		<0.01	U		<0.0064	U		<0.01	U		<0.01	U	
		VMP-13-5-092812	$\frac{91882012}{88 / 2012}$	${ }_{0}^{0.0012}$	J		${ }_{\text {0.0027 }}^{00.77}$	U		$\stackrel{<0.0051}{<0.67}$	U		${ }_{0}^{0.0029}$	J		${ }_{<0}^{<0.0069}$	J	u	${ }_{0}^{0.0069}$	U		${ }_{\text {0.0027 }}^{0.8}$	J		$\stackrel{<0.0097}{<1.3}$	J	\cup	${ }^{0.0064}$	J	
		VMP-16-5.-081412	81/14/2012	${ }^{0.019}$,	J	0.09		J	<0.029	U		0.033	J	J	${ }_{<0}<0.039$	U		${ }^{20.055}$	U		${ }^{<0.034}$	U		$<^{<0.054}$	U		<0.054		
		VMP-16-5.082012	8/20/2012	0.049	J	J	0.16		J	<0.093	U		<0.25	u		<0.13	U		<0.18	U		<0.11	U		<0.18	U		<0.18	U	
VMP-16	5 t	VMP-16-5.083012	8/30/2012	0.084	J		<0.25	u		0.029	J		<0.59	U		<0.3	U		<0.42	U		<0.26	U		<0.42	U		<0.41	U	
	54	VMP-16-5-090512	9,5/2012	${ }^{<7.3}$	U		<6.1	\cup		0.48	J		2.38	J		<7.3	U		<10	U		${ }^{1.6}$	J		<10	U		<10	U	
		VMP-16-5-0991112	91/1/2012	${ }_{0}^{0.023}$	J		${ }^{0.18}$			${ }^{20.053}$	U		${ }_{0}^{0.039}$	J		${ }^{<0.073}$	U		${ }^{<0.1}$	U		$\stackrel{\text { co.063 }}{\substack{\text { 24 }}}$	U		$\stackrel{<0.1}{<39}$	U		$\stackrel{<0.1}{<38}$	U	
		VMP-16-5-9971712	91/772012	¢28 0.028	U		$\begin{array}{r}\text { ¢23 } \\ 0.1 \\ \hline\end{array}$	u		${ }_{<020}{ }^{20.048}$	U		${ }_{\text {¢ }}^{\text {< } 56067}$	U		${ }_{0}^{2.0046}$	U			J			U		${ }_{<0.0092}^{<0}$	U		¢ 38 0.0025	J	
		VMP-21-5-080812	88820012	<0.0061	U		${ }^{0.003}$	J		<0.0045	U		0.00058	J		0.00088	J		0.0045	J		<0.0053	U		0.0014	J		<0.0084	,	U
		VMP-21-5-081412	${ }_{\text {8/1/4/2012 }}$	${ }_{<0}^{20.00077}$	J	U		u		<	U		${ }_{<0.0094}^{<0.012}$	u		0.004 0.0045	J		${ }_{\substack{00.0066 \\<0.0081}}$	U		${ }_{<0.0041}^{<0.005}$	U		<0.0066	u		$\begin{array}{r}<0.0065 \\ <0.008 \\ \hline\end{array}$	J	U
		VMP-21-5.082012	812012012	0.058			0.12			${ }^{2} 0.00664$	U		0.014	J		${ }_{0}^{0.0014}$	J		<0.012	U		${ }^{20.0075}$	U		<0.012	U		0.0052	J	
VMP-21	5 tt	VMP-21-5-083012	81300/2012	0.064			0.15			${ }^{<0.00055}$	U		${ }^{0.041}$			${ }^{0.0018}$	J		${ }^{<0.01}$	U		${ }^{0.0023}$	J		${ }^{<0.01}$	U		${ }^{0.0035}$	J	
		VMP-21-5-909512	9, ${ }_{\text {9/5/1/2012 }}$	0.054			- 0.25			<0.0055 <0.0051	U		0.046 0.046			0.0011 <0.0069	J	U	${ }_{<0}^{<0.0097}$	U		0.0022	J		${ }_{\text {<0.0097 }}$	U		0.0032 0.0096	J	U
		VMP-21-5-091712	9/17/12012	0.012			${ }_{0}^{0.097}$			${ }_{\text {< }}^{20.00551}$	U		0.0011	J		${ }_{4} \times 0.0007$	U		${ }_{0} 0.0022$	J		$¢_{<0.006}$	U		${ }_{0} 0.0014$	J		${ }_{0} 0.0027$	J	
		VMP-21-5-092712	9/2772012	0.032			0.13			<0.005	U		0.049			0.0012	J		0.0031	J		${ }^{0.00013}$	J		<0.0095	U		0.0044	J	
		VMP-42-10-080812	- ${ }^{8 / 8 / 21 / 2012}$	0.079 0.025			${ }_{0}^{0.15}$			${ }^{<0.0035}$	U		$\stackrel{0.03}{0.035}$			$\stackrel{0.0029}{ }$	J		${ }_{\text {0, }}^{0.0083}$	U		${ }^{0.00037}$	J		${ }_{<0.0069}^{20.006}$	u		${ }_{<0.0068}^{20.0068}$	u	U
		VMP-42-10-082012	8/20/2012	0.075			0.18			<0.0056	U		0.028			0.0017	J		<0.011	u		0.003	J		<0.011	U		<0.01	,	
VMP-42	10 tt	VMP-42-10-083012	${ }^{8 / 31 / 2012}$	0.16 0.042			0.31 0.19			${ }_{\text {< }}^{20.0058}$	U		-0.084	J		O.0015	J		$\underset{\substack{<0.011 \\<0.01}}{\text { a }}$	U		0.0032 0.0023	J		$\underset{<-0.011}{<0.01}$	U		-	U	
		VMP-42-10-091112	9/1/1/2012	0.04			0.27			<0.0055	U		0.05			0.0015	J		<0.01	U		0.0024	J		0.0038	J		<0.01	J	u
		VMP-42-10-091712	9/1772012	${ }^{0.0013}$			${ }^{0.071}$			${ }^{<0.00052}$	U		0.011	${ }^{\text {J }}$		0.0026	J	U	${ }^{20.0098}$	U		${ }^{20.00061}$	U		<0.0098	U		${ }^{20.0097}$	U	
		VMP-42-10-0997712-Dup	${ }^{\text {9/277/2012 }}$	0.0028			0.061			<0.00046	U		0.00036	J		${ }_{<0}<0.0063$	U		<20.0089	U		$\stackrel{<20.0055}{20}$	U		${ }_{<0}<0.00088$	U		${ }^{0} 0.00088$	U	

$J=$ Estimated detection
$\mathrm{UJ}=$ EStimated non-diete
$\mathrm{UJ}=$ Estimated non-detect

$J=$ Estimated detection
$U=$ Estimated non-detect
$\mathrm{JJ}=$ Estimated non-detect

Week 1-8 cumulative summary of soil vapor analytical results: vocs

Location	Depth	Sample ID	Sample Date	2,2,4-4.-Timethylpentane			Vinyl acetate			Vinyl Bromide			Vinyl chloride			m,p-Xylene			o-xylenes		
				$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	Lab Quals	$\underset{\text { Quals }}{\text { Quas }}$	Result $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \left(m g / m^{3}\right) \end{aligned}$	Lab Quals	URS Quals	Result $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	Lab Quals	URS Quals
VMP-4	5 t	VMP-4.5-080812	${ }^{81812012}$	0.025			<0.014	U		<0.017	U		<0.0025	U		0.014			0.0048		
		VMP.-4.-081412	${ }^{8 / 14 / 2012}$	${ }^{0.052}$			<0.019	U		-	U		${ }_{0}^{20.0035}$	U		${ }^{0.0078}$			${ }_{0}^{0.0024}$	J	
		VMP-4.-5-082012	${ }^{8 / 2012012}$	0.0065	J		${ }^{<0.021}$	U		${ }^{<0.026}$	U		${ }^{20.0039}$	U		${ }^{0.00068}$			0.003	J	
		VMP-4.5-083012	${ }^{8 / 38012012}$	0.0035	J		${ }^{<0.027}$	U		<0.034	U		<0.0049	U		0.011			0.0043	J	
		VMP-4-5-090512	${ }^{951 / 2012}$	0.0046	J		<0.021	U		<0.026	U		<0.0038	U		0.0044	J		0.002	J	
		VMP-4-5-091112	9/11/2012	0.023			<0.02	U		<0.025	U		<0.0036	U		0.007			0.0024	J	
		VMP-4-5-091712	9/1772012	0.0041	J		<0.021	U		<0.026	U		<0.0039	U		0.0033	J		0.0017	J	
		VMP-4.5-092712	9/2712012	0.019			<0.018	U		<0.022	U		<0.0032	U		0.0024	J		<0.0055	U	
VMP-10	5 t	VMP-10-5.080912	899/2012	0.011			<0.013	U		<0.016	U		20.0023	U		<0.004	J	U	<0.004	U	
		VMP-10-5.081512	${ }^{8 / 1515012}$	${ }^{0.0014}$	J		<0.014	U		<0.017	U		${ }^{20.0025}$	U						U	
		WMP-10-5-082112	${ }^{8121 / 2012}$	0.0013			<0.021	U		<0.026	U		${ }^{20.0039}$			${ }^{20.0066}$	J	U	${ }^{20.0066}$	U	
		WMP-10.5.083112	8/31/2012	0.00094	J		${ }^{<0.02}$	U		${ }^{<0.0025}$	U		${ }^{20.0037}$	U		${ }^{0.0038}$	J		${ }^{0.0015}$	J	
		VMP-10-5.090612	-9/6/2012	${ }^{0.0023}$			< ${ }_{<0.022}^{<0.022}$	U		$\underset{<-0.027}{\ll 028}$	U		${ }^{<20.004}$	U		${ }_{0}^{0.00097}$	J		${ }_{0}^{0.0037}$	J	
		VMP-10-5091812	9/1882012	0.0071			<0.02	U		<0.025	U		<0.0037	U		${ }^{<0.0063}$	U		<0.0063	U	
		VMP-10-5-092812	9/88/2012	<0.0073	U		<0.022	U		<0.027	U		<0.004	U		0.0013	J		<0.0068	U	
		VMP-10-5-092812-Dup	9/28/2012	<0.0071	U		<0.021	U		<0.026	U		<0.0039	,		<0.0066	U		<0.0066	U	
VMP-11	5 H	VMP-11-5.080912	899/2012	0.027			<0.013	,		<0.017	U		<0.0024	U		<0.0041		U	<0.0041	U	
		VMP-11-5081512	$81 / 512012$	0.0034	J		<0.016	U		<0.02	U		<0.0029	U		<0.005	U		<0.005	U	
		VMP-11-5-082112	$88 / 21 / 2012$	0.0017	J		<0.02	U		<0.025	U			U			U		<0.0061	U	
		WMP-11-5-082112-Dup	$\frac{82112012}{8312012}$	${ }^{0.0016}$	J		-	U			U		${ }^{20.0036}$,		${ }_{0}^{20.0001}$,			U	
		VMP-11-5-83712	${ }^{83 / 1 / 2012}$	${ }_{0}^{0.13}$	J		$\underset{<-0.021}{<0}$	u		${ }_{\ll 0.026}^{<0}$	U		${ }_{<0}^{20.0039}$	U		${ }_{0}^{0.0051}$	J		${ }_{0}^{0.0021}$	J	
		VMP-11-5-091212	9,1212012	${ }_{0}^{0.023}$			${ }_{<0.021}^{<0.021}$	U		${ }_{\substack{<0.026}}^{\text {<0.026 }}$	U		${ }_{<0.0038}^{20.0039}$	u		${ }_{0}^{0.00014}$	J		${ }_{<0.00064}^{0.0021}$	U	
		VMP-11-5-091812	9/18/2012	0.083			<0.02	U		<0.025	U		<0.0036	U		0.0035	J		0.0014	J	
		VMP-11-5-092812	9/88/2012	0.012			<0.021	U		<0.026	U		<0.0038	U		<0.0064	U		<0.0064	U	
		VMP-11-5-092812-Dup	9/2882012	0.0023	J		<0.02	U		<0.025	+		<0.0037	+		${ }^{20.0063}$	U		<0.0063	U	
VMP-13	5 H	VMP-13-5.080912	8992012	0.018			<0.017	U		<0.021	U		<0.003	U		<0.0051	J	U	<0.0051	U	
		VMP-13-5-081512	${ }^{81 / 1512012}$	0.0073			<0.017	U		${ }_{<0.022}$	U		${ }^{20.0031}$	U		${ }^{20.0053}$	U		${ }^{<0.00053}$	U	
		VMP-13-5.-083112	${ }^{8 / 3112012}$	${ }_{0}^{0.024}$			$\stackrel{<0.02}{<0.02}$	u		$\stackrel{<0.025}{<0.025}$	U		${ }_{<0.0037}^{20.0037}$	u		${ }^{20.00033}$	J		${ }^{20.00063}$	J	
		VMP-13-5-0906612	966/2012	0.0092			<0.017	U		$\stackrel{<0}{ }$	U		${ }^{20.0031}$	U		0.0053			0.0011	J	
		VMP-13-5-091212	9/12/2012	0.0039	J		<0.021	U		<0.026	U		<0.0039	U		<0.0066	U		<0.0066	U	
		VMP-13-5-091212-Dup	9/1212012	<0.0062	J	U	<0.018	U		${ }^{<0.023}$	U		<0.0034	U		${ }^{20.0057}$	U		<0.0057	U	
		VMP-13-5.091812	9/18/2012	0.0095			<0.021	U		<0.026	U		20.0038	U		<0.0065	U		<0.0065	U	
		VMP-13-5092812	9/2882012	0.021			<0.02	U		<0.025	U		<0.0036	U		0.0022	J		0.0012	J	
VMP-16	5 H	VMP-16-5.588812	$\frac{888 / 2012}{8142012}$	$\frac{160}{24}$			$\underset{\substack{<2.6 \\<0.11}}{ }$	U		$\underset{\substack{<3.3 \\<0.14}}{ }$	U		- <0.48	U		${ }^{0.144}$	J		${ }_{<0}^{<0.81}$	U u	
		VMP-16-5.081412	${ }^{81 / 4 / 2012}$	$\stackrel{24}{220}$			$\underset{\substack{<0.11 \\<0.36}}{\substack{\text { che }}}$	U		<-	U		${ }_{<0.066}^{20.06}$	u		${ }_{\text {< }}^{\text {<0.034 }}$	J	J	$\stackrel{<20.034}{<0.11}$	-	
		VMP-16-5.083012	$8 / 3012012$	48			<0.85	U		<1	U		${ }^{20.15}$	U		0.12	J		<0.26	U	
		VMP-16-5.090912	${ }^{\text {9,5/2012 }}$	8200 28			${ }^{<21}$	U		${ }_{\substack{<26 \\<026}}$	U		-	U		$\xrightarrow{2.6}$	J		${ }_{-1.7}^{20.064}$	J	
		VMP-16-5-0991712	9/17/2012	${ }^{22} 800$			$\stackrel{<80}{<80}$	U		$\stackrel{<}{<0.29}$	U			U		-	U		${ }_{<} 2.24$	U	
		VMP-16-5-092712	9/2712012	2.2			<0.019	U		<0.024	U		<0.0034	U		0.0044	J		0.0014	,	
VMP-21	5 tt	VMP-21-5.080812	${ }^{88 / 82012}$	0.003	J		<0.018	U		${ }^{<0.022}$	U		<0.0032	U		<0.0054	J	U	<0.0054	U	
		VMP-21-5-081412	81412012	0.0018	J		<0.013	U		<0.017	U		<0.0024	U		0.0011	J		<0.0041	U	
		VMP-2-5.-081412-Dup	$\frac{814412012}{812012012}$	${ }^{0.00019} 0$	J		<0.016	U		${ }_{\substack{<0.02 \\<0.031}}$	U		$\stackrel{<0.003}{<0.045}$	U		${ }^{0.0001}$	J			J	
		VMP-21-5-083012	883012012	0.0086			\bigcirc	U		<0.026	U		<0.0039	U		0.0046	J		0.002	J	
		VMP-21-5-090512	955/2012	0.011			<0.021	U		<0.026	U		<0.0039	U		0.004	J		0.0014	J	
		VMP-21-5.091112	${ }^{9 / 1112012}$	0.0076			$\stackrel{<0.02}{<002}$	U		$\xrightarrow{<0.025}$	U			U		0.011	,		${ }^{0.0064}$		
		VMP-21-5-092712	9/27/2012	0.0015	J		${ }_{<0}<0.019$	U		<	U		${ }_{40.0035}$	U		${ }_{0}^{0.00034}$	J		${ }_{0}^{0.0013}$	J	
vMP-42	10tt	VMP-42-10-080812	888/2012	0.18			<0.014	U		<0.017	U		<0.0025			0.018			0.0055		
		VMP-42-10-081412	${ }^{8 / 141 / 2012}$	${ }^{0.017}$			<0.014			${ }^{<0.018}$	U		${ }^{20.0026}$	U		${ }^{0.00057}$			${ }^{0.0023}$	J	
		VMP-42-10.082012	${ }^{8 / 20012012}$	${ }^{0.055}$			<0.022	U		${ }^{<0.027}$	U		<0.004	U		${ }^{0.0073}$			0.0024	J	
		VMP -42-10-083012	${ }^{833012012} 9$	${ }^{0.00023}$	J		<0.022	U		$\xrightarrow[<-0.028]{\ll 026}$	U		${ }_{<0.00388}^{20.0041}$	U		${ }_{0}^{0.00087}$	J		${ }_{0}^{0.0024}$	J	
		VMP-42-10-091112	9/1/1/2012	0.003	J		<0.021	U		<0.026	U		<0.0039	U		0.008			0.0031	J	
		VMP -4-2-10.097712	9/172012	${ }^{0.0089}$	J		-	U			U		${ }_{<0}^{20.0036}$	U		${ }_{0}^{0.0037}$	J		${ }_{0}^{0.00013}$	J	
		VMP-42-10-092712-Dup	9/27/2012	<0.006	U		<0.018	U		<0.022	U		<0.0033	U		0.0029	J		<0.0056	U	

$J=$ Estimated detection
$U=$ Estimated non-detect
U Estimated non-detect
$U=$ Non-detect due to tolank contamination

Location	Depth	Sample ID	Sample Date	Carbon Dioxide			Carbon Monoxide			Ethane			Ethene			Helium			Methane			Nitrogen			Oxygen		
				$\begin{aligned} & \text { Result } \\ & \text { (\%) } \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & (\%) 0 \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & (\%) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{gathered} \text { Result } \\ (\%))_{1} \end{gathered}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{gathered} \text { Result } \\ (\%){ }_{2} \end{gathered}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{aligned} & \text { Result } \\ & (\%) \end{aligned}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{array}{\|c} \hline \text { Result } \\ (\%) 0 \end{array}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$	$\begin{gathered} \text { Result } \\ (\% 0) \end{gathered}$	Lab Quals	$\begin{aligned} & \text { URS } \\ & \text { Quals } \end{aligned}$
vmp-4	5 t	VMP-4.5-080812	88812012	1.4			<0.02	U		<0.002	U		<0.002	U		0.036	J		0.0002			80			18		
		VMP-4-5-081412	8/44/2012	1.3			<0.019	U		<0.0019	U		<0.0019	U		0.01	J		0.00017	J		${ }^{81}$			18		
		VMP-4-5-082012	8/20/2012	1.2			<0.03			<0.003			<0.003	U		0.016	J		0.00019	J		81			18		
		VMP-4-5-083012	8/30/2012	1.2			<0.032	U		<0.0032	,		<0.0032			0.054	J		0.00019	J		81			18		
		VMP-4.5-090512	- ${ }^{9 / 5 / 2012}$	$\frac{1.7}{17}$			${ }_{-0.03}^{<0.028}$	u		00.003 <0.0028	u		${ }_{<0}^{20.003}$	u		0.048	J		${ }^{0.000016}$	J		80 80			$\frac{18}{18}$		
		VMP-4.5-0991712	9/17/2012	${ }^{1.1}$			$\stackrel{\text { < }}{\substack{\text { <0.03 }}}$	U		${ }_{4} 0.0003$	U		${ }_{4} 0.0003$			0.087	J		0.00016	J		80			19		
		VMP-4.5-092712	9/27/2012	0.82			<0.025	U		<0.0025	U		<0.0025	U		0.93			0.00013	J		79			19		
VMP-10	5 H	VMP-10-5-080912	89/2012	1.9			<0.018	U		<0.0018	U		<0.0018	U		0.046	J		0.000035	J		80			18		
		VMP-10-5.081512	$\frac{814512012}{881 / 2012}$	1.6			<0.019	\checkmark		<0.0019	U		<0.0019	U		0.043	J		0.00004	J		79			19		
		VMP-10-5-082712	$\frac{81212012}{831 / 2012}$	1.5 1.5			- ${ }_{-0.03}$	U		20.003 <0.0029	U		<0.003 <0.0029	U		-	J		${ }^{0.0000033}$	J		80 80 8			$\stackrel{19}{18}$		
		VMP-10-5-090612	916/12012	2			<0.031	U		<0.0031	U		<0.0031	U		<0.16	U		0.000038	J		80			18		
		VMP-10-5-091212	9/12/2012	2			<0.032	U		<0.0032	U		<0.0032	U		0.06			0.000034	J		80			18		
		VMP-10-5-091812	9/18/2012	1.6			<0.029	U		<0.0029	U		<0.0029	U		0.081	J		0.000047	J		80			18		
		VMP-10-5-092812	9/28/2012	1.7			<0.031	,		<0.0031	,		<0.0031	U		0.24			<0.00031	,		80			18		
		VMP-10-5-092812-Dup	9/28/2012	1.6			<0.03	U		20.003	U		<0.003	U		0.026	J		<0.0003	U		80			18		
VMP-11	5 tt	VMP-11-5.080912	$\frac{89972012}{815 / 2012}$	${ }^{2.6}$			- <0.019	U		<0.0019	U		<0.0019	U		0.037	J		0.000056	J		79			18		
		VMP-11-5-081512	8/15/2012	2.1			<0.018	\checkmark		<0.0018	U		<0.0018	\checkmark		0.025	J		0.000055	J		80			18		
		VMP-11-5-082112	${ }^{8 / 2112012}$	2.1			<0.028	U		<0.0028	U		<0.0028	U		0.011	J		0.000062	J		80			18		
		VMP-11-5-082112-Dup	$\frac{8 / 21 / 2012}{83112012}$	$\stackrel{2.1}{1.8}$			<0.028	U		<0.0028 <0.0028	u		<0.0028 <0.0028	u		0.0095	U		0.0000056	J		80 80			18 18 18		
		VMPP-11-5-0890612	- ${ }_{\text {8/31/2012 }}$	$\stackrel{1.8}{2.4}$			$\stackrel{<0.028}{<0.03}$	u		$\stackrel{\text { co.0028 }}{00.003}$	U		$\stackrel{\text { co.0028 }}{00.003}$	u		-	U		0.000048	J		80			${ }_{18}^{18}$		
		VMP-11-5-091212	9/12/2012	${ }^{2} .8$			$\stackrel{+0.06}{ }$	U		<0.006	U		<0.006	U		0.063			0.0000057	J		79			19		
		VMP-11-5091812	9/18/2012	1.8			<0.029	U		<0.0029	U		<0.0029	U		0.016	J		0.000096	J		80			18		
		VMP-11-5-092812	9/128/2012	1.6			${ }^{<0.03}$	U		${ }^{20.003}$	U		${ }^{20.003}$	U		0.031	J		0.000055	J		79			19		
		VMP--11-5-992812-Dup	${ }^{\text {9/288/2012 }}$ 89/2012	$\frac{1.8}{4.1}$			$\underset{<0.039}{<0.024}$	U		<0.0039	U		-0.0039	U		${ }_{0}^{0.022}$	J		0.0000057	- J		$\stackrel{79}{80}$			$\stackrel{19}{16}$		
VMP-13	5 tt	VMP-13-5-081512	8/15/2012	3.6			<0.02	u		${ }_{20.002}$	U		${ }_{20.002}$	U		0.058	J		0.000078	J		79			17		
		VMP-13-5.082112	8/21/2012	3			<0.029	U		<0.0029	U		<0.0029	U		0.038	J		0.00009	J		79			18		
		VMP-13-5.083112	8/31/2012	2.7			<0.029	U		<0.0029	U		<0.0029	U		0.016	J		0.000084	J		79			18		
		VMP-13-5090612	996/12012	3.4			<0.024	U		<0.0024	U		<0.0024	U		<0.12	U		0.000076	J		80			17		
		VMP-13-5-091212	9/12/2012	2.8			<0.03	U		<0.003	U		<0.003	U		0.02	J		0.000062	J		80			17		
		WMP-13-5-091212-Dup	9/12/2012	2.8			<0.029	U		<0.0029	U		<0.0029	,		0.021	J		0.0000065	J		80			17		
		WMP-13-5-991812	9/1882012	2.4 2.4			$\underset{<0.028}{<0.03}$	U		$\begin{array}{r}20.003 \\ <0.0028 \\ \hline\end{array}$	U		-0.003	U		0	J		${ }^{0.00000077}$	J		$\stackrel{80}{81}$			$\stackrel{18}{17}$		
VMP-16	5 tt	VMP-16-5-080812	88812012	14				U		<0.0019	U		<0.0019	U		$\stackrel{-0.094}{ }$	U		0.0017			81			4.7		
		VMP-16-5.081412	8/4/4/2012	11			<0.02	U		<0.002	U		<0.002	U		<0.1	U		0.000075	J		83			6.4		
		VMP-16-5.082012	8120/2012	15			<0.026	U		<0.0026	U		<0.0026	U		0.042	J		0.071			82			2.4		
		VMP-16-5.083012	8/30/2012	13			<0.03	U		<0.003	U		<0.003			<0.15	U		0.0041			82			4.6		
		VMP-16-5.090512	9/5/2012	$\stackrel{17}{12}$			0030003	u		${ }_{0}^{0.00034}$	J		$\stackrel{0.003}{<0.003}$	u		0.51 0.024	J		$\stackrel{6.8}{0.00022}$	J		74 82			1.9 1		
		VMP-16-5-091712	9/17/2012	16			${ }_{<0}<0.028$	U		0.0003	J		<0.0028	U		<0.14	U		7.9			74			1.4		
		VMP-16-5-092712	9/27/2012	6.3			<0.027	U		<0.0027	U		<0.0027	U		0.012	,		0.000036	J		81			13		
VMP-21	5 tt	VMP-21-5.088812	88882012	6.5			${ }^{<0.018}$	U		<0.0018	U		<0.0018	U		0.041	J		0.0000077	J		79			14		
		VMP-21-5-881412	$\frac{8 / 442012}{8 / 142012}$	5.9 5 5			<0.019	U		<0.0019			<0.0019	U		0.014	,		${ }^{0.0000053}$	J		79			${ }_{15}^{15}$		
		VMP-21-5-082012	${ }^{8 / 2012012}$	${ }_{5.7}^{5.7}$			${ }_{<0}$	U		<0.0029	U		<0.0029	U		0.16			${ }^{0.0000071}$	J		79			${ }^{15}$		
		VMP-21-5-083012	8/30/2012	5.2			<0.03	U		<0.003	U		<0.003	U		0.2			0.000046	J		80			15		
		VMP-21-5-090512	995/2012	5.6			<0.03	U		${ }^{20.003}$	U		${ }^{20.003}$	U		0.02	U		0.000045	J		80			14		
		VMP-21-5-091112	9/11/2012	5.9			<0.028	U		<0.0028	U		<0.0028	U		<0.14	U		0.000038	J		${ }^{80}$			${ }^{14}$		
		VMP-21-5-991712	9/17/2012	5.5 3.6			<0.028	U		<0.0028	U		<0.0028	U		0.038	J		0.0000034	J		80 80 8			15		
VMP-42	10 tt	VMP-42-10.080812	88812012	${ }^{2} .2$			<0.02	U		${ }_{0}$,		${ }_{0} 0.0002$,		${ }^{0.0079}$	J		${ }^{0.2000002}$	U		80			18		
		VMP-42-10-081412	${ }^{8 / 14 / 2012}$	2			<0.02	U		<0.002	U		<0.002	U		<0.1	U		<0.0002	U		80			18		
		VMPP-4-10-082012	8/20/2012	${ }^{2}$			${ }^{<0.031}$	U		<0.0031	U		<0.0031	U		0.024	J		<0.00031	U		79			19		
		VMP-42-10-083012	${ }^{\text {8/30/2012 }} 9$	1.8 1.8			<0.032	U		<0.0032 <0.003	U		<0.0032 <0.003	U		-	U		${ }_{<0}^{<0.00032}$	U		80 79			18 19 19		
		VMP-42-10-091112	9/11/2012	1.6			$\stackrel{-0.03}{ }$	U		${ }_{2} 0.0003$	U		${ }^{2} 0.003$	U		<0.15	U		0.00013	J		80			18		
		VMP-42-10-091712	9/17/2012	1.7			<0.029	U		<0.0029	U		<0.0029	U		<0.14	U		<0.00029	U		79			19		
		VMP-42-10-092712	${ }^{\text {9/2772012 }} 9$	1.3 1.1			<0.027	U		<0.0027	U		$\stackrel{<0.0027}{<0.026}$	u		$\underset{<0.13}{<0.13}$	U		<0.00027	U		$\stackrel{79}{82}$			$\stackrel{20}{17}$		

$\xrightarrow{\text { Notes }}$ Lab Qualifiers
Lab Qualifiers
$J=$ Estimated value; e.g. results between the MDL and R RL
$U=$ = compound analyzed for but not deetected above the $R L$
$U=$ Compound and
URS Qualifiers
$J=$ Estimated detection
$U J=$ Estimated
UJ = Estianated delection
$\mathrm{U}=$ Noct
$=$ Non-detect t due to blank contamination

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-4	5 ft	VMP-4-5-080812	8/8/2012	VOCs	1-Pentanol, 4-methyl-2-propyl-	330	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	440	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	140	PPBV	NJ	
					Ethanone, 1-phenyl-	80	PPBV	NJ	
					Heptane, 2,2,4-trimethyl-	47	PPBV	NJ	
					Hexane, 2,2,5-trimethyl-	39	PPBV	NJ	
					Octane, , 2,4,6-trimethyl-	150	PPBV	NJ	
					Unknown	150	PPBV	J	
					Unknown	45	PPBV	J	
					Unknown	55	PPBV	J	
		VMP-4-5-081412	8/14/2012	VOCs	1,3-Pentadiene, 2,4-dimethyl-	45	PPBV	NJ	
					Cyclohexane, 1,1,2-trimethyl-	220	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	74	PPBV	NJ	
					Ethanone, 1-phenyl-	56	PPBV	NJ	
					Pentane	160	PPBV	NJ	
					Tetradecane, 2,5-dimethyl-	86	PPBV	NJ	
					Unknown	230	PPBV	J	
					Unknown	44	PPBV	J	
					Unknown	54	PPBV	J	
					Unknown	82	PPBV	J	
		VMP-4-5-082012	8/20/2012	VOCs	2-Hexenal, 2-ethyl-	110	PPBV	NJ	
					4-Nonene	100	PPBV	NJ	
					Cyclohexanone, 4-methyl-	240	PPBV	NJ	
					Cyclopropane, 1,1-dichloro-2-hexyl-	50	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	50	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	380	PPBV	NJ	
					Ethanone, 1-phenyl-	70	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	160	PPBV	NJ	
					Oxirane, 2,3-dimethyl-	64	PPBV	NJ	
					Undecane, 2,2-dimethyl-	180	PPBV	NJ	
		VMP-4-5-083012	8/30/2012	VOCs	1-Pentanol, 4-methyl-2-propyl-	360	PPBV	NJ	
					2-Heptenal, (Z)-	89	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	81	PPBV	NJ	
					Decane, 2,2-dimethyl-	590	PPBV	NJ	
					Ethanone, 1-phenyl-	71	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	72	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	250	PPBV	NJ	
					Undecane, 2,2-dimethyl-	220	PPBV	NJ	
					Unknown	160	PPBV	J	
					Unknown	200	PPBV	J	
		VMP-4-5-090512	9/5/2012	VOCs	1-Pentanol, 4-methyl-2-propyl-	65	PPBV	NJ	
					Decane, 6-ethyl-2-methyl-	34	PPBV	NJ	
					Ethanone, 1-phenyl-	11	PPBV	NJ	
					Undecane, 2,2-dimethyl-	23	PPBV	NJ	
					Unknown	110	PPBV	J	
					Unknown	12	PPBV	J	
					Unknown	57	PPBV	J	
					Unknown	7.7	PPBV	J	
					Unknown	9.9	PPBV	J	
		VMP-4-5-091112	9/11/2012	VOCs	Cyclohexanone, 4-methyl-	190	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	97	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	30	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	260	PPBV	NJ	
					Ethanone, 1-phenyl-	71	PPBV	NJ	
					Octane, , 2,4,6-trimethyl-	110	PPBV	NJ	
					Undecane, 2,2-dimethyl-	30	PPBV	NJ	
					Unknown	35	PPBV	J	
					Unknown	48	PPBV	J	
					Unknown	73	PPBV	J	
		VMP-4-5-091712	9/17/2012	VOCs	1-Hexene, 3-methyl-	23	PPBV	NJ	
					1-Hexyn-3-ol	14	PPBV	NJ	
					Acetaldehyde	8	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	21	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	66	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	10	PPBV	NJ	
					Decanedioic acid, didecyl ester	27	PPBV	NJ	
					Hexanal	8.8	PPBV	NJ	
					Undecane, 4,6-dimethyl-	30	PPBV	NJ	
					Unknown	8.8	PPBV	J	
		VMP-4-5-092712	9/27/2012	VOCs	1-Hexene, 5-methyl-	12	PPBV	NJ	
					2-Decene, 8-methyl-, (Z)-	12	PPBV	NJ	
					Cyclopropane, 1-ethyl-2-heptyl-	20	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	15	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	27	PPBV	NJ	
					Decane, 2,6,7-trimethyl-	9.2	PPBV	NJ	
					Decane, 3,4-dimethyl-	21	PPBV	NJ	
					Eicosane, 10-methyl-	34	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	59	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	11	PPBV	NJ	

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-10	5 ft	VMP-10-5-080912	8/9/2012	VOCs	1-Propene, 2-methyl-	11	PPBV	NJ	
					Acetic acid	15	PPBV	NJ	
		VMP-10-5-081512	8/15/2012	VOCs	1-Propene, 2-methyl-	14	PPBV	NJ	
					Acetic acid	9.4	PPBV	NJ	
		VMP-10-5-082112	8/21/2012	VOCs	Cyclohexane, 1,1,2-trimethyl-	8.4	PPBV	NJ	
					Cyclohexane, 1,4-dimethyl-	9.2	PPBV	NJ	
					Ethanone, 1-phenyl-	9.8	PPBV	NJ	
					Propanoic acid, 3-ethoxy-, ethyl ester	12	PPBV	NJ	
		VMP-10-5-083112	8/31/2012	VOCs	Cycloheptane, methyl-	51	PPBV	NJ	
					Cyclohexanone, 4-methyl-	120	PPBV	NJ	
					Cyclopentane, 2-ethyl-1,1-dimethyl-	30	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	96	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	230	PPBV	NJ	
					Ethanone, 1-phenyl-	32	PPBV	NJ	
					Octane, 2,2,6-trimethyl-	30	PPBV	NJ	
					Octane, , 2,4,6-trimethyl-	93	PPBV	NJ	
					Unknown	38	PPBV	J	
					Unknown	77	PPBV	J	
		VMP-10-5-090612	9/6/2012	VOCs	6-Oxabicyclo[3.1.0]hexane	44	PPBV	NJ	
					Cyclobutanone, 2,3,3-trimethyl-	36	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	100	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	60	PPBV	NJ	
					Decane, 2,9-dimethyl-	18	PPBV	NJ	
					Decane, 6-ethyl-2-methyl-	70	PPBVV	NJ	
					Dodecane, 1-fluoro-	28	PPBV	NJ	
					Undecane, 2,2-dimethyl-	35	PPBV	NJ	
					Unknown	27	PPBV	J	
					Unknown	80	PPBV	J	
		VMP-10-5-091212	9/12/2012	VOCs	1-Propene, 2-methyl-	26	PPBV	NJ	
		VMP-10-5-091812	9/18/2012	VOCs	1-Propene, 2-methyl-	32	PPBV	NJ	
		VMP-10-5-092812-Dup	9/28/2012	VOCs	1-Propene, 2-methyl-	9.1	PPBV	NJ	
VMP-11	5 ft	VMP-11-5-080912	8/9/2012	VOCs	Acetic acid	32	PPBV	NJ	
					Hexane, 2,2,3-trimethyl-	5.4	PPBV	NJ	
					Octane, 4-methyl-	7.8	PPBV	NJ	
					Unknown	5.5	PPBV	J	
					Unknown	7.7	PPBV	J	
		VMP-11-5-081512	8/15/2012	VOCs	Unknown	5.9	PPBV	J	
		VMP-11-5-083112	8/31/2012	vocs	1-Pentanol, 4-methyl-2-propyl-	150	PPBV	NJ	
					Cyclopentane, 1,2,3-trimethyl-, (1.alpha	32	PPBV	NJ	
					Cyclopentane, 1-methyl-2-propyl-	69	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	220	PPBV	NJ	
					Pentane, 2,2,3,4-tetramethyl-	37	PPBV	NJ	
					Undecane, 2,2-dimethyl-	96	PPBV	NJ	
					Undecane, 5,5-dimethyl-	95	PPBV	NJ	
					Unknown	37	PPBV	J	
					Unknown	40	PPBV	J	
					Unknown	69	PPBV	J	
		VMP-11-5-090612	9/6/2012	VOCs	Cyclobutanone, 2,3,3-trimethyl-	33	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	32	PPBV	NJ	
					Decane, 2,6,7-trimethyl-	52	PPBV	NJ	
					Heptane, 2,4-dimethyl-	30	PPBV	NJ	
					Hexane, 2,2,3-trimethyl-	140	PPBV	NJ	
					Methane, isocyanato-	24	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	89	PPBV	NJ	
					Undecane, 2,2-dimethyl-	85	PPBV	NJ	
					Unknown	40	PPBV	J	
					Unknown	67	PPBV	J	
		VMP-11-5-091212	9/12/2012	VOCs	Unknown	13	PPBV	J	
		VMP-11-5-091812	9/18/2012	VOCs	Cyclooctane, 1,4-dimethyl-, cis-	23	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	20	PPBV	NJ	
					Decane, 2,2-dimethyl-	8.8	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	30	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	23	PPBV	NJ	
					Pentane, 2,3-dimethyl-	27	PPBV	NJ	
					Pentane, 2,4-dimethyl-	11	PPBV	NJ	
					Undecane, 3,8-dimethyl-	26	PPBV	NJ	
					Unknown	11	PPBV	J	
					Unknown	18	PPBV	J	

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-13	5 ft	VMP-13-5-080912	8/9/2012	VOCs	1-Propene, 2-methyl-	6.6	PPBV	NJ	
					Acetic acid	29	PPBV	NJ	
					Unknown	6	PPBV	J	
					Unknown	9.5	PPBV	J	
		VMP-13-5-081512	8/15/2012	VOCs	2-Oxetanone, 4,4-dimethyl-	14	PPBV	NJ	
					Nonane, 3-methyl-	6.8	PPBV	NJ	
		VMP-13-5-082112	8/21/2012	VOCs	1-Butanamine, 2-methyl-	15	PPBV	NJ	
					1-Propanol, 2-methyl-	7.7	PPBV	NJ	
					2(3H)-Furanone, dihydro-4,4-dimethyl-	13	PPBV	NJ	
					Ethanol, 2-methoxy-	10	PPBV	NJ	
					Ethenone	17	PPBV	NJ	
					Furan, tetrahydro-3-methyl-4-methylene-	8.7	PPBV	NJ	
					Pentane, 2-isocyano-2,4,4-trimethyl-	7.3	PPBV	NJ	
					Propane, 2-methyl-2-nitro-	8.4	PPBV	NJ	
					Pyrrolidine	9.4	PPBV	NJ	
		VMP-13-5-083112	8/31/2012	VOCs	Cyclopentane, 1,2,3-trimethyl-, (1.alpha	32	PPBVV	NJ	
					Decane, 2,2,5-trimethyl-	40	PPBV	NJ	
					Decane, 2,2-dimethyl-	100	PPBV	NJ	
					Decane, 2,5,6-trimethyl-	96	PPBV	NJ	
					Heptane, 2,2-dimethyl-	240	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	100	PPBV	NJ	
					Unknown	36	PPBV	J	
					Unknown	39	PPBV	J	
					Unknown	69	PPBV	J	
					Unknown	84	PPBV	J	
		VMP-13-5-090612	9/6/2012	VOCs	1-Pentanol, 4-methyl-2-propyl-	120	PPBV	NJ	
					Cyclopentane, butyl-	56	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	210	PPBV	NJ	
					Decane, 2,2-dimethyl-	31	PPBV	NJ	
					Heptane, 2,2,3,4,6,6-hexamethyl-	28	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	100	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	100	PPBV	NJ	
					Oxirane, (3-methylbutyl)-	36	PPBV	NJ	
					Undecane, 2,2-dimethyl-	29	PPBV	NJ	
					Unknown	34	PPBV	J	
		VMP-13-5-091212	9/12/2012	VOCs	1-Pentanol, 2-ethyl-4-methyl-	13	PPBV	NJ	
					1-Pentene, 4,4-dimethyl-	14	PPBV	NJ	
					1-Propene, 2-methyl-	15	PPBV	NJ	
					Unknown	7.7	PPBV	J	
		VMP-13-5-091212-Dup	9/12/2012	VOCs	1-Propene, 2-methyl-	15	PPBVV	NJ	
		VMP-13-5-092812	9/28/2012	VOCs	1-Propene, 2-methyl-	19	PPBV	NJ	
					Acetaldehyde	12	PPBV	NJ	
					Hexane, 2,3,4-trimethyl-	10	PPBV	NJ	

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-16	5 ft	VMP-16-5-080812	8/8/2012	VOCs	1-Pentene, 4-methyl-	2100	PPBV	NJ	
					3,4-Hexanedione, 2,2,5-trimethyl-	2800	PPBV	NJ	
					Decane, 2,2,5-trimethyl-	4800	PPBV	NJ	
					Hexane, 2,2,5,5-tetramethyl-	3600	PPBV	NJ	
					Hexane, 3,4-dimethyl-	2600	PPBV	NJ	
					Hydroxylamine, O-pentyl-	19000	PPBV	NJ	
					Octane, 4-methyl-	65000	PPBV	NJ	
					Pentane, 2,3-dimethyl-	4200	PPBV	NJ	
					Pentane, 3-ethyl-2,2-dimethyl-	4600	PPBV	NJ	
					Unknown	1700	PPBV	J	
		VMP-16-5-081412	8/14/2012	vOCs	2-Butanol, 2,3-dimethyl-	210	PPBV	NJ	
					Butane, 2,2,3-trimethyl-	920	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	120	PPBV	NJ	
					Hexane, , 2,2,5,5-tetramethyl-	470	PPBV	NJ	
					Octane, 4-methyl-	300	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	9500	PPBV	NJ	
					Unknown	110	PPBV	J	
					Unknown	1300	PPBV	J	
					Unknown	170	PPBV	J	
					Unknown	190	PPBV	J	
					Unknown	1900	PPBV	J	
					Unknown	220	PPBV	J	
					Unknown	620	PPBV	J	
					Unknown	960	PPBV	J	
		VMP-16-5-082012	8/20/2012	VOCs	1-Propene, 2-methyl-	3300	PPBV	NJ	
					Hexane, 1-(hexyloxy)-3-methyl-	6000	PPBV	NJ	
					Pentane, 2,2,3-trimethyl-	10000	PPBV	NJ	
					Pentane, 2,2-dimethyl-	3000	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	58000	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	22000	PPBV	NJ	
					Pentane, 2,3-dimethyl-	15000	PPBV	NJ	
					Pentane, 2,4-dimethyl-	8000	PPBV	NJ	
					Pentane, 2-methyl-	3800	PPBV	NJ	
					Pentane, 3-ethyl-2,2-dimethyl-	4800	PPBV	NJ	
		VMP-16-5-083012	8/30/2012	VOCs	Butane, 2,2,3-trimethyl-	1400	PPBV	NJ	
					Hexane, 2,2,5,5-tetramethyl-	1400	PPBV	NJ	
					Octane, 2,2,6-trimethyl-	1100	PPBV	NJ	
					Oxirane, (1-methylethyl)-	2000	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	25000	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	7100	PPBV	NJ	
					Pentane, 2,4-dimethyl-	860	PPBV	NJ	
					Unknown	1200	PPBV	J	
					Unknown	1500	PPBV	J	
					Unknown	540	PPBV	J	
		VMP-16-5-090512	9/5/2012	VOCs	1-Pentene, 4-methyl-	870000	PPBV	NJ	
					Heptane, 2,2-dimethyl-	160000	PPBV	NJ	
					Nonane, 2,5-dimethyl-	180000	PPBV	NJ	
					Octane, 4-methyl-	1100000	PPBV	NJ	
					Pentane, 2, 3,4-trimethyl-	790000	PPBV	NJ	
					Pentane, 2-methyl-	350000	PPBV	NJ	
					Pentane, 3-methyl-	420000	PPBV	NJ	
					Unknown	1600000	PPBV	J	
					Unknown	1900000	PPBV	J	
					Unknown	270000	PPBV	J	
					Unknown	430000	PPBV	J	
					Unknown	530000	PPBV	J	
		VMP-16-5-091112	9/11/2012	vOCs	Butane, 2,2,3-trimethyl-	740	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	220	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	240	PPBV	NJ	
					Hexane, 2,2,5,5-tetramethyl-	480	PPBV	NJ	
					Octane, 4-methyl-	9100	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	2000	PPBV	NJ	
					Pentane, 2,3-dimethyl-	520	PPBV	NJ	
					Pentane, 2,4-dimethyl-	200	PPBV	NJ	
					Unknown	460	PPBV	J	
					Unknown	510	PPBV	J	
		VMP-16-5-091712	9/17/2012	vOCs	Cyclohexane, methyl-	360000	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	220000	PPBV	NJ	
					Hexane, 2,5-dimethyl-	240000	PPBV	NJ	
					Pentane, 2,2,3-trimethyl-	170000	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	1500000	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	1100000	PPBV	NJ	
					Pentane, 2,3-dimethyl-	2400000	PPBV	NJ	
					Pentane, 2,4-dimethyl-	1300000	PPBV	NJ	
					Pentane, 2-methyl-	500000	PPBV	NJ	
					Pentane, 3-methyl-	570000	PPBV	NJ	
		VMP-16-5-092712	9/27/2012	VOCs	Butane, 2,2,3-trimethyl-	180	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	73	PPBV	NJ	
					Hexane, 2,2,3-trimethyl-	63	PPBV	NJ	
					Hexane, 2,2,4-trimethyl-	170	PPBV	NJ	
					Hexane, 3,4-dimethyl-	77	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	1700	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	600	PPBV	NJ	
					Pentane, 2,3-dimethyl-	500	PPBV	NJ	
					Pentane, 2,4-dimethyl-	170	PPBV	NJ	
					Unknown	130	PPBV	J	

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-21	5 ft	VMP-21-5-080812	8/8/2012	VOCs	1-Butanol, 3,3-dimethyl-	8.6	PPBV	NJ	
					1-Propene, 2-methyl-	9.6	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	7.8	PPBV	NJ	
					Propanal, 2-methyl-	6.3	PPBV	NJ	
					Unknown	22	PPBV	J	
		VMP-21-5-081412	8/14/2012	VOCs	Unknown	5.2	PPBV	J	
					Unknown	6	PPBV	J	
		VMP-21-5-081412-Dup	8/14/2012	VOCs	Unknown	7.4	PPBV	J	
					Unknown	7.6	PPBV	J	
		VMP-21-5-082012	8/20/2012	VOCs	1-Nonene	27	PPBV	NJ	
					Cyclopentane, 1,2,3-trimethyl-, (1.alpha	24	PPBV	NJ	
					Cyclopentane, 1-methyl-2-propyl-	52	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	81	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	23	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	140	PPBV	NJ	
					Hexane, 1-(hexyloxy)-5-methyl-	48	PPBV	NJ	
					Octane, 2,2,6-trimethyl-	27	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	76	PPBV	NJ	
					Oxirane, 2,3-dimethyl-	27	PPBV	NJ	
		VMP-21-5-083012	8/30/2012	vOCs	1-Heptene, 3-methyl-	42	PPBV	NJ	
					1-Pentanol, 4-methyl-2-propyl-	110	PPBV	NJ	
					Cyclobutanone, 2,3,3-trimethyl-	36	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	190	PPBV	NJ	
					Decane, 2,2-dimethyl-	91	PPBV	NJ	
					Dodecane, 2,7,10-trimethyl-	86	PPBV	NJ	
					Unknown	30	PPBV	J	
					Unknown	35	PPBV	J	
					Unknown	51	PPBV	J	
					Unknown	76	PPBV	J	
		VMP-21-5-090512	9/5/2012	VOCs	1-Pentanol, 2-ethyl-4-methyl-	120	PPBV	NJ	
					Cyclopentane, 1,2,3-trimethyl-, (1.alpha	28	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	160	PPBV	NJ	
					Decane, , 2,2,8-trimethyl-	25	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	81	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	30	PPBV	NJ	
					Undecane, 2,5-dimethyl-	83	PPBV	NJ	
					Unknown	32	PPBV	J	
					Unknown	38	PPBV	J	
					Unknown	57	PPBV	J	
		VMP-21-5-091112	9/11/2012	VOCs	1-Octanol, 2-butyl-	29	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	32	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	75	PPBV	NJ	
					Ethanone, 1-phenyl-	14	PPBV	NJ	
					Heptane, 2,2,3,4,6,6-hexamethyl-	9.1	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	9.6	PPBV	NJ	
					Tetradecane, 1-iodo-	12	PPBV	NJ	
					Undecane	37	PPBV	NJ	
					Unknown	10	PPBV	J	
					Unknown	20	PPBV	J	
		VMP-21-5-091712	9/17/2012	VOCs	4-Nonene	11	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	8.4	PPBV	NJ	
					Decane, 2,2-dimethyl-	29	PPBV	NJ	
					Decane, 6-ethyl-2-methyl-	35	PPBV	NJ	
					Ethanone, 1-phenyl-	11	PPBV	NJ	
					Heptane, 2,2,4-trimethyl-	8.8	PPBV	NJ	
					Heptane, 3,3'-[oxybis(methylene)]bis-	21	PPBV	NJ	
					Hexanal	9.1	PPBV	NJ	
					Hexane, 2,2,4-trimethyl-	50	PPBV	NJ	
					Propanal, 2-hydroxy-2-methyl-	19	PPBV	NJ	
		VMP-21-5-092712	9/27/2012	VOCs	4-Nonene	31	PPBV	NJ	
					Cyclobutanone, 2,3,3-trimethyl-	16	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	51	PPBV	NJ	
					Decane, 2,6,6-trimethyl-	16	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	16	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	83	PPBV	NJ	
					Hexanal	18	PPBV	NJ	
					Nonane, 2-methyl-5-propyl-	57	PPBV	NJ	
					Propanal, 2-hydroxy-2-methyl-	15	PPBV	NJ	
					Undecane, 2,8-dimethyl-	34	PPBV	NJ	

Location	Depth	Sample ID	Sample Date	Chemcial Group	Chemical	Result	Units	Lab Qualifier	URS Qualifiers
VMP-42	10 ft	VMP-42-10-080812	8/8/2012	vocs	2-Propanol, 1-methoxy-	48	PPBV	NJ	
					Decane, 2,2,7-trimethyl-	320	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	130	PPBV	NJ	
					Decane, 2,2-dimethyl-	40	PPBV	NJ	
					Dodecane, 1-fluoro-	150	PPBV	NJ	
					Hexane, 2,2-dimethyl-	46	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	150	PPBV	NJ	
					Pentane, 2,3-dimethyl-	48	PPBV	NJ	
					Unknown	54	PPBV	J	
					Unknown	72	PPBV	J	
		VMP-42-10-081412	8/14/2012	vocs	1-Pentanol, 4-methyl-2-propyl-	130	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	200	PPBV	NJ	
					Ethanone, 1-phenyl-	55	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	75	PPBV	NJ	
					Hexane, 2,2,5,5-tetramethyl-	20	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	76	PPBV	NJ	
					Oxirane, 2,3-dimethyl-	57	PPBV	NJ	
					Unknown	18	PPBV	J	
					Unknown	35	PPBV	J	
		VMP-42-10-082012	8/20/2012	vOCs	1-Hexene, 5-methyl-	42	PPBV	NJ	
					1-Pentanol, 2-ethyl-4-methyl-	170	PPBV	NJ	
					2-Pentenal, (E)-	45	PPBV	NJ	
					Cyclopentane, 1-methyl-2-propyl-	69	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	120	PPBV	NJ	
					Decane, 2,2-dimethyl-	250	PPBV	NJ	
					Ethanone, 1-phenyl-	40	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	36	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	120	PPBV	NJ	
					Oxirane, , 2,3-dimethyl-	53	PPBV	NJ	
		VMP-42-10-083012	8/30/2012	vocs	1-Heptene, 3-methyl-	69	PPBV	NJ	
					1-Pentanol, 2-ethyl-4-methyl-	190	PPBV	NJ	
					2-Heptene	79	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	390	PPBV	NJ	
					Decane, 2,2,9-trimethyl-	180	PPBV	NJ	
					Decane, 2,2-dimethyl-	56	PPBV	NJ	
					Octane, 2,2,6-trimethyl-	59	PPBV	NJ	
					Tetradecane, 2,5-dimethyl-	190	PPBV	NJ	
					Unknown	110	PPBV	J	
					Unknown	150	PPBV	J	
		VMP-42-10-090512	9/5/2012	vOCs	1-Pentanol, 4-methyl-2-propyl-	100	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	25	PPBV	NJ	
					Ethanone, 1-phenyl-	32	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	74	PPBV	NJ	
					Hexane, 2,2,3-trimethyl-	20	PPBV	NJ	
					Octane, 2,4,6-trimethyl-	71	PPBV	NJ	
					Undecane, 2,2-dimethyl-	160	PPBV	NJ	
					Unknown	22	PPBV	J	
					Unknown	38	PPBV	J	
					Unknown	42	PPBV	J	
		VMP-42-10-091112	9/11/2012	vOCs	Decane, 2,2-dimethyl-	100	PPBV	NJ	
					Decane, 6-ethyl-2-methyl-	110	PPBV	NJ	
					Ethanone, 1-phenyl-	82	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	30	PPBV	NJ	
					Undecane, 2,2-dimethyl-	240	PPBV	NJ	
					Unknown	150	PPBV	J	
					Unknown	29	PPBV	J	
					Unknown	36	PPBV	J	
					Unknown	58	PPBV	J	
		VMP-42-10-091712	9/17/2012	vOCs	Cyclohexane, methyl-	58	PPBV	NJ	
					Decane, 2,2,6-trimethyl-	92	PPBV	NJ	
					Decane, 2,2-dimethyl-	42	PPBV	NJ	
					Decane, 2,3,5-trimethyl-	45	PPBV	NJ	
					Hexane, 2,2,5-trimethyl-	60	PPBV	NJ	
					Octane, 2,2,6-trimethyl-	53	PPBV	NJ	
					Pentane, 2,3,3-trimethyl-	320	PPBV	NJ	
					Pentane, 2,3,4-trimethyl-	220	PPBV	NJ	
					Pentane, 2,3-dimethyl-	200	PPBV	NJ	
					Pentane, 2,4-dimethyl-	68	PPBV	NJ	
		VMP-42-10-092712	9/27/2012	VOCs	4-Nonene	17	PPBV	NJ	
					Cycloheptane, methoxy-	15	PPBV	NJ	
					Decane, 2,2,4-trimethyl-	56	PPBV	NJ	
					Decane, 2,2,8-trimethyl-	15	PPBV	NJ	
					Ethanone, 1-phenyl-	22	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	17	PPBV	NJ	
					Heptane, 2,2-dimethyl-	100	PPBV	NJ	
					Hexane, 1-(hexyloxy)-5-methyl-	50	PPBV	NJ	
					Hexane, 2,2,5-trimethyl-	14	PPBV	NJ	
					Hexane, 3,3-dimethyl-	62	PPBV	NJ	
		VMP-42-10-092712-Dup	9/27/2012	vocs	4-Nonene	15	PPBV	NJ	
					Ethanone, 1-phenyl-	16	PPBV	NJ	
					Heptane, 2,2,4,6,6-pentamethyl-	13	PPBV	NJ	
					Heptane, 2,2-dimethyl-	80	PPBV	NJ	
					Heptane, 4-ethyl-2,2,6,6-tetramethyl-	11	PPBV	NJ	
					Nonane, 3-methyl-5-propyl-	48	PPBV	NJ	
					Octane, , 2,2,6-trimethyl-	10	PPBV	NJ	
					Propanoic acid, 2-methyl-, 2-(hydroxymet	12	PPBV	NJ	
					Undecane, 2,2-dimethyl-	42	PPBV	NJ	
					Undecane, 2,8-dimethyl-	30	PPBV	NJ	

Notes
Lab Qualifiers
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value

TABLE 4
SOIL VAPOR SAMPLING - TEDLAR SAMPLING DATA

Reading Loc		Shroud	Tedlar Bag 1		Shroud	Tedlar Bag 2						
Instrument		Dielectric		Landtec	Dielectric		FID	PID	Landtec			
Port ID	Date	Helium in Shroud Before	Helium Before	CH4 (\%)	Helium in Shroud After	Helium After	FID (ppm)	PID (ppm)	CH 4 (\%)	LEL (\%)	CO 2 (\%)	O2 (\%)
VMP-4-5	08/08/12	54.0\%	0.0\%	N/A	51.0\%	0.0\%	4.65	0.7	0.0	0.0	1.5	19.0
	08/14/12	50.3\%	0.0\%	N/A	48.3\%	0.0\%	6.85	1.0	0.0	0.0	1.2	19.5
	08/20/12	57.0\%	0.0\%	N/A	46.0\%	0.4\%	4.25	1.4	0.0	0.0	1.0	19.2
	08/30/12	55.0\%	0.0\%	N/A	77.4\%	0.25\%	1.94	1.2	0.0	0.0	0.9	19.4
	09/05/12	51.0\%	0.0\%	N/A	49.7\%	0.23\%	2.76	0.5	0.0	0.0	1.8	18.8
	09/11/12	52.0\%	0.0\%	N/A	48.0\%	1.4\%	1.51	0.5	0.0	0.0	1.7	18.4
	09/17/12	53.0\%	0.0\%	N/A	44.6\%	0.9\%	2.04	0.4	0.0	0.0	1.0	19.8
	09/27/12	52.0\%	0.85\%	N/A	48.9\%	2.4\%	2.95	0.6	0.0	0.0	0.9	19.0
VMP-10-5	08/09/12	55.0\%	0.0\%	N/A	49.0\%	0.1\%	4.08	0.8	0.0	0.0	2.0	18.9
	08/15/12	50.7\%	0.0\%	N/A	41.2\%	0.04\%	4.89	1.0	0.0	0.0	1.7	19.2
	08/21/12	55.1\%	0.0\%	N/A	47.4\%	0.04\%	1.80	0.7	0.0	0.0	1.6	19.2
	08/31/12	51.7\%	0.0\%	N/A	41.2\%	0.0\%	1.69	1.0	0.0	0.0	1.6	19.4
	09/06/12	52.6\%	0.0\%	N/A	43.2\%	0.0\%	2.96	0.8	0.0	0.0	2.2	18.5
	09/12/12	61.7\%	0.0\%	N/A	47.1\%	0.02\%	1.80	1.0	0.0	0.0	2.1	18.6
	09/18/12	55.9\%	0.0\%	N/A	60.7\%	0.05\%	1.36	0.6	0.0	0.0	1.6	18.3
	09/28/12	52.1\%	0.0\%	N/A	50.2\%	0.04\%	1.50	0.5	0.0	0.0	1.7	18.4
VMP-11-5	08/09/12	66.7\%	0.0\%	N/A	51.7\%	0.0\%	2.37	0.9	0.0	0.0	3.0	17.7
	08/15/12	52.7\%	0.0\%	N/A	48.7\%	0.12\%	2.89	0.8	0.0	0.0	2.5	18.3
	08/21/12	67.0\%	0.03\%	N/A	51.5\%	0.02\%	3.24	1.0	0.0	0.0	2.4	18.5
	08/31/12	52.7\%	0.0\%	N/A	51.4\%	0.03\%	1.96	0.9	0.0	0.0	2.2	19.0
	09/06/12	52.0\%	0.0\%	N/A	39.7\%	0.02\%	1.27	0.6	0.0	0.0	2.9	18.1
	09/12/12	51.7\%	0.0\%	N/A	60.0\%	0.07\%	1.34	0.5	0.0	0.0	2.6	18.5
	09/18/12	55.0\%	0.0\%	N/A	43.2\%	0.1\%	1.18	0.8	0.0	0.0	1.8	18.5
	09/28/12	72.2\%	0.0\%	N/A	47.9\%	0.0\%	0.88	0.5	0.0	0.0	1.6	19.0
VMP-13-5	08/09/12	53.5\%	0.0\%	N/A	46.6\%	0.0\%	3.21	0.7	0.0	0.0	4.5	17.0
	08/15/12	50.8\%	0.0\%	N/A	47.0\%	0.02\%	4.10	0.6	0.0	0.0	3.9	17.5
	08/21/12	60.2\%	0.0\%	N/A	50.7\%	0.28\%	2.45	0.9	0.0	0.0	3.3	17.9
	08/31/12	51.0\%	0.0\%	N/A	46.7\%	0.42\%	1.91	1.1	0.0	0.0	3.1	18.2
	09/06/12	51.2\%	0.0\%	N/A	41.0\%	0.0\%	1.57	0.9	0.0	0.0	3.5	17.5
	09/12/12	50.9\%	0.0\%	N/A	41.2\%	0.03\%	1.60	1.5	0.0	0.0	3.5	17.6
	09/18/12	55.3\%	0.0\%	N/A	43.3\%	0.01\%	0.72	0.4	0.0	0.0	2.6	17.5
	09/28/12	54.5\%	0.01\%	N/A	47.6\%	0.02\%	1.11	0.6	0.0	0.0	2.7	18.2

TABLE 4
SOIL VAPOR SAMPLING - TEDLAR SAMPLING DATA

Reading Location		Shroud	Tedlar Bag 1		Shroud	Tedlar Bag 2						
Instrument		Dielectric		Landtec	Dielectric		FID	PID	Landtec			
Port ID	Date	Helium in Shroud Before	Helium Before	CH4 (\%)	Helium in Shroud After	Helium After	FID (ppm)	PID (ppm)	CH4 (\%)	LEL (\%)	CO2 (\%)	O2 (\%)
VMP-16-5	08/08/12	59.6\%	0.0\%	N/A	46.7\%	0.0\%	590.5	90.0	0.4	9.0	14.4	3.9
	08/14/12	56.2\%	0.0\%	N/A	55.5\%	0.0\%	636.0	82.0	8.0	0.4	14.7	2.6
	08/20/12	54.7\%	0.0\%	N/A	53.0\%	0.0\%	9300.0	180.0	3.4	68.0	16.1	1.7
	08/30/12	57.0\%	0.0\%	N/A	44.7\%	0.0\%	533.0	58.7	0.3	7.0	14.2	3.5
	09/05/12	51.2\%	1.4\%	N/A	47.1\%	1.4\%	9679.0	106.0	OVR	OVR	18.4	1.4
	09/11/12	62.1\%	0.0\%	N/A	42.8\%	0.0\%	158.0	30.0	0.0	1.0	12.7	4.9
	09/17/12	54.0\%	1.7\%	N/A	46.7\%	1.6\%	119000.0	117.0	OVR	OVR	17.9	0.9
	09/27/12	53.9\%	0.0\%	N/A	52.3\%	0.0\%	39.6	2.5	0.0	0.0	7.1	11.6
VMP-21-5	08/08/12	56.0\%	0.0\%	N/A	53.2\%	0.0\%	2.56	0.6	0.0	0.0	6.2	15.0
	08/14/12	60.1\%	0.0\%	N/A	52.1\%	0.0\%	4.99	1.0	0.0	0.0	6.2	15.2
	08/20/12	57.5\%	0.0\%	N/A	44.7\%	0.0\%	5.0	1.0	0.0	0.0	5.6	15.6
	08/30/12	53.2\%	0.0\%	N/A	45.4\%	0.0\%	0.57	0.5	0.0	0.0	5.1	16.1
	09/05/12	61.2\%	0.0\%	N/A	51.0\%	0.0\%	1.68	1.0	0.0	0.0	5.7	14.6
	09/11/12	58.2\%	0.0\%	N/A	41.0\%	0.0\%	1.20	0.3	0.0	0.0	5.7	15.0
	09/17/12	51.1\%	0.0\%	N/A	57.2\%	0.0\%	2.68	0.3	0.0	0.0	5.7	15.9
	09/27/12	57.1\%	0.0\%	N/A	44.6\%	0.003\%	2.18	0.5	0.0	0.0	4.0	17.4
VMP-42-10	08/08/12	57.1\%	0.0\%	N/A	50.2\%	0.0\%	2.40	0.5	0.0	0.0	2.3	18.7
	08/14/12	53.4\%	0.0\%	N/A	42.1\%	0.08\%	5.19	1.0	0.0	0.0	2.0	18.8
	08/20/12	59.2\%	0.0\%	N/A	39.2\%	0.04\%	5.17	1.6	0.0	0.0	1.6	18.9
	08/30/12	57.4\%	0.0\%	N/A	41.6\%	0.0\%	0.8	1.2	0.0	0.0	1.6	18.7
	09/05/12	54.1\%	0.0\%	N/A	46.4\%	0.0\%	2.27	0.8	0.0	0.0	1.8	19.5
	09/11/12	51.7\%	0.0\%	N/A	41.2\%	0.0\%	1.14	0.5	0.0	0.0	1.7	19.0
	09/17/12	52.3\%	0.0\%	N/A	54.9\%	0.09\%	5.61	0.7	0.0	0.0	1.8	19.5
	09/27/12	52.6\%	0.0\%	N/A	45.1\%	0.0\%	1.92	0.5	0.0	0.0	1.2	20.0

Notes:

1. The Landtec landfill gas analyzer displays "OVR" for any results calculated higher than 99.9% for an individual reading.
2. N/A is used to indicate that a reading was not collected because it was unnecessary (i.e.,methane detection following Tedlar Bag 1 screening).
3. FID readings were taken with a TVA-1000. Due to oxygen concentrations less than 16% a dilution tip was used when analyzing samples. The dilution tip introduced ambient air in a 10:1 ratio with the sample, which required the sample readings to be multiplied by 10 to get the actual reading. The FID readings in this spreadsheet illustrate the actual FID values that were represented for each sample.

Figures

Roxana Soil Vapor Additional - Week 1-2012 Data Review
Laboratory SDG: 1208251A,B
Data Reviewer: Melissa Mansker
Peer Reviewer: Elizabeth Kunkel
Date Reviewed: 9/14/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-080812

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-080812 was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.
No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1208251A-02A	TO-15	Carbon disulfide	$0.48 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Methylene chloride	$0.13 \mathrm{ppbv} / 0.45 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	$1,1,1$-Trichloroethane	$0.047 \mathrm{ppbv} / 0.25 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Benzene	$0.14 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	cis-1,3-Dichloropropene	$0.088 \mathrm{ppbv} / 0.40 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	Toluene	$0.10 \mathrm{ppbv} / 0.38 \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	Tetrachloroethene	$0.13 \mathrm{ppbv} / 0.90 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Chlorobenzene	$0.33 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Ethyl benzene	$0.078 \mathrm{ppbv} / 0.34 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	m,p-Xylene	$0.098 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.14 \mathrm{ppbv} / 0.83 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,2-Dichlorobenzene	$0.099 \mathrm{ppbv} / 0.59 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Propylene	$0.44 \mathrm{ppbv} / 0.76 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208251 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Oxygen	0.014%
$1208251 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Nitrogen	0.081%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample
 Were LCS recoveries within evaluation criteria?

Yes. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification.
6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes
7.0 Matrix Spike and Matrix Spike Duplicate Recoveries
Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the
samples.
8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results
 Were field duplicate samples collected as part of this SDG?

No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications
 Were additional qualifications applied?

No

Air Toxics

Abstract

8/28/2012 Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1208251A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/11/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd, is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Reviewed

WORK ORDER \#: 1208251A

Work Order Summary

Client:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable Austin URS Corporation P.O. BOX 203970 Austin, TX 78720-1088
PHONE:	314-743-4179	P.O. \#	
FAX:		PROJECT \#	21562735.10100 Roxana Vapor
DATE RECEIVED:	08/11/2012	CONTACT:	Additignal
DATE COMPLETED:	08/28/2012		

FRACTION \#	NAME	TEST	RECEIPT VAC./PRES.
01A	VMP-16-5-080812	Modified TO-15	FINAL PRESSURE
02A	Lab Blank	Modified TO-15	Mg
03A	CCV	Modified TO-15	NA
04A	LCS	Modified TO-15	NA
04AA	LCSD	Modified TO-15	NA

DATE: $08 / 28 / 12$

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the writen approval of Eurofins Air "Coxics, Ine.
(916) 985-1000. (800) 985-5955. FAX (916) 985-1020

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder\# 1208251A

One 1 Liter Summa Canister sample was received on August 11, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Dilution was performed on sample VMP-16-5-080812 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B-Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-080812
Lab ID\#: 1208251A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(u g / m 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Carbon Disulfide	750	200 J	2300	610 J
Methylene Chloride	1900	42 J	6500	150 J
$2,2,4-$ Trimethylpentane	190	34000	870	160000
Benzene	190	29 J	600	94 J
1,2-Dichloroethane	190	20 J	760	80 J
Toluene	190	42 J	700	160 J
Chlorobenzene	190	93 J	860	430 J
m,p-Xylene	190	32 J	810	140 J
Isopentane	750	1200	2200	3400

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
3,4-Hexanedione, 2,2,5-trimethyl-	$20633-03-8$	42%	2800 NJ
1-Pentene, 4-methyl-	$691-37-2$	64%	2100 NJ
Hexane, 3,4-dimethyl-	$583-48-2$	47%	2600 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	78%	4200 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	72%	3600 NJ
Hydroxylamine, O-pentyl-	$5963-74-6$	39%	19000 NJ
Octane, 4-methyl-	$2216-34-4$	72%	65000 NJ
Pentane, 3-ethyl-2,2-dimethyl-	$16747-32-3$	64%	4600 NJ
Unknown	NA	NA	1700 J
Decane, 2,2,5-trimethyl-	$62237-96-1$	72%	4800 NJ

Air Toxics

Client Sample ID: VMP-16-5-080812
Lab ID\#: 1208251A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082120 \\ 374 \\ \hline \end{array}$	Date of Collection: 8/8/12 9:29:00 AM Date of Analysis: 8/21/12 06:16 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	190	Not Detected	920	Not Detected
Freon 114	190	Not Detected	1300	Not Detected
Chloromethane	1900	Not Detected	3900	Not Detected
Vinyl Chloride	190	Not Detected	480	Not Detected
1,3-Butadiene	190	Not Detected	410	Not Detected
Bromomethane	1900	Not Detected	7300	Not Detected
Chloroethane	750	Not Detecied	2000	Not Detected
Freon 11	190	Not Detected	1000	Not Detected
Ethanol	750	Not Detected	1400	Not Detected
Freon 113	190	Not Detected	1400	Not Detected
1,1-Dichloroethene	190	Not Detected	740	Not Detected
Acetone	1900	Not Detected	4400	Not Detected
2-Propanol	750	Not Detected	1800	Not Detected
Carbon Disulfide	750	200 J	2300	610 J
3-Chloropropene	750	Not Detected	2300	Not Detected
Methylene Chloride	1900	42 J	6500	150 J
Methyl tert-butyl ether	190	Not Detected	670	Not Detected
trans-1,2-Dichloroethene	190	Not Detected	740	Not Detected
Hexane	190	Not Detected	660	Not Detected
1,1-Dichloroethane	190	Not Detected	760	Not Detected
2-Butanone (Methyl Ethyl Ketone)	750	Not Detected	2200	Not Detected
cis-1,2-Dichloroethene	190	Not Detected	740	Not Detected
Tetrahydrofuran	190	Not Detected	550	Not Detected
Chloroform	190	Not Detected	910	Not Detected
1,1,1-Trichloroethane	190	Not Detected	1000	Not Detected
Cyclohexane	190	Not Detected	640	Not Detected
Carbon Tetrachloride	190	Not Detected	1200	Not Detected
2,2,4-Trimethylpentane	190	34000	870	160000
Benzene	190	29 J	600	94 J
1,2-Dichloroethane	190	20 J	760	80 J
Heptane	190	Not Detected	770	Not Detected
Trichloroethene	190	Not Detected	1000	Not Detected
1,2-Dichloropropane	190	Not Detected	860	Not Detected
1,4-Dioxane	750	Not Detected	2700	Not Detected
Bromodichloromethane	190	Not Detected	1200	Not Detected
cis-1,3-Dichloropropene	190	Not Detected	850	Not Detected
4-Methyl-2-pentanone	190	Not Detected	770	Not Detected
Toluene	190	42 J	700	160 J
trans-1,3-Dichloropropene	190	Not Detected	850	Not Detected
1,1,2-Trichloroethane	190	Not Detected	1000	Not Detected
Tetrachloroethene	190	Not Detected	1300	Not Detected
2-Hexanone	750	Not Detected	3100	Not Detected

Air Toxics

Client Sample ID: VMP-16-5-080812

Lab ID\#: 1208251A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082120 \\ 374 \end{array}$	Date of Collection: 8/8/12 9:29:00 AM Date of Analysis: 8/21/12 06:16 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	190	Not Detected	1600	Not Detected
1,2-Dibromoethane (EDB)	190	Not Detected	1400	Not Detected
Chlorobenzene	190	93 J	860	430 J
Ethyl Benzene	190	Not Detected	810	Not Detected
m,p-Xylene	190	32 J	810	140 J
o-Xylene	190	Not Detected	810	Not Detected
Styrene	190	Not Detected	800	Not Detected
Bromoform	190	Not Detected	1900	Not Detected
Cumene	190	Not Detected	920	Not Detected
1,1,2,2-Tetrachloroethane	190	Not Detected	1300	Not Detected
Propylbenzene	190	Not Detected	920	Not Detected
4-Ethyltoluene	190	Not Detected	920	Not Detected
1,3,5-Trimethylbenzene	190	Not Detected	920	Not Detected
1,2,4-Trimethylbenzene	190	Not Detected	920	Not Detected
1,3-Dichlorobenzene	190	Not Detected	1100	Not Detected
1,4-Dichlorobenzene	190	Not Detected	1100	Not Detected
alpha-Chiorotoluene	190	Not Detected	970	Not Detected
1,2-Dichlorobenzene	190	Not Detected	1100	Not Detected
1,2,4-Trichlorobenzene	750	Not Detected	5600	Not Detected
Hexachlorobutadiene	750	Not Detected	8000	Not Detected
Butane	750	Not Detected	1800	Not Detected
Isopentane	750	1200	2200	3400
Ethyl Acetate	750	Not Detected	2700	Not Detected
Propylene	750	Not Detected	1300	Not Detected
Vinyl Acetate	750	Not Detected	2600	Not Detected
Vinyl Bromide	750	Not Detected	3300	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((p \mathrm{pbv}))$
3,4-Hexanedione, 2,2,5-trimethyl-	$20633-03-8$	42%	2800 NJ
1-Pentene, 4-methyl-	$691-37-2$	64%	2100 NJ
Hexane, 3,4-dimethyl-	$583-48-2$	47%	2600 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	78%	4200 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	72%	3600 NJ
Hydroxylamine, O-pentyl-	$5963-74-6$	39%	19000 NJ
Octane, 4-methyl-	$2216-34-4$	72%	65000 NJ
Pentane, 3-ethyl-2,2-dimethyl-	$16747-32-3$	64%	4600 NJ
Unknown	NA	NA	1700 J
Decane, 2,2,5-trimethyl-	$62237-96-1$	72%	4800 NJ

Air Toxics

Client Sample ID: VMP-16-5-080812
 Lab ID\#: 1208251A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 082120	Date of Collection: 8/8/12 9:29:00 AM
Dil. Factor:	374	Date of Analysis: $8 / 21 / 1206: 16 \mathrm{PM}$

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	97	$70-130$
1,2-Dichloroethane-d4	119	$70-130$
4-Bromofluorobenzene	102	$70-130$

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208251A-02A
 EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082110 \mathrm{a} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 11:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1.1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	(0.48 J	6.2	1.5 J
3-Chloropropene	2.0	NotDefected	6.3	Not Detected
Methylene Chloride	5.0	(0.13 J)	17	(0.45 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	0.047 J	2.7	0.25 J
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	$0.14 \mathrm{~J})$	1.6	0.46 J
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Delected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	0.088 J	2.3	0.40 J
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	(0.10 J)	1.9	0.38 J
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	0.13 J	3.4	(0.90J)
2-Hexanone	2.0	NotDetected	8.2	Not Detected

Air Toxics

Client Sample ID: Lab Blank

Lab IDH: 1208251A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

Fille Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082110 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 11:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.33 J	2.3	(1.5 J)
Ethyl Benzene	0.50	0.078 J	2.2	(0.34 J)
m,p-Xylene	0.50	0.098 J	2.2	(0.42J)
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	(0.14 J	3.0	(0.83 J)
alpha-Chlorotoluene	0.50	Notbetected	2.6	Not Defected
1,2-Dichlorobenzene	0.50	(0.099 J	3.0	0.59 J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	(0.44 J	3.4	0.76 J
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv)
None Identified			
Container Type: NA - Not Applicable			
		Method	
Surrogates	96	Limits	
Toluene-d8	104	$70-130$	
1,2-Dichloroethane-d4	101	$70-130$	
$4-$ Bromofluorobenzene		$70-130$	

Air Toxics

\(\left.$$
\begin{array}{lcc|} & \begin{array}{c}\text { Client Sample ID: CCV } \\
\text { Lab ID\#: 1208251A-03A }\end{array}
$$

\& EPA METHOD TO-15 GC/MS FULL SCAN\end{array}\right]\)| |
| :--- |

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208251A-03A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$\mathbf{j 0 8 2 1 0 2}$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/21/12 08:35 AM

Compound		\%Recovery
Dibromochloromethane		90
1,2-Dibromoethane (EDB)		84
Chlorobenzene		73
Ethyl Benzene		88
m,p-Xylene		91
o-Xylene		89
Styrene		95
Bromoform		92
Cumene		92
1,1,2,2-Tetrachloroethane		80
Propylbenzene		91
4-Ethyltoluene		87
1,3,5-Trimethylbenzene		86
1,2,4-Trimethylbenzene		91
1,3-Dichlorobenzene		82
1,4-Dichlorobenzene		82
alpha-Chlorotoluene		89
1,2-Dichlorobenzene		82
1,2,4-Trichlorobenzene		84
Hexachlorobutadiene		93
Butane		93
Isopentane		88
Ethyl Acetate		102
Propylene		91
Vinyl Acetate		92
Vinyl Bromide		110
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	105	70-130

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208251A-04A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082103 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 09:02 AM
Compound		\%Recovery
Freon 12		117
Freon 114		116
Chloromethane		104
Vinyl Chloride		106
1,3-Butadiene		97
Bromomethane		105
Chloroethane		103
Freon 11		112
Ethanol		92
Freon 113		119
1,1-Dichforoethene		127
Acetone		92
2-Propanol		102
Carbon Disulfide		124
3-Chloropropene		117
Methylene Chloride		96
Methyl tert-butyl ether		117
trans-1,2-Dichloroethene		122
Hexane		114
1,1-Dichloroethane		108
2-Butanone (Methyl Ethyl Ketone)		98
cis-1,2-Dichloroethene		94
Tetrahydrofuran		99
Chloroform		106
1,1,1-Trichloroethane		116
Cyclohexane		108
Carbon Tetrachloride		114
2,2,4-Trimethylpentane		104
Benzene		104
1,2-Dichloroethane		114
Heptane		118
Trichloroethene		108
1,2-Dichloropropane		103
1,4-Dioxane		101
Bromodichloromethane		109
cis-1,3-Dichloropropene		107
4-Methyl-2-pentanone		108
Toluene		98
trans-1,3-Dichloropropene		110
1,1,2-Trichloroethane		102
Tetrachloroethene		104
2-Hexanone		109

Air Toxics

\(\left.$$
\begin{array}{lcc|} & \begin{array}{c}\text { Client Sample ID: LCS } \\
\text { Lab ID\#: 1208251A-04A }\end{array}
$$

\& EPA METHOD TO-15 GC/MS FULL SCAN\end{array}\right]\)| |
| :--- |

Air Toxics

\(\left.$$
\begin{array}{lcc|} & \begin{array}{c}\text { Client Sample ID: LCSD } \\
\text { Lab ID\#: 1208251A-04AA }\end{array}
$$

\& EPA METHOD TO-15 GC/MS FULL SCAN\end{array}\right]\)| |
| :--- |

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208251A-04AA
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 082104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/21/12 09:21 AM

Compound		\%Recovery
Dibromochloromethane		109
1,2-Dibromoethane (EDB)		102
Chlorobenzene		87
Ethyl Benzene		105
m,p-Xylene		109
o-Xylene		107
Styrene		111
Bromoform		110
Cumene		111
1,1,2,2-Tetrachloroethane		98
Propylbenzene		110
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		106
1,3-Dichlorobenzene		98
1,4-Dichlorobenzene		96
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		98
1,2,4-Trichlorobenzene		102
Hexachlorobutadiene		111
Butane		100
Isopentane		100
Ethyl Acetate		Not Spiked
Propylene		92
Vinyl Acetate		111
Vinyl Bromide		Not Spiked
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	105	70-130

S1/ Shell Oil Products Chain Of Custody Record
URS

Air Toxics

8/24/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208251B
Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/11/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208251B

Work Order Summary

CERTIFIED BY

DATE: $08 / 24 / 12$
Technical Director
Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Led. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, lac.

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1208251B

One 1 Liter Summa Canister sample was received on August 11, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within $0.01 \mathrm{~mol} \%$ for any component.	The standards used by ATL are blended to $\mathrm{a} \gg=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL .	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC . Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25\% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Oualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

* eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-080812

Lab ID\#: 1208251B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	4.7
Nitrogen	0.19	81
Methane	0.00019	0.0017
Carbon Dioxide	0.019	14

eurofins

Air Toxics

Client Sample ID: VMP-16-5-080812

Lab ID\#: 1208251B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208251B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9081404 a Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 8/14/12 01:26 PM
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.10	0.014 J
Nitrogen	0.10	0.081 J
Carbon Monoxide	0.010	Not Detected
Methane	0.00010	Not Detected
Carbon Dioxide	0.010	Not Detected
Ethane	0.0010	Not Detected
Ethene	0.0010	Not Detected
$J=$ Estimated value.		
Container Type: NA - Not Applicable		

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208251B-02B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208251B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9081402	Date of Collection: NA
Dit. Factor:	1.00	Date of Analysis: $8 / 14 / 12$ 12:20 PM

Compound	\%Recovery
Oxygen	99
Nitrogen	100
Carbon Monoxide	99
Methane	98
Carbon Dioxide	100
Ethane	99
Ethene	96
Helium	101
Container Type: NA - Not Applicable	

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208251B-03AA
 NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

File Name:	9081426	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $8 / 14 / 12$ 10:31 PM

Compound	\%Recovery
Oxygen	98
Nitrogen	100
Carbon Monoxide	99
Methane	98
Carbon Dioxide	103
Ethane	100
Ethene	97
Helium	100
Container Type: NA - Not Applicable	

Shell Oil Products Chain Of Custody Record
TRS

Roxana Soil Vapor Additional - Week 1-2012 Data Review

Laboratory SDG: 1208264A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/17/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-080812	VMP-42-10-080812
VMP-4-5-080812	VMP-11-5-080912
VMP-13-5-080912	VMP-10-5-080912

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Although not indicated in the laboratory case narrative, analytes were detected in the method blank. This issue is addressed further in the appropriate section below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1208264A-07A	TO-15	Carbon disulfide	$0.48 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	Methylene chloride	$0.13 \mathrm{ppbv} / 0.45 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	1,1,1-Trichloroethane	$0.047 \mathrm{ppbv} / 0.25 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	Benzene	$0.14 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	cis-1,3-Dichloropropene	$0.088 \mathrm{ppbv} / 0.40 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	Toluene	$0.10 \mathrm{ppbv} / 0.38 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	Tetrachloroethene	$0.13 \mathrm{ppbv} / 0.90 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	Chlorobenzene	$0.33 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208264 \mathrm{~A}-07 \mathrm{~A}$	TO-15	Ethyl benzene	$0.078 \mathrm{ppbv} / 0.34 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208264 \mathrm{~A}-07 \mathrm{~A}$	TO-15	m,p-Xylene	$0.098 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208264A-07A	TO-15	1,4-Dichlorobenzene	$0.14 \mathrm{ppbv} / 0.83 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1208264A-07A	TO-15	1,2-Dichlorobenzene	$0.099 \mathrm{ppbv} / 0.59 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208264 \mathrm{~A}-07 \mathrm{~A}$	TO-15	Propylene	$0.44 \mathrm{ppbv} / 0.76 \mu \mathrm{~g} \mathrm{~m}^{3}$
1208264B-07A	Natural gases	Oxygen	0.014%
1208264B-07A	Natural gases	Nitrogen	0.081%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-080812	TO-15	Methylene chloride	-	U
VMP-21-5-080812	TO-15	1,1,1-Trichloroethane	-	U
VMP-21-5-080812	TO-15	Toluene	-	U
VMP-21-5-080812	TO-15	Tetrachloroethene	-	U
VMP-21-5-080812	TO-15	Chlorobenzene	-	U
VMP-21-5-080812	TO-15	m,p-Xylene	-	U
VMP-21-5-080812	TO-15	1,4-Dichlorobenzene	-	U
VMP-21-5-080812	TO-15	1,2-Dichlorobenzene	-	U
VMP-42-10-080812	TO-15	Tetrachloroethene	-	U
VMP-42-10-080812	TO-15	Chlorobenzene	$\begin{aligned} & 1.2 \mathrm{ppbv} /{ }^{/} \\ & 5.3 \mu \mathrm{~g} / \mathrm{m}^{3} \end{aligned}$	U
VMP-42-10-080812	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-080812	TO-15	1,2-Dichlorobenzene	-	U
VMP-4-5-080812	TO-15	Carbon disulfide	-	U
VMP-4-5-080812	TO-15	Tetrachloroethene	-	U
VMP-4-5-080812	TO-15	Chlorobenzene	-	U
VMP-4-5-080812	TO-15	1,4-Dichlorobenzene	-	U
VMP-4-5-080812	TO-15	1,2-Dichlorobenzene	-	U
VMP-11-5-080912	TO-15	Carbon disulfide	-	U
VMP-11-5-080912	TO-15	Toluene	-	U
VMP-11-5-080912	TO-15	Tetrachloroethene	-	U
VMP-11-5-080912	TO-15	Chlorobenzene	-	U
VMP-11-5-080912	TO-15	Ethyl benzene	-	U
VMP-11-5-080912	TO-15	m,p-Xylene	-	U
VMP-11-5-080912	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-080912	TO-15	Toluene	-	U
VMP-13-5-080912	TO-15	Chlorobenzene	-	U
VMP-13-5-080912	TO-15	Ethyl benzene	-	U
VMP-13-5-080912	TO-15	m,p-Xylene	-	U
VMP-13-5-080912	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-080912	TO-15	Carbon disulfide	-	U
VMP-10-5-080912	TO-15	Methylene chloride	-	U
VMP-10-5-080912	TO-15	Toluene	-	U

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-10-5-080912	TO-15	Chlorobenzene	-	\mathbf{U}
VMP-10-5-080912	TO-15	m,p-Xylene	-	\mathbf{U}
VMP-10-5-080912	TO-15	1,4-Dichlorobenzene	-	\mathbf{U}
VMP-10-5-080912	TO-15	1,2-Dichlorobenzene	-	\mathbf{U}

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

eurofins

Air Toxics

8/29/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208264A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Lid. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208264A

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation
	1001 Highlands Plaza Dr. West
	Suite 300 St. Louis, MO 63110
PHONE:	$314-743-4179$
FAX:	
DATE RECEIVED:	$08 / 13 / 2012$
DATE COMPLETED:	$08 / 29 / 2012$

DATE: 08/29/12
Technical Director
Cerffication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1208264A

Six 1 Liter Summa Canister samples were received on August 13, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B-Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector

Air Toxics

rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-080812

Lab ID\#: 1208264A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.66 J	6.2	3.3 J
Chloromethane	12	4.7 J	26	9.7 J
Freon 11	1.2	0.35 J	7.0	1.9 J
Ethanol	5.0	5.8	9.4	11
Acetone	12	290	30	690
2-Propanol	5.0	2.4 J	12	5.8 J
Carbon Disulfide	5.0	7.6	16	24
Methylene Chloride	12	00:46-5 4	43	1.6-
2-Butanone (Methyl Ethyl Ketone)	5.0	5.0	15	15
Tetrahydrofuran	1.2	2.0	3.7	6.0
Chloroform	1.2	0.30 J	6.1	1.5 J
1,1,1-Trichloroethane	1.2	0.445	6.8	-0.78. in
Cyclohexane	1.2	0.48 J	4.3	1.6 J
2,2,4-Trimethylpentane	1.2	0.64 J	5.8	3.0 J
Benzene	1.2	0.76 J	4.0	2.4 J
Bromodichloromethane	1.2	0.18 J	8.3	1.2 J
4-Methyl-2-pentanone	1.2	0.74 J	5.1	3.0 J
Toluene	$t .2$	-0.35-4	4.7	4.3514
Tetrachloroethene	1.2	-0.46- 4	8.4	-3.15 b
1,2-Dibromoethane (EDB)	1.2	0.39 J	9.6	3.0 J
Chlorobenzene	1.2	\cdots	5.7	$-5.6 \mathrm{~J}-4$
m,p-Xylene	1.2	-0.25J 4	5.4	-1:15 4
1,1,2,2-Tetrachloroethane	1.2	0.20 J	8.5	1.4 J
Propylbenzene	1.2	0.18 J	6.1	0.88 J
1,2,4-Trimethylbenzene	1.2	0.20 J	6.1	0.97 J
1,3-Dichlorobenzene	1.2	0.30 J	7.5	1.8 J
1,4-Dichlorobenzene	1.2	0.35 J 4	7.5	-2.1d n
1,2-Dichlorobenzene	1.2	-0.28J 4	7.5	1.7 J 4
Isopentane	5.0	1.5 J	15	4.4 J
Propylene	5.0	2.6 J	8.6	4.5 J

Compound \quad CAS Number Match Quality | Amount |
| :---: |
| (ppbv) |

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-080812
Lab ID\#: 1208264A-01A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	58%	9.6 NJ
Propanal, 2-methyl-	$78-84-2$	78%	6.3 NJ
Unknown	NA	NA	22 J
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	7.8 NJ
1-Butanol, 3,3-dimethyl-	$624-95-3$	59%	8.6 NJ

Client Sample ID; VMP-42-10-080812
Lab ID\#: 1208264A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $($ ug $/ \mathrm{m} 3)$	Amount (ug/m3)
Freon 12	0.98	0.52 J	4.8	2.6 J
Chloromethane	9.8	16	20	32
Bromomethane	9.8	0.52 J	38	2.0 J
Chloroethane	3.9	2.7 J	10	7.2 J
Freon 11	0.98	0.42 J	5.5	2.3 J
Ethanol	3.9	42	7.4	80
Acetone	9.8	59	23	140
2-Propanol	3.9	12	3.6	30
Carbon Disulfide	3.9	3.3 J	12	10 J
Methylene Chloride	9.8	1.5 J	34	5.4 J
Hexane	0.98	1.6	3.4	5.6
2-Butanone (Methyl Ethyl Ketone)	3.9	11	12	34
Tetrahydrofuran	0.98	0.98	2.9	2.9
Chloroform	0.98	1.7	4.8	8.4
Carbon Tetrachloride	0.98	0.21 J	6.2	1.3 J
2,2.4-Trimethylpentane	0.98	40	4.6	180
Benzene	0.98	40	3.1	130
1,2-Dichloroethane	0.98	1.1	4.0	4.5
Heptane	0.98	3.6	4.0	15
1,4-Dioxane	3.9	17	14	60
4-Methyl-2-pentanone	0.98	37	4.0	150
Toluene	0.98	24	3.7	91

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-080812				
Lab ID\#: 1208264A-02A				
trans-1,3-Dichloropropene	0.98	0.41 J	4.4	1.9 J
Tetrachloroethene	0.98	-0.45-1	6.6	-3.0-J 4
2-Hexanone	3.9	1.3 J	16	5.5 J
1,2-Dibromoethane (EDB)	0.98	0.26 J	7.5	2.0 J
Chlorobenzene	$-0.98-1.2$	$\cdots \times 1.2-4$	$-4.5 .5 .3$	$-5.3-4$
Ethyl Benzene	0.98	1.6	4.2	6.7
m,p-Xylene	0.98	4.1	4.2	18
o-Xylene	0.98	1.3	4.2	5.5
Styrene	0.98	0.87 J	4.2	3.7 J
Cumene	0.98	16	4.8	79
Propylbenzene	0.98	0.49 J	4.8	2.4 J
1,3,5-Trimethylbenzene	0.98	0.46 J	4.8	2.2 J
1,2,4-Trimethylbenzene	0.98	0.76 J	4.8	3.8 J
1,3-Dichlorobenzene	0.98	0.29 J	5.9	1.7 J
1,4-Dichlorobenzene	0.98	-0.45-1.1	5.9	-2714
1,2-Dichlorobenzene	0.98	-0.29-d 4	5.9	-475 4
Isopentane	3.9	7.8	12	23
Propylene	3.9	4.8	6.7	8.3

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,3-dimethyl-	$565-59-3$	64%	48 NJ
2-Propanol, 1-methoxy-	$107-98-2$	43%	48 NJ
Unknown	NA	NA	54 J
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	130 NJ
Hexane, 2,2-dimethyl-	$590-73-8$	59%	46 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	150 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	40 NJ
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	320 NJ
Unknown	NA	NA	72 J
Dodecane, 1-fluoro-	$334-68-9$	59%	150 NJ

Client Sample ID: VMP-4-5-080812

Lab ID\#: 1208264A-03A

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-080812

Lab ID\#: 1208264A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.98	0.50 J	4.8	2.5 J
Freon 11	0.98	0.25 J	5.5	1.4 J
Ethanol	3.9	33	7.4	62
Acetone	9.8	32	23	77
2-Propanol	3.9	12	9.6	30
Carbon Disulfide	3.9	-1.8-8 6	12	-5.7 du
Methylene Chloride	9.8	0.70 J	34	2.4 J
Hexane	0.98	0.80 J	3.4	2.8 J
2-Butanone (Methyl Ethyl Ketone)	3.9	10	12	30
Tetrahydrofuran	0.98	1.1	2.9	3.2
Chioroform	0.98	0.25 J	4.8	1.2 J
Cyclohexane	0.98	0.58 J	3.4	2.0 J
2,2,4-Trimethylpentane	0.98	5.3	4.6	25
Benzene	0.98	24	3.1	77
1,2-Dichloroethane	0.98	0.13 J	4.0	0.52 J
Heptane	0.98	2.9	4.0	12
4-Methyl-2-pentanone	0.98	42	4.0	170
Toluene	0.98	21	3.7	79
Tetrachloroethene	0.98	-0.455 4	6.6	-3.054
2-Hexanone	3.9	1.0 J	16	4.3 J
Chlorobenzene	0.98	-0.96-5 4	4.5	$-4.45 \mathrm{H}$
Ethyl Benzene	0.98	1.1	4.2	5.0
m,p-Xylene	0.98	3.3	4.2	14
o-Xylene	0.98	1.1	4.2	4.8
Styrene	0.98	0.90 J	4.2	3.8 J
Bromoform	0.98	0.23 J	10	2.4 J
Cumene	0.98	14	4.8	70
Propylbenzene	0.98	0.32 J	4.8	1.6 J
4-Ethyltoluene	0.98	0.52 J	4.8	2.5 J
1,3,5-Trimethylbenzene	0.98	0.24 J	4.8	1.2 J
1,2,4-Trimethylbenzene	0.98	0.51 J	4.8	2.5 J
1,3-Dichlorobenzene	0.98	0.31 J	5.9	1.9 J
1,4-Dichlorobenzene	0.98	-0.39 dur	5.9	-2.3-d u

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-080812
Lab ID\#: 1208264A-03A
1,2-Dichlorobenzene
Butane

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	140 NJ
Heptane, 2,2,4-trimethyl-	$14720-74-2$	64%	47 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	150 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	59%	39 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	440 NJ
Unknown	NA	NA	150 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	59%	330 NJ
Unknown	NA	NA	45 J
Ethanone, 1-phenyl-	$98-86-2$	94%	80 NJ
Unknown	NA	NA	55 J

Client Sample ID: VMP-11-5-080912
Lab ID\#: 1208264A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	0.96	0.58 J	4.7	2.9 J
Freon 11	0.96	0.26 J	5.4	1.4 J
Acetone	9.6	7.6 J	23	18 J
2-Propanol	3.8	2.1 J	9.4	5.3 J
Carbon Disulfide	3.8	-7.6 J u	12	-4.9 Jm 4
Methylene Chloride	9.6	0.95 J	33	3.3 J
Hexane	0.96	0.78 J	3.4	2.8 J
2-Butanone (Methyl Ethyl Ketone)	3.8	1.6 J	11	4.7 J
Tetrahydrofuran	0.96	1.1	2.8	3.2
Chloroform	0.96	0.13 J	4.7	0.64 J
Cyclohexane	0.96	1.4	3.3	4.7
2,2,4-Trimethylpentane	0.96	5.8	4.5	27
Benzene	0.96	4.0	3.0	13
1,2-Dichloroethane	0.96	0.16 J	3.9	0.64 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample 1D; VMP-11-5-080912				
Lab ID\#: 1208264A-04A				
Heptane	0.96	0.26 J	3.9	1.1 J
Toluene	0.96	-0:39-4	3.6	1.5dm 4
Tetrachloroethene	0.96	-0.24-4	6.5	160-4
Chlorobenzene	0.96	-0.975 4	4.4	-4:2+4
Ethyl Benzene	0.96	-0.30才 ?	4.1	-1.3-2
m,p-Xylene	0.96	-0.30-5 4	4.1	-13. L^{1}
Cumene	0.96	0.15 J	4.7	0.74 J
Propylbenzene	0.96	0.16 J	4.7	0.81 J
1,2,4-Trimethylbenzene	0.96	0.16 J	4.7	0.76 J
1,3-Dichlorobenzene	0.96	0.30 J	5.7	1.8 J
1,4-Dichlorobenzene	0.96	-0.34-du	5.7	-180 - 1
Butane	3.8	3.7 J	9.1	8.7 J
Isopentane	3.8	3.0 J	11	8.9 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	7.7 J
Acetic acid	$64-19-7$	83%	32 NJ
Unknown	NA	NA	5.5 J
Octane, 4-methyl-	$2216-34-4$	78%	7.8 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	53%	5.4 NJ

Client Sample ID: VMP-13-5-080912
Lab ID\#: 1208264A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.2	0.73 J	5.8	3.6 J
Freon 11	1.2	0.47 J	6.6	2.6 J
Acetone	12	9.2 J	28	22 J
2-Propanol	4.7	3.8 J	12	9.2 J
Carbon Disulfide	4.7	4.6 J	15	14 J
Methylene Chloride	12	0.90 J	41	3.1 J
Hexane	1.2	0.71 J	4.2	2.5 J
Chloroform	1.2	1.1 J	5.8	5.2 J
Cyclohexane	1.2	3.1	4.1	10

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-080912				
Lab ID\#: 1208264A-05A				
2,2,4-Trimethylpentane	1.2	3.8	5.5	18
Benzene	1.2	6.6	3.8	21
Toluene	1.2	-0.43-4 4	4.4	-1.6-d-4
Chlorobenzene	1.2	$0.90-4$	5.4	-4.7」 4
Ethyl Benzene	1.2	-0.20-s 4	5.1	-0:88才
m,p-Xylene	1.2	-0.32-4 n	5.1	-4.4+ 4
1,1,2,2-Tetrachloroethane	1.2	0.20 J	8.1	1.4 J
4-Ethyltoluene	1.2	0.31 J	5.8	1.5 J
1,2,4-Trimethylbenzene	1.2	0.31 J	5.8	1.5 J
1,3-Dichlorobenzene	1.2	0.32 J	7.1	2.0 J
1,4-Dichlorobenzene	1.2	-0.32-5 4	7.1	-1.9nd-4
- alpha-Chlorotoluene	1.2	0.18 J	6.1	0.92 J
Isopentane	4.7	2.2 J	14	6.6 J
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-		115-11-7	52\%	6.6 NJ
Acetic acid		64-19-7	78\%	29 NJ
Unknown		NA	NA	6.0 J
Unknown		NA	NA	9.5 J

Client Sample ID: VMP-10-5-080912
Lab ID\#: 1208264A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	0.92	0.48 J	4.5	2.4 J
Freon 11	0.92	0.27 J	5.1	1.5 J
Acetone	9.2	22	22	53
2-Propanol	3.7	1.1 J	9.0	2.7 J
Carbon Disulfide	3.7	-9.9 J	11	$-6.7 \mathrm{~J}-4$
Methylene Chloride	9.2	$-0.64-\mathrm{J}$	32	$-2.2 \mathrm{~J}-4$
Hexane	0.92	1.2	3.2	4.4
2-Butanone (Methyl Ethyl Ketone)	3.7	3.4 J	11	10 J
Cyclohexane	0.92	0.33 J	3.1	1.1 J
2,2,4-Trimethylpentane	0.92	2.3	4.3	11

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-080912
Lab ID\#: 1208264A-06A
Benzene
1,2-Dichloroethane
Heptane
Toluene
Chlorobenzene
m,p-Xylene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
alpha-Chlorotoluene
1,2-Dichlorobenzene

Client Sample ID: VMP-21-5-080812
Lab ID\#: 1208264A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$j 082113$ 2.49	Date of Collection: 8/8/12 10:54:00 AM Date of Analysis: 8/21/12 01:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.66 J	6.2	3.3 J
Freon 114	1.2	Not Detected	8.7	Not Detected
Chloromethane	12	4.7 J	26	9.7 J
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
1,3-Butadiene	1.2	Not Detected	2.8	Not Detected
Bromomethane	12	Not Detected	48	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.2	0.35 J	7.0	1.9 J
Ethanol	5.0	5.8	9.4	11
Freon 113	1.2	Not Detected	9.5	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	290	30	690
2-Propanol	5.0	2.4 J	12	5.8 J
Carbon Disulfide	5.0	7.6	16	24
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chloride	12	-0.46 \% 14	43	\cdots
Methyl tert-butyl ether	1.2	Not Detected	4.5	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	5.0	15	15
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Tetrahydrofuran	1.2	2.0	3.7	6.0
Chloroform	1.2	0.30 J	6.1	1.5 J
1,1,1-Trichloroethane	1.2	$-0.14 \mathrm{~d}_{4}$	6.8	0.7854
Cyclohexane	1.2	0.48 J	4.3	1.6 J
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected
2,2,4-Trimethylpentane	1.2	0.64 J	5.8	3.0 J
Benzene	1.2	0.76 J	4.0	2.4 J
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	Not Detected	5.1	Not Detected
Trichtoroethene	1.2	Not Detected	6.7	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.8	Not Detected
1,4-Dioxane	5.0	Not Detected	18	Not Detected
Bromodichloromethane	1.2	0.18 J	8.3	1.2 J
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
4-Methyl-2-pentanone	1.2	0.74 J	5.1	3.0 J
Toluene	1.2	-0:35-5 u	4.7	-7.3-4
trans-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Tetrachloroethene	1.2	-0.46-	8.4	3.4 in
2-Hexanone	5.0	Not Detected	20	Not Detected

Air Toxics

Client Sample ID: VMP-21-5-080812
Lab ID\#: 1208264A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dit. Factor:	$\begin{array}{r} \mathbf{j} 02113 \\ 2.49 \\ \hline \end{array}$	Date of Collection: 8/8/12 10:54:00 AM Date of Analysis: 8/21/12 01:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.2	0.39 J	9.6	3.0 J
Chlorobenzene	1.2	-125 is	5.7	
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	$0.25 \mathrm{~J}^{4}$	5.4	A-1-4
o-Xylene	1.2	Not Detected	5.4	Not Detected
Styrene	1.2	Not Detected	5.3	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.1	Not Detected
1,1,2,2-Tetrachloroethane	1.2	0.20 J	8.5	1.4 J
Propylbenzene	1.2	0.18 J	6.1	0.88 J
4-Ethyltoluene	1.2	Not Detected	6.1	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
1,2,4-Trimethylbenzene	1.2	0.20 J	6.1	0.97 J
1,3-Dichlorobenzene	1.2	0.30 J	7.5	1.8 J
1,4-Dichlorobenzene	1.2	0.35 J и	7.5	-2.4d
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected
1,2-Dichlorobenzene	1.2	-0.28-ir	7.5	17d
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	5.0	Not Detected	53	Not Detected
Butane	5.0	Not Detected	12	Not Detected
Isopentane	5.0	1.5 J	15	4.4 J
Ethyl Acetate	5.0	Not Detected	18	Not Detected
Propylene	5.0	2.6 J	8.6	4.5 J
Vinyl Acetate	5.0	Not Detected	18	Not Detected
Vinyl Bromide	5.0	Not Detected	22.	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene, 2-methyl-	$115-11-7$	58%	9.6 NJ
Propanal, 2-methyl-	$78-84-2$	78%	6.3 NJ
Unknown	NA	NA	22 J
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	7.8 NJ
1-Butanol, 3,3-dimethyl-	$624-95-3$	59%	8.6 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits

Air Toxics

Cient Sample ID: VMP-21-5-080812
 Lab ID\#: 1208264A-01A
 EPA METHOD TO-15 GC/MS FULI SCAN

File Name:	j082113	Date of Collection: 8/8/12 10:54:00 AM	
Dii. Factor:	2.49		Date of Analysis: 8/21/12 01:28 PM
		Method	
Surrogates		\%Recovery	Limits
Toluene-d8	94	$70-130$	
1,2-Dichloroethane-d4	108	$70-130$	
4-Bromofluorobenzene	102	$70-130$	

Air Toxics

Client Sample ID: VMP-42-10-080812
Lab ID\#: 1208264A+02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082112 \\ 1.96 \\ \hline \end{array}$	Date of Collection: 8/8/12 11:45:00 AM Date of Analysis: 8/21/12 12:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.98	0.52 J	4.8	2.6 J
Freon 114	0.98	Not Detecied	6.8	Not Detected
Chloromethane	9.8	16	20	32
Vinyl Chloride	0.98	Not Detected	2.5	Not Detected
1,3-Butadiene	0.98	Not Detected	2.2	Not Detected
Bromomethane	9.8	0.52 J	38	2.0 J
Chloroethane	3.9	2.7 J	10	7.2 J
Freon 11	0.98	0.42 J	5.5	2.3 J
Ethanol	3.9	42	7.4	80
Freon 113	0.98	Not Detected	7.5	Not Detected
1,1-Dichioroethene	0.98	Not Detected	3.9	Not Detected
Acetone	9.8	59	23	140
2-Propanol	3.9	12	9.6	30
Carbon Disulfide	3.9	3.3 J	12	10 J
3-Chloropropene	3.9	Not Detected	12	Not Detected
Methylene Chloride	9.8	1.5 J	34	5.4 J
Methyl tert-butyl ether	0.98	Not Detected	3.5	Not Detected
trans-1,2-Dichloroethene	0.98	Not Detected	3.9	Not Detected
Hexane	0.98	1.6	3.4	5.6
1,1-Dichloroethane	0.98	Not Detected	4.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.9	11	12	34
cis-1,2-Dichloroethene	0.98	Not Detected	3.9	Not Detected
Tetrahydrofuran	0.98	0.98	2.9	2.9
Chloroform	0.98	1.7	4.8	8.4
1,1,1-Trichloroethane	0.98	Not Detected	5.3	Not Detected
Cyclohexane	0.98	Not Detected	3.4	Not Detected
Carbon Tetrachloride	0.98	0.21 J	6.2	1.3 J
2,2,4-Trimethylpentane	0.98	40	4.6	180
Benzene	0.98	40	3.1	130
1,2-Dichloroethane	0.98	1.1	4.0	4.5
Heptane	0.98	3.6	4.0	15
Trichloroethene	0.98	Not Detected	5.3	Not Detected
1,2-Dichloropropane	0.98	Not Detected	4.5	Not Detected
1,4-Dioxane	3.9	17	14	60
Bromodichloromethane	0.98	Not Detected	6.6	Not Detected
cis-1,3-Dichloropropene	0.98	Not Detected	4.4	Not Detected
4-Methyl-2-pentanone	0.98	37	4.0	150
Toluene	0.98	24	3.7	91
trans-1,3-Dichloropropene	0.98	0.41 J	4.4	1.9 J
1,1,2-Trichloroethane	0.98	Not Detected	5.3	Not Detected
Tetrachloroethene	0.98	0.45- 4	6.6	- 3.0 J -
2-Hexanone	3.9	1.3 J	16	5.5 J

Page 16 of 38

eurofins

Air Toxics

Client Sample ID: VMP-42-10-080812
Lab ID\#: 1208264A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 82112 \\ 1.96 \\ \hline \end{array}$	Date of Collection: 8/8/12 11:45:00 AM Date of Analysis: 8/21/12 12:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.98	Not Detected	8.3	Not Detected
1,2-Dibromoethane (EDB)	0.98	0.26 J	7.5	2.0 J
Chlorobenzene	$-0.98-1.2-$	$-1.2-4$	$-4.5-3.0$	$-5.3-4$
Ethyl Benzene	0.98	1.6	4.2	6.7
m,p-Xylene	0.98	4.1	4.2	18
o-Xylene	0.98	1.3	4.2	5.5
Styrene	0.98	0.87 J	4.2	3.7 J
Bromoform	0.98	Not Detected	10	Not Detected
Cumene	0.98	16	4.8	79
1,1,2,2-Tetrachloroethane	0.98	Not Detected	6.7	Not Detected
Propylbenzene	0.98	0.49 J	4.8	2.4 J
4-Ethyltoluene	0.98	Not Detected	4.8	Not Detected
1,3,5-Trimethylbenzene	0.98	0.46 J	4.8	2.2 J
1,2,4-Trimethylbenzene	0.98	0.76 J	4.8	3.8 J
1,3-Dichlorobenzene	0.98	0.29 J	5.9	1.7 J
1,4-Dichlorobenzene	0.98	0.45 y	5.9	2.7-d-4
alpha-Chlorotoluene	0.98	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene	0.98	-0-29-d 4	5.9	-1.75-u
1,2,4-Trichlorobenzene	3.9	Not Detected	29	Not Delected
Hexachlorobutadiene	3.9	Not Detected	42	Not Detected
Butane	3.9	Not Detected	9.3	Not Detected
Isopentane	3.9	7.8	12	23
Ethyl Acetate	3.9	Not Detected	14	Not Detected
Propylene	3.9	4.8	6.7	8.3
Vinyl Acetate	3.9	Not Detected	14	Not Detected
Vinyl Bromide	3.9	Not Detected	17	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $)$
Pentane, 2,3-dimethyl-	$565-59-3$	64%	48 NJ
2-Propanol, 1-methoxy-	$107-98-2$	43%	48 NJ
Unknown	NA	NA	54 J
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	130 NJ
Hexane, 2,2-dimethyl-	$590-73-8$	59%	46 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	150 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	40 NJ
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	320 NJ
Unknown	NA	NA	72 J
Dodecane, 1-fluoro-	$334-68-9$	59%	150 NJ

eurofins

Air Toxics

Client Sample ID: VMP-42-10-080812
 Lab ID\#: 1208264A-02A

EPA METHOD TO-15 GC/MS FULL SCAN
File Name:$j 082112$
Dil. Factor: 1.96
$\mathrm{N} J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa CanisterDate of Collection: 8/8/12 11:45:00 AM Date of Analysis: 8/21/12 12:51 PM

Surrogates	\%Recovery	Method Limits
Toluene-d8	98	$70-130$
1,2-Dichloroethane-d4	115	$70-130$
4-Bromofluorobenzene	102	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-4-5-080812
Lab ID\#: 1208264A-03A
EPA METHOD TO-15 GC/MS FULL SCAN
$\left.\begin{array}{lccccc|}\hline \text { File Name: } & \text { j082114 } & & \text { Date of Collection: 8/8/12 12:37:00 PM } \\ \text { Dil. Factor: } & 1.96 & & \text { Date of Analysis: 8/21/12 01:51 PM }\end{array}\right]$

Air Toxics

Client Sample ID: VMP-4-5-080812
Lab ID\#: 1208264A-03A
EPA METHOD TO- 15 GC/MS FULLSCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082114 \\ 196 \end{array}$	Date of Collection: 8/8/12 12:37:00 PM Date of Analysis: 8/21/12 01:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.98	Not Detected	8.3	Not Detected
1,2-Dibromoethane (EDB)	0.98	Not Detected	7.5	Not Detected
Chlorobenzene	0.98	$0.96 \mathrm{~S}^{-1}$	4.5	4:4才-4
Ethyl Benzene	0.98	1.1	4.2	5.0
m,p-Xylene	0.98	3.3	4.2	14
o-Xylene	0.98	1.1	4.2	4.8
Styrene	0.98	0.90 J	4.2	3.8 J
Bromoform	0.98	0.23 J	10	2.4 J
Cumene	0.98	14	4.8	70
1,1,2,2-Tetrachloroethane	0.98	Not Detected	6.7	Not Detected
Propylbenzene	0.98	0.32 J	4.8	1.6 J
4-Ethyltoluene	0.98	0.52 J	4.8	2.5 J
1,3,5-Trimethylbenzene	0.98	0.24 J	4.8	1.2 J
1,2,4-Trimethylbenzene	0.98	0.51 J	4.8	2.5 J
1,3-Dichlorobenzene	0.98	0.31 J	5.9	1.9 J
1,4-Dichlorobenzene	0.98	0.39-5	5.9	$-2.3-5$
alpha-Chlorotoluene	0.98	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene	0.98	0.23 J	5.9	-4:4-J u
1,2,4-Trichlorobenzene	3.9	Not Detected	29	Not Detected
Hexachlorobutadiene	3.9	Not Detected	42	Not Detected
Butane	3.9	2.15	9.3	5.0 J
Isopentane	3.9	2.0 J	12	6.0 J
Ethyl Acetate	3.9	Not Detected	14	Not Detected
Propylene	3.9	Not Detected	6.7	Not Detected
Vinyl Acetate	3.9	Not Detected	14	Not Detected
Vinyl Bromide	3.9	Not Detected	17	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv)
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	140 NJ
Heptane, 2,2,4-trimethyl-	$14720-74-2$	64%	47 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	150 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	59%	39 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	440 NJ
Unknown	NA	NA	150 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	59%	330 NJ
Unknown	NA	NA	45 J
Ethanone, 1-phenyl-	$98-86-2$	94%	80 NJ
Unknown	NA	NA	55 J

eurofins

Air Toxics

Client Sample ID: VMP-4-5-080812

Lab ID\#: 1208264A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j082114	Date of Collection: 8/8/12 12:37:00 PM
Dil. Factor:	1.96	Date of Analysis: $8 / 21 / 12$ 01:51 PM

$N J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	99	$70-130$
1,2-Dichloroethane-d4	112	$70-130$
4-Bromofiuorobenzene	104	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-11-5-080912
Lab ID\#: 1208264A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082116 \\ 1.91 \\ \hline \end{array}$	Date of Collection: 8/9/12 9:58:00 AM Date of Analysis: 8/21/12 03:01 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.96	0.58 J	4.7	2.9 J
Freon 114	0.96	Not Detected	6.7	Not Detected
Chloromethane	9.6	Not Detected	20	Not Detected
Vinyl Chloride	0.96	Not Detected	2.4	Not Detected
1,3-Butadiene	0.96	Not Detected	2.1	Not Detected
Bromomethane	9.6	Not Detected	37	Not Detected
Chloroethane	3.8	Not Detected	10	Not Detected
Freon 11	0.96	0.26 J	5.4	1.4 J
Ethanol	3.8	Not Detected	7.2	Not Detected
Freon 113	0.96	Not Detected	7.3	Not Detected
1,1-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Acetone	9.6	7.6 J	23	18 J
2-Propanol	3.8	2.15	9.4	5.3 J
Carbon Disulfide	3.8	. 70.5 u	12	4.9]-4
3-Chloropropene	3.8	Not Detected	12	Not Detected
Methylene Chloride	9.6	0.95 J	33	3.3 J
Methyl tert-butyl ether	0.96	Not Detected	3.4	Not Detected
trans-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Hexane	0.96	0.78 J	3.4	2.8 J
1,1-Dichloroethane	0.96	Not Detected	3.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.8	1.6 J	11	4.7 J
cis-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Tetrahydrofuran	0.96	1.1	2.8	3.2
Chloroform	0.96	0.13 J	4.7	0.64 J
1,1,1-Trichloroethane	0.96	Not Detected	5.2	Not Detected
Cyclohexane	0.96	1.4	3.3	4.7
Carbon Tetrachloride	0.96	Not Detected	6.0	Not Detected
2,2,4-Trimethylpentane	0.96	5.8	4.5	27
Benzene	0.96	4.0	3.0	13
1,2-Dichloroethane	0.96	0.16 J	3.9	0.64 J
Heptane	0.96	0.26 J	3.9	1.1 J
Trichloroethene	0.96	Not Detected	5.1	Not Detected
1,2-Dichloropropane	0.96	Not Defected	4.4	Not Detected
1,4-Dioxane	3.8	Not Detected	14	Not Detected
Bromodichloromethane	0.96	Not Detected	6.4	Not Detected
cis-1,3-Dichloropropene	0.96	Not Detected	4.3	Not Detected
4-Methyl-2-pentanone	0.96	Not Detected	3.9	Not Detected
Toluene	0.96	$-0.39+4$	3.6	15+ 4
trans-1,3-Dichloropropene	0.96	Not Defected	4.3	Not Detected
1,1,2-Trichloroethane	0.96	Not Detected	5.2	Not Detected
Tetrachloroethene	0.96	-0:24-J 4	6.5	1.6. $\mathrm{J}^{\text {n }}$
2-Hexanone	3.8	Not Detected	16	Not Detected

Page 22 of 38

Air Toxics

Client Sample ID: VMP-11-5-080912
Lab ID\#: 1208264A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082116 \\ 1.91 \end{array}$	Date of Collection: 8/9/12 9:58:00 AM Date of Analysis: 8/21/12 03:01 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.96	Not Detected	8.1	Not Detected
1,2-Dibromoethane (EDB)	0.96	Not Detected	7.3	Not Detected
Chlorobenzene	0.96	-0.94-3m	4.4	-4.2y- 4
Ethyl Benzene	0.96	-0.30-4	4.1	-1.35 4
m,p-Xylene	0.96	$\cdots 0-30 \pm$ t	4.1	-1.3N- U
o-Xylene	0.96	Not Detected	4.1	Not Detected
Styrene	0.96	Not Detected	4.1	Not Detected
Bromoform	0.96	Not Detected	9.9	Not Detected
Cumene	0.96	0.15 J	4.7	0.74 J
1,1,2,2-Tetrachloroethane	0.96	Not Detected	6.6	Not Detected
Propylbenzene	0.96	0.16 J	4.7	0.81 J
4-Ethyltoluene	0.96	Not Detected	4.7	Not Detected
1,3,5-Trimethylbenzene	0.96	Not Detected	4.7	Not Detected
1,2,4-Trimethylbenzene	0.96	0.16 J	4.7	0.76 J
1,3-Dichlorobenzene	0.96	0.30 J	5.7	1.8 J
1,4-Dichlorobenzene	0.96	0.31才 4	5.7	-4.8J 4
alpha-Chlorotoluene	0.96	Not Detected	4.9	Not Detected
1,2-Dichlorobenzene	0.96	Not Detected	5.7	Not Detected
1,2,4-Trichlorobenzene	3.8	Not Detected	28	Not Detected
Hexachlorobutadiene	3.8	Not Detected	41	Not Detected
Butane	3.8	3.7 J	9.1	8.7 J
Isopentane	3.8	3.0 J	11	8.9 J
Ethyl Acetate	3.8	Not Detected	14	Not Detected
Propylene	3.8	Not Detected	6.6	Not Detected
Vinyl Acetate	3.8	Not Detected	13	Not Detected
Vinyl Bromide	3.8	Not Detected	17	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	7.7 J
Acetic acid	$64-19-7$	83%	32 NJ
Unknown	NA	NA	5.5 J
Octane, 4-methyl-	$2216-34-4$	78%	7.8 NJ
Hexane, $2,2,3$-trimethyl-	$16747-25-4$	53%	5.4 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits

eurofins

Air Toxics

Client Sample ID: VMP-11-5-080912
 Lab ID\#: 1208264A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dit. Factor:	$\begin{array}{r} \mathbf{j} 082116 \\ 1.91 \end{array}$		Date of Collection: 8/9/12 9:58:00 AM Date of Analysis: 8/21/12 03:01 PM
Surrogates		\%Recovery	Method Limits
Toluene-d8		90	70-130
1,2-Dichloroethane-d4		105	70-130
4-Bromofluorobenzene		102	70-130

eurofins

Air Toxics

Client Sample ID: VMP-13-5-080912
Lab ID\#: 1208264A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082117 \\ 2.36 \end{array}$	Date of Collection: 8/9/12 11:06:00 AM Date of Analysis: 8/21/12 03:54 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.73 J	5.8	3.6 J
Freon 114	1.2	Not Detected	8.2	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	46	Not Detected
Chloroethane	4.7	Not Detected	12	Not Detected
Freon 11	1.2	0.47 J	6.6	2.6 J
Ethanol	4.7	Not Detected	8.9	Not Detected
Freon 113	1.2	Not Detected	9.0	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Acetone	12	9.2 J	28	22 J
2-Propanol	4.7	3.8 J	12	9.2 J
Carbon Disulfide	4.7	4.6 J	15	14 J
3-Chloropropene	4.7	Not Detected	15	Not Detected
Methylene Chloride	12	0.90 J	41	3.1 J
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Delected
trans-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Hexane	1.2	0.71 J	4.2	2.5 J
1,1-Dichioroethane	1.2	Not Detected	4.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.7	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.5	Not Detected
Chioroform	1.2	1.1 J	5.8	5.2 J
1,1,1-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Cyclohexane	1.2	3.1	4.1	10
Carbon Tetrachloride	1.2	Not Detected	7.4	Not Detected
2,2,4-Trimethylpentane	1.2	3.8	5.5	18
Benzene	1.2	6.6	3.8	21
1,2-Dichloroethane	1.2	Not Detected	4.8	Not Detected
Heptane	1.2	Not Detected	4.8	Not Defected
Trichloroethene	1.2	Not Detected	6.3	Not Detected
1.2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.7	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.9	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.8	Not Detected
Toluene	1.2	-0.43-5 4	4.4	-6, 4
trans-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Tetrachloroethene	1.2	Not Detected	8.0	Not Detected
2-Hexanone	4.7	Not Detected	19	Not Detected

Air Toxics

Client Sample ID: VMP-13-5-080912
Lab ID\#: 1208264A-05A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 82117 \\ 2.36 \\ \hline \end{array}$	Date of Collection: 8/9/12 11:06:00 AM Date of Analysis: 8/21/12 03:54 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.4	Not Detected
Chlorobenzene	1.2	-0.90- 4	5.4	4.15 u
Ethyl Benzene	1.2	0-20-J	5.1	0.88 J 4
m,p-Xylene	1.2	-0.32-5 4	5.1	,7.4-5 u
o-Xylene	1.2	Not Detected	5.1	Not Detected
Styrene	1.2	Not Detected	5.0	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.8	Not Detected
1,1,2,2-Tetrachloroethane	1.2	0.20 J	8.1	1.4 J
Propylbenzene	1.2	Not Detected	5.8	Not Detected
4-Ethyltoluene	1.2	0.31 J	5.8	1.5 J
1,3,5-Trimethylbenzene	1.2	Not Detected	5.8	Not Detected
1,2,4-Trimethylbenzene	1.2	0.31 J	5.8	1.5 J
1,3-Dichlorobenzene	1.2	0.32 J	7.1	2.0 J
1,4-Dichlorobenzene	1.2	0.32-5	7.1	-1.91
alpha-Chlorotoluene	1.2	0.18 J	6.1	0.92 J
1,2-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
1,2,4-Trichlorobenzene	4.7	Not Detected	35	Not Detected
Hexachlorobutadiene	4.7	Not Detected	50	Not Detected
Butane	4.7	Not Detected	11	Not Detected
Isopentane	4.7	2.2 J	14	6.6 J
Ethyl Acetate	4.7	Not Detected	17	Not Detected
Propylene	4.7	Not Detected	8.1	Not Detected
Vinyl Acetate	4.7	Not Detected	17	Not Detected
Vinyl Bromide	4.7	Not Detected	21	Not Delected

$J=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $)$)
1-Propene, 2-methyl-	$115-11-7$	52%	6.6 NJ
Acetic acid	$64-19-7$	78%	29 NJ
Unknown	NA	NA	6.0 J
Unknown	NA	NA	9.5 J
NJ =The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Liter Summa Canister		Method	
Surrogates	\%Recovery	Limits	
Toluene-d8	93	$70-130$	

Air Toxics

Client Sample ID: VMP-13-5-080912
 Lab ID\#: 1208264A-05A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j082117	
Dil. Factor:	2.36	Date of Collection: 8/9/12 11:06:00 AM
		Date of Analysis: 8/21/12 03:54 PM

eurofins

Air Toxics

Client Sample ID: VMP-10-5-080912
Lab ID\#: 1208264A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082118 \\ 1.83 \\ \hline \end{array}$	Date of Collection: 8/9/12 12:35:00 PM Date of Analysis: 8/21/12 04:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.92	0.48 J	4.5	2.4 J
Freon 114	0.92	Not Detected	6.4	Not Detected
Chloromethane	9.2	Not Detected	19	Not Detected
Vinyl Chloride	0.92	Not Detected	2.3	Not Detected
1,3-Butadiene	0.92	Not Detected	2.0	Not Detected
Bromomethane	9.2	Not Detected	36	Not Detected
Chloroethane	3.7	Not Detected	9.6	Not Detected
Freon 11	0.92	0.27 J	5.1	1.5 J
Ethanol	3.7	Not Detected	6.9	Not Detected
Freon 113	0.92	Not Detected	7.0	Not Detected
1,1-Dichloroethene	0.92	Not Detected	3.6	Not Detected
Acetone	9.2	22	22	53
2-Propanol	3.7	1.1 J	9.0	2.7 J
Carbon Disulfide	3.7		11	-6.1J 4
3-Chloropropene	3.7	Not Detected	11	Not Detected
Methylene Chloride	9.2	0.64 J - 4	32	22-dul
Methyl tert-butyl ether	0.92	Not Detected	3.3	Not Detected
trans-1,2-Dichloroethene	0.92	Not Detected	3.6	Not Detected
Hexane	0.92	1.2	3.2	4.4
1,1-Dichloroethane	0.92	Not Detected	3.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.7	3.4 J	11	10 J
cis-1,2-Dichloroethene	0.92	Not Detected	3.6	Not Detected
Tetrahydrofuran	0.92	Not Detected	2.7	Not Detected
Chloroform	0.92	Not Detected	4.5	Not Detected
1,1,1-Trichloroethane	0.92	Not Detected	5.0	Not Detected
Cyclohexane	0.92	0.33 J	3.1	1.1 J
Carbon Tetrachloride	0.92	Not Detected	5.8	Not Detected
2,2,4-Trimethylpentane	0.92	2.3	4.3	11
Benzene	0.92	3.0	2.9	9.7
1,2-Dichloroethane	0.92	0.14 J	3.7	0.58 J
Heptane	0.92	1.3	3.7	5.3
Trichloroethene	0.92	Not Detected	4.9	Not Detected
1,2-Dichloropropane	0.92	Not Detected	4.2	Not Detected
1,4-Dioxane	3.7	Not Detected	13	Not Detected
Bromodichloromethane	0.92	Not Detected	6.1	Not Detected
cis-1,3-Dichloropropene	0.92	Not Detected	4.2	Not Detected
4-Methyl-2-pentanone	0.92	Not Detected	3.7	Not Detected
Toluene	0.92	. 0.39 J	3.4	-4.5-5-4
trans-1,3-Dichloropropene	0.92	Not Detected	4.2	Not Detected
1,1,2-Trichloroethane	0.92	Not Detected	5.0	Not Detected
Tetrachloroethene	0.92	Not Detected	6.2	Not Detected
2-Hexanone	3.7	Not Detected	15	Not Detected

Client Sample ID: VMP-10-5-080912
Lab ID\#: 1208264A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 02118 \\ 1.83 \end{array}$	Date of Collection: 8/9/12 12:35:00 PM Date of Analysis: 8/21/12 04:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.92	Not Detected	7.8	Not Detected
1.2-Dibromoethane (EDB)	0.92	Not Detected	7.0	Not Detected
Chlorobenzene	0.92	- 0.815 J	4.2	-3.75-4
Ethyl Benzene	0.92	Not Detected	4.0	Not Detected
m, p-Xylene	0.92	-0.20J i	4.0	-0.88-
o-Xylene	0.92	Not Detected	4.0	Not Detected
Styrene	0.92	Not Detected	3.9	Not Detected
Bromoform	0.92	Not Detected	9.4	Not Detected
Cumene	0.92	Not Detected	4.5	Not Detected
1,1,2,2-Tetrachloroethane	0.92	Not Detected	6.3	Not Detected
Propylbenzene	0.92	Not Detected	4.5	Not Detected
4-Ethyltoluene	0.92	Not Detected	4.5	Not Detected
1,3,5-Trimethylbenzene	0.92	Not Detected	4.5	Not Detected
1,2,4-Trimethylbenzene	0.92	Not Detected	4.5	Not Detected
1,3-Dichlorobenzene	0.92	0.22 J	5.5	1.4 J
1,4-Dichlorobenzene	0.92	-0.23- 4	5.5	4.4.5 ${ }^{\text {a }}$
alpha-Chlorotoluene	0.92	0.16 J	4.7	0.85 J
1,2-Dichlorobenzene	0.92	...0.48J U	5.5	-74
1,2,4-Trichlorobenzene	3.7	Not Detected	27	Not Detected
Hexachlorobutadiene	3.7	Not Detected	39	Not Detected
Butane	3.7	1.9 J	8.7	4.6 J
Isopentane	3.7	2.3 J	11	6.8 J
Ethyl Acetate	3.7	Not Detected	13	Not Detected
Propylene	3.7	Not Detected	6.3	Not Detected
Vinyl Acetate	3.7	Not Detected	13	Not Detected
Vinyl Bromide	3.7	Not Detected	16	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
1-Propene, 2-methyl-	$115-11-7$	64%	11 NJ
Acetic acid	$64-19-7$	74%	15 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	94	$70-130$
1,2-Dichloroethane-d4	110	$70-130$
4-Bromofluorobenzene	105	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-10-5-080912

Lab ID\#: 1208264A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j082118	Date of Collection: $8 / 9 / 12$ 12:35:00 PM
Dil. Factor:	1.83	Date of Analysis: $8 / 21 / 1204: 35 \mathrm{PM}$

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1208264A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Eactor:	$\begin{array}{r} \mathrm{j} 082110 \mathrm{a} \\ 1.00 \end{array}$	Date of Coliection: NA Date of Analysis: 8/21/12 11:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.48 J	6.2	1.5J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	(0.13)	17	0.45 J
Methyl tert-butyi ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	(0.047 J	2.7	0.25 J
Cyclohexane	0.50	Nof Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	0.14 J	1.6	(0.46 J)
1,2-Dichloroethane	0.50	Not Delected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichtoropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	0.088 J	2.3	(0.40 J
4-Methyl-2-pentanone	0.50	NotDetected	2.0	Not Detected
Toluene	0.50	0.10 J	1.9	0.38 J
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	(0.13 J	3.4	(0.90 J)
2-Hexanone	2.0	Not Detected	8.2	Not Defected

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208264A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082110 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 11:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.33 J	2.3	1.5 J
Ethyl Benzene	0.50	0.078 J	2.2	0.34 J
m,p-Xylene	0.50	0.098 J	2.2	0.42 J
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4 -Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	(0.14 J)	3.0	0.83)
alpha-Chlorotoluene	0.50	Not Detecked	2.6	Not Detected
1,2-Dichlorobenzene	0.50	(0.099 J)	3.0	0.59 J
1,2,4-Trichsorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Defected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	0.44 J	3.4	0.76 J
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number Match Quality \quad| Amount |
| :--- |
| $($ (ppbv)) |

None Identified
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	104	$70-130$
4-Bromofluorobenzene	101	$70-130$

Air Toxics

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208264A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 082102$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $8 / 21 / 1208: 35$ AM

Compound		\%Recovery
Dibromochloromethane		90
1,2-Dibromoethane (EDB)		84
Chlorobenzene		73
Ethyl Benzene		88
m, p-Xylene		91
o-Xylene		89
Styrene		95
Bromoform		92
Cumene		92
1,1,2,2-Tetrachloroethane		80
Propylbenzene		91
4-Ethyltoluene		87
1,3,5-Trimethylbenzene		86
1,2,4-Trimethylbenzene		91
1,3-Dichlorobenzene		82
1,4-Dichlorobenzene		82
alpha-Chlorotoluene		89
1,2-Dichlorobenzene		82
1,2,4-Trichlorobenzene		84
Hexachlorobutadiene		93
Butane		93
Isopentane		88
Ethyl Acetate		102
Propylene		91
Vinyl Acetate		92
Vinyl Bromide		110
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	105	70-130

Air Toxics

Client Sample ID: LCS

Lab ID\#: 1208264A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 082103 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 09:02 AM
Compound		\%Recovery
Freon 12		117
Freon 114		116
Chloromethane		104
Vinyl Chioride		106
1,3-Butadiene		97
Bromomethane		105
Chloroethane		103
Freon 11		112
Ethanol		92
Freon 113		119
1,1-Dichloroethene		127
Acetone		92
2-Propanol		102
Carbon Disulfide		124
3-Chloropropene		117
Methylene Chloride		96
Methyl tert-butyl ether		117
trans-1,2-Dichloroethene		122
Hexane		114
1,1-Dichloroethane		108
2-Butanone (Methyl Ethyl Ketone)		98
cis-1,2-Dichloroethene		94
Tetrahydrofuran		99
Chloroform		106
1,1,1-Trichloroethane		116
Cyclohexane		108
Carbon Tetrachloride		114
2,2,4-Trimethylpentane		104
Benzene		104
1,2-Dichloroethane		114
Heptane		118
Trichloroethene		108
1,2-Dichloropropane		103
1,4-Dioxane		101
Bromodichloromethane		109
cis-1,3-Dichloropropene		107
4-Methyl-2-pentanone		108
Toluene		98
trans-1,3-Dichloropropene		110
1,1,2-Trichloroethane		102
Tetrachloroethene		104
2-Hexanone		109

Client Sample ID: LCS
Lab ID\#: 1208264A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j 082103 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 8/21/12 09:02 AM	
Compound		\%Recovery
Dibromochloromethane		111
1,2-Dibromoethane (EDB)		104
Chlorobenzene		88
Ethyl Benzene		107
m,p-Xylene		107
o-Xylene		110
Styrene		112
Bromoform		109
Cumene		112
1,1,2,2-Tetrachloroethane		100
Propylbenzene		110
4-Ethyltoluene		100
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		104
1,3-Dichlorobenzene		98
1,4-Dichlorobenzene		96
alpha-Chlorotoluene		105
1,2-Dichlorobenzene		98
1,2,4-Trichlorobenzene		97
Hexachlorobutadiene		108
Butane		107
Isopentane		101
Ethyl Acetate		Not Spiked
Propylene		94
Vinyl Acetate		112
Vinyl Bromide		Not Spiked
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromafluorobenzene	102	70-130

eurofins

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208264A-09AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 082104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/21/12 09:21 AM

Compound	\%Recovery
Freon 12	114
Freon 114	115
Chloromethane	102
Vinyl Chloride	104
1,3-Butadiene	95
Bromomethane	106
Chloroethane	109
Freon 11	114
Ethanol	95
Freon 113	119
1,1-Dichloroethene	129
Acetone	91
2-Propanol	107
Carbon Disulfide	121
3-Chloropropene	121
Methylene Chloride	94
Methyl tert-butyl ether	119
trans-1,2-Dichloroethene	124
Hexane	115
1,1-Dichloroethane	108
2-Butanone (Methyl Ethyl Ketone)	102
cis-1,2-Dichloroethene	92
Tetrahydrofuran	100
Chloroform	108
1,1,1-Trichloroethane	117
Cyclohexane	111
Carbon Tetrachloride	115
2,2,4-Trimethylpentane	103
Benzene	105
1,2-Dichloroethane	112
Heptane	115
Trichloroethene	108
1,2-Dichloropropane	101
1,4-Dioxane	98
Bromodichloromethane	111
cis-1,3-Dichloropropene	107
4-Methyl-2-pentanone	105
Toluene	99
trans-1,3-Dichloropropene	112
1,1,2-Trichloroethane	98
Tetrachloroethene	104
2-Hexanone	107

eurofins

Air Toxics

Shell Oil Products Chain Of Custody Record
URS

CUSTODY BEAL INTACTY

eurofins

8/28/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208264B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208264B

Work Order Summary

CERTIFIED BY

DATE: $\quad 08 / 28 / 12$
Technical Director
Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

Air Toxics

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1208264B

Six 1 Liter Summa Canister samples were received on August 13, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within $0.01 \mathrm{~mol} \%$ for any component.	The standards used by ATL are blended to $\mathrm{a}>/=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL .	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC . Lincar range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections $>5 \mathrm{X}$'s the RL.

eurofins

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID; VMP-21-5-080812
Lab ID\#: 1208264B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.18	14
Nitrogen	0.18	79
Methane	0.00018	0.000077 J
Carbon Dioxide	0.018	6.5
Helium	0.092	0.041 J

Client Sample ID: VMP-42-10-080812
Lab ID\#: 1208264B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.20	18
Nitrogen	0.20	80
Carbon Dioxide	0.020	2.2
Helium	0.098	0.0079 J

Client Sample ID: VMP-4-5-080812
Lab ID\#: 1208264B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.20	18
Nitrogen	0.20	80
Methane	0.00020	0.00020
Carbon Dioxide	0.020	1.4
Helium	0.098	0.036 J

Client Sample ID: VMP-11-5-080912
Lab ID\#: 1208264B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	18
Nitrogen	0.19	79
Methane	0.00019	0.000056 J

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-11-5-080912
Lab ID\#: 1208264B-04A
Carbon Dioxide 0.019 2.6
Helium 0.096 0.037 J
Client Sample ID: VMP-13-5-080912
Lab ID\#: 1208264B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.24	16
Nitrogen	0.24	80
Methane	0.00024	0.000079 J
Carbon Dioxide	0.024	4.1
Helium	0.12	0.048 J

Client Sample ID: VMP-10-5-080912
Lab ID\#: 1208264B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.18	18
Nitrogen	0.18	80
Methane	0.00018	0.000035 J
Carbon Dioxide	0.018	1.9
Helium	0.092	0.046 J

eurofins

Air Toxics

Client Sample ID: VMP-21-5-080812

Lab ID\#: 1208264B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: VMP-42-10-080812

Lab ID\#: 1208264B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: VMP-4-5-080812

Lab ID\#: 1208264B-03A

NATURAL GAS ANALYSIS BY MODIEIED ASTMD-1946

File Name: Dil. Factor:	$\begin{array}{r} 9081415 \\ 1.96 \\ \hline \end{array}$		Date of Collection: 8/8/12 12:37:00 PM Date of Analysis: 8/14/12 05:51 PM
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.20	18
Nitrogen		0.20	80
Carbon Monoxide		0.020	Not Detected
Methane		0.00020	0.00020
Carbon Dioxide		0.020	1.4
Ethane		0.0020	Not Detected
Ethene		0.0020	Not Detected
Helium		0.098	0.036 J

$\mathrm{J}=$ Estimated value.
Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample 1D: VMP-11-5-080912
 Lab ID\#: 1208264B-04A

NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: VMP-13-5-080912
 Lab ID\#: 1208264B-05A
 NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9081417 \\ 2.36 \\ \hline \end{array}$	Date of Collection: 8/9/12 11:06:00 AM Date of Analysis: 8/14/12 06:36 PM
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.24	16
Nitrogen	0.24	80
Carbon Monoxide	0.024	Not Detected
Methane	0.00024	0.000079 J
Carbon Dioxide	0.024	4.1
Ethane	0.0024	Not Detected
Ethene	0.0024	Not Detected
Helium	0.12	0.048 J
$J=$ Estimated value.Container Type: 1 Liter Summa Canister		

Air Toxics

Client Sample ID: VMP-10-5-080912

Lab ID\#: 1208264B-06A
NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

Fite Name: Dil. Factor:	$\begin{array}{r} 9081418 \\ 1.83 \\ \hline \end{array}$	Date of Collection: 8/9/12 12:35:00 PM Date of Analysis: 8/14/12 07:02 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.18	18
Nitrogen		0.18	80
Carbon Monoxide		0.018	Not Detected
Methane		0.00018	0.000035 J
Carbon Dioxide		0.018	1.9
Ethane		0.0018	Not Detected
Ethene		0.0018	Not Detected
Helium		0.092	0.046 J
$\mathrm{J}=$ Estimated value			
Container Type: 1	ster		

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208264B-07A

NATURAL, GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample 1D; Lab Blank
 Lab ID\#: 1208264B-07B
 NATURAL GAS ANALXSIS BX MODIFIED ASTM D-1946

File Name:	9081403 b		Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/14/12 01:05 PM	
		Rpt. Limit	Amount
Compound	$(\%)$	(\%)	
Helium	0.050	Not Detected	

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208264B-08A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9081402 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: $8 / 14 / 12$ 12:20 PM
Compound		\%Recovery
Oxygen		99
Nitrogen		100
Carbon Monoxide		99
Methane		98
Carbon Dioxide		100
Ethane		99
Ethene		96
Helium		101
Container Type:		

eurofins

Air Toxics
$\left.\begin{array}{lcc|}\hline \text { Client Sample ID: LCSD } \\ \text { Lab ID\#: 1208264B-08AA }\end{array}\right]$

Shell Oil Products Chain Of Custody Record
URS

Roxana Soil Vapor Additional - Week 2-2012 Data Review

Laboratory SDG: 1208352A,B
Data Reviewer: Melissa Mansker
Peer Reviewer: Elizabeth Kunkel
Date Reviewed: 9/19/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-081412	VMP-21-5-081412-Dup
VMP-42-10-081412	VMP-4-5-081412
VMP-11-5-081512	VMP-13-5-081512
VMP-10-5-081512	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form
 Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative, analytes were detected in the method blank. TO-15 LCS/LCSD recoveries were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times
 Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
$1208352 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Carbon disulfide	$0.48 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Toluene	$0.14 \mathrm{ppbv} / 0.51 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	TO-15	trans-1,3-Dichloropropene	$0.12 \mathrm{ppbv} / 0.55 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Tetrachloroethene	$0.12 \mathrm{ppbv} / 0.83 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Chlorobenzene	$0.40 \mathrm{ppbv} / 1.8 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Ethyl benzene	$0.12 \mathrm{ppbv} / 0.50 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Cumene	$0.069 \mathrm{ppbv} / 0.34 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	1,4-Dichlorobenzene	$0.13 \mathrm{ppbv} / 0.79 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208352 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	1,2-Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.74 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1208352B-08A	Natural gases	Nitrogen	0.033%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-081412	TO-15	Carbon disulfide	-	U
VMP-21-5-081412	TO-15	Toluene	-	U
VMP-21-5-081412	TO-15	Tetrachloroethene	-	U
VMP-21-5-081412	TO-15	Cumene	-	U
VMP-21-5-081412	TO-15	1,4-Dichlorobenzene	-	U
$\begin{gathered} \hline \text { VMP-21-5-081412- } \\ \text { Dup } \end{gathered}$	TO-15	Toluene	-	U
$\begin{aligned} & \text { VMP-21-5-081412- } \\ & \text { Dup } \end{aligned}$	TO-15	Chlorobenzene	-	U
$\begin{gathered} \text { VMP-21.5-081412- } \\ \text { Dup } \end{gathered}$	TO-15	Cumene	-	U
VMP-42-10-081412	TO-15	Carbon disulfide	-	U
VMP-42-10-081412	TO-15	Chlorobenzene	-	U
VMP-42-10-081412	TO-15	Ethyl benzene	-	U
VMP-42-10-081412	TO-15	1,4-Dichlorobenzene	-	U
VMP-4-5-081412	TO-15	Chlorobenzene	-	U
VMP-4-5-081412	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-081512	TO-15	Carbon disulfide	-	U
VMP-11-5-081512	TO-15	Toluene	-	U
VMP-11-5-081512	TO-15	Chlorobenzene	-	U
VMP-13-5-081512	TO-15	Toluene	-	U
VMP-13-5-081512	TO-15	Chlorobenzene	-	U
VMP-13-5-081512	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-081512	TO-15	Carbon disulfide	-	U
VMP-10-5-081512	TO-15	Chlorobenzene	-	U
VMP-10-5-081512	TO-15	Ethyl benzene	-	U
VMP-10-5-081512	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-081512	TO-15	1,2-Dichlorobenzene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	LCS/ LCSD RPD	LCSD/RPD Criteria
1208352A $-10 \mathrm{~A} / \mathrm{AA}$	TO-15	Freon 12	$136 / 123$	10	$70-130 / 25$
1208352A $-10 \mathrm{~A} / \mathrm{AA}$	TO-15	1,1-Dichloroethene	$134 / 125$	7	$70-130 / 25$
1208352A $-10 \mathrm{~A} / \mathrm{AA}$	TO-15	Carbon tetrachloride	$132 / 124$	6	$70-130 / 25$

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-21-5-081412	TO-15	Freon 12	J
VMP-21-5-081412-Dup	TO-15	Freon 12	J
VMP-42-10-081412	TO-15	Freon 12	J
VMP-4-5-081412	TO-15	Freon 12	\mathbf{J}
VMP-11-5-081512	TO-15	Freon 12	J
VMP-13-5-081512	TO-15	Freon 12	J
VMP-10-5-081512	TO-15	Freon 12	\mathbf{J}

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes
7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
Yes

Field ID	Field Duplicate ID
VMP-21-5-081412	VMP-21-5-081412-Dup

Were field duplicate sample RPDs within evaluation criteria?
Yes

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

eurofins

Air Toxics

8/31/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project\#: 21562735.10100
Workorder \#: 1208352A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/16/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICS are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

> Reviewed $9 / 19 / 2012$

Eurofins Air Toxics, fac.

[^3]
Air Toxics

WORK ORDER \#: 1208352A

Work Order Summary

CERTIFIED BY:

DATE: 08/31/12
Technical Director
Cerfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not le reproduced, except in full, without the written approval of Eurofins Air Toxics, lac.
(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1208352A

Seven 1 Liter Summa Canister samples were received on August 16, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Oualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q-Exceeds quality control limits.
U-Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates

Air Toxics

as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-081412
Lab ID\#: 1208352A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.96	0.54 J J	4.7	2.7 J J
Freon 11	0.96	0.27 J	5.4	1.5 J
Ethanol	3.8	2.0 J	7.2	3.7 J
Acetone	9.6	8.0 J	23	19 J
Carbon Disulfide	3.8	-1.854	12	-5.5-d 4
Methylene Chloride	9.6	0.33 J	33	1.2 J
Hexane	0.96	0.28 J	3.4	0.98 J
2-Butanone (Methyl Ethyl Ketone)	3.8	2.1 J	11	6.2 J
Tetrahydrofuran	0.96	0.56 J	2.8	1.6 J
2,2,4-Trimethylpentane	0.96	0.39 J	4.5	1.8 J
Benzene	0.96	0.99	3.0	3.2
Heptane	0.96	0.58 J	3.9	2.4 J
Trichloroethene	0.96	1.2	5.1	6.3
Toluene	0.96	0.29 du	3.6	$\cdots-154$
Tetrachloroethene	0.96	\cdots	6.5	-2.4-d 4
Chlorobenzene	0.96	0.73 J	4.4	3.4 J
m,p-Xylene	0.96	0.26 J	4.1	1.1 J
Cumene	0.96	-0.28 + in	4.7	-4.45 4
Propylbenzene	0.96	0.82 J	4.7	4.0 J
4-Ethyltoluene	0.96	3.6	4.7	17
1,3,5-Trimethylbenzene	0.96	1.2	4.7	6.1
1,2,4-Trimethylbenzene	0.96	2.1	4.7	10
1,3-Dichlorobenzene	0.96	0.24 J	5.7	1.4 J
1,4-Dichlorobenzene	0.96	-0.17 +1	5.7	-70\% 4

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	6.0 J
Unknown	NA	NA	5.2 J

Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352A-02A

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.79 J J	5.8	3.9 J
Freon 11	1.2	0.40 J	6.6	2.3 J
Acetone	12	4.5 J	28	11 J
Carbon Disulfide	4.7	2.6 J	15	8.0 J
Methyiene Chloride	12	0.60 J	41	2.15
2,2,4-Trimethylpentane	1.2	0.40 J	5.5	1.9 J
Benzene	1.2	0.53 J	3.8	1.7 J
Heptane	1.2	1.3	4.8	5.5
Trichloroethene	1.2	0.94 J	6.3	5.0 J
Toluene	1.2	-0.22-5 4	4.4	-0.84- 4
Chlorobenzene	1.2	-0.83-24 4	5.4	-380.d-4
m,p-Xylene	1.2	0.24 J	5.1	1.0 J
o-Xylene	1.2	0.22 J	5.1	0.97 J
Cumene	1.2	$.0 .30+4$	5.8	-1.55 4
Propylbenzene	1.2	0.92 J	5.8	4.5 J
4-Ethyltoluene	1.2	3.6	5.8	18
1,3,5-Trimethylbenzene	1.2	1.1 J	5.8	5.3 J
1,2,4-Trimethylbenzene	1.2	1.9	5.8	9.5

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	7.4 J
Unknown	NA	NA	7.6 J

Client Sample ID: VMP-42-10-081412
Lab ID\#: 1208352A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.0	0.70 J	5.0	3.5 J
Freon 11	1.0	0.27 J	5.6	1.5 J
Ethanol	4.0	15	7.6	29
Acetone	10	13	24	32
2-Propanol	4.0	14	9.9	35

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-081412				
Lab ID\#: 1208352A-03A				
Carbon Disulfide	4.0	0.9854	12	-3.514
Methylene Chloride	10	0.58 J	35	2.0 J
Hexane	1.0	0.41 J	3.5	1.4 J
2-Butanone (Methyl Ethyl Ketone)	4.0	6.8	12	20
Chloroform	1.0	0.70 J	4.9	3.4 J
Cyclohexane	1.0	0.54 J	3.4	1.8 J
2,2,4-Trimethylpentane	1.0	3.7	4.7	17
Benzene	1.0	1.8	3.2	5.7
1,2-Dichloroethane	1.0	0.14 J	4.1	0.58 J
Heptane	1.0	0.87 J	4.1	3.6 J
Trichloroethene	1.0	0.74 J	5.4	4.0 J
4-Methyl-2-pentanone	1.0	28	4.1	110
Toluene	1.0	8.1	3.8	31
Chlorobenzene	1.0	. $0.65+4$	4.6	3005 4
Ethyi Benzene	1.0	-0.51-4	4.4	2.254
m,p-Xylene	1.0	1.3	4.4	5.7
o-Xylene	1.0	0.53 J	4.4	2.3 J
Styrene	1.0	0.33 J	4.3	1.4 J
Cumene	1.0	5.2	4.9	25
Propylbenzene	1.0	0.20 J	4.9	0.99 J
4-Ethyltoluene	1.0	0.42 J	4.9	2.1 J
1,3,5-Trimethylbenzene	1.0	0.25 J	4.9	1.2 J
1,2,4-Trimethylbenzene	1.0	0.59 J	4.9	2.9 J
1,3-Dichlorobenzene	1.0	0.26 J	6.0	1.6 J
1,4-Dichlorobenzene	1.0	0.36 J 4	6.0	-2.1-t 4

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	18 J
Oxirane, 2,3-dimethyl-	$3266-23-7$	53%	57 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	59%	75 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	53%	20 NJ
Octane, $2,4,6$-trimethyl-	$62016-37-9$	72%	76 NJ
Unknown	NA	NA	18 J
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	200 NJ

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-081412
Lab ID\#: 1208352A-03A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	56%	130 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	55 NJ
Unknown	NA	NA	35 J

Client Sample ID: VMP-4-5-081412
Lab ID\#: 1208352A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	$0.60 \mathrm{~J} \cdot \mathrm{~J}$	6.8	3.0 JJ
Ethanol	5.5	52	10	97
Acetone	14	48	33	110
2-Propanol	5.5	9.8	14	24
Carbon Disulfide	5.5	3.4 J	17	11 J
Hexane	1.4	68	4.9	240
2-Butanone (Methyl Ethyl Ketone)	5.5	11	16	33
Cyclohexane	1.4	14	4.8	48
2,2,4-Trimethylpentane	1.4	11	6.4	52
Benzene	1.4	2.8	4.4	8.9
1,2-Dichloroethane	1.4	0.18 J	5.6	0.72 J
Heptane	1.4	3.6	5.6	15
Trichloroethene	1.4	0.89 J	7.4	4.8 J
4-Methyl-2-pentanone	1.4	20	5.6	80
Toluene	1.4	7.7	5.2	29
Chlorobenzene	1.4	-0.77-s 4	6.4	$-36 \mathrm{~J} 4$
Ethyl Benzene	1.4	0.78 J	6.0	3.4 J
m,p-Xylene	1.4	1.8	6.0	7.8
o-Xylene	1.4	0.56 J	6.0	2.4 J
Styrene	1.4	0.44 J	5.9	1.9 J
Cumene	1.4	4.2	6.8	20
4-Ethyltoluene	1.4	0.37 J	6.8	1.8 J
1,3,5-Trimethylbenzene	1.4	0.24 J	6.8	1.2 J
1,2,4-Trimethylbenzene	1.4	0.53 J	6.8	2.6 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample 1D: VMP-4-5-081412				
Lab ID\#: 1208352A-04A				
1,4-Dichlorobenzene	1.4	-0.32-J	8.3	-1.9+4
Butane	5.5	130	13	320
Isopentane	5.5	180	16	550
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Pentane		109-66-0	9.0\%	160 NJ
Unknown		NA	NA	54 J
1,3-Pentadiene, 2,4-dimethyl-		1000-86-8	74\%	45 NJ
Decane, 2,2,5-trimethyl-		62237-96-1	50\%	74 NJ
Tetradecane, 2,5-dimethyl-		56292-69-4	72\%	86 NJ
Unknown		NA	NA	230 J
Unknown		NA	NA	82 J
Cyclohexane, 1,1,2-trimethyl-		7094-26-0	62\%	220 NJ
Ethanone, 1-phenyl-		98-86-2	91\%	56 NJ
Unknown		NA	NA	44 J

Client Sample ID: VMP-11-5-081512
Lab ID\#: 1208352A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.2	0.57 J J	5.7	2.8 J J
Freon 11	1.2	0.26 J	6.5	1.5 J
Acetone	12	3.4 J	27	8.1 J
2-Propanol	4.6	1.2 J	11	2.8 J
Carbon Disulfide	4.6	$-1.2 \mathrm{~J}-4$	14	$-3.9-\mathrm{J}-4$
Methylene Chloride	12	0.49 J	40	1.7 J
Cyclohexane	1.2	0.31 J	4.0	1.1 J
2,2,4-Trimethylpentane	1.2	0.73 J	5.4	3.4 J
Benzene	1.2	0.35 J	3.7	1.1 J
Trichloroethene	1.2	0.40 J	6.2	2.2 J
Toluene	1.2	0.17 J 4	4.3	$-0.64-\mathrm{J} 4$
Chlorobenzene	1.2	-0.71 J 4	5.3	$-3.3 \mathrm{~J}-4$

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-081512
Lab ID\#: 1208352A-05A
TENTATIVELY IDENTIFIED COMPOUNDS

| Compound | CAS Number Match Quality | Amount
 (ppbv) | |
| :--- | :--- | :--- | :--- | :--- |
| Unknown | NA | NA | 5.9 J |

Chient Sample ID: VMP-13-5-081512
Lab ID\#: 1208352A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.68 J J	6.1	3.3 J J
Freon 11	1.2	0.32 J	6.9	1.8 J
Ethanol	4.9	2.6 J	9.3	4.9 J
Acetone	12	6.7 J	29	16 J
Carbon Disulfide	4.9	2.7 J	15	8.3 J
2-Butanone (Methyl Ethyl Ketone)	4.9	1.2 J	14	3.4 J
Chloroform	1.2	0.87 J	6.0	4.3 J
2,2,4-Trimethylpentane	1.2	1.6	5.7	7.3
Benzene	1.2	1.5	3.9	4.8
Heptane	1.2	0.38 J	5.0	1.6 J
Trichloroethene	1.2	3.5	6.6	19
Toluene	1.2	-0.34J u_{i}	4.6	1.3d-u
Chlorobenzene	1.2	-0.90. 4	5.7	-4.2.d 4
1,2,4-Trimethylbenzene	1.2	0.22 J	6.0	1.1 J
1,4-Dichlorobenzene	1.2	-0.785 4	7.4	-100 4
Isopentane	4.9	2.0 J	14	5.9 J
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
2-Oxetanone, 4,4-dimethyl-		1823-52-5	83\%	14 NJ
Nonane, 3-methyl-		5911-04-6	50\%	6.8 NJ

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-081512
Lab 1D\#: 1208352A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.96	$0.70 \mathrm{~J} \mathrm{-}$	4.8	3.5 J J
Freon 11	0.96	0.35 J	5.4	2.0 J
Ethanol	3.9	3.8 J	7.3	7.2 J
Acetone	9.6	8.3 J	23	20 J
2-Propanol	3.9	0.63 J	9.5	1.5 J
Carbon Disulfide	3.9	-1.45 U	12	$-4.3+4$
Methylene Chloride	9.6	0.40 J	34	1.4 J
Hexane	0.96	0.36 J	3.4	1.3 J
Cyclohexane	0.96	0.51 J	3.3	1.7 J
2,2,4-Trimethylpentane	0.96	0.29 J	4.5	1.4 J
Benzene	0.96	0.23 J	3.1	0.73 J
Trichloroethene	0.96	0.87 J	5.2	4.7 J
Toluene	0.96	0.26 J	3.6	0.98 J
Chlorobenzene	0.96	0.874	4.4	-375 4
Ethyl Benzene	0.96	-0.15-5 is	4.2	$0.67+4$
1,3-Dichlorobenzene	0.96	0.24 J	5.8	1.5 J
1,4-Dichlorobenzene	0.96	0.23 J 4	5.8	-4.4.J-4
alpha-Chlorotoluene	0.96	0.30 J	5.0	1.6 J
1,2-Dichlorobenzene	0.96	0.48 J 4	5.8	-1.1d 4
Butane	3.9	2.1 J	9.2	4.9 J
Isopentane	3.9	2.0 J	11	5.8 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	59%	14 NJ
Acetic acid	$64-19-7$	64%	9.4 NJ

eurofins
Air Toxics

Client Sample ID: VMP-21-5-081412
Lab ID\#: 1208352A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dit. Factor:	$\begin{array}{r} \mathrm{j} 082326 \\ 1.91 \\ \hline \end{array}$	Date of Collection: 8/14/12 11:17:00 AM Date of Analysis: 8/23/12 10:18 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.96	0.54 JJ	4.7	2.7 JJ
Freon 114	0.96	Not Detected	6.7	Not Detected
Chloromethane	9.6	Not Detected	20	Not Detected
Vinyl Chloride	0.96	Not Detected	2.4	Not Detected
1,3-Butadiene	0.96	Not Detected	2.1	Not Detected
Bromomethane	9.6	Not Detected	37	Not Detected
Chloroethane	3.8	Not Detected	10	Not Detected
Freon 11	0.96	0.27 J	5.4	1.5 J
Ethanol	3.8	2.0 J	7.2	3.7 J
Freon 113	0.96	Not Detected	7.3	Not Detected
1,1-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Acetone	9.6	8.0 J	23	19 J
2-Propanol	3.8	Not Detected	9.4	Not Detected
Carbon Disulfide	3.8	188	12	$\times 5: 5-\mathrm{d}$
3-Chloropropene	3.8	Not Detected	12	Not Detected
Methylene Chloride	9.6	0.33 J	33	1.2 J
Methyl tert-butyl ether	0.96	Not Detected	3.4	Not Detected
trans-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Hexane	0.96	0.28 J	3.4	0.98 J
1,1-Dichloroethane	0.96	Not Detected	3.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.8	2.1 J	11	6.2 J
cis-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Tetrahydrofuran	0.96	0.56 J	2.8	1.6 J
Chloroform	0.96	Not Detected	4.7	Not Detected
1,1,1-Trichloroethane	0.96	Not Detected	5.2	Not Delected
Cyclohexane	0.96	Not Detected	3.3	Not Detected
Carbon Tetrachloride	0.96	Not Detected	6.0	Not Detected
2,2,4-Trimethylpentane	0.96	0.39 J	4.5	1.8 J
Benzene	0.96	0.99	3.0	3.2
1,2-Dichloroethane	0.96	Not Detected	3.9	Not Detected
Heptane	0.96	0.58 J	3.9	2.4 J
Trichloroethene	0.96	1.2	5.1	6.3
1,2-Dichloropropane	0.96	Not Detected	4.4	Not Detected
1,4-Dioxane	3.8	Not Detected	14	Not Detected
Bromodichloromethane	0.96	Not Detected	6.4	Not Detected
cis-1,3-Dichloropropene	0.96	Not Detected	4.3	Not Detected
4-Methyl-2-pentanone	0.96	Not Detected	3.9	Not Detected
Toluene	0.96	$0.295-4$	3.6	4.to 4
trans-1,3-Dichloropropene	0.96	Not Detected	4.3	Not Detected
1,1,2-Trichloroethane	0.96	Not Detected	5.2	Not Detected
Tetrachloroethene	0.96	-0.365 u	6.5	-2.45
2-Hexanone	3.8	Not Detected	16	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-21-5-081412
Lab ID\#: 1208352A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082326 \\ 1.91 \end{array}$	Date of Collection: 8/14/12 11:17:00 AM Date of Analysis: 8/23/12 10:18 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.96	Not Detected	8.1	Not Detected
1,2-Dibromoethane (EDB)	0.96	Not Detected	7.3	Not Detected
Chlorobenzene	0.96	0.73 J	4.4	3.4 J
Ethyl Benzene	0.96	Not Detected	4.1	Not Detected
m, p -Xylene	0.96	0.26 J	4.1	1.1 J
o-Xylene	0.96	Not Detected	4.1	Not Detected
Styrene	0.96	Not Detected	4.1	Not Detected
Bromoform	0.96	Not Detected	9.9	Not Detected
Cumene	0.96	-0.28J"	4.7	1.4 d
1,1,2,2-Tetrachloroethane	0.96	Not Detected	6.6	Not Detected
Propylbenzene	0.96	0.82 J	4.7	4.0 J
4-Ethyltoluene	0.96	3.6	4.7	17
1,3,5-Trimethylbenzene	0.96	1.2	4.7	6.1
1,2,4-Trimethylbenzene	0.96	2.1	4.7	10
1,3-Dichlorobenzene	0.96	0.24 J	5.7	1.4 J
1,4-Dichlorobenzene	0.96	-0.47 - M	5.7	1.0 j U
alpha-Chlorotoluene	0.96	Not Detected	4.9	Not Detected
1,2-Dichlorobenzene	0.96	Not Detected	5.7	Not Detected
1,2,4-Trichlorobenzene	3.8	Not Detected	28	Not Detected
Hexachlorobutadiene	3.8	Not Detected	41	Not Detected
Butane	3.8	Not Detected	9.1	Not Detected
Isopentane	3.8	Not Detected	11	Not Detected
Ethyl Acetate	3.8	Not Detected	14	Not Detected
Propylene	3.8	Not Detected	6.6	Not Detected
Vinyl Acetate	3.8	Not Detected	13	Not Detected
Vinyl Bromide	3.8	Not Detected	17	Not Detected

$J=$ Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
Unknown	NA	NA	6.0 J
Unknown	NA	NA	5.2 J

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	94	$70-130$
1,2-Dichloroethane-d4	112	$70-130$
4-Bromofluorobenzene	106	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352A-02A
EPA METHOD TO-15 GC/MS FULLSCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082322 \\ 2.35 \\ \hline \end{array}$	Date of Collection: 8/14/12 11:17:00 AM Date of Analysis: 8/23/12 07:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.79 J J	5.8	3.9 J J
Freon 114	1.2	Not Detected	8.2	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	46	Not Detected
Chloroethane	4.7	Not Detected	12	Not Detected
Freon 11	1.2	0.40 J	6.6	2.3 J
Ethanol	4.7	Not Defected	8.8	Not Detected
Freon 113	1.2	Not Detected	9.0	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	4.5 J	28	11 J
2-Propanol	4.7	Not Detected	12	Not Detected
Carbon Disulfide	4.7	2.6 J	15	8.0 J
3-Chloropropene	4.7	Not Detected	15	Not Detected
Methylene Chloride	12	0.60 J	41	2.15
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Defected	4.6	Not Detected
Hexane	1.2	Not Detected	4.1	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.7	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.5	Not Detected
Chloroform	1.2	Not Detected	5.7	Not Detectect
1,1,1-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Cyclohexane	1.2	Not Detected	4.0	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.4	Not Detected
2,2,4-Trimethylpentane	1.2	0.40 J	5.5	1.9 J
Benzene	1.2	0.53 J	3.8	1.7 J
1,2-Dichloroethane	1.2	Not Detected	4.8	Not Detected
Heptane	1.2	1.3	4.8	5.5
Trichloroethene	1.2	0.94 J	6.3	5.0 J
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.7	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.9	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.3	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.8	Not Detected
Toluene	1.2	-022J u	4.4	-0.84-5 is
trans-1,3-Dichloropropene	1.2	Not Detected	5.3	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Tetrachloroethene	1.2	Not Detected	8.0	Not Detected
2-Hexanone	4.7	Not Detected	19	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 082322 \\ 2.35 \\ \hline \end{array}$	Date of Collection: 8/14/12 11:17:00 AM Date of Analysis: 8/23/12 07:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.0	Not Detected
Chlorobenzene	1.2	-0.83J U	5.4	. 388
Ethyl Benzene	1.2	Not Detected	5.1	Not Detected
m,p-Xylene	1.2	0.24 J	5.1	1.0 J
o-Xylene	1.2	0.22 J	5.1	0.97 J
Styrene	1.2	Not Detected	5.0	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	-0:30才 4	5.8	-5-5- 4
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.1	Not Detected
Propylbenzene	1.2	0.92 J	5.8	4.5 J
4-Ethyltoluene	1.2	3.6	5.8	18
1,3,5-Trimethylbenzene	1.2	1.1 J	5.8	5.3 J
1,2,4-Trimethylbenzene	1.2	1.9	5.8	9.5
1,3-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.1	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.1	Not Detected
1,2,4-Trichlorobenzene	4.7	Not Detected	35	Not Detected
Hexachlorobutadiene	4.7	Not Detected	50	Not Detected
Butane	4.7	Not Detected	11	Not Detected
Isopentane	4.7	Not Detected	14	Not Detected
Ethyl Acetate	4.7	Not Detected	17	Not Detected
Propylene	4.7	Not Detected	8.1	Not Detected
Vinyl Acetate	4.7	Not Detected	16	Not Detected
Vinyl Bromide	4.7	Not Detected	20	Not Detected

$J=$ Estimated value .

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
Unknown	NA	NA	7.4 J
Unknown	NA	NA	7.6 J
Container Type: 1 Liter Summa Canister			
Surrogates		\%Recovery	Method
Toluene-d8	93	Limits	
1,2-Dichloroethane-d4	121	$70-130$	
4-Bromofiuorobenzene	105	$70-130$	

eurofins
Air Toxics

Client Sample ID: VMP-42-10-081412
Lab ID\#: 1208352A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j082320 2.01	Date of Collection: 8/14/12 12:07:00 PM Date of Analysis: 8/23/12 06:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.0	0.70 J J	5.0	3.5 J J
Freon 114	1.0	Not Detected	7.0	Not Detected
Chloromethane	10	Not Detected	21	Not Detected
Vinyl Chloride	1.0	Not Detected	2.6	Not Detected
1,3-Butadiene	1.0	Not Detected	2.2	Not Detected
Bromomethane	10	Not Detected	39	Not Detected
Chloroethane	4.0	Not Detected	11	Not Detected
Freon 11	1.0	0.27 J	5.6	1.5 J
Ethanol	4.0	15	7.6	29
Freon 113	1.0	Not Detected	7.7	Not Detected
1,1-Dichloroethene	1.0	Not Detected	4.0	Not Detected
Acetone	10	13	24	32
2-Propanol	4.0	14	9.9	35
Carbon Disulfide	4.0	0.98-d	12	-3,4-5 4
3-Chloropropene	4.0	Not Detected	12	Not Detected
Methylene Chloride	10	0.58 J	35	2.0 J
Methyl tert-butyl ether	1.0	Not Detected	3.6	Not Detected
trans-1,2-Dichloroethene	1.0	Not Detected	4.0	Not Detected
Hexane	1.0	0.41 J	3.5	1.4 J
1,1-Dichloroethane	1.0	Not Detected	4.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.0	6.8	12	20
cis-1,2-Dichloroethene	1.0	Not Detected	4.0	Not Detected
Tetrahydrofuran	1.0	Not Detected	3.0	Not Detected
Chloroform	1.0	0.70 J	4.9	3.4 J
1,1,1-Trichloroethane	1.0	Not Detected	5.5	Not Detected
Cyclohexane	1.0	0.54 J	3.4	1.8 J
Carbon Tetrachloride	1.0	Not Detected	6.3	Not Detected
2,2,4-Trimethylpentane	1.0	3.7	4.7	17
Benzene	1.0	1.8	3.2	5.7
1,2-Dichloroethane	1.0	0.14 J	4.1	0.58 J
Heptane	1.0	0.87 J	4.1	3.6 J
Trichloroethene	1.0	0.74 J	5.4	4.0 J
1,2-Dichloropropane	1.0	Not Detected	4.6	Not Detected
1,4-Dioxane	4.0	Not Detected	14	Not Detected
Bromodichloromethane	1.0	Not Detected	6.7	Not Detected
cis-1,3-Dichloropropene	1.0	Not Detected	4.6	Not Detected
4-Methyl-2-pentanone	1.0	28	4.1	110
Toluene	1.0	8.1	3.8	31
trans-1,3-Dichloropropene	1.0	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	1.0	Not Detected	5.5	Not Detected
Tetrachloroethene	1.0	Not Detected	6.8	Not Detected
2-Hexanone	4.0	Not Detected	16	Not Detected

Air Toxics

Client Sample ID: VMP-42-10-081412

Lab ID\#: 1208352A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dit. Factor:	$\begin{array}{r} 1082320 \\ 2.01 \\ \hline \end{array}$	Date of Collection: 8/14/12 12:07:00 PM Date of Analysis: 8/23/12 06:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.0	Not Detected	8.6	Not Detected
1,2-Dibromoethane (EDB)	1.0	Not Detected	7.7	Not Detected
Chlorobenzene	1.0	-0.65-」 λ	4.6	.30.8-4
Ethyl Benzene	1.0	-0.54-さ 4	4.4	-225
m,p-Xylene	1.0	1.3	4.4	5.7
o-Xylene	1.0	0.53 J	4.4	2.3 J
Styrene	1.0	0.33 J	4.3	1.4 J
Bromoform	1.0	Not Detected	10	Not Detected
Cumene	1.0	5.2	4.9	25
1,1,2,2-Tetrachloroethane	1.0	Not Detected	6.9	Not Detected
Propylbenzene	1.0	0.20 J	4.9	0.99 J
4-Ethyltoluene	1.0	0.42 J	4.9	2.15
1,3,5-Trimethylbenzene	1.0	0.25 J	4.9	1.2 J
1,2,4-Trimethylbenzene	1.0	0.59 J	4.9	2.9 J
1,3-Dichlorobenzene	1.0	0.26 J	6.0	1.6 J
1,4-Dichlorobenzene	1.0	$0.36 . \mathrm{d}$	6.0	2.7-4
alpha-Chlorotoluene	1.0	Not Detected	5.2	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected	6.0	Not Detected
1,2,4-Trichlorobenzene	4.0	Not Detected	30	Not Detected
Hexachlorobutadiene	4.0	Not Detected	43	Not Detected
Butane	4.0	Not Detected	9.6	Not Detected
Isopentane	4.0	Not Detected	12	Not Detected
Ethyl Acetate	4.0	Not Detected	14	Not Detected
Propylene	4.0	Not Detected	6.9	Not Detected
Vinyl Acetate	4.0	Not Detected	14	Not Detected
Vinyl Bromide	4.0	Not Detected	18	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv))
Unknown	NA	NA	18 J
Oxirane, 2,3-dimethyl-	$3266-23-7$	53%	57 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	59%	75 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	53%	20 NJ
Octane, $2,4,6$-trimethyl-	$62016-37-9$	72%	76 NJ
Unknown	NA	NA	18 JJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	200 NJ
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	56%	130 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	55 NJ
Unknown	NA	NA	35 J

Air Toxics

Client Sample ID: VMP-42-10-081412

Lab ID\#: 1208352A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 082320	Date of Collection: 8/14/12 12:07:00 PM
Dil. Factor:	2.01	Date of Analysis: $8 / 23 / 1206: 55 \mathrm{PM}$

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	104	$70-130$
1,2-Dichloroethane-d4	113	$70-130$
4-Bromofluorobenzene	98	$70-130$

Air Toxics

Client Sample ID: VMP-4-5-081412
Lab ID\#: 1208352A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082323 \\ 2.76 \end{array}$	Date of Collection: 8/14/12 12:57:00 PM Date of Analysis: 8/23/12 08:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.60J	6.8	3.0 J J
Freon 114	1.4	Not Detected	9.6	Not Detected
Chloromethane	14	Not Detected	28	Not Detected
Vinyl Chloride	1.4	Not Detected	3.5	Not Detected
1,3-Butadiene	1.4	Not Detected	3.0	Not Detected
Bromomethane	14	Not Detected	54	Not Detected
Chloroethane	5.5	Not Detected	14	Not Detected
Freon 11	1.4	Not Detected	7.8	Not Detected
Ethanol	5.5	52	10	97
Freon 113	1.4	Not Detected	10	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Acetone	14	48	33	110
2-Propanol	5.5	9.8	14	24
Carbon Disulfide	5.5	3.4 J	17	11 J
3-Chloropropene	5.5	Not Detected	17	Not Detected
Methylene Chloride	14	Not Detected	48	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Hexane	1.4	68	4.9	240
1,1-Dichloroethane	1.4	Not Detected	5.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.5	11	16	33
cis-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.1	Not Detected
Chloroform	1.4	Not Detected	6.7	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Cyclohexane	1.4	14	4.8	48
Carbon Tetrachloride	1.4	Not Detected	8.7	Not Detected
2,2,4-Trimethylpentane	1.4	11	6.4	52
Benzene	1.4	2.8	4.4	8.9
1,2-Dichloroethane	1.4	0.18 J	5.6	0.72 J
Heptane	1.4	3.6	5.6	15
Trichloroethene	1.4	0.89 J	7.4	4.8 J
1,2-Dichloropropane	1.4	Not Detected	6.4	Not Detected
1,4-Dioxane	5.5	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.2	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
4-Methyl-2-pentanone	1.4	20	5.6	80
Toluene	1.4	7.7	5.2	29
trans-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Defected
1,1,2-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Tetrachloroethene	1.4	Not Detected	9.4	Not Detected
2-Hexanone	5.5	Not Detected	23	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-4-5-081412
Lab 1D\#: 1208352A-04A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082323 \\ 2.76 \end{array}$	Date of Collection: 8/14/12 12:57:00 PM Date of Analysis: 8/23/12 08:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	0.77 J U	6.4	3.3 .6 d
Ethyl Benzene	1.4	0.78 J	6.0	3.4 J
m,p-Xylene	1.4	1.8	6.0	7.8
o-Xylene	1.4	0.56 J	6.0	2.4 J
Styrene	1.4	0.44 J	5.9	1.9 J
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	4.2	6.8	20
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.5	Not Detected
Propylbenzene	1.4	Not Detected	6.8	Not Detected
4-Ethyltoluene	1.4	0.37 J	6.8	1.8 J
1,3,5-Trimethylbenzene	1.4	0.24 J	6.8	1.2 J
1,2,4-Trimethylbenzene	1.4	0.53 J	6.8	2.6 J
1,3-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,4-Dichlorobenzene	1.4	-0.32-1 4	8.3	-19- 4
alpha-Chlorotoluene	1.4	Not Detected	7.1	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,2,4-Trichlorobenzene	5.5	Not Detected	41	Not Detected
Hexachlorobutadiene	5.5	Not Detected	59	Not Detected
Butane	5.5	130	13	320
Isopentane	5.5	180	16	550
Ethyl Acetate	5.5	Not Detected	20	Not Detected
Propylene	5.5	Not Detected	9.5	Not Detected
Vinyl Acetate	5.5	Not Detected	19	Not Detected
Vinyl Bromide	5.5	Not Detected	24	Not Detected
$\mathrm{J}=$ Estimated value .				
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount ((ppbv))
Pentane		109-66-0	9.0\%	160 NJ
Unknown		NA	NA	54 J
1,3-Pentadiene, 2,4-dimethyl-		1000-86-8	74\%	45 NJ
Decane, 2,2,5-trimethyl-		62237-96-1	50\%	74 NJ
Tetradecane, 2,5-dimethyl-		56292-69-4	72\%	86 NJ
Unknown		NA	NA	230 J
Unknown		NA	NA	82 J
Cyclohexane, 1,1,2-trimethyl-		7094-26-0	62\%	220 NJ
Ethanone, 1-phenyl-		98-86-2	91\%	56 NJ
Unknown		NA	NA	44 J

File Name:	$j 082323$	Date of Collection: 8/14/12 12:57:00 PM
Dil. Factor:	2.76	Date of Analysis: $8 / 23 / 1208: 31$ PM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	99	$70-130$
1,2-Dichloroethane-d4	114	$70-130$
4-Bromofluorobenzene	106	$70-130$

eurofins
Air Toxics

Client Sample ID: VMP-11-5-081512
Lab ID\#: 1208352A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 082324 \\ 2.30 \\ \hline \end{array}$	Date of Collection: 8/15/12 9:23:00 AM Date of Analysis: 8/23/12 09:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.57 J J	5.7	2.8 J -
Freon 114	1.2	Not Detected	8.0	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	2.9	Not Detected
1,3-Butadiene	1.2	Not Detected	2.5	Not Detected
Bromomethane	12	Not Detected	45	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.2	0.26 J	6.5	1.5 J
Ethanol	4.6	Not Detected	8.7	Not Detected
Freon 113	1.2	Not Detected	8.8	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	3.4 J	27	8.1 J
2-Propanol	4.6	1.2 J	11	2.8 J
Carbon Disulfide	4.6	$1+2-4$	14	$-3.9 n+4$
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	12	0.49 J	40	1.7 J
Methyl tert-butyl ether	1.2	Not Detected	4.1	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Hexane	1.2	Not Detected	4.0	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	Not Delected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.4	Not Detected
Chloroform	1.2	Not Detected	5.6	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Cyclohexane	1.2	0.31 J	4.0	1.1 J
Carbon Tetrachloride	1.2	Not Detected	7.2	Not Detected
2,2,4-Trimethylpentane	1.2	0.73 J	5.4	3.4 J
Benzene	1.2	0.35 J	3.7	1.1 J
1,2-Dichloroethane	1.2	Not Detected	4.6	Not Detected
Heptane	1.2	Not Detected	4.7	Not Detected
Trichloroethene	1.2	0.40 J	6.2	2.2 J
1,2-Dichloropropane	1.2	Not Detected	5.3	Not Detected
1,4-Dioxane	4.6	Not Detected	16	Not Detected
Bromodichloromethane	1.2	Not Detected	7.7	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.2	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.7	Not Detected
Toluene	1.2	-0.17- u	4.3	0.64 J 4
trans-1,3-Dichloropropene	1.2	Not Detected	5.2	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Tetrachloroethene	1.2	Not Detected	7.8	Not Detected
2-Hexanone	4.6	Not Detected	19	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-11-5-081512
Lab 1D\#: 1208352A-05A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082324 \\ 2.30 \\ \hline \end{array}$	Date of Collection: 8/15/12 9:23:00 AM Date of Analysis: 8/23/12 09:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.8	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	8.8	Not Detected
Chlorobenzene	1.2	-0.74-	5.3	3.354
Ethyl Benzene	1.2	Not Detected	5.0	Not Detected
m,p-Xylene	1.2	Not Detected	5.0	Not Detected
o-Xylene	1.2	Not Detected	5.0	Not Detected
Styrene	1.2	Not Detected	4.9	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.6	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	7.9	Not Detected
Propylbenzene	1.2	Not Detected	5.6	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.6	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.6	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.6	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	6.9	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	6.9	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.0	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	6.9	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Butane	4.6	Not Detected	11	Not Detected
isopentane	4.6	Not Detected	14	Not Detected
Ethyl Acetate	4.6	Not Detected	16	Not Detected
Propylene	4.6	Not Detected	7.9	Not Detected
Vinyl Acetate	4.6	Not Detected	16	Not Detected
Vinyl Bromide	4.6	Not Detected	20	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

| Compound | CAS Number | Match Quality | Amount
 $($ (ppbv $))$ |
| :--- | :---: | :---: | :---: | :---: |
| Unknown | NA | NA | 5.9 J |

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	92	$70-130$
1,2-Dichloroethane-d4	108	$70-130$
4-Bromofluorobenzene	111	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-13-5-081512
Lab ID\#: 1208352A-06A
EPA METHOD TO-15 GC/MS FULLSCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082325 \\ 2.46 \end{array}$	Date of Collection: 8/15/12 10:31:00 AM Date of Analysis: 8/23/12 09:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.68 J -	6.1	3.3 J 了
Freon 114	1.2	Not Detected	8.6	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	48	Not Detected
Chloroethane	4.9	Not Detected	13	Not Detected
Freon 11	1.2	0.32 J	6.9	1.8 J
Ethanol	4.9	2.6 J	9.3	4.9 J
Freon 113	1.2	Not Detected	9.4	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	6.7 J	29	16 J
2-Propanol	4.9	Not Detected	12	Not Detected
Carbon Disulfide	4.9	2.7 J	15	8.3 J
3-Chloropropene	4.9	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	43	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	Not Detected	4.3	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.9	1.2 J	14	3.4 J
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	0.87 J	6.0	4.3 J
1,1,1-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Cyclohexane	1.2	Not Detected	4.2	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.7	Not Detected
2,2,4-Trimethyipentane	1.2	1.6	5.7	7.3
Benzene	1.2	1.5	3.9	4.8
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	0.38 J	5.0	1.6 J
Trichloroethene	1.2	3.5	6.6	19
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,4-Dioxane	4.9	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.2	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.0	Not Detected
Toluene	1.2	-0.34-d u	4.6	-13-1/
trans-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Tetrachloroethene	1.2	Not Detected	8.3	Not Detected
2-Hexanone	4.9	Not Detected	20	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-13-5-081512
Lab ID\#: 1208352A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082325 \\ 2.46 \end{array}$	Date of Collection: 8/15/12 10:31:00 AM Date of Analysis: 8/23/12 09:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.4	Not Detected
Chlorobenzene	1.2	-0.90- 4	5.7	42 d
Ethyl Benzene	1.2	Not Detected	5.3	Not Detected
m,p-Xylene	1.2	Not Detected	5.3	Not Detected
o-Xylene	1.2	Not Detected	5.3	Not Detected
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.0	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.4	Not Detected
Propylbenzene	1.2	Not Detected	6.0	Not Detected
4-Ethyltoluene	1.2	Not Detected	6.0	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.0	Not Detected
1,2,4-Trimethylbenzene	1.2	0.22 J	6.0	1.1 J
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,4-Dichlorobenzene	1.2	-0.484 in	7.4	1.0才h
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,2,4-Trichlorobenzene	4.9	Not Detected	36	Not Detected
Hexachlorobutadiene	4.9	Not Detected	52	Not Detected
Butane	4.9	Not Detected	12	Not Detected
Isopentane	4.9	2.0 J	14	5.9 J
Ethyl Acetate	4.9	Not Detected	18	Not Detected
Propylene	4.9	Not Detected	8.5	Not Detected
Vinyl Acetate	4.9	Not Detected	17	Not Detected
Vinyl Bromide	4.9	Not Detected	22	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
2-Oxetanone, 4,4-dimethyl-	$1823-52-5$	83%	14 NJ
Nonane, 3-methyl-	$5911-04-6$	50%	6.8 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	95	$70-130$
1,2-Dichloroethane-d4	120	$70-130$
4-Bromofluorobenzene	102	$70-130$

Air Toxics
Client Sample ID: VMP-13-5-081512
Lab ID\#: 1208352A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 082325$	Date of Collection: $8 / 15 / 12$ 10:31:00 AM
Dil. Factor:	2.46	Date of Analysis: 8/23/12 09:55 PM

Air Toxics

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082319 \\ 1.93 \\ \hline \end{array}$	Date of Collection: 8/15/12 11:23:00 AM Date of Analysis: 8/23/12 06:30 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.96	0.70 J ,	4.8	3.5 J ')
Freon 114	0.96	Not Detected	6.7	Not Detected
Chloromethane	9.6	Not Detected	20	Not Detected
Vinyl Chloride	0.96	Not Detected	2.5	Not Detected
1,3-Butadiene	0.96	Not Detected	2.1	Not Detected
Bromomethane	9.6	Not Detected	37	Not Detected
Chloroethane	3.9	Not Detected	10	Not Detected
Freon 11	0.96	0.35 J	5.4	2.0 J
Ethanol	3.9	3.8 J	7.3	7.2 J
Freon 113	0.96	Not Detected	7.4	Not Detected
1,1-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Acetone	9.6	8.3 J	23	20 J
2-Propanol	3.9	0.63 J	9.5	1.5 J
Carbon Disulfide	3.9	1.4-U	12	-4.3.dmm
3-Chloropropene	3.9	Not Detected	12	Not Detected
Methylene Chloride	9.6	0.40 J	34	1.4 J
Methyl tert-butyl ether	0.96	Not Detected	3.5	Not Detected
trans-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Hexane	0.96	0.36 J	3.4	1.3 J
1,1-Dichloroethane	0.96	Not Detected	3.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.9	Not Detected	11	Not Detected
cis-1,2-Dichloroethene	0.96	Not Detected	3.8	Not Detected
Tetrahydrofuran	0.96	Not Detected	2.8	Not Detected
Chloroform	0.96	Not Detected	4.7	Not Detected
1,1,1-Trichloroethane	0.96	Not Detected	5.3	Not Detected
Cyclohexane	0.96	0.51 J	3.3	1.7 J
Carbon Tetrachloride	0.96	Not Detected	6.1	Not Detected
2,2,4-Trimethylpentane	0.96	0.29 J	4.5	1.4 J
Benzene	0.96	0.23 J	3.1	0.73 J
1,2-Dichloroethane	0.96	Not Detected	3.9	Not Detected
Heptane	0.96	Not Detected	4.0	Not Detected
Trichloroethene	0.96	0.87 J	5.2	4.7 J
1,2-Dichloropropane	0.96	Not Detected	4.4	Not Detected
1,4-Dioxane	3.9	Not Detected	14	Not Detected
Bromodichloromethane	0.96	Not Detected	6.5	Not Detected
cis-1,3-Dichloropropene	0.96	Not Detected	4.4	Not Detected
4-Methyl-2-pentanone	0.96	Not Detected	4.0	Not Detected
Toluene	0.96	-0:26-d 4	3.6	-0.98-du
trans-1,3-Dichloropropene	0.96	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.96	Not Detected	5.3	Not Detected
Tetrachloroethene	0.96	Not Detected	6.5	Not Detected
2-Hexanone	3.9	Not Detected	16	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082319 \\ 1.93 \\ \hline \end{array}$	Date of Collection: 8/15/12 11:23:00 AM Date of Analysis: 8/23/12 06:30 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.96	Not Detected	8.2	Not Detected
1,2-Dibromoethane (EDB)	0.96	Not Detected	7.4	Not Detected
Chlorobenzene	0.96	-0.84J~4	4.4	-3.7-tan
Ethyl Benzene	0.96	-0.45 4	4.2	-0.67 U-u
m,p-Xylene	0.96	Not Detected	4.2	Not Detected
o-Xylene	0.96	Not Detected	4.2	Not Detected
Styrene	0.96	Not Detected	4.1	Not Detected
Bromoform	0.96	Not Detected	10	Not Detected
Cumene	0.96	Not Detected	4.7	Not Detected
1,1,2,2-Tetrachloroethane	0.96	Not Detected	6.6	Not Detected
Propylbenzene	0.96	Not Detected	4.7	Not Detected
4-Ethyltoluene	0.96	Not Detected	4.7	Not Detected
1,3,5-Trimethybbenzene	0.96	Not Detected	4.7	Not Detected
1,2,4-Trimethylbenzene	0.96	Not Detected	4.7	Not Detected
1,3-Dichlorobenzene	0.96	0.24 J	5.8	1.5 J
1,4-Dichlorobenzene	0.96	-0.23-5	5.8	-14.4-4
alpha-Chlorotoluene	0.96	0.30 J	5.0	1.6 J
1,2-Dichlorobenzene	0.96	. $0.18+4$	5.8	1.12
1,2,4-Trichlorobenzene	3.9	Not Detected	29	Not Detected
Hexachlorobutadiene	3.9	Not Detected	41	Not Detected
Butane	3.9	2.1 J	9.2	4.9 J
Isopentane	3.9	2.0 J	11	5.8 J
Ethyl Acetate	3.9	Not Detected	14	Not Detected
Propylene	3.9	Not Detected	6.6	Not Detected
Vinyl Acetate	3.9	Not Detected	14	Not Detected
Vinyl Bromide	3.9	Not Detected	17	Not Detected

$J=$ Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
1-Propene, 2-methyl-	$115-11-7$	59%	14 NJ
Acetic acid	$64-19-7$	64%	9.4 NJ

NJ = The identification is based on presumptive evidence; estimated value.

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	119	$70-130$
4-Bromofluorobenzene	109	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j082319	Date of Collection: $8 / 15 / 12$ 11:23:00 AM
Dii. Factor:	1.93	Date of Analysis: 8/23/12 06:30 PM

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082314 \mathrm{c} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/23/12 03:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limis (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.48 J	6.2	1.5 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1.1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Delected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.14 J	1.9	0.51 J
trans-1,3-Dichloropropene	0.50	0.12 J	2.3	(0.55 J)
1,1,2-Trichloroethane	0.50	Notretected	2.7	Not Detected
Tetrachloroethene	0.50	0.12 J	3.4	0.83 J
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics

Client Sample ID; Lab Blank
 Lab ID\#: 1208352A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082314 \mathrm{c} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/23/12 03:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.40 J	2.3	1.8 J
Ethyl Benzene	0.50	0.12 J	2.2	(0.50 J
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	0.069 J)	2.4	(0.34 J)
1,1,2,2-Tetrachloroethane	0.50	NotDetected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	(0.13)	3.0	0.79 J
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Defected
1,2-Dichlorobenzene	0.50	(0.12J)	3.0	5074 J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected
$\mathrm{J}=$ Estimated value.				
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount ((ppbv))
None Identified				
Container Type: NA - Not Applicable				
Surrogates		\%Recovery		Method Limits
Toluene-d8		97		70-130
1,2-Dichloroethane-d4		106		70-130
4-Bromofluorobenzene		101		70-130

eurofins

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208352A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082306 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: $8 / 23 / 12$ 11:48 AM
Compound		\%Recovery
Freon 12		129
Freon 114		120
Chloromethane		95
Vinyl Chloride		88
1,3-Butadiene		80
Bromomethane		100
Chloroethane		92
Freon 11		126
Ethanol		82
Freon 113		118
1,1-Dichloroethene		123
Acetone		74
2-Propanol		94
Carbon Disulfide		97
3-Chloropropene		102
Methylene Chloride		90
Methyl tert-butyl ether		118
trans-1,2-Dichloroethene		110
Hexane		96
1,1-Dichloroethane		100
2-Butanone (Methyl Ethyl Ketone)		106
cis-1,2-Dichloroethene		90
Tetrahydrofuran		90
Chloroform		115
1,1,1-Trichloroethane		126
Cyclohexane		106
Carbon Tetrachloride		126
2,2,4-Trimethylpentane		87
Benzene		98
1,2-Dichloroethane		118
Heptane		118
Trichloroethene		108
1,2-Dichloropropane		84
1,4-Dioxane		105
Bromodichloromethane		116
cis-1,3-Dichloropropene		108
4-Methyl-2-pentanone		90
Toluene		96
trans-1,3-Dichloropropene		112
1,1,2-Trichloroethane		99
Tetrachloroethene		103
2-Hexanone		93

eurofins

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208352A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: $\mathrm{j082306}$ Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 8/23/12 11:48 AM	
Compound		\%Recovery
Dibromochloromethane		114
1,2-Dibromoethane (EDB)		102
Chlorobenzene		88
Ethyl Benzene		105
m,p-Xylene		110
o-Xylene		104
Styrene		112
Bromoform		116
Cumene		113
1,1,2,2-Tetrachloroethane		98
Propylbenzene		113
4-Ethyltoluene		111
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		113
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		103
alpha-Chlorotoluene		115
1,2-Dichlorobenzene		107
1,2,4-Trichlorobenzene		110
Hexachlorobutadiene		124
Butane		88
Isopentane		85
Ethyl Acetate		88
Propylene		83
Vinyl Acetate		103
Vinyl Bromide		98
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	118	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCS
 Lab ID\#: 1208352A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082307 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/23/12 12:20 PM
Compound		\%Recovery
Freon 12		(136 Q)
Freon 114		130
Chloromethane		97
Vinyl Chloride		88
1,3-Butadiene		85
Bromomethane		103
Chloroethane		93
Freon 11		128
Ethanol		81
Freon 113		123
1,1-Dichloroethene		(134Q)
Acetone		72
2-Propanol		98
Carbon Disulfide		121
3-Chloropropene		127
Methylene Chloride		90
Methyl tert-butyl ether		124
trans-1,2-Dichloroethene		129
Hexane		96
1,1-Dichloroethane		99
2-Butanone (Methyl Ethyl Ketone)		112
cis-1,2-Dichloroethene		96
Tetrahydrofuran		86
Chloroform		117
1,1,1-Trichloroethane		130
Cyclohexane		113
Carbon Tetrachloride		(132Q
2,2,4-Trimethylpentane		88
Benzene		101
1,2-Dichloroethane		113
Heptane		114
Trichloroethene		109
1,2-Dichloropropane		84
1,4-Dioxane		95
Bromodichloromethane		115
cis-1,3-Dichloropropene		106
4-Methyl-2-pentanone		88
Toluene		96
trans-1,3-Dichloropropene		115
1,1,2-Trichloroethane		102
Tetrachloroethene		105
2-Hexanone		89

eurofins

Client Sample ID: LCS Lab ID\#: 1208352A-10A		
File Name: j 082307 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 8/23/12 12:20 PM
Compound		\%Recovery
Dibromochloromethane		113
1,2-Dibromoethane (EDB)		102
Chlorobenzene		88
Ethyl Benzene		105
m,p-Xylene		106
o-Xylene		103
Styrene		114
Bromoform		113
Cumene		112
1,1,2,2-Tetrachloroethane		98
Propylbenzene		112
4-Ethyltoluene		100
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		109
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		102
alpha-Chlorotoluene		112
1,2-Dichlorobenzene		103
1,2,4-Trichlorobenzene		104
Hexachlorobutadiene		118
Butane		88
Isopentane		91
Ethyl Acetate		Not Spiked
Propylene		79
Vinyl Acetate		107
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichioroethane-d4	122	70-130
4-Bromofluorobenzene	109	70-130

Air Toxics

Client Sample ID: LCSD Lab ID\#: 1208352A-10AA EPA METHOD TO- 15 GC/MS FULL SCAN		
File Name: Dil. Factor:	$\begin{array}{r} j 082308 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/23/12 12:39 PM
Compound		\%Recovery
Freon 12		123
Freon 114		119
Chloromethane		92
Vinyl Chloride		92
1,3-Butadiene		77
Bromomethane		96
Chloroethane		86
Freon 11		121
Ethanol		76
Freon 113		123
1,1-Dichloroethene		125
Acetone		73
2-Propanol		92
Carbon Disulfide		120
3-Chloropropene		122
Methylene Chloride		85
Methyl tert-butyl ether		121
trans-1,2-Dichloroethene		120
Hexane		92
1,1-Dichloroethane		96
2-Butanone (Methyl Ethyl Ketone)		106
cis-1,2-Dichloroethene		92
Tetrahydrofuran		83
Chioroform		113
1,1,1-Trichloroethane		126
Cyclohexane		112
Carbon Tetrachloride		124
2,2,4-Trimethylpentane		86
Benzene		101
1,2-Dichloroethane		116
Heptane		115
Trichloroethene		113
1,2-Dichloropropane		88
1,4-Dioxane		100
Bromodichloromethane		119
cis-1,3-Dichloropropene		107
4-Methyl-2-pentanone		87
Toluene		99
trans-1,3-Dichloropropene		112
1,1,2-Trichloroethane		99
Tetrachloroethene		102
2-Hexanone		91

Air Toxics

\section*{Client Sample ID: LCSD
 Lab ID\#: 1208352A-10AA
 EPA METHOD TO- 15 GC/MS FULL SCAN
 | | | |
| :--- | :---: | :--- |
| File Name: | j 082308 | Date of Collection: NA |
| Dil. Factor: | 1.00 | Date of Analysis: $8 / 23 / 12$ 12:39 PM |}

Compound		\%Recovery
Dibromochloromethane		111
1,2-Dibromoethane (EDB)		107
Chlorobenzene		89
Ethyl Benzene		106
m,p-Xylene		108
o-Xylene		105
Styrene		113
Bromoform		114
Cumene		115
1,1,2,2-Tetrachloroethane		100
Propylbenzene		115
4-Ethyltoluene		108
1,3,5-Trimethylbenzene		110
1,2,4-Trimethylbenzene		111
1,3-Dichlorobenzene		103
1,4-Dichlorobenzene		103
alpha-Chlorotoluene		113
1,2-Dichlorobenzene		106
1,2,4-Trichlorobenzene		112
Hexachlorobutadiene		122
Butane		80
Isopentane		81
Ethyl Acetate		Not Spiked
Propylene		73
Vinyl Acetate		99
Vinyl Bromide		Not Spiked
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	108	70-130

$\cos 2 \pi 62 \pi \sin$

Air Toxics

9/5/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208352B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/16/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics L td. is committed to providing accurate data of the highest quality. Please feel free to contact , the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

WORK ORDER \#: 1208352B

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West
	Suite 300 St. Louis, MO 63110
PHONE:	$314-743-4179$
FAX:	
DATE RECEIVED:	$08 / 16 / 2012$
DATE COMPLETED:	$09 / 05 / 2012$

BILL TO: Accounts Payable Austin
URS Corporation
PRO. BOX 203970
Austin, TX 78720-1088

PoO. \#
PROJECT \# 21562735.10100 Roxana Vapor CONTACT: Additional

CERTIFIED BY:

DATE: 09/05/12
Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1208352B

Seven 1 Liter Summa Canister samples were received on August 16, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 \% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as $15 \%, ~ e i t h e r ~$ due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-081412
Lab ID\#: 1208352B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	15
Nitrogen	0.19	79
Methane	0.00019	0.000053 J
Carbon Dioxide	0.019	5.9
Helium	0.096	0.014 J

Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	15
Nitrogen	0.19	79
Methane	0.00019	0.000065 J
Carbon Dioxide	0.019	5.7
Helium	0.094	0.018 J

Client Sample ID: VMP-42-10-081412
Lab ID\#: 1208352B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.20	18
Nitrogen	0.20	80
Carbon Dioxide	0.020	2.0

Client Sample ID: VMP-4-5-081412
Lab IDH: 1208352B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	18
Nitrogen	0.19	81
Methane	0.00019	0.00017 J
Carbon Dioxide	0.019	1.3

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

```
Client Sample ID: VMP-4-5-081412
Lab ID#: 1208352B-04A
Helium 0.096 0.010 J
```

Client Sample ID: VMP-11-5-081512
Lab ID\#: 1208352B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.18	18
Nitrogen	0.18	80
Methane	0.00018	0.000055 J
Carbon Dioxide	0.018	2.1
Helium	0.092	0.025 J

Client Sample ID: VMP-13-5-081512
Lab ID\#: 1208352B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.20	17
Nitrogen	0.20	79
Methane	0.00020	0.000078 J
Carbon Dioxide	0.020	3.6
Helium	0.098	0.058 J

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352B-07A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.19	19
Nitrogen	0.19	79
Methane	0.00019	0.000040 J
Carbon Dioxide	0.019	1.6
Helium	0.096	0.043 J

Air Toxics

Client Sample ID: VMP-21-5-081412

Lab 1D\#: 1208352B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins
Air Toxics
Client Sample ID: VMP-21-5-081412-DUP
Lab ID\#: 1208352B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: VMP-42-10-081412

Lab ID\#: 1208352B-03A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9082112 \\ 2.01 \\ \hline \end{array}$	Date of Collection: 8/14/12 12:07:00 PM Date of Analysis: 8/21/12 12:58 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.20	18
Nitrogen		0.20	80
Carbon Monoxide		0.020	Not Detected
Methane		0.00020	Not Detected
Carbon Dioxide		0.020	2.0
Ethane		0.0020	Not Detected
Ethene		0.0020	Not Detected
Helium		0.10	Not Detected

Container Type: 1 Liter Summa Canister

Air Toxics
Client Sample ID: VMP-4-5-081412

Lab ID\#: 1208352B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics
Client Sample ID: VMP-11-5-081512
Lab ID\#: 1208352B-05A
NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: VMP-13-5-081512

Lab ID\#: 1208352B-06A

NATURAL GAS ANALXSIS BY MODIELED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9082115 \\ 1.97 \\ \hline \end{array}$	Date of Collection: 8/15/12 10:31:00 AM Date of Analysis: 8/21/12 02:59 PM
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.20	17
Nitrogen	0.20	79
Carbon Monoxide	0.020	Not Detected
Methane	0.00020	0.000078 J
Carbon Dioxide	0.020	3.6
Ethane	0.0020	Not Detected
Ethene	0.0020	Not Detected
Helium	0.098	0.058 J
$J=$ Estimated value		
Container Type: 1 Liter Summa Canister		

eurofins

Air Toxics

Client Sample ID: VMP-10-5-081512
Lab ID\#: 1208352B-07A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9082116 \\ 1.93 \\ \hline \end{array}$	Date of Collection: 8/15/12 11:23:00 AM Date of Analysis: 8/21/12 03:22 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.19	19
Nitrogen		0.19	79
Carbon Monoxide		0.019	Not Detected
Methane		0.00019	0.000040 J
Carbon Dioxide		0.019	1.6
Ethane		0.0019	Not Detected
Ethene		0.0019	Not Detected
Helium		0.096	0.043 J
$\mathrm{J}=$ Estimated value			
Container Type: 1	ster		

Air Toxics

Client Sample ID: Lab Blank Lab 1D\#: 1208352B-08A			
File Name: Dil. Factor:	$\begin{array}{r} 9082104 a \\ 1.00 \\ \hline \end{array}$		08:57 AM
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.10	Not Detected
Nitrogen		0.10	0.033 J
Carbon Monoxide		0.010	Not Detected
Methane		0.00010	Not Detected
Carbon Dioxide		0.010	Not Detected
Ethane		0.0010	Not Detected
Ethene		0.0010	Not Detected
$\mathrm{J}=$ Estimated value.			

eurofins

Air Toxics

Client Sample ID: Lab Blank

Lab ID\#: 1208352B-08B
NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

File Name:	9082103 b		Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $8 / 21 / 12$	$08: 34$ AM
		Rpt. Limit	Amount
Compound	$(\%)$	$(\%)$	
Helium	0.050	Not Detected	

Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208352B-09A
 NATURAL GAS ANALXSIS BY MODIEIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9082102 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 08:09 AM
Compound		\%Recovery
Oxygen		100
Nitrogen		100
Carbon Monoxide		99
Methane		98
Carbon Dioxide		101
Ethane		100
Ethene		96
Helium		99
Container Type:		

eurofins

Air Toxics
Client Sample ID: LCSD
Lab ID\#: 1208352B-09AA
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9082125 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/21/12 09:04 PM
Compound		\%Recovery
Oxygen		100
Nitrogen		100
Carbon Monoxide		99
Methane		98
Carbon Dioxide		101
Ethane		99
Ethene		96
Helium		99
Container Type:		

Roxana Soil Vapor Additional - Week 2-2012 Data Review

Laboratory SDG: 1208401A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/21/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-081412

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-081412 was diluted and re-analyzed to bring 2,2,4-trimethylpentane within the calibration range of the instrument. The result for 2,2,4-trimethylpentane was reported from the re-analysis diluted run and the remaining compounds were reported from the original analysis. TO-15 CCV and LCS/LCSD recoveries were outside evaluation criteria. The TO-15 surrogate recovery for 1,2-dichloroethane- d_{4} was outside evaluation criteria in the original analysis of sample VMP-16-5-081412. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.
No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration/ Amount
1208401A-02A	TO-15	Carbon disulfide	$1.1 \mathrm{ppbv} / 3.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208401A-02A	TO-15	Hexane	$0.041 \mathrm{ppbv} / 0.14 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208401 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Toluene	$0.075 \mathrm{ppbv} / 0.28 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208401 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Chlorobenzene	$0.31 \mathrm{ppbv} / 1.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208401 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Ethyl benzene	$0.077 \mathrm{ppbv} / 0.33 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208401 \mathrm{~A}-02 \mathrm{~A}$	TO-15	m,p-Xylene	$0.099 \mathrm{ppbv} / 0.43 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1208401A-02A	TO-15	1,3-Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.75 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208401A-02A	TO-15	1,4-Dichlorobenzene	$0.088 \mathrm{ppbv} / 0.53 \mu \mathrm{~g} / \mathrm{m}^{3}$
1208401B-02A	Natural gases	Oxygen	0.0091%
1208401B-02A	Natural gases	Nitrogen	0.046%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	LCS/ LCSD RPD	LCSD/RPD Criteria
1208401A $-04 \mathrm{~A} / \mathrm{AA}$	TO-15	Acetone	$69 / 68$	1	$70-130 / 25$
1208401 A $-04 \mathrm{~A} / \mathrm{AA}$	TO-15	3-Chloropropene	$116 / 135$	15	$70-130 / 25$

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-16-5-081412	TO-15	Acetone	J

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
No

Sample ID	Parameter	Surrogate	Recovery	Criteria
VMP-16-5-081412 (Original Analysis)	TO-15	1,2-Dichloroethane-d 4	$\mathbf{1 3 3}$	$70-130$

Analytical data that required qualification based on surrogate data are included in the table below. Acetone in sample VMP-16-5-081412 (Original Analysis) was previously qualified in Section 5.0 in this review due to LCS data. Analytical data which were reported as non-detect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-16-5-081412 (Original Analysis)	TO-15	2-Propanol	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Carbon disulfide	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Methylene chloride	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Chloroform	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Cyclohexane	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	4-Methyl-2-pentanone	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Toluene	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Chlorobenzene	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Cumene	\mathbf{J}
VMP-16-5-081412 (Original Analysis)	TO-15	Isopentane	\mathbf{J}

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
The CCV percent recovery for acetone was outside evaluation criteria as summarized in the table below.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
1208401 A-03A	TO-15	Acetone	68	$70-130$

Data associated with the CCV recovery above evaluation criteria was also associated with LCS/LCSD recoveries outside evaluation criteria. Previous qualifications based on LCS/LCSD recoveries are discussed in section 5.0 of this data review. No additional qualification of data is required.

Air Toxics

9/5/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208401A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/17/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Reviewed
On
$9121 / 2012$

A Eurokit baneaven babomarks Company

WORK ORDER \#: 1208401A

Work Order Summary

DATE: $\quad 09 / 05 / 12$
Technical Director
Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291 , TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, fac. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563
(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1208401A

One 1 Liter Summa Canister sample was received on August 17, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Due to high-level target compounds, sample VMP-16-5-081412 was analyzed twice. In the "A" fraction, the sample was diluted to bring the highest-level compounds within the calibration range. The "B" fraction is also reported by client request and may be reported with "E" flags indicating the compound exceeds the calibration range. Both runs and associated QC are reported.

The recovery of 1,2-Dichloroethane-d4 in sample VMP-16-5-081412 Duplicate was outside control limits due to matrix interference. Precision between the original run and its duplicate met method acceptance criterion of $</=25 \%$ RPD for all detections greater than $5 \times$ the reporting limit. There is no effect on data quality.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

eurofins

Air Toxics

E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-081412 Xthetheser reskits only. At othan data was repurteok from Lab ID\#: 1208401A-01A fhe $15.9 \times$ dilutron anabeys.

DF Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount (ug/m3)
Ethanol	64	21 J	120	40 J
2-Propanol	64	15 J	160	36 J
Carbon Disulfide	64	10 J	200	31 J
Methylene Chloride	160	2.2 J	560	7.7 J
Cyclohexane	16	2.6 J	55	8.8 J
2,2,4-Trimethylpentane	16	5200	75	24000
4-Methyl-2-pentanone	16	27	66	110
Toluene	16	9.4 J	61	35 J
Chlorobenzene	16	9.2 J	74	42 J
m,p-Xylene	16	3.0 J	70	13 J
Cumene	16	4.7 J	79	23 J
Isopentane	64	38 J	190	110 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	960 J
Butane, 2,2,3-trimethyl-	$464-06-2$	53%	1300 NJ
Octane, 4-methyl-	$2216-34-4$	56%	510 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	64%	680 NJ
Unknown	NA	NA	1900 J
Pentane, 2,3,3-trimethyl-	$560-21-4$	78%	14000 NJ
2-Butanol, 2,3-dimethyl-	$594-60-5$	83%	320 NJ
Unknown	NA	NA	220 J
Unknown	NA	NA	190 J
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	170 NJ

Client Sample ID: VMP-16-5-081412 Lab
Lab IDH: 1208401A-01B

$\text { DF }=15.9$ Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	80	11J J	190	26 J
2-Propanol	32	13 J	78	33 J
Carbon Disulfide	32	$7.6 \mathrm{~J} v$	99	24 J

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-081412 Lab				
Lab ID\#: 1208401A-01B XDo not usethis deta lise athotherdeatu.				
Methylene Chloride	80	0.99 JJ	280	3.4 J J
Chloroform	8.0	1.1 J	39	5.4 J
Cyciohexane	8.0	1.8 J	27	$6.2 \mathrm{~J} \downarrow$
(2,-2,4-7rimethytpentane	8.0	4700 E	-37	19000-E.
4-Methyl-2-pentanone	8.0	22 J	32	90 J
Toluene	8.0	5.6 J	30	21 J
Chlorobenzene	8.0	5.0 J	36	23 J
Cumene	8.0	3.9 J	39	19 J
Isopentane	32	$29 \mathrm{~J} V$	94	$85 \mathrm{~J} \forall$
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Unknown		NA	NA	620 J
Butane, 2,2,3-trimethyl-		464-06-2	72\%	920 NJ
Octane, 4-methyl-		2216-34-4	72\%	300 NJ
Hexane, 2,2,5,5-tetramethyl-		1071-81-4	50\%	470 NJ
Unknown		NA	NA	1300 J
Pentane, 2,3,3-trimethyl-		560-21-4	78\%	9500 NJ
2-Butanol, 2,3-dimethyl-		594-60-5	83\%	210 NJ
Unknown		NA	NA	170 J
Unknown		NA	NA	110 J
Decane, 2,2,6-trimethyl-		62237-97-2	72\%	120 NJ

eurofins

Air Toxics \& (hs these results sn by. At thoodeta was reported from the $16.9 x$ dilufimanalesis.
Client Sample ID: VMP-16-5-081412
Lab ID\#: 1208401A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: VMP-16-5-081412
Lab ID\#: 1208401A-01A
EPA METHOD TO- 15 GC/MS RULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082714 \\ 32.2 \\ \hline \end{array}$	Date of Collection: 8/14/12 9:53:00 AM Date of Analysis: 8/27/12 03:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	16	Not Detected	140	Not Detected
1,2-Dibromoethane (EDB)	16	Not Detected	120	Not Detected
Chlorobenzene	16	9.2 J	74	42 J
Ethyl Benzene	16	Not Detected	70	Not Detected
m,p-Xylene	16	3.0 J	70	13 J
o-Xylene	16	Not Detected	70	Not Detected
Styrene	16	Not Detected	68	Not Detected
Bromoform	16	Not Detected	170	Not Detected
Cumene	16	4.7 J	79	23 J
1,1,2,2-Tetrachloroethane	16	Not Detected	110	Not Detected
Propylbenzene	16	Not Detected	79	Not Detected
4-Ethyltoluene	16	Not Detected	79	Not Detected
1,3,5-Trimethylbenzene	16	Not Detected	79	Not Detected
1,2,4-Trimethylbenzene	16	Not Detected	79	Not Detected
1,3-Dichlorobenzene	16	Not Detected	97	Not Detected
1,4-Dichlorobenzene	16	Not Detected	97	Not Detected
alpha-Chlorotoluene	16	Not Detected	83	Not Detected
1,2-Dichlorobenzene	16	Not Detected	97	Not Detected
1,2,4-Trichlorobenzene	64	Not Detected	480	Not Detected
Hexachlorobutadiene	64	Not Detected	690	Not Detected
Butane	64	Not Detected	150	Not Detected
Isopentane	64	38 J	190	110 J
Ethyl Acetate	64	Not Detected	230	Not Detected
Propylene	64	Not Detected	110	Not Detected
Vinyl Acetate	64	Not Detected	230	Not Detected
Vinyl Bromide	64	Not Detected	280	Not Detected

$J=$ Estimated value.
$U J=$ Non -detected compound associated with low bias in the CCV and/or LCS.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
Unknown	NA	NA	960 J
Butane, $2,2,3$-trimethyl-	$464-06-2$	53%	1300 NJ
Octane, 4-methyl-	$2216-34-4$	56%	510 NJ
Hexane, $2,2,5,5$-tetramethyl-	$1071-81-4$	64%	680 NJ
Unknown	NA	NA	1900 J
Pentane, 2,3,3-trimethyl-	$560-21-4$	78%	14000 NJ
2-Butanol, 2,3 -dimethyl-	$594-60-5$	83%	320 NJ
Unknown	NA	NA	220 J
Unknown	NA	NA	190 J
Decane, $2,2,6$-trimethyl-	$62237-97-2$	64%	170 NJ

Air Toxics

Client Sample 1D: VMP-16-5-081412

Lab ID\#: 1208401A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name:	j 082714	Date of Collection: 8/14/12 9:53:00 AM
Dil. Factor:	32.2	Date of Analysis: 8/27/12 03:36 PM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	97	$70-130$
1,2-Dichloroethane-d4	112	$70-130$
4-Bromofluorobenzene	105	$70-130$

Air Toxics XDonotuse thusclata. Use allotherdata.

Client Sample ID: VMP-16-5-081412 Lab
 Lab ID\#: 1208401A-01B
 EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: VMP-16-5-081412 Lab
Lab ID\#: 1208401A-01B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Bil. Factor:	$\begin{array}{r} \mathrm{j} 082712 \\ 15.9 \\ \hline \end{array}$	Date of Collection: 8/14/12 9:53:00 AM Date of Analysis: $8 / 27 / 12$ 02:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	8.0	Not Detected	68	Not Detected
1,2-Dibromoethane (EDB)	8.0	Not Detected,	61	Not Detected
Chlorobenzene	8.0	5.0 J J	36	23 J J
Ethyl Benzene	8.0	Not Detected	34	Not Detected
m,p-Xylene	8.0	Not Detected	34	Not Detected
o-Xylene	8.0	Not Detected	34	Not Detected
Styrene	8.0	Not Detected	34	Not Detected
Bromoform	8.0	Not Detected	82	Not Detected
Cumene	8.0	3.9 J J	39	19J J
1,1,2,2-Tetrachloroethane	8.0	Not Detected	54	Not Detected
Propylbenzene	8.0	Not Delected	39	Not Detected
4-Ethyltoluene	8.0	Not Detected	39	Not Detected
1,3,5-Trimethylbenzene	8.0	Not Detected	39	Not Detected
1,2,4-Trimethylbenzene	8.0	Not Detected	39	Not Detected
1,3-Dichlorobenzene	8.0	Not Detected	48	Not Detected
1,4-Dichlorobenzene	8.0	Not Detected	48	Not Detected
alpha-Chlorotoluene	8.0	Not Detected	41	Not Detected
1,2-Dichlorobenzene	8.0	Not Detected	48	Not Detected
1,2,4-Trichlorobenzene	32	Not Detected	240	Not Detected
Hexachlorobutadiene	32	Not Detected	340	Not Detected
Butane	32	Not Detected	76	Not Detected
Isopentane	32	29 J	94	85 J J
Ethyl Acetate	32	Not Detected	110	Not Detected
Propylene	32	Not Detected	55	Not Detected
Vinyl Acetate	32	Not Detected	110	Not Detected
Vinyl Bromide	32	Not Detected	140	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	620 J
Butane, 2,2,3-trimethyl-	$464-06-2$	72%	920 NJ
Octane, 4-methyl-	$2216-34-4$	72%	300 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	50%	470 NJ
Unknown	NA	NA	1300 J
Pentane, 2,3,3-trimethyl-	$560-21-4$	78%	9500 NJ
2-Butanol, 2,3-dimethyl-	$594-60-5$	83%	210 NJ
Unknown	NA	NA	170 J
Unknown	NA	NA	110 J
Decane, 2,2,6-trimethyl-	$62237-97-2$	72%	120 NJ

Air Toxics

Client Sample ID: VMP-16-5-081412 Lab
 Lab ID\#: 1208401A-01B
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 082712	Date of Collection: 8/14/12 9:53:00 AM
Dil. Factor:	15.9	Date of Analysis: $8 / 27 / 1202: 13 \mathrm{PM}$

$N J=$ The identification is based on presumptive evidence; estimated value.
$Q=$ Exceeds Quality Control limits of 70% to 130%, due to matrix effects.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	98	$70-130$
1,2-Dichloroethane-d4	133 Q	$70-130$
4-Bromofluorobenzene	100	$70-130$

eurofins

Air Toxics

Client Sample ID: Lab BlankLab IDH: 1208401A-02AEPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	$\begin{array}{r} \text { j082711a } \\ 1.00 \\ \hline \end{array}$		Collection: Analysis:	$201: 45 \text { PM }$
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1.1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected UJ	12	Not Delected UJ
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	(1.1 J	6.2	$3.4 \mathrm{~J})$
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl fert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	0.041 J	1.8	(0.14 J)
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethy\|pentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	(0.075)	1.9	0.28 J
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208401A-02A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 082711 \mathrm{a} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/27/12 01:45 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.31 J	2.3	1.4 J
Ethyl Benzene	0.50	0.077 J	2.2	(0.33 J)
m,p-Xylene	0.50	(0.099)	2.2	0.435
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethyibenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	0.12 J	3.0	0.75 J
1,4-Dichlorobenzene	0.50	(0.088 J)	3.0	(0.53)
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.
$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number \quad Match Quality \quad| Amount |
| :--- |
| ((ppbv)) |

None Identified
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	113	$70-130$
4-Bromofluorobenzene	105	$70-130$

Air Toxics

Client Sample ID: CCV Lab ID\#: 1208401A-03A		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 82702 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/27/12 07:49 AM
Compound		\%Recovery
Freon 12		130
Freon 114		122
Chloromethane		92
Vinyl Chloride		84
1,3-Butadiene		73
Bromomethane		87
Chloroethane		89
Freon 11		125
Ethanol		74
Freon 113		117
1,1-Dichloroethene		122
Acetone		68 Q
2-Propanol		85
Carbon Disulfide		95
3-Chloropropene		104
Methylene Chloride		78
		118
trans-1,2-Dichloroethene		109
Hexane		91
1,1-Dichtoroethane		92
2-Butanone (Methyl Ethyl Ketone)		102
cis-1,2-Dichloroethene		94
Tetrahydrofuran		79
Chloroform		111
1,1,1-Trichloroethane		121
Cyclohexane		104
Carbon Tetrachloride		123
2,2,4-Trimethylpentane		82
Benzene		100
1,2-Dichloroethane		115
Heptane		109
Trichloroethene		714
1,2-Dichloropropane		80
1,4-Dioxane		98
Bromodichloromethane		117
cis-1,3-Dichloropropene		102
4-Methyl-2-pentanone		86
Toluene		95
trans-1,3-Dichloropropene		109
1,1,2-Trichloroethane		98
Tetrachloroethene		100
2-Hexanone		88

eurofins

Air Toxics

Air Toxics

> Client Sample ID: LCS
> Lab ID\#: 1208401A-04A
> EPA METHOD TO-15 GC/MS FULLSCAN

File Name: Dil. Factor:	$\begin{array}{r} j 082703 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/27/12 08:18 AM
Compound		\%Recovery
Freon 12		126
Freon 114		123
Chloromethane		88
Vinyl Chloride		89
1,3-Butadiene		76
Bromomethane		86
Chloroethane		92
Freon 11		124
Ethanol		73
Freon 113		123
1,1-Dichloroethene		130
Acetone		69 Q
2-Propanol		86
Carbon Disulfide		117
3-Chloropropene		116
Methylene Chloride		79
Methyl tert-butyl ether		115
trans-1,2-Dichloroethene		119
Hexane		86
1,1-Dichloroethane		91
2-Butanone (Methyl Ethyl Ketone)		98
cis-1,2-Dichloroethene		90
Tetrahydrofuran		74
Chloroform		109
1,1,1-Trichloroethane		123
Cyclohexane		104
Carbon Tetrachloride		121
2,2,4-Trimethylpentane		79
Benzene		98
1,2-Dichloroethane		110
Heptane		113
Trichloroethene		111
1,2-Dichloropropane		83
1,4-Dioxane		92
Bromodichloromethane		113
cis-1,3-Dichioropropene		100
4-Methyl-2-pentanone		83
Toluene		92
trans-1,3-Dichloropropene		115
1,1,2-Trichloroethane		100
Tetrachloroethene		100
2-Hexanone		86

eurofins

Air Toxics

eurofins

Air Toxics

eurofins

Air Toxics

Client Sample ID: LCSD Lab ID\#: 1208401A-04AA EPA METHOD TO-15 GC/MS FULL SCAN		
File Name: j 082704 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 8/27/12 08:38 AM
Compound		\%Recovery
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		99
Chlorobenzene		87
Ethyl Benzene		103
m,p-Xylene		104
o-Xylene		100
Styrene		109
Bromoform		109
Cumene		111
1,1,2,2-Tetrachloroethane		92
Propylbenzene		110
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		100
1,2,4-Trimethylbenzene		105
1,3-Dichlorobenzene		96
1,4-Dichlorobenzene		93
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		98
1,2,4-Trichlorobenzene		100
Hexachlorobutadiene		118
Butane		81
Isopentane		76
Ethyl Acetate		Not Spiked
Propylene		68
Vinyl Acetate		103
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	105	70-130

Shell Oil Products Chain Of Custody Record
URES

Custody Seal Intact?
Y) N None Temp_

eurofins

Air Toxics

Abstract

9/5/2012 Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1208401B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/17/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

[^4]
Air Toxics

WORK ORDER \#: 1208401B

Work Order Summary

CERTIFIED BY

DATE: $09 / 05 / 12$
Technical Director
Certification numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not he reproduced, except in full, without the written approval of Eurofins Air Toxics, the.

Air Toxics

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1208401B

One 1 Liter Summa Canister sample was received on August 17, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requircment	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol $\%$ for any component.	The standards used by ATL are blended to a $>/=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as $15 \%, ~ e i t h e r ~$ due to analytical variability or an unusual sample matrix.
	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

eurofins

Air Toxics

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-081412

Lab ID\#: 1208401B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.20	6.4
Nitrogen	0.20	83
Methane	0.00020	0.000075 J
Carbon Dioxide	0.020	11

Air Toxics

Client Sample 1D: VMP-16-5-081412
 Lab ID\#: 1208401B-01A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 12084018-02A
 NATURAL GAS ANALXSIS BY MODIFIED AS'TM D-1946

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208401B-02B
 NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name:	9082203 b		Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/22/12 08:54 AM	
		Rpt. Limit	Amount
Compound	$(\%)$	$(\%)$	
Helium	0.050	Not Detected	

Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCS
 Lab IDH: 1208401B-03A

NATURAL GAS ANALYSIS BX MODIFIED ASTM D-1946

File Name:	9082202	
Dil. Factor:	1.00	Date of Collection: NA Date of Analysis: $8 / 22 / 12$ Compound
O8:31 AM		

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208401B-03AA

NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

File Name:	9082226	
Dil. Factor:	1.00	
		Date of Collection: NA
Date of Analysis: $8 / 22 / 12$	$09: 45 \mathrm{PM}$	
Compound		\%Recovery
Oxygen	99	
Nitrogen	100	
Carbon Monoxide	98	
Methane	98	
Carbon Dioxide	101	
Ethane	100	
Ethene	97	
Helium	100	
Container Type: NA - Not Applicable		

Shell Oil Products Chain Of Custody Record
URS

Custody Seal Intact?
Y) N None Temp NA

Roxana Soil Vapor Additional - Week 3-2012 Data Review

Laboratory SDG: 1208543A,B
Data Reviewer: Melissa Mansker
Peer Reviewer: Elizabeth Kunkel
Date Reviewed: 9/21/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-082012	VMP-42-10-082012
VMP-4-5-081412	VMP-11-5-082112
VMP-11-5-082112-Dup	VMP-13-5-082112
VMP-10-5-082112	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form
 Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative, analytes were detected in the method blank. TO-15 CCV and LCS/LCSD recoveries were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times
 Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Bromomethane	$0.16 \mathrm{ppbv} / 0.61 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Carbon disulfide	$0.40 \mathrm{ppbv} / 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Methylene chloride	$0.12 \mathrm{ppbv} / 0.43 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Hexane	$0.14 \mathrm{ppbv} / 0.48 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	1,2 -Dichloroethane	$0.059 \mathrm{ppbv} / 0.24 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Trichloroethene	$0.17 \mathrm{ppbv} / 0.89 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	cis-1,3-Dichloropropene	$0.17 \mathrm{ppbv} / 0.77 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	Toluene	$0.13 \mathrm{ppbv} / 0.51 \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	$\mathrm{TO}-15$	trans-1,3-Dichloropropene	$0.13 \mathrm{ppbv} / 0.58 \mathrm{\mu g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration Amount
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Tetrachloroethene	$0.11 \mathrm{ppbv} / 0.76 \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Chlorobenzene	$0.33 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	m, p-Xylene	$0.097 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,3 -Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.75 \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.13 \mathrm{ppbv} / 0.76 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208543 \mathrm{~B}-08 \mathrm{~A}$	Natural gases	Oxygen	0.013%
$1208543 \mathrm{~B}-08 \mathrm{~A}$	Natural gases	Nitrogen	0.054%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-082012	TO-15	Carbon disulfide	-	U
VMP-21-5-082012	TO-15	Hexane	-	U
VMP-21-5-082012	TO-15	Chlorobenzene	-	U
VMP-21-5-082012	TO-15	1,3-Dichlorobenzene	-	U
VMP-21-5-082012	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-082012	TO-15	Bromomethane	-	U
VMP-42-10-082012	TO-15	Carbon disulfide	-	U
VMP-42-10-082012	TO-15	cis-1,3-Dichloropropene	-	U
VMP-42-10-082012	TO-15	trans-1,3-Dichloropropene	-	U
VMP-42-10-082012	TO-15	Chlorobenzene	-	U
VMP-42-10-082012	TO-15	1,3-Dichlorobenzene	-	U
VMP-42-10-082012	TO-15	1,4-Dichlorobenzene	-	U
VMP-4-5-082012	TO-15	Carbon disulfide	-	U
VMP-4-5-082012	TO-15	cis-1,3-Dichloropropene	-	U
VMP-4-5-082012	TO-15	trans-1,3-Dichloropropene	-	U
VMP-4-5-082012	TO-15	Tetrachloroethene	-	U
VMP-4-5-082012	TO-15	Chlorobenzene	-	U
VMP-4-5-082012	TO-15	1,3-Dichlorobenzene	-	U
VMP-4-5-082012	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-082112	TO-15	Carbon disulfide	-	U
VMP-11-5-082112	TO-15	Hexane	-	U
VMP-11-5-082112	TO-15	Toluene	-	U
VMP-11-5-082112	TO-15	trans-1,3-Dichloropropene	-	U
VMP-11-5-082112	TO-15	Tetrachloroethene	-	U
VMP-11-5-082112	TO-15	Chlorobenzene	-	U
VMP-11-5-082112	TO-15	1,3-Dichlorobenzene	-	U
VMP-11-5-082112	TO-15	1,4-Dichlorobenzene	-	U
$\begin{aligned} & \text { VMP-11-5-082112- } \\ & \text { Dup } \end{aligned}$	TO-15	Carbon disulfide	-	U
$\begin{gathered} \hline \text { VMP-11-5-082112- } \\ \text { Dup } \end{gathered}$	TO-15	Methylene chloride	-	U

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-11-5-082112- Dup	TO-15	1,2-Dichloroethane	-	\mathbf{U}
VMP-11-5-082112- Dup	TO-15	Toluene	-	\mathbf{U}
VMP-11-5-082112- Dup	TO-15	trans-1,3-Dichloropropene	-	U
VMP-11-5-082112- Dup	TO-15	Chlorobenzene	-	U
VMP-11-5-082112- Dup	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-082112	TO-15	cis-1,3-Dichloropropene	-	U
VMP-13-5-082112	TO-15	Toluene	-	U
VMP-13-5-082112	TO-15	Chlorobenzene	-	U
VMP-13-5-082112	TO-15	1,3-Dichlorobenzene	-	U
VMP-13-5-082112	TO-15	1,4-Dichlorobenzene	-	\mathbf{U}
VMP-10-5-082112	TO-15	Carbon disulfide	-	U
VMP-10-5-082112	TO-15	Toluene	-	U
VMP-10-5-082112	TO-15	Chlorobenzene	-	U
VMP-10-5-082112	TO-15	m,p-Xylene	-	U
VMP-10-5-082112	TO-15	1,4-Dichlorobenzene	-	\mathbf{U}

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	LCS/ LCSD RPD	LCSD/RPD Criteria
1208543 A -10A/AA	TO-15	1,3-Butadiene	$75 / 69$	8	$70-130 / 25$
1208543A -10A/AA	TO-15	Ethanol	$72 / 67$	7	$70-130 / 25$
1208543A $-10 \mathrm{~A} / \mathrm{AA}$	TO-15	1,1-Dichloroethene	$\mathbf{1 3 2 / 1 3 1}$	1	$70-130 / 25$
1208543A -10A/AA	TO-15	Acetone	$67 / 68$	1	$70-130 / 25$
1208543A $-10 \mathrm{~A} / \mathrm{AA}$	TO-15	Tetrahydrofuran	$70 / 69$	1	$70-130 / 25$

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-21-5-082012	TO-15	1,3-Butadiene	UJ
VMP-21-5-082012	TO-15	Ethanol	J
VMP-21-5-082012	TO-15	Acetone	J
VMP-21-5-082012	TO-15	Tetrahydrofuran	UJ
VMP-42-10-082012	TO-15	$1,3-$ Butadiene	UJ
VMP-42-10-082012	TO-15	Ethanol	J
VMP-42-10-082012	TO-15	Acetone	J
VMP-42-10-082012	TO-15	Tetrahydrofuran	J
VMP-4-5-082012	TO-15	1,3-Butadiene	UJ
VMP-4-5-082012	TO-15	Ethanol	J
VMP-4-5-082012	TO-15	Acetone	J
VMP-4-5-082012	TO-15	Tetrahydrofuran	UJ
VMP-11-5-082112	TO-15	$1,3-$ Butadiene	UJ
VMP-11-5-082112	TO-15	Ethanol	J
VMP-11-5-082112	TO-15	Acetone	J
VMP-11-5-082112	TO-15	Tetrahydrofuran	UJ
VMP-11-5-082112-Dup	TO-15	$1,3-B u t a d i e n e ~$	UJ
VMP-11-5-082112-Dup	TO-15	Ethanol	UJ
VMP-11-5-082112-Dup	TO-15	Acetone	J
VMP-11-5-082112-Dup	TO-15	Tetrahydrofuran	UJ
VMP-13-5-082112	TO-15	$1,3-$ Butadiene	UJ
VMP-13-5-082112	TO-15	Ethanol	J
VMP-13-5-082112	TO-15	Acetone	J
VMP-13-5-082112	TO-15	Tetrahydrofuran	UJ
VMP-10-5-082112	TO-15	$1,3-B u t a d i e n e ~$	UJ
VMP-10-5-082112	TO-15	Ethanol	J
VMP-10-5-082112	TO-15	Acetone	J
VMP-10-5-082112	TO-15	Tetrahydrofuran	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results
 Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
VMP-11-5-082112	VMP-11-5-082112-Dup

Were field duplicate sample RPDs within evaluation criteria?
Yes

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
The CCV percent recovery for acetone was outside evaluation criteria as summarized in the table below.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
$1208543 A-09 A$	TO-15	Acetone	67	$70-130$

Data associated with the CCV recovery above evaluation criteria was also associated with LCS/LCSD recoveries outside evaluation criteria. Previous qualifications based on LCS/LCSD recoveries are discussed in section 5.0 of this data review. No additional qualification of data is required.

eurofins

Air Toxics

9/18/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208543A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/24/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208543A

Work Order Summary

DATE: 09/18/12

Certification numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder\# 1208543A

Seven 1 Liter Summa Canister samples were received on August 24, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Oualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-082012

Lab ID\#: 1208543A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.8	0.69 J	8.8	3.4 J
Freon 11	1.8	0.38 J	9.9	2.15
Ethanol	7.1	7.4 J	13	14 J
Acetone	18	12 J J	42	28 JJ
2-Propanol	7.1	5.8 J	17	14 J
Carbon Disulfide	7.1	-72 2 J	22	-3.6-d 4
Hexane	1.8	$-0.49 \mathrm{~J} 4$	6.2	$-47+4$
2-Butanone (Methyl Ethyl Ketone)	7.1	5.8 J	21	17 J
2,2,4-Trimethylpentane	1.8	0.62 J	8.3	2.9 J
Benzene	1.8	2.7	5.6	8.6
Heptane	1.8	0.49 J	7.2	2.0 J
4-Methyl-2-pentanone	1.8	30	7.2	120
Toluene	1.8	2.7	6.7	10
Tetrachloroethene	1.8	0.77 J	12	5.2 J
Chlorobenzene	1.8	-1.5.5 4	8.1	-6.85 4
Ethyl Benzene	1.8	0.32 J	7.7	1.4 J
m,p-Xylene	1.8	0.66 J	7.7	2.9 J
Cumene	1.8	12	8.7	58
Propylbenzene	1.8	0.28 J	8.7	1.4 J
4-Ethyltoluene	1.8	0.45 J	8.7	2.2 J
1,3,5-Trimethylbenzene	1.8	0.32 J	8.7	1.6 J
1,2,4-Trimethylbenzene	1.8	0.42 J	8.7	2.1 J
1,3-Dichlorobenzene	1.8	-0.40- 4	11	-2:4d. 4
1,4-Dichlorobenzene	1.8	-0.40. 1	11	$-2.45-4$

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Nonene	$124-11-8$	43%	27 NJ
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	58%	52 NJ
Cyclopentane, 1,2,3-trimethyl-, (1.alpha	$2613-69-6$	83%	24 NJ
Oxirane, 2,3-dimethyl-	$3266-23-7$	43%	27 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	56%	27 NJ
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	81 NJ

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-082012
Lab ID\#: 1208543A-01A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	23 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	76 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	78%	140 NJ
Hexane, 1-(hexyloxy)-5-methyl-	$74421-19-5$	53%	48 NJ

Client Sample ID: VMP-42-10-082012
Lab ID\#: 1208543A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.61 J	7.7	3.0 J
Bromomethane	16	-0.74J 1	60	$-2.9 \mathrm{~J}-4$
Freon 11	1.6	0.51 J	8.7	2.9 J
Ethanol	6.2	23 J	12	43 J
Acetone	16	9.0 JJ	37	21 JJ
2-Propanol	6.2	11	15	28
Carbon Disulfide	6.2	$-12-4$	19	-3.8-4 4
Methylene Chloride	16	1.2 J	54	4.3 J
Hexane	1.6	0.71 J	5.5	2.5 J
2-Butanone (Methyi Ethyl Ketone)	6.2	18	18	52
Tetrahydrofuran	1.6	0.47 J J	4.6	1.4 J J
Chloroform	1.6	0.85 J	7.6	4.1 J
2,2,4-Trimethylpentane	1.6	12	7.3	55
Benzene	1.6	2.3	5.0	7.4
Heptane	1.6	0.84 J	6.4	3.5 J
cis-1,3-Dichloropropene	1.6	-0.54J 4	7.0	2.4-4 4
4-Methyl-2-pentanone	1.6	43	6.4	180
Toluene	1.6	4.6	5.8	18
trans-1,3-Dichloropropene	1.6	-0.46J 4	7.0	2154
Chlorobenzene	1.6	-1.4-2 4	7.2	-6.5-d 4
Ethyl Benzene	1.6	0.63 J	6.8	2.7 J
m,p-Xylene	1.6	1.7	6.8	7.3
o-Xylene	1.6	0.56 J	6.8	2.4 J

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Hexene, 5-methyl-	$3524-73-0$	38%	42 NJ
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	50%	69 NJ
Oxirane, 2,3-dimethyl-	$3266-23-7$	58%	53 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	36 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	59%	120 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	120 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	250 NJ
2-Pentenal, (E)-	$1576-87-0$	38%	45 NJ
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	64%	170 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	40 NJ

Client Sample ID: VMP-4-5-082012

Lab ID\#: 1208543A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.77 J	7.5	3.8 J
Freon 11	1.5	0.32 J	8.5	1.8 J
Ethanol	6.1	$40-5$	11	74 J
Acetone	15	37 J J	36	88 J
2-Propanol	6.1	18	15	44
Carbon Disulfide	6.1	$-1.65-i /$	19	4.8 .1 U
Methylene Chloride	15	1.6 J	53	5.4 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-082012				
Lab ID\#: 1208543A-03A				
Hexane	1.5	1.1 J	5.3	4.0 J
2-Butanone (Methyl Ethyl Ketone)	6.1	28	18	83
Chloroform	1.5	0.38 J	7.4	1.9 J
2,2,4-Trimethylpentane	1.5	1.4 J	7.1	6.5 J
Benzene	1.5	12	4.8	39
1,4-Dioxane	6.1	2.4 J	22	8.5 J
cis-1,3-Dichloropropene	1.5	-0.42+4	6.9	-9-4-4
4-Methyl-2-pentanone	1.5	66	6.2	270
Toluene	1.5	5.3	5.7	20
trans-1,3-Dichloropropene	1.5	-0.56. 4	6.9	-2.554
Tetrachloroethene	1.5	0.49+4	10	-3.3-4
Chlorobenzene	1.5	. 1.1 U	7.0	-5.354
Ethyl Benzene	1.5	0.76 J	6.6	3.3 J
m,p-Xylene	1.5	1.6	6.6	6.8
o-Xylene	1.5	0.69 J	6.6	3.0 J
Styrene	1.5	0.65 J	6.4	2.8 J
Cumene	1.5	28	7.4	140
Propylbenzene	1.5	0.42 J	7.4	2.15
4-Ethyltoluene	1.5	1.0 J	7.4	5.2 J
1,3,5-Trimethylbenzene	1.5	0.39 J	7.4	1.9 J
1,3-Dichlorobenzene	1.5	-0.50-J 4	9.1	$-3.0 \mathrm{~S} 4$
1,4-Dichlorobenzene	1.5	-0.62- 4	9.1	$-3.7+4$
1,2-Dichlorobenzene	1.5	0.28 J	9.1	1.7 J
Isopentane	6.1	2.0 J	18	6.0 J
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Cyclopropane, 1,1-dichloro-2-hexyl-		5685-42-7	50\%	50 NJ
4-Nonene		2198-23-4	46\%	100 NJ
Oxirane, 2,3-dimethyi-		3266-23-7	59\%	64 NJ
Decane, 2,2,5-trimethyl-		62237-96-1	64\%	50 NJ
Undecane, 2,2-dimethyl-		17312-64-0	59\%	180 NJ
Octane, 2,4,6-trimethyl-		62016-37-9	72\%	160 NJ
Decane, 2,2,7-trimethyl-		62237-99-4	64\%	380 NJ
2-Hexenal, 2-ethyl-		645-62-5	25\%	110 NJ

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-082012

Lab ID\#: 1208543A-03A
TENTATIVEL.Y IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Cyclohexanone, 4-methyl-	$589-92-4$	59%	240 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	70 NJ

Client Sample ID: VMP-11-5-082112
Lab ID\#: 1208543A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.84 J	7.0	4.1 J
Freon 11	1.4	0.44 J	7.9	2.5 J
Ethanol	5.6	2.3 J 5	11	4.3 JJ
Acetone	14	$5.9 \mathrm{~J} T$	33	14 JJ
Carbon Disulfide	5.6	-4:50 4	18	-4.750
Hexane	1.4	$-0.37 \mathrm{~J} 4$	5.0	$1.3-5$
Chloroform	1.4	0.21 J	6.9	1.0 J
2,2,4-Trimethylpentane	1.4	0.36 J	6.6	1.7 J
Benzene	1.4	2.0	4.5	6.5
Toluene	1.4	.0.53+4	5.3	-2:0-5 4
trans-1,3-Dichloropropene	1.4	0.48-d dr	6.4	-2-2. 4
Tetrachloroethene	1.4	$0.38+4$	9.6	-2.65 4
Chlorobenzene	1.4	-1254	6.5	-5\% 4
Cumene	1.4	0.22 J	6.9	1.1 J
1,3-Dichlorobenzene	1.4	-0.39-d 4	8.5	-2.454
1,4-Dichlorobenzene	1.4	-0.495 4	8.5	-2.9-3 4
alpha-Chlorotoluene	1.4	0.30 J	7.3	1.6 J
1,2-Dichlorobenzene	1.4	0.28 J	8.5	1.7 J
Isopentane	5.6	1.5 J	17	4.4 J

Client Sample ID: VMP-11-5-082112-Dup
Lab ID\#: 1208543A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.4	0.74 J	7.0	3.7 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-082112-Dup				
Lab ID\#: 1208543A-05A				
Freon 11	1.4	0.40 J	7.9	2.3 J
Acetone	14	4.1 J J	33	9.8 JJ
2-Propanol	5.6	0.95 J	14	2.3 J
Carbon Disulfide	5.6	1.6) U	18	-4.9-4 4
Methylene Chloride	14	-0.435 4	49	$-1.5 \mathrm{~J}-4$
Hexane	1.4	0.74 J	5.0	2.6 J
Chloroform	1.4	0.20 J	6.9	1.0 J
2,2,4-Trimethylpentane	1.4	0.35 J	6.6	1.6 J
Benzene	1.4	2.6	4.5	8.2
1,2-Dichloroethane	1.4	-0.76-J u	5.7	.0.67J 4
Heptane	1.4	0.38 J	5.8	1.5 J
Toluene	1.4	$\ldots 0.44 .4$	5.3	-175 4
trans-1,3-Dichloropropene	1.4	.0.49.d 4	6.4	-2.254
Chlorobenzene	1.4	-123-4	6.5	$-5.80-4$
Bromoform	1.4	0.33 J	14	3.4 J
1,1,2,2-Tetrachloroethane	1.4	0.19 J	9.7	1.3 J
1,4-Dichlorobenzene	1.4	-0.24-	8.5	$-1.3+4$
Isopentane	5.6	1.6 J	17	4.8 J
Propylene	5.6	1.2 J	9.7	2.15

Client Sample ID: VMP-13-5-082112
Lab ID\#: 1208543A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.4	0.77 J	7.1	3.8 J
Freon 11	1.4	0.38 J	8.1	2.2 J
Ethanol	5.8	8.4 J	11	16 J
Acetone	14	10 J	34	25 J J
Carbon Disulfide	5.8	3.8 J	18	12 J
Hexane	1.4	1.0 J	5.1	3.6 J
2-Butanone (Methyl Ethyl Ketone)	5.8	1.5 J	17	4.5 J
Chloroform	1.4	0.61 J	7.0	3.0 J
Cyclohexane	1.4	0.48 J	5.0	1.6 J
$2,2,4-$ Trimethylpentane	1.4	8.5	6.8	40
Benzene	1.4	8.0	4.6	26

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-082112				
Lab ID\#: 1208543A-06A				
Heptane	1.4	1.1 J	5.9	4.4 J
cis-1,3-Dichloropropene	1.4	0.3854	6.6	4.754
Toluene	1.4	.-0.46J 4	5.4	-17 J - 4
Chlorobenzene	1.4	.0.86-4	6.6	-3.9.d 4
Cumene	1.4	0.22 J	7.1	1.1 J
Propylbenzene	1.4	0.23 J	7.1	1.1 J
1,3-Dichlorobenzene	1.4	. $0.42+4$	8.7	-2.5.5 4
1,4-Dichlorobenzene	1.4	-0.38-5 4	8.7	-2:3J-4
alpha-Chlorotoluene	1.4	0.31 J	7.5	1.6 J
Isopentane	5.8	6.6	17	20
Propylene	5.8	1.5 J	9.9	2.5 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propanol, 2-methyl-	$78-83-1$	4.0%	7.7 NJ
1-Butanamine, 2-methyl-	$96-15-1$	40%	15 NJ
Ethanol, 2-methoxy-	$109-86-4$	9.0%	10 NJ
Pyrrolidine	$123-75-1$	47%	9.4 NJ
2(3H)-Furanone, dihydro-4,4-dimethyl-	$13861-97-7$	50%	13 NJ
Ethenone	$463-51-4$	2.0%	17 NJ
Propane, 2-methyl-2-nitro-	$594-70-7$	10%	8.4 NJ
Pentane, 2-isocyano-2,4,4-trimethyl-	$14542-93-9$	35%	7.3 NJ
Furan, tetrahydro-3-methyl-4-methylene-	$61142-01-6$	43%	8.7 NJ

Client Sample ID: VMP-10-5-082112
Lab ID\#: 1208543A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.63 J	7.5	3.1 J
Freon 11	1.5	0.34 J	8.5	1.9 J
Ethanol	6.1	1.8 JJ	11	3.4 J J
Acetone	15	5.2 J J	36	12 J J
Carbon Disulfide	6.1	-4.5-4	19	-4.4d-U
Methylene Chloride	15	0.51 J	53	1.8 J
Hexane	1.5	0.62 J	5.3	2.2 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-082112				
Lab ID\#: 1208543A-07A				
2,2,4-Trimethylpentane	1.5	0.29 J	7.1	1.3 J
Benzene	1.5	0.91 J	4.8	2.9 J
4-Methyl-2-pentanone	1.5	0.65 J	6.2	2.7 J
Toluene	1.5	-0:46- 4	5.7	-4.7 4
Chlorobenzene	1.5	1.15+ 4	7.0	-5.0. +4
Ethyl Benzene	1.5	0.25 J	6.6	1.1 J
m,p-Xyiene	1.5	0.30-5 4	6.6	-1.3-4
1,4-Dichlorobenzene	1.5	-0.32-J 4	9.1	-10dul
Isopentane	6.1	2.5 J	18	7.3 J
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Propanoic acid, 3-ethoxy-, ethyl ester		763-69-9	64\%	12 NJ
Cyclohexane, 1,4-dimethyl-		589-90-2	38\%	9.2 NJ
Cyclohexane, 1,1,2-trimethyl-		7094-26-0	43\%	8.4 NJ
Ethanone, 1-phenyl-		98-86-2.	81\%	9.8 NJ

eurofins

Air Toxics

Client Sample ID: VMP-21-5-082012
Lab ID\#: 1208543A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083035 \\ 3.54 \\ \hline \end{array}$	Date of Collection: 8/20/12 11:16:00 AM Date of Analysis: 8/30/12 10:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.8	0.69 J	8.8	3.4 J
Freon 114	1.8	Not Detected	12	Not Detected
Chloromethane	18	Not Detected	36	Not Detected
Vinyl Chloride	1.8	Not Detected	4.5	Not Detected
1,3-Butadiene	1.8	Not Detected UJ	3.9	Not Detected UJ
Bromomethane	18	Not Detected	69	Not Detected
Chloroethane	7.1	Not Detected	19	Not Detected
Freon 11	1.8	0.38 J	9.9	2.1 J
Ethanol	7.1	7.4 J	13	14 J
Freon 113	1.8	Not Detected	14	Not Detected
1,1-Dichloroethene	1.8	Not Detected	7.0	Not Detected
Acetone	18	12 J	42	28 J 万
2-Propanol	7.1	5.8 J	17	14 J
Carbon Disulfide	7.1	-7.2J U	22	.36\% in
3-Chloropropene	7.1	Not Detected	22	Not Detected
Methylene Chloride	18	Not Detected	61	Not Detected
Methyl tert-butyl ether	1.8	Not Detected	6.4	Not Detected
trans-1,2-Dichloroethene	1.8	Not Detected	7.0	Not Detected
Hexane	1.8	0.49 J 4	6.2	175 4
1,1-Dichloroethane	1.8	Not Detected	7.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	7.1	5.8 J	21	17 J
cis-1,2-Dichloroethene	1.8	Not Detected	7.0	Not Detected
Tetrahydrofuran	1.8	Not Detected UJ	5.2	Not Detected UJ
Chloroform	1.8	Not Detected	8.6	Not Detected
1,1,1-Trichloroethane	1.8	Not Detected	9.6	Not Detected
Cyclohexane	1.8	Not Detected	6.1	Not Detected
Carbon Tetrachloride	1.8	Not Detected	11	Not Detected
2,2,4-Trimethylpentane	1.8	0.62 J	8.3	2.9 J
Benzene	1.8	2.7	5.6	8.6
1,2-Dichloroethane	1.8	Not Detected	7.2	Not Detected
Heptane	1.8	0.49 J	7.2	2.0 J
Trichloroethene	1.8	Not Detected	9.5	Not Detected
1,2-Dichloropropane	1.8	Not Detected	8.2	Not Detected
1,4-Dioxane	7.1	Not Detected	26	Not Detected
Bromodichloromethane	1.8	Not Detected	12	Not Detected
cis-1,3-Dichloropropene	1.8	Not Detected	8.0	Not Detected
4-Methyl-2-pentanone	1.8	30	7.2	120
Toluene	1.8	2.7	6.7	10
trans-1,3-Dichloropropene	1.8	Not Detected	8.0	Not Detected
1,1,2-Trichloroethane	1.8	Not Detected	9.6	Not Detected
Tetrachloroethene	1.8	0.77 J	12	5.2 J
2-Hexanone	7.1	Not Detected	29	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-21-5-082012
Lab ID\#: 1208543A-01A
EPA METHOD TO-15 GC/MS FULL SCAN
$\left.\begin{array}{lccccc}\hline \text { File Name: } & \text { j083035 } \\ \text { Dil. Factor: } & 3.54 & & & \text { Date of Collection: 8/20/12 11:16:00 AM } \\ \text { Date of Analysis: 8/30/12 10:38 PM }\end{array}\right]$
$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv) $)$
1-Nonene	$124-11-8$	43%	27 NJ
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	58%	52 NJ
Cyclopentane, 1,2,3-trimethyl-,	$2613-69-6$	83%	24 NJ
(1.alpha	$3266-23-7$	43%	
Oxirane, 2,3-dimethyl-	$62016-28-8$	56%	27 NJ
Octane, 2,2,6-trimethyl-	$62237-99-4$	64%	27 NJ
Decane, 2,2,7-trimethyl-	$13475-82-6$	72%	81 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$62016-37-9$	64%	23 NJ
Octane, 2,4,6-trimethyl-	$62108-31-0$	78%	76 NJ
Heptane.			140 NJ
4-ethyl-2,2,6,6-tetramethyl-			

Air Toxics

Client Sample ID: VMP-21-5-082012
Lab ID\#: 1208543A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 083035$	Date of Collection: 8/20/12 11:16:00 AM
Dil. Factor:	3.54	Date of Analysis: $8 / 30 / 1210: 38 \mathrm{PM}$

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv)
Hexane, 1-(hexyloxy)-5-methyl-	$74421-19-5$	53%	48 NJ
NJ =The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Liter Summa Canister		Method	
Surrogates	\%Recovery	102	$70-130$
Toluene-d8	111	$70-130$	
1,2-Dichloroethane-d4	104	$70-130$	

eurofins

Air Toxics

Client Sample ID: VMP-42-10-082012
Lab ID\#: 1208543A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083031 \\ 3.11 \\ \hline \end{array}$	Date of Collection: 8/20/12 12:13:00 PM Date of Analysis: 8/30/12 08:56 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.61 J	7.7	3.0 J
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
1,3-Butadiene	1.6	Not Detected W^{5}	3.4	Not Detected
Bromomethane	16	0.74-5 4	60	-2.954
Chloroethane	6.2	Not Detected	16	Not Detected
Freon 11	1.6	0.51 J	8.7	2.9 J
Ethanol	6.2	23 -	12	43 J
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Acetone	16	9.0 J J	37	21 J J
2-Propanol	6.2	11	15	28
Carbon Disulfide	6.2	12.25	19	\cdots
3-Chloropropene	6.2	Not Detected	19	Not Detected
Methylene Chloride	16	1.2 J	54	4.3 J
Methyl tert-butyl ether	1.6	Not Detected	5.6	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Hexane	1.6	0.71 J	5.5	2.5 J
1,1-Dichloroethane	1.6	Not Detected	6.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.2	18	18	52
cis-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Tetrahydrofuran	1.6	0.47 J J	4.6	1.4 J
Chloroform	1.6	0.85 J	7.6	4.1 J
1,1,1-Trichloroethane	1.6	Not Detected	8.5	Not Detected
Cyclohexane	1.6	Not Detected	5.4	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.8	Not Detected
2,2,4-Trimethylpentane	1.6	12	7.3	55
Benzene	1.6	2.3	5.0	7.4
1,2-Dichloroethane	1.6	Not Detected	6.3	Not Detected
Heptane	1.6	0.84 J	6.4	3.5 J
Trichloroethene	1.6	Not Detected	8.4	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
1,4-Dioxane	6.2	Not Detected	22	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.6	$0.54-5$	7.0	2.450
4-Methyl-2-pentanone	1.6	43	6.4	180
Toluene	1.6	4.6	5.8	18
trans-1,3-Dichioropropene	1.6	. 0.46 J U	7.0	21d 4
1,1,2-Trichloroethane	1.6	Not Detected	8.5	Not Detected
Tetrachloroethene	1.6	Not Detected	10	Not Detected
2.Hexanone	6.2	Not Detected	25	Not Detected

Air Toxics

Client Sample ID: VMP-42-10-082012
Lab ID\#: 1208543A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 083031 \\ 3.11 \\ \hline \end{array}$	Date of Collection: 8/20/12 12:13:00 PM Date of Analysis: 8/30/12 08:56 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	-1-4-5"u	7.2	-6.5-0 4
Ethyl Benzene	1.6	0.63 J	6.8	2.7 J
m,p-Xylene	1.6	1.7	6.8	7.3
o-Xylene	1.6	0.56 J	6.8	2.4 J
Styrene	1.6	0.69 J	6.6	3.0 J
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	15	7.6	75
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	0.35 J	7.6	1.7 J
4-Ethyltoluene	1.6	0.86 J	7.6	4.2 J
1,3,5-Trimethylbenzene	1.6	0.37 J	7.6	1.8 J
1,2,4-Trimethylbenzene	1.6	0.75 J	7.6	3.7 J
1,3-Dichlorobenzene	1.6	-0.585 U	9.3	3.5 f
1,4-Dichlorobenzene	1.6	0.49 J	9.3	-3.0 d in
alpha-Chlorotoluene	1.6	0.54 J	8.0	2.8 J
1,2-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,2,4-Trichlorobenzene	6.2	Not Detected	46	Not Detected
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
Butane	6.2	Not Detected	15	Not Detected
Isopentane	6.2	2.7 J	18	8.0 J
Ethyl Acetate	6.2	Not Detected	22	Not Detected
Propylene	6.2	Not Detected	11	Not Detected
Vinyl Acetate	6.2	Not Detected	22	Not Detected
Vinyl Bromide	6.2	Not Detected	27	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Hexene, 5-methyl-	$3524-73-0$	38%	42 NJ
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	50%	69 NJ
Oxirane, 2,3-dimethyl-	$3266-23-7$	58%	53 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	36 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	59%	120 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	120 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	250 NJ
2-Pentenal, (E)-	$1576-87-0$	38%	45 NJ
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	64%	170 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	40 NJ

eurofins

Air Toxics

Client Sample ID: VMP-42-10-082012
 Lab ID\#: 1208543A-02A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 083031	Date of Collection: 8/20/12 12:13:00 PM
Dil. Factor:	3.11	Date of Analysis: 8/30/12 08:56 PM

$N J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	104	$70-130$
1,2-Dichloroethane-d4	110	$70-130$
4-Bromofluorobenzene	101	$70-130$

Air Toxics

Client Sample ID: VMP-4-5-082012
Lab ID\#: 1208543A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 83032 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 8/20/12 1:03:00 PM Date of Analysis: 8/30/12 09:27 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.77 J	7.5	3.8 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected US	3.4	Not Detected V_{3}
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	0.32 J	8.5	1.8 J
Ethanol	6.1	40 J	11	74 J
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	37 J J	36	88 J 3
2-Propanol	6.1	18	15	44
Carbon Disulfide	6.1	1.6J 4	19	$\cdots 4.85$
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	1.6 J	53	5.4 J
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	1.1 J	5.3	4.0 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	28	18	83
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected UJ	4.5	Not Detected US
Chloroform	1.5	0.38 J	7.4	1.9 J
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	1.45	7.1	6.5 J
Benzene	1.5	12	4.8	39
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	Not Detected	6.2	Not Detected
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	2.4 J	22	8.5 J
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	0.42J u	6.9	1.954
4-Methyl-2-pentanone	1.5	66	6.2	270
Toluene	1.5	5.3	5.7	20
trans-1,3-Dichloropropene	1.5	0.565 J	6.9	-25\% -
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	$0.49-5$	10	.3.3 ${ }^{\text {a }}$
2-Hexanone	6.1	Not Detected	25	Not Detected

Air Toxics

Client Sample ID: VMP-4-5-082012
Lab 1D\#: 1208543A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083032 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 8/20/12 1:03:00 PM Date of Analysis: 8/30/12 09:27 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	..ind U	7.0	..5.3-6 un
Ethyl Benzene	1.5	0.76 J	6.6	3.3 J
m,p-Xylene	1.5	1.6	6.6	6.8
o-Xylene	1.5	0.69 J	6.6	3.0 J
Styrene	1.5	0.65 J	6.4	2.8 J
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	28	7.4	140
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.42 J	7.4	2.1 J
4-Ethyltoluene	1.5	1.0 J	7.4	5.2 J
1,3,5-Trimethylbenzene	1.5	0.39 J	7.4	1.9 J
1,2,4-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,3-Dichlorobenzene	1.5	-0.50-J 4	9.1	-30-4 4
1,4-Dichlorobenzene	1.5	-0.62J in	9.1	37\% in
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	0.28 J	9.1	1.7 J
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	2.0 J	18	6.0 J
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Cyclopropane,	$5685-42-7$	50%	50 NJ
1,1-dichloro-2-hexyl-	$2198-23-4$	46%	100 NJ
4-Nonene	$3266-23-7$	59%	64 NJ
Oxirane, 2,3-dimethyl-	$62237-96-1$	64%	50 NJ
Decane, 2,2,5-trimethyl-	$17312-64-0$	59%	180 NJ
Undecane, 2,2-dimethyl-	$62016-37-9$	72%	160 NJ
Octane, 2,4,6-trimethy!-	$62237-99-4$	64%	380 NJ
Decane, 2,2,7-trimethyl-	$645-62-5$	25%	110 NJ
2-Hexenal, 2-ethyl-	$589-92-4$	59%	240 NJ

Air Toxics

Client Sample ID: VMP-4-5-082012
Lab ID\#: 1208543A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: VMP-11-5-082112
Lab ID\#: 1208543A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083033 \\ 2.82 \end{array}$	Date of Collection: 8/21/12 9:14:00 AM Date of Analysis: 8/30/12 09:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.84 J	7.0	4.1 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected ULS	3.1	Not Detected 0
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	0.44 J	7.9	2.5」
Ethanol	5.6	2.3 J J	11	4.3 J J
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	5.9 J J	33	14 J J
2-Propanol	5.6	Not Detected	14	Not Detected
Carbon Disulfide	5.6	1.5才 4	18	-4.7-d if
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	49	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	0.37 J 4	5.0	-13J 4
1.1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected UJ	4.2	Not Detected UJ
Chloroform	1.4	0.21 J	6.9	1.0 J
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	0.36 J	6.6	1.7 J
Benzene	1.4	2.0	4.5	6.5
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	Not Deiected	5.8	Not Detected
Trichloroethene	1.4	Not Detected	7.6	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.8	Not Detected
Toluene	1.4	-0.535 4	5.3	$-2.0-514$
trans-1,3-Dichloropropene	1.4	. 0.485 in	6.4	$\cdots-2-5-4$
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	- $0.38+$ U	9.6	-2.6514
2-Hexanone	5.6	Not Detected	23	Not Detected

Page 21 of 38

Air Toxics
Client Sample 1D: VMP-11-5-082112
Lab ID\#: 1208543A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 083033 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 8/21/12 9:14:00 AM Date of Analysis: 8/30/12 09:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-4.2 J u	6.5	-5.7- 4
Ethyl Benzene	1.4	Not Detected	6.1	Not Detected
m,p-Xylene	1.4	Not Detected	6.1	Not Detected
o-Xylene	1.4	Not Detected	6.1	Not Detected
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	0.22 J	6.9	1.1 J
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	Not Detected	6.9	Not Detected
4-Ethyltoluene	1.4	Not Detected	6.9	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,3-Dichlorobenzene	1.4	-0.39-4	8.5	2.4-d u
1,4-Dichlorobenzene	1.4	04954	8.5	295 u
alpha-Chlorotoluene	1.4	0.30 J	7.3	1.6 J
1,2-Dichlorobenzene	1.4	0.28 J	8.5	1.7 J
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	Not Detected	13	Not Detected
Isopentane	5.6	1.5 J	17	4.4 J
Ethyl Acetate	5.6	Not Detected	20	Not Detected
Propylene	5.6	Not Detected	9.7	Not Detected
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv))
None Identified			
Container Type: 1 Liter Summa Canister			
Surrogates	\%Recovery	Method	
Toluene-d8	94	$70-130$	
1,2-Dichloroethane-d4	128	$70-130$	
4-Bromofluorobenzene	109	$70-130$	

eurofins

Air Toxics

Client Sample ID: VMP-11-5-082112-Dup
Lab ID\#: 1208543A-05A
EPA METHOD TO-15 GC/MS FULLSCAN

File Name: Dil. Factor:	j083034 2.82	Date of Collection: 8/21/12 9:14:00 AM Date of Analysis: 8/30/12 10:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.74 J	7.0	3.7 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene /	1.4	Not Detected UT	3.1	Not Detected LCJ
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	0.40 J	7.9	2.3 J
Ethanol	5.6	Not Detected UST	11	Not Detected 45
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	4.1 J - 5	33	$9.8 \mathrm{~J}, \mathrm{~J}$
2-Propanol	5.6	0.95 J	14	2.3 J
Carbon Disulfide	5.6	4.6 ± 4	18	-49-5 un
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	-0.43-5	49	,7.5d \triangle
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	0.74 J	5.0	2.6 J
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected US	4.2	Not Detected UJ
Chloroform	1.4	0.20 J	6.9	1.0 J
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	0.35 J	6.6	1.6 J
Benzene	1.4	2.6	4.5	8.2
1,2-Dichloroethane	1.4	-0.46J 4	5.7	-0.67d 4
Heptane	1.4	0.38 J	5.8	1.5 J
Trichloroethene	1.4	Not Detected	7.6	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.8	Not Detected
Toluene	1.4	$0.44 \mathrm{~J} h$	5.3	-4.7J 4
trans-1,3-Dichloropropene	1.4	-0.495 in	6.4	-2.2J- in
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	Not Detected	9.6	Not Detected
2-Hexanone	5.6	Not Detected	23	Not Detected

Air Toxics

Client Sample ID: VMP-11-5-082112-Dup
Lab ID\#: 1208543A-05A
EPA METHOD TO-15 GC/MS FULL, SCAN

File Name: Dil. Factor:	j083034	Date of Collection: 8/21/12 9:14:00 AM Date of Analysis: 8/30/12 10:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-1.2Ju	6.5	5.8.- 4
Ethyl Benzene	1.4	Not Detected	6.1	Not Detected
m,p-Xylene	1.4	Not Detected	6.1	Not Detected
o-Xylene	1.4	Not Detected	6.1	Not Detected
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	0.33 J	14	3.4 J
Cumene	1.4	Not Detected	6.9	Not Detected
1,1,2,2-Tetrachloroethane	1.4	0.19 J	9.7	1.3 J
Propylbenzene	1.4	Not Detected	6.9	Not Detected
4-Ethyltoluene	1.4	Not Detected	6.9	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,4-Dichlorobenzene	1.4	0.21-d-4	8.5	1.3-4. 4
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	Not Detected	13	Not Detected
Isopentane	5.6	1.6 J	17	4.8 J
Ethyl Acetate	5.6	Not Detected	20	Not Detected
Propylene	5.6	1.2 J	9.7	2.1 J
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
None Identified			
Container Type: 1 Liter Summa Canister			
Surrogates	\%Recovery	Method	
Toluene-d8	89	$70-130$	
1,2-Dichloroethane-d4	117	$70-130$	
4-Bromofluorobenzene	105	$70-130$	

Air Toxics

Client Sample ID: VMP-13-5-082112
Lab ID\#: 1208543A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 083036 \\ 2.89 \end{array}$	Date of Collection: 8/21/12 10:08:00 AM Date of Analysis: 8/30/12 11:12 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.77 J	7.1	3.8 J
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected U5	3.2	Not Detected UTJ
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	0.38 J	8.1	2.2 J
Ethanol	5.8	8.4 J	11	16
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	10 J	34	25 J J
2-Propanol	5.8	Not Detected	14	Not Detected
Carbon Disulfide	5.8	3.8 J	18	12 J
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	1.0 J	5.1	3.6 J
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	1.5 J	17	4.5 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected UT	4.3	Not Detected $6 J$
Chloroform	1.4	0.61 J	7.0	3.0 J
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	0.48 J	5.0	1.6 J
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	8.5	6.8	40
Benzene	1.4	8.0	4.6	26
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	1.1 J	5.9	4.4 J
Trichloroethene	1.4	Not Detected	7.8	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	-0.38-d U	6.6	-1.7- 4
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	-0.46-J <	5.4	17.7-
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Detected	24	Not Detected

Air Toxics

Client Sample ID: VMP-13-5-082112
Lab ID\#: 1208543A-06A
EPA METHOD TO-15 GC/MS BULL SCAN

File Name: Dil. Factor:	j083036 2.89	Date of Collection: 8/21/12 10:08:00 AM Date of Analysis: 8/30/12 11:12 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit ($\mathrm{ug} / \mathrm{m} 3$)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	0.86-4	6.6	$\cdots 3.95$ d
Ethyl Benzene	1.4	Not Detected	6.3	Not Detected
m,p-Xylene	1.4	Not Detected	6.3	Not Detected
o-Xylene	1.4	Not Detected	6.3	Not Detected
Styrene	1.4	Not Detected	6.2	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	0.22 J	7.1	1.1 J
1,1,2,2-Tetrachioroethane	1.4	Not Detected	9.9	Not Detected
Propyibenzene	1.4	0.23 J	7.1	1.1 J
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	-0.42-5 u	8.7	2.5\% U
1,4-Dichlorobenzene	1.4	. $0.38 \mathrm{~J} \mathrm{H}^{2}$	8.7	-2,3d-4
alpha-Chlorotoluene	1.4	0.31 J	7.5	1.6 J
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Butane	5.8	Not Detected	14	Not Detected
Isopentane	5.8	6.6	17	20
Ethyl Acetate	5.8	Not Detected	21	Not Detected
Propylene	5.8	1.5 J	9.9	2.5 J
Vinyl Acetate	5.8	Not Detected	20	Not Detected
Vinyl Bromide	5.8	Not Detected	25	Not Detected

$\mathbf{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propanol, 2-methyl-	$78-83-1$	4.0%	7.7 NJ
1-Buianamine, 2-methyl-	$96-15-1$	40%	15 NJ
Ethanol, 2-methoxy-	$109-86-4$	9.0%	10 NJ
Pyrrolidine	$123-75-1$	47%	9.4 NJ
2(3H)-Furanone,	$13861-97-7$	50%	13 NJ
dinydro-4,4-dimethyl-	$463-51-4$	2.0%	17 NJ
Ethenone	$594-70-7$	10%	8.4 NJ
Propane, 2-methyl-2-nitro-	$14542-93-9$	35%	7.3 NJ
Pentane,			

Air Toxics

Client Sample ID: VMP-13-5-082112
 Lab ID\#: 1208543A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 083036	Date of Collection: 8/21/12 10:08:00 AM
Dil. Factor:	2.89	Date of Analysis: $8 / 30 / 12$ 11:12 PM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv $)$
Furan,	$61142-01-6$	43%	8.7 NJ
tetrahydro-3-methyl-4-methylene-			
NJ =The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Liter Summa Canister		MRecovery	Method
Surrogates	88	$70-130$	
Toluene-d8	112	$70-130$	
1,2-Dichloroethane-d4	107	$70-130$	

Air Toxics

Client Sample ID: VMP-10-5-082112
Lab ID\#: 1208543A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083037 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 8/21/12 10:56:00 AM Date of Analysis: 8/30/12 11:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.63 J	7.5	3.1 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected US	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	0.34 J	8.5	1.9 J
Ethanol	6.1	1.8 J J	11	3.4 J J
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	5.2 J J	36	12J J
2-Propanol	6.1	Not Detected	15	Not Detected
Carbon Disulfide	6.1	4.3-5-4	19	-4才す!
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	0.51 J	53	1.8 J
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	0.62 J	5.3	2.2 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected $\mathrm{U}_{5} 5$	4.5	Not Detected
Chloroform	1.5	Not Detected	7.4	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	0.29 J	7.1	1.3 J
Benzene	1.5	0.91 J	4.8	2.9 J
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	Not Detected	6.2	Not Detected
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	0.65 J	6.2	2.7 J
Toluene	1.5	0.46 J u	5.7	-4.75 4
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	6.1	Not Detected	25	Not Detected

Page 28 of 38

Air Toxics

Client Sample ID: VMP-10-5-082112
Lab ID\#: 1208543A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathbf{j} 083037 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 8/21/12 10:56:00 AM Date of Analysis: 8/30/12 11:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	-1.15 4	7.0	-5.0y- 1
Ethyl Benzene	1.5	0.25 J	6.6	1.1 J
m,p-Xylene	1.5	-0,305	6.6	1.3 d
o-Xylene	1.5	Not Detected	6.6	Not Detected
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	Not Detected	7.4	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.4	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,4-Dichlorobenzene	1.5	-0.32-J	9.1	-1.9J 4
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	2.5 J	18	7.3 J
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Propanoic acid, 3-ethoxy-, ethyl	$763-69-9$	64%	12 NJ
ester	$589-90-2$		38%
Cyclohexane, 1,4-dimethyl-	$7094-26-0$	43%	9.2 NJ
Cyclohexane, 1,1,2-trimethyl-	$98-86-2$	81%	8.4 NJ
Ethanone, 1-phenyl-		9.8 NJ	

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	93	$70-130$

Air Toxics

Client Sample ID: VMP-10-5-082112
 Lab ID\#: 1208543A-07A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j083037	Date of Collection: $8 / 21 / 12$ 10:56:00 AM	
Dil. Factor:	3.03		Date of Analysis: $8 / 30 / 12$ 11:38 PM
		Method	
Surrogates		\%Recovery	Limits
1,2 -Dichloroethane-d4	114	$70-130$	
$4-$ Bromofluorobenzene	105	$70-130$	

*ourofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208543A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083015 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 12:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	(0.16 J)	19	(0.61 3)
Chloroethane	2.0	NotDetected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethenol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected UJ	12	Not Detected UJ
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	(0.40 J)	6.2	(12J)
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	0.12 J	17	0.43 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	(0.14 J)	1.8	(0.48 J
1,1-Dichloroethane	0.50	Not Detected	2.0 .	Noftefected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethyipentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	0.059 J	2.0	0.24 J
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	0.17 J	2.7	(0.89 J)
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Defected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	(0.17J)	2.3	0.77 J
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.13 J	1.9	0.51 J
trans-1,3-Dichloropropene	0.50	0.13 J	2.3	(0.58)
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	(0.11J)	3.4	(0.76J)
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Page 31 of 38

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1208543A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083015 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 12:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	(0.33 J)	2.3	1.5J)
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Q.097 J	22	(0.42 J
o-Xylene	0.50	Not Detected	2.2	NotDetected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Defected
1,3-Dichlorobenzene	0.50	0.12 J	3.0	0.75 J
1,4-Dichlorobenzene	0.50	(0.13)	3.0	(0.76)
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$\mathrm{J}=$ Estimated value.
UJ = Non-detected compound associated with low bias in the CCV and/or LCS.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number Match Quality \quad| Amount |
| :--- |
| ($($ ppbv $)$) |

None Identified
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	95	$70-130$
1,2 -Dichloroethane-d4	107	$70-130$
4-Bromofluorobenzene	100	$70-130$

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208543A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 083003$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/30/12 06:38 AM

Compound	\%Recovery
Freon 12	120
Freon 114	118
Chloromethane	82
Vinyl Chloride	84
1,3-Butadiene	72
Bromomethane	100
Chloroethane	89
Freon 11	117
Ethanol	74
Freon 113	112
1,1-Dichloroethene	116
Acetone	67 Q
2-Propanol	82
Carbon Disulfide	91
3-Chloropropene	101
Methylene Chloride	77
Methyl tert-butyl ether	118
trans-1,2-Dichloroethene	97
Hexane	87
1,1-Dichloroethane	88
2-Butanone (Methyl Ethyl Ketone)	101
cis-1,2-Dichloroethene	85
Tetrahydrofuran	77
Chloroform	106
1,1,1-Trichloroethane	116
Cyclohexane	100
Carbon Tetrachloride	114
2,2,4-Trimethylpentane	77
Benzene	103
1,2-Dichloroethane	113
Heptane	119
Trichloroethene	115
1,2-Dichloropropane	84
1,4-Dioxane	97
Bromodichloromethane	117
cis-1,3-Dichloropropene	111
4-Methyl-2-pentanone	87
Toluene	96
trans-1,3-Dichloropropene	113
1,1,2-Trichloroethane	101
Tetrachloroethene	104
2-Hexanone	91

Air Toxics

Client Sample ID: CCV

Lab ID\#: 1208543A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: LCS Lab ID\#: 1208543A-10A EPA METHOD TO-15 GC/MS FULL SCAN		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083007 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 08:33 AM
Compound		\%Recovery
Freon 12		120
Freon 114		120
Chloromethane		83
Vinyl Chloride		86
1,3-Butadiene		75
Bromomethane		103
Chloroethane		89
Freon 11		117
Ethanol		72
Freon 113		118
1,1-Dichloroethene		(1320)
Acetone		670
2-Propanol		80
Carbon Disulfide		117
3-Chloropropene		121
Methylene Chloride		73
Methyl tert-butyl ether		113
trans-1,2-Dichloroethene		126
Hexane		86
1,1-Dichloroethane		89
2-Butanone (Methyl Ethyl Ketone)		99
cis-1,2-Dichloroethene		90
Tetrahydrofuran		70
Chloroform		103
1,1,1-Trichloroethane		114
Cyclohexane		101
Carbon Tetrachloride		112
2,2,4-Trimethylpentane		78
Benzene		98
1,2-Dichloroethane		104
Heptane		108
Trichloroethene		105
1,2-Dichloropropane		78
1.4-Dioxane		96
Bromodichloromethane		107
cis-1,3-Dichloropropene		96
4-Methyl-2-pentanone		78
Toluene		91
trans-1,3-Dichloropropene		115
1,1,2-Trichloroethane		97
Tetrachloroethene		100
2-Hexanone		85

Air Toxics

Client Sample 11): LCS
 Lab ID\#: 1208543A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j 083007 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 8/30/12 08:33 AM	
Compound		\%Recovery
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		100
Chlorobenzene		88
Ethyl Benzene		103
m,p-Xylene		103
o-Xylene		101
Styrene		108
Bromoform		112
Cumene		110
1,1,2,2-Tetrachloroethane		94
Propylbenzene		110
4-Ethyltoluene		96
1,3,5-Trimethylbenzene		99
1,2,4-Trimethylbenzene		102
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		92
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		96
1,2,4-Trichlorobenzene		99
Hexachlorobutadiene		116
Butane		77
Isopentane		75
Ethyl Acetate		Not Spiked
Propylene		67
Vinyl Acetate		97
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	107	70-130

Air Toxics

EPA METHOD TO-15 GC/MS FULI, SCAN		
File Name: Dil. Factor:	$\begin{array}{r} 1083008 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 08:52 AM
Compound		\%Recovery
Freon 12		115
Freon 114		117
Chloromethane		85
Vinyl Chloride		85
1,3-Butadiene		69 Q
Bromomethane		97
Chloroethane		85
Freon 11		115
Ethanol		670)
Freon 113		115
1,1-Dichloroethene		(31Q)
Acetone		68 Q
2-Propanol		83
Carbon Disulfide		120
3-Chloropropene		117
Methylene Chloride		73
Methyl tert-butyl ether		114
trans-1,2-Dichloroethene		121
Hexane		86
1,1-Dichloroethane		87
2-Butanone (Methyl Ethyl Ketone)		97
cis-1,2-Dichloroethene		90
Tetrahydrofuran		69 Q
Chtoroform		102
1,1,1-Trichloroethane		112
Cyclohexane		103
Carbon Tetrachloride		112
2,2,4-Trimethylpentane		76
Benzene		98
1,2-Dichloroethane		105
Heptane		108
Trichloroethene		108
1,2-Dichloropropane		78
1,4-Dioxane		97
Bromodichloromethane		110
cis-1,3-Dichloropropene		98
4-Methyl-2-pentanone		78
Toluene		91
trans-1,3-Dichloropropene		114
1,1,2-Trichloroethane		98
Tetrachloroethene		101
2-Hexanone		87

Air Toxics

Client Sample ID: LCSD

Lab ID\#: 1208543A-10AA
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 083008	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $8 / 30 / 12$ 08:52 AM

Compound		\%Recovery
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		102
Chiorobenzene		86
Ethyl Benzene		102
m, p -Xylene		106
o-Xylene		100
Styrene		108
Bromoform		113
Cumene		113
1,1,2,2-Tetrachloroethane		94
Propylbenzene		109
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		102
1,2,4-Trimethylbenzene		104
1,3-Dichlorobenzene		96
1,4-Dichlorobenzene		94
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		97
1,2,4-Trichlorobenzene		100
Hexachlorobutadiene		117
Butane		84
Isopentane		72
Ethyl Acetate		Not Spiked
Propylene		67
Vinyl Acetate		102
Vinyl Bromide		Not Spiked
$\mathrm{Q}=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	94	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	104	70-130

eurofins

Air Toxics

9/12/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208543B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/24/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208543B

Work Order Summary

FRACTION \#	
O1A	NAME
02A	VMP-21-5-082012
03A	VMP-42-10-082012
04A	VMP-4-5-082012
05A	VMP-11-5-082112
06A	VMP-11-5-082112-Dup
07A	VMP-10-5-082112
08A	Lab Blank
08B	Lab Blank
09A	LCS
09AA	LCSD

RECEIPT VAC./PRES.	FINAL PRESSURE
9.0 Hg	15 psi
10.5 Hg	15 psi
10.0 Hg	15 psi
8.5 Hg	15 psi
8.5 Hg	15 psi
9.0 Hg	15 psi
10.0 Hg	15 psi
NA	NA

DATE: $\quad 09 / 12 / 12$
Technical Director
TEST
Modified ASTM D-1946

LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder\# 1208543B

Seven 1 Liter Summa Canister samples were received on August 24, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5\% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as $15 \%, ~ e i t h e r ~$ due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U-Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-082012
Lab ID\#: 1208543B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	15
Nitrogen	0.29	79
Methane	0.00029	0.000071 J
Carbon Dioxide	0.029	5.7
Helium	0.14	0.16

Client Sample ID: VMP-42-10-082012
Lab ID\#: 1208543B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.31	19
Nitrogen	0.31	79
Carbon Dioxide	0.031	2.0
Helium	0.16	0.024 J

Client Sample ID: VMP-4-5-082012
Lab ID\#: 1208543B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	18
Nitrogen	0.30	81
Methane	0.00030	0.00019 J
Carbon Dioxide	0.030	1.2
Helium	0.15	0.016 J

Client Sample ID: VMP-11-5-082112
Lab ID\#: 1208543B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	18
Nitrogen	0.28	80
Methane	0.00028	0.000062 J

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

```
Client Sample ID: VMP-11-5-082112
Lab ID#: 1208543B-04A
Carbon Dioxide 0.028 2.1
Helium - 
0.011 J
```

Client Sample ID: VMP-11-5-082112-Dup
Lab ID\#: 1208543B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	18
Nitrogen	0.28	80
Methane	0.00028	0.000056 J
Carbon Dioxide	0.028	2.1
Helium	0.14	0.0095 J

Client Sample ID: VMP-13-5-082112
Lab ID\#: 1208543B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	18
Nitrogen	0.29	79
Methane	0.00029	0.000090 J
Carbon Dioxide	0.029	3.0
Helium	0.14	0.038 J

Client Sample ID: VMP-10-5-082112
Lab ID\#: 1208543B-07A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	19
Nitrogen	0.30	80
Methane	0.00030	0.000033 J
Carbon Dioxide	0.030	1.5
Helium	0.15	0.035 J

eurofins

Air Toxics

Client Sample ID: VMP-21-5-082012

Lab ID\#: 1208543B-01A

NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

File Name: 9083015 Dil. Factor: 2.89	Date of Collection: 8/20/12 11:16:00 AM Date of Analysis: 8/30/12 03:01 PM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.29	15
Nitrogen	0.29	79
Carbon Monoxide	0.029	Not Detected
Methane	0.00029	0.000071 J
Carbon Dioxide	0.029	5.7
Ethane	0.0029	Not Detected
Ethene	0.0029	Not Detected
Helium	0.14	0.16
$\mathrm{J}=$ Estimated value.		
Container Type: 1 Liter Summa Canister		

eurofins

Air Toxics

Client Sample ID: VMP-42-10-082012

Lab ID\#: 1208543B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9083016 Dil. Factor:	Date of Collection: 8/20/12 12:13:00 PM Date of Analysis: $8 / 30 / 12$	
	3.11	Rpt. Limit $(\%)$	Amount
Compound	0.31	$(\%)$	
Oxygen	0.31	19	
Nitrogen	0.031	79	
Carbon Monoxide	0.00031	Not Detected	
Methane	0.031	Not Detected	
Carbon Dioxide	0.0031	2.0	
Ethane	0.0031	Not Detected	
Ethene	0.16	Not Detected	
Helium		0.024 J	

$\mathrm{J}=$ Estimated value.
Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample ID: VMP-4-5-082012
Lab ID\#: 1208543B-03A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9083017 \\ 3.03 \\ \hline \end{array}$		Date of Collection: 8/20/12 1:03:00 PM Date of Analysis: 8/30/12 03:57 PM
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.30	18
Nitrogen		0.30	81
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	0.00019 J
Carbon Dioxide		0.030	1.2
Ethane		0.0030	Not Detected
Ethene		0.0030	Not Detected
Helium		0.15	0.016 J
$J=$ Estimated value.Container Type: 1 Liter Summa Canister			

eurofins

Air Toxics

Client Sample ID: VMP-11-5-082112
Lab ID\#: 1208543B-04A
NATURAL GAS ANALXSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-11-5-082112-Dup
Lab ID\#: 1208543B-05A
NATURAL GAS ANALYSIS BX MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: VMP-13-5-082112

Lab ID\#: 1208543B-06A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9083020 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 8/21/12 10:08:00 AM Date of Analysis: 8/30/12 05:21 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.29	18
Nitrogen		0.29	79
Carbon Monoxide		0.029	Not Detected
Methane		0.00029	0.000090 J
Carbon Dioxide		0.029	3.0
Ethane		0.0029	Not Detected
Ethene		0.0029	Not Detected
Helium		0.14	0.038 J

$\mathrm{J}=$ Estimated value.
Container Type: 1 Liter Summa Canister

Air Toxics

Client Sample ID: VMP-10-5-082112

Lab ID\#: 1208543B-07A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9083021 \\ 3.03 \\ \hline \end{array}$		Date of Collection: 8/21/12 10:56:00 AM Date of Analysis: 8/30/12 05:50 PM
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.30	19
Nitrogen		0.30	80
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	0.000033 J
Carbon Dioxide		0.030	1.5
Ethane		0.0030	Not Detected
Ethene		0.0030	Not Detected
Helium		0.15	0.035 J
$J=$ Estimated value.Container Type: 1 Liter Summa Canister			

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208543B-08A

NATURAL GAS ANAL XSIS BX MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: Lab Blank

Lab ID\#: 1208543B-08B
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9083004 b Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: Compound	Rpt. Limit
Helium	$(\%)$	Amount	
Container Type: NA - Not Applicable	0.050	$(\%)$	

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208543B-09A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9083002	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/30/12 08:33 AM

Compound	\%Recovery
Oxygen	100
Nitrogen	100
Carbon Monoxide	98
Methane	97
Carbon Dioxide	101
Ethane	98
Ethene	95
Helium	100
Container Type: NA - Not Applicable	

Air Toxics

Client Sample ID: LCSD
 Lab ID 4 : 1208543B-09AA
 NATURAL GAS ANALYSIS BY MODIELED ASTM D-1946

File Name: 9083023 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 8/30/12 07:00 PM
Compound	\%Recovery
Oxygen	99
Nitrogen	100
Carbon Monoxide	99
Methane	97
Carbon Dioxide	100
Ethane	99
Ethene	96
Helium	102
Container Type: NA - Not Applicable	

$$
123=\therefore 3
$$

(II) Shell Oil Products Chain Of Custody Record

YTR

LuSTODY BEAL WTACT:

Roxana Soil Vapor Additional - Week 3-2012 Data Review

Laboratory SDG: 1208545A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/21/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-082012

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-082012 was diluted and re-analyzed to bring 2,2,4-trimethylpentane within the calibration range of the instrument. The result for 2,2,4-trimethylpentane was reported from the re-analysis diluted run and the remaining compounds were reported from the original analysis. TO-15 CCV and LCS/LCSD recoveries were outside evaluation criteria. The TO-15 surrogate recovery for 1,2-dichloroethane- d_{4} was outside evaluation criteria in the original analysis of sample VMP-16-5-082012. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration $/ 2$ Amount
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Bromomethane	$0.16 \mathrm{ppbv} / 0.61 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Carbon disulfide	$0.40 \mathrm{ppbv} / 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Methylene chloride	$0.12 \mathrm{ppbv} / 0.43 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Hexane	$0.14 \mathrm{ppbv} / 0.48 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,2-Dichloroethane	$0.059 \mathrm{ppbv} / 0.24 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Trichloroethene	$0.17 \mathrm{ppbv} / 0.89 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration Amount
1208545A-02A	TO-15	cis-1,3-Dichloropropene	$0.17 \mathrm{ppbv} / 0.77 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Toluene	$0.13 \mathrm{ppbv} / 0.51 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	trans-1,3-Dichloropropene	$0.13 \mathrm{ppbv} / 0.58 \mathrm{\mu g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Tetrachloroethene	$0.11 \mathrm{ppbv} / 0.76 \mathrm{gg} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Chlorobenzene	$0.33 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	m,p-Xylene	$0.097 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,3-Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.75 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208545 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.13 \mathrm{ppbv} / 0.76 \mathrm{\mu} / \mathrm{m}^{3}$
$1208545 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Oxygen	0.023%
$1208545 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Nitrogen	0.071%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	$\begin{aligned} & \hline \text { LCS/ } \\ & \text { LCSD } \\ & \text { RPD } \end{aligned}$	$\begin{gathered} \hline \text { LCS/ } \\ \text { LCSD/RPD } \\ \text { Criteria } \end{gathered}$
$\begin{array}{\|l\|l\|} \hline 1208545 \mathrm{~A} \\ -04 \mathrm{~A} / \mathrm{AA} \\ \hline \end{array}$	TO-15	1,3-Butadiene	75/69	8	70-130/25
$\begin{gathered} \hline 1208545 \mathrm{~A} \\ -04 \mathrm{~A} / \mathrm{AA} \\ \hline \end{gathered}$	TO-15	Ethanol	72/67	7	70-130/25
$\begin{gathered} \hline 1208545 \mathrm{~A} \\ -04 \mathrm{~A} / \mathrm{AA} \\ \hline \end{gathered}$	TO-15	1,1-Dichloroethene	132/131	1	70-130/25
$\begin{array}{\|c\|} \hline 1208545 \mathrm{~A} \\ -04 \mathrm{~A} / \mathrm{AA} \\ \hline \end{array}$	TO-15	Acetone	67/68	1	70-130/25
$\begin{aligned} & \hline 1208545 \mathrm{~A} \\ & -04 \mathrm{~A} / \mathrm{A} \\ & \hline \end{aligned}$	TO-15	Tetrahydrofuran	70/69	1	70-130/25

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-16-5-082012	TO-15	1,3-Butadiene	UJ
VMP-16-5-082012	TO-15	Ethanol	UJ
VMP-16-5-082012	TO-15	Acetone	J
VMP-16-5-082012	TO-15	Tetrahydrofuran	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
No

Sample ID	Parameter	Surrogate	Recovery	Criteria
VMP-16-5-082012 (Original Analysis)	TO-15	1,2-Dichloroethane-d	$\mathbf{1 3 6}$	$70-130$

Analytical data that required qualification based on surrogate data are included in the table below. Acetone in sample VMP-16-5-082012 (Original Analysis) was previously qualified in Section 5.0 in this review due to LCS data. Analytical data which were reported as non-detect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-16-5-082012 (Original Analysis)	TO-15	Carbon disulfide	J
VMP-16-5-082012 (Original Analysis)	TO-15	Cyclohexane	J
VMP-16-5-082012 (Original Analysis)	TO-15	Benzene	J
VMP-16-5-082012 (Original Analysis)	TO-15	4-Methyl-2-pentanone	J
VMP-16-5-082012 (Original Analysis)	TO-15	Toluene	J
VMP-16-5-082012 (Original Analysis)	TO-15	1,1,2-Trichloroethane	J
VMP-16-5-082012 (Original Analysis)	TO-15	Chlorobenzene	J
VMP-16-5-082012 (Original Analysis)	TO-15	m,p-Xylene	J
VMP-16-5-082012 (Original Analysis)	TO-15	Cumene	J
VMP-16-5-082012 (Original Analysis)	TO-15	Butane	J
VMP-16-5-082012 (Original Analysis)	TO-15	Isopentane	J

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
The CCV percent recovery for acetone was outside evaluation criteria as summarized in the table below.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
$1208545 \mathrm{~A}-03 \mathrm{~A}$	TO-15	Acetone	67	$70-130$

Data associated with the CCV recovery above evaluation criteria was also associated with LCS/LCSD recoveries outside evaluation criteria. Previous qualifications based on LCS/LCSD recoveries are discussed in section 5.0 of this data review. No additional qualification of data is required.

Air Toxics

9/13/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300

St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208545A

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 8/24/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

WORK ORDER \#: 1208545A
Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable Austin URS Corporation P.O. BOX 203970 Austin, TX 78720-1088	
PHONE:	314-743-4179	P.O.\#		
FAX:		PROJECT \#	21562735.10100 Roxana Vapor	
DATE RECEIVED:	$08 / 24 / 2012$	CONTACT:	Additional ${ }_{\text {Kelly }}$	
DATE COMPLETED:	$09 / 10 / 2012$			
FRACTION \#	NAME	TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
01A	VMP-16-5-082012	Modified TO-1	5/TICs $6.6{ }^{\prime \prime} \mathrm{Hg}$	15 psi
01B	VMP-16-5-082012	Modified TO-1	5/TICs $\quad 6.6{ }^{\prime \prime} \mathrm{Hg}$	15 psi
02A	Lab Blank	Modified TO-1	5/TICs NA	NA
02B	Lab Blank	Modified TO-I	5/TICs NA	NA
03A	CCV	Modified TO-1	5/TICs NA	NA
03B	CCV	Modified TO-1	5/TICs NA	NA
04A	LCS	Modified TO-1	S/TICs NA	NA
04AA	LCSD	Modified TO-1	5/TICs NA	NA
04B	LCS	Modified TO-1	5/TICs NA	NA
04BB	LCSD	Modified TO-1	5/TICs NA	NA

DATE: 09/13/12

Cerffication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shali not be reproduced, except in full, withour the writen approwal of Eurofins Air Toxics, Iac.

Alr Toxics

LABORATORY NARRATIVE
 EPA Method TO-15 URS Corporation Workorder\# 1208545A

One 1 Liter Summa Canister sample was received on August 24, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The recovery of surrogate 1,2-Dichloroethane-d4 in sample VMP-16-5-082012 was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

Due to high-level 2,2,4-Trimethylpentane, sample VMP-16-5-082012 was analyzed twice. The "A" fraction is reported with a "S" flag indicating 2,2,4-Trimethylpentane was saturated on the instrument. For the " B " fraction, the sample was diluted to bring $2,2,4$-Trimethylpentane within the calibration range. Only $2,2,4$-Trimethylpentane was reported for this fraction.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.

UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-082012

Lab ID\#: 1208545A-01A * Do not use thes diata use all othar decta. 2,2,4-Trincthytpentane

$\text { D } 5=518$	is repported from the Compound diluiton amalysis	$259 \times$ Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
	Acetone	260	53 J	620	130 JJ
	Carbon Disulfide	100	18 ل	320	56 J
	Cyclohexane	26	160	89	$570 \downarrow$
χ	$z ; 2 ; 4$-7rimethytpentane-	26	$24000 \cdot 5$	- 420	40000
	Benzene	26	84	83	270
	4-Methyl-2-pentanone	26	40	110	160
	Toluene	26	9.7 J	98	36 J
	1,1,2-Trichloroethane	26	7.7 J	140	42 J
	Chlorobenzene	26	16 J	120	74 J
	m,p-Xylene	26	4.7 J	110	20 J
	Cumene	26	$10 . \mathrm{J}$	130	49 J
	Butane	100	190	250	450
	Isopentane	100	3300	300	9900 V

TENTATIVELY IDENTIFIED COMPOUNDS

Compound		CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-		115-11-7	9.0\%	3300 NJ
Pentane, 2-methyl-		107-83-5	9.0\%	3800 NJ
Pentane, 2,2,3-trimethyl-		564-02-3	33\%	10000 NJ
Pentane, 2,4-dimethyl-		108-08-7	64\%	8000 NJ
Pentane, 2,2-dimethyl-		590-35-2	28\%	3000 NJ
Pentane, 2,3-dimethyl-		565-59-3	56\%	15000 NJ
Hexane, 1-(hexyloxy)-3-methyl-		74421-18-4	43\%	6000 NJ
Pentane, 3-ethyl-2,2-dimethyl-		16747-32-3	39\%	4800 NJ
Pentane, 2,3,4-trimethyt-		565-75-3	78\%	22000 NJ
Pentane, 2,3,3-trimethyl-		560-21-4	53\%	58000 NJ
Client Sample ID: VMP-16-5-082012				
Lab DD\#: 1208545A-01B				
$D F=259$ Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2,2,4-Trimethylpentane	130	48000	600	220000

* Donor use this du ta. Vise all other data Air Toxics 2,2,4-Trmethyp patine was reported from the 25\% Client Sample ID: VMP-16-5-082012

Lab ID\#: 1208545A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

Page 6 of 21

Client Sample ID: VMP-16-5-082012
Lab ID\#: 1208545A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 033038 \\ 51.8 \\ \hline \end{array}$	Date of Collection: 8/20/12 9:53:00 AM Date of Analysis: 8/30/12 11:59 PM		
Compound	Rpt. Límit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	26	Not Detected	220	Not Detected
1,2-Dibromoethane (EDB)	26	Not Detected	200	Not Detected
Chlorobenzene	26	16 J J	120	74 J J
Ethyl Benzene	26	Not Detected	110	Not Detected
m,p-Xylene	26	4.7 J J	110	20 J J
o-Xylene	26	Not Detected	110	Not Detected
Styrene	26	Not Detected	110	Not Detected
Bromoform	26	Not Detected	270	Not Detected
Cumene	26	10 J J	130	49J J
1,1,2,2-Tetrachloroethane	26	Not Detected	180	Not Detected
Propylbenzene	26	Not Detected	130	Not Detected
4-Ethyltoluene	26	Not Detected	130	Not Detected
1,3,5-Trimethylbenzene	26	Not Detected	130	Not Detected
1,2,4-Trimethybenzene	26	Not Detected	130	Not Detected
1,3-Dichlorobenzene	26	Not Detected	160	Not Detected
1,4-Dichlorobenzene	26	Not Detected	160	Not Detected
alpha-Chlorotoluene	26	Not Detected	130	Not Detected
1,2-Dichlorobenzene	26	Not Detected	160	Not Detected
1,2,4-Trichlorobenzene	100	Not Detected	770	Not Detected
Hexachlorobutadiene	100	Not Detected	1100	Not Detected
Butane	100	190 J	250	450 J
Isopentane	100	3300 J	300	9900 J
Ethyl Acetate	100	Not Detected	370	Not Detected
Propylene	100	Not Detected	180	Not Detected
Vinyl Acetate	100	Not Detected	360	Not Detected
Vinyl Bromide	100	Not Detected	450	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene, 2-methyl-	$115-11-7$	9.0%	3300 NJ
Pentane, 2-methyl-	$107-83-5$	9.0%	3800 NJ
Pentane, 2,2,3-trimethyl-	$564-02-3$	33%	10000 NJ
Pentane, 2,4-dimethyl-	$108-08-7$	64%	8000 NJ
Pentane, 2,2-dimethyl-	$590-35-2$	28%	3000 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	56%	15000 NJ
Hexane, 1-(hexyloxy)-3-methyl-	$74421-18-4$	43%	6000 NJ
Pentane, 3-ethyl-2,2-dimethyl-	$16747-32-3$	39%	4800 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	78%	22000 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	53%	58000 NJ

Air Toxics

Client Sample ID: VMP-16-5-082012
 Lab ID\#: 1208545A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 083038 \\ 51.8 \end{array}$	Date of Collection: 8/20/12 9:53:00 AM Date of Analysis: 8/30/12 11:59 PM
$N J=$ The identification is based on presumptive evidence; estimated value. Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects. Container Type: 1 Liter Summa Canister		
Surrogates	\%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	1360	70-130
4-Bromofluorobenzene	97	70-130

Air Toxics

Client Sample ID: VMP-16-5-082012
 Lab ID\#: 1208545A-01B
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 083120 \\ 259 \\ \hline \end{array}$	Date of Collection: 8/20/12 9:53:00 AM Date of Analysis: 8/31/12 07:05 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2,2,4-Trimethylpentane	130	48000	600	220000
Container Type: 1 Lite				
Surrogates		\%Recovery		Method Limits
Toluene-d8		97		70-130
1,2-Dichloroethane-d4		122		70-130
4-Bromofluorobenzene		109		70-130

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208545A-02A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083015 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 12:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	0.16 J	19	0.61 J
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected UJ	12	Not Detected UJ
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.40 J	6.2	1.2 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	0.12 J	17	0.43 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	(0.14 J)	1.8	0.48 J
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	(0.059 J)	2.0	(0.24 J)
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	0.17 J	2.7	0.89 J
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detecred	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	0.17 J	2.3	(0.77)
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.13 J	1.9	(0.51 J)
trans-1,3-Dichloropropene	0.50	(0.13)	2.3	0.58)
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	0.11 J	3.4	0.76 J
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics

	Client Sam Lab ID A METHOD T	: Lab Blank 545A-02A C/MS FULL		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083015 \mathrm{a} \\ 1.00 \\ \hline \end{array}$		of Collection: NA of Analysis: 8/3	12:36 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.33	2.3	(1.5J)
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	0.097 J	2.2	0.42 J
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	0.12 J	3.0	0.75 J
1,4-Dichlorobenzene	0.50	0.13 J	3.0	(0.76)
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not'Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected
$\mathrm{J}=$ Estimated value . $\mathrm{UJ}=$ Non-detected compound associated with low bias in the CCV and/or LCS.				
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount ((ppbv))
None Identified				
Container Type: NA - Not Applicable				
Surrogates		\%Recovery		Limits
Toluene-d8		95		70-130
1,2-Dichloroethane-d4		107		70-130
4-Bromofluorobenzene		100		70-130

Air Toxics

Client Sample ID: Lab Blank

Lab ID\#: 1208545A-02B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083110 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/31/12 12:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2,2,4-Trimethylpentane	0.50	0.18 J	2.3	0.86 J
$\mathrm{J}=$ Estimated value.				
Container Type: NA -				
Surrogates		\%Recovery		Method Limits
Toluene-d8		92		70-130
1,2-Dichloroethane-d4		110		70-130
4-Bromofluorobenzene		101		70-130

Air Toxics

\(\left.$$
\begin{array}{l|c|c|}\hline & \begin{array}{c}\text { Client Sample ID: CCV } \\
\text { Lab ID\#: 1208545A-03A }\end{array}
$$

\& EPA METHOD TO-15 GC/MS FULLSCAN\end{array}\right]\)| |
| :--- |

eurofins

Air Toxics

Client Sample ID: CCV
Lab ID\#: 1208545A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 083003$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $8 / 30 / 1206: 38$ AM

Compound		\%Recovery
Dibromochloromethane		113
1,2-Dibromoethane (EDB)		102
Chlorobenzene		86
Ethyl Benzene		106
m,p-Xylene		105
o-Xylene		104
Styrene		113
Bromoform		116
Cumene		113
1,1,2,2-Tetrachloroethane		89
Propylbenzene		110
4-Ethyltoluene		108
1,3,5-Trimethylbenzene		105
1,2,4-Trimethylbenzene		107
1,3-Dichlorobenzene		96
1,4-Dichlorobenzene		96
alpha-Chlorotoluene		112
1,2-Dichlorobenzene		95
1,2,4-Trichlorobenzene		99
Hexachlorobutadiene		120
Butane		85
Isopentane		77
Ethyl Acetate		76
Propylene		75
Vinyl Acetate		110
Vinyl Bromide		113
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	106	70-130

eurofins

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208545A-03B
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 083103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/31/12 06:46 AM

Compound \quad \%Recovery

2,2,4-Trimethyipentane
83

Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	97	$70-130$
1,2-Dichloroethane-d4	116	$70-130$
4-Bromofluorobenzene	108	$70-130$

Air Toxics

Client Sample ID: LCS Lab 1D\#: 1208545A-04A EPA METHOD TO-15 GC/MS FULL SCAN		
File Name: Dil. Factor:	$j 083007$ 1.00	Date of Collection: NA Date of Analysis: 8/30/42 08:33 AM
Compound		\%Recovery
Freon 12		120
Freon 114		120
Chloromethane		83
Vinyl Chloride		86
1,3-Butadiene		75
Bromomethane		103
Chloroethane		89
Freon 11		117
Ethanol		72
Freon 113		118
1,1-Dichloroethene		132 Q
Acetone		67 Q
2-Propanol		80
Carbon Disulfide		117
3-Chloropropene		121
Methylene Chloride		73
Methyl tert-butyl ether		113
trans-1,2-Dichloroethene		126
Hexane		86
1,1-Dichloroethane		89
2-Butanone (Methyl Ethyl Ketone)		99
cis-1,2-Dichloroethene		90
Tetrahydrofuran		70
Chloroform		103
1,1,1-Trichloroethane		114
Cyclohexane		101
Carbon Tetrachloride		112
2,2,4-Trimethylpentane		78
Benzene		98
1,2-Dichloroethane		104
Heptane		108
Trichloroethene		105
1,2-Dichloropropane		78
1,4-Dioxane		96
Bromodichloromethane		107
cis-1,3-Dichloropropene		96
4-Methyl-2-pentanone		78
Toluene		91
trans-1,3-Dichloropropene		115
1,1,2-Trichloroethane		97
Tetrachloroethene		100
2-Hexanone		85

Air Toxics

\section*{Client Sample ID: LCS
 Lab ID\#: 1208545A-04A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | $j 083007$ | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: $8 / 30 / 12$ 08:33 AM |}

Compound		\%Recovery
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		100
Chlorobenzene		88
Ethyl Benzene		103
m,p-Xydene		103
o-Xylene		101
Styrene		108
Bromoform		112
Cumene		110
1,1,2,2-Tetrachloroethane		94
Propylbenzene		110
4-Ethyltoluene		96
1,3,5-Trimethylbenzene		99
1,2,4-Trimethylbenzene		102
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		92
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		96
1,2,4-Trichlorobenzene		99
Hexachlorobutadiene		116
Butane		77
Isopentane		75
Ethyl Acetate		Not Spiked
Propylene		67
Vinyl Acetate		97
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	107	70-130

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208545A-04AA
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 083008 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/30/12 08:52 AM
Compound		\%Recovery
Freon 12		115
Freon 114		117
Chloromethane		85
Vinyl Chloride		85
1,3-Butadiene		(690)
Bromomethane		97
Chloroethane		85
Freon 11		115
Ethanol		67 Q
Freon 113		115
1,1-Dichloroethene		1310
Acetone		(68Q)
2-Propanol		83
Carbon Disulfide		120
3-Chloropropene		117
Methylene Chloride		73
Methyl tert-butyl ether		114
trans-1,2-Dichloroethene		121
Hexane		86
1,1-Dichloroethane		87
2-Butanone (Methyl Ethyl Ketone)		97
cis-1,2-Dichtoroethene		90
Tetrahydrofuran		69 Q
Chloroform		102
1,1,1-Trichloroethane		112
Cyclohexane		103
Carbon Tetrachloride		112
2,2,4-Trimethylpentane		76
Benzene		98
1,2-Dichloroethane		105
Heptane		108
Trichloroethene		108
1,2-Dichloropropane		78
1,4-Dioxane		97
Bromodichloromethane		110
cis-1,3-Dichloropropene		98
4-Methyl-2-pentanone		78
Toluene		91
trans-1,3-Dichloropropene		114
1,1,2-Trichloroethane		98
Tetrachloroethene		101
2-Hexanone		87

Air Toxics

Client Sample ID: LCSD		
Lab ID\#: 1208545A-04AA		
	EPA METHOD TO-15 GC/MS FULL_SCAN	
File Name:	j083008	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/30/12 08:52 AM

Compound		\%Recovery
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		102
Chlorobenzene		86
Ethyl Benzene		102
m,p-Xylene		106
o-Xylene		100
Styrene		108
Bromoform		113
Cumene		113
1,1,2,2-Tetrachloroethane		94
Propylbenzene		109
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		102
1,2,4-Trimethylbenzene		104
1,3-Dichlorobenzene		96
1,4-Dichlorobenzene		94
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		97
1,2,4-Trichlorobenzene		100
Hexachlorobutadiene		117
Butane		84
Isopentane		72
Ethyl Acetate		Not Spiked
Propylene		67
Vinyl Acetate		102
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	94	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	104	70-130

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208545A-94B
 EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:
 Dil. Factor: | j083104

 Compound | Date of Collection: NA
 Date of Analysis: 8/31/12 07:22 AM |
| :--- | ---: | ---: | ---: |
| 2,2,4-Trimethylpentane | | \%Recovery |
| Container Type: NA - Not Applicable | | 85 |
| Surrogates | \%Recovery | Method |
| Toluene-d8 | 94 | $70-130$ |
| 1,2-Dichloroethane-d4 | 122 | $70-130$ |
| 4-Bromofluorobenzene | 111 | $70-130$ |

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208545A-04BB
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 083105	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/31/12 07:53 AM

Compound \%Recovery2,2,4-Trimethyipentane77
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	98	$70-130$
1,2 -Dichloroethane-d4	109	$70-130$
4-Bromofluorobenzene	109	$70-130$

9/12/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735. 10100
Workorder \#: 1208545B

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for sample(s) received on $8 / 24 / 2012$ at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208545B

Work Order Summary

Technical Director
Certification numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not he reproduced, except in full, without the write en approval of Eurofins Air Toxics, inc.

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1208545B

One 1 Liter Summa Canister sample was received on August 24, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>/=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as $15 \%, ~ e i t h e r ~$ due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-082012		
Lab ID\#: 1208545B-01A	Rpt. Limit $(\%)$	Amount $(\%)$
Compound	0.26	2.4
Oxygen	0.26	82
Nitrogen	0.00026	0.071
Methane	0.026	15
Carbon Dioxide	0.13	0.042 J
Helium		

eurofins

Air Toxics

Client Sample ID: VMP-16-5-082012

Lab ID\#: 1208545B-01A

NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name:	9083113 Dit. Factor:	2.59	Date of Collection: $8 / 20 / 129: 53: 00 \mathrm{AM}$ Date of Analysis: $8 / 31 / 12$ 03:20 PM
		Amount	
Compound	$(\%)$	$(\%)$	
Oxygen	0.26	2.4	
Nitrogen	0.26	82	
Carbon Monoxide	0.026	Not Detected	
Methane	0.00026	0.071	
Carbon Dioxide	0.026	15	
Ethane	0.0026	Not Detected	
Ethene	0.0026	Not Detected	
Helium	0.13	0.042 J	
J Estimated value.			
Container Type: 1 Liter Summa Canister			

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208545B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	$9083105 a$ Dil. Factor:	$\mathbf{1 . 0 0}$

* eurofins

Air Toxics
Client Sample ID: Lab Blank
Lab ID\#: 1208545B-02B
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9083104 b \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 8/31/12 10:28 AM	
Compound		Rpt. Limit (\%)	Amount (\%)
Helium		0.050	Not Detected

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208545B-03A

NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name:	9083102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/31/12 09:35 AM

Compound	\%Recovery
Oxygen	99
Nitrogen	100
Carbon Monoxide	99
Methane	98
Carbon Dioxide	100
Ethane	100
Ethene	97
Helium	99
Container Type: NA - Not Applicable	

Air Toxics

Client Sample ID: LCSD
Lab ID\#: 1208545B-03AA
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946
9083127
1.00

Client Sample ID: LCSD
Lab ID\#: 1208545B-03AA
1.00

Compound	\%Recovery
Oxygen	99
Nitrogen	100
Carbon Monoxide	98
Methane	98
Carbon Dioxide	102
Ethane	100
Ethene	97
Helium	102
Container Type: NA - Not Applicable	

Custody Seal Intact?
Y) N None Temp na

Roxana Soil Vapor Additional - Week 4-2012 Data Review

Laboratory SDG: 1208722A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/24/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-083012

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-082012 was diluted due to high levels of target analytes. TO-15 LCS/LCSD recoveries were outside evaluation criteria. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1208722A-02A	TO-15	Carbon disulfide	$0.49 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Methylene chloride	$0.052 \mathrm{ppbv} / 0.18 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Hexane	$0.059 \mathrm{ppbv} / 0.21 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Toluene	$0.079 \mathrm{ppbv} / 0.30 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	trans-1,3-Dichloropropene	$0.16 \mathrm{ppbv} / 0.71 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	Chlorobenzene	$0.41 \mathrm{ppbv} / 1.9 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	$1,2,4$-Trimethylbenzene	$0.086 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	1,3 -Dichlorobenzene	$0.16 \mathrm{ppbv} / 0.95 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	1,4 -Dichlorobenzene	$0.13 \mathrm{ppbv} / 0.77 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1208722 \mathrm{~A}-02 \mathrm{~A}$	$\mathrm{TO}-15$	1,2 -Dichlorobenzene	$0.14 \mathrm{ppbv} / 0.83 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1208722B-02A	Natural gases	Oxygen	0.012%
$1208722 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Nitrogen	0.060%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	LCS/ LCSD RPD	LCS/ LCSD/RPD Criteria
1208722A $-04 \mathrm{~A} /$ AA	TO-15	Ethanol	$68 / 72$	6	$70-130 / 25$
1208722A -04A/AA	TO-15	1,1-Dichloroethene	$\mathbf{1 3 4 / 1 4 2}$	6	$70-130 / 25$
1208722A -04A/AA	TO-15	Tetrahydrofuran	$70 / 69$	1	$70-130 / 25$

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-16-5-083012	TO-15	Ethanol	UJ
VMP-16-5-083012	TO-15	Tetrahydrofuran	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries
 Were MS/MSD samples analyzed as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results
 Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

eurofins

Air Toxics

9/21/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208722A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 8/31/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1208722A

Work Order Summary

DATE: $\underline{09 / 21 / 12}$
Technical Director
Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291 , TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

[^5]

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder\# 1208722A

One 1 Liter Summa Canister sample was received on August 31, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA. National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Dilution was performed on sample VMP-16-5-083012 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
U- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates

eurofins

Air Toxics

[^6]
Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-083012
Lab ID\#: 1208722A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloromethane	600	110 J	1200	230 J
Acetone	600	120 J	1400	280 J
Carbon Disulfide	240	150 J	750	480 J
Methylene Chloride	600	32 J	2100	110 J
Methyl tert-butyl ether	60	8.0 J	220	29 J
2,2,4-Trimethyipentane	60	10000	280	48000
Toluene	60	60	230	230
Chlorobenzene	60	57 J	280	260 J
m,p-Xylene	60	27 J	260	120 J
Cumene	60	17 J	300	84 J
1,4-Dichlorobenzene	60	8.0 J	360	48 J
Isopentane	240	400	710	1200

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	1200 J
Pentane, 2,4-dimethyl-	$108-08-7$	40%	860 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	50%	1400 NJ
Oxirane, (1-methylethyl)-	$1438-14-8$	56%	2000 NJ
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	56%	1400 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	83%	7100 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	78%	25000 NJ
Unknown	NA	NA	1500 J
Unknown	NA	NA	540 J
Octane, 2,2,6-trimethyl-	$62016-28-8$	78%	1100 NJ

Air Toxics

Client Sample ID: VMP-16-5-083012
Lab ID\#: 1208722A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 01011 \\ 121 \\ \hline \end{array}$	Date of Collection: 8/30/12 9:35:00 AM Date of Analysis: 9/10/12 02:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	60	Not Detected	300	Not Detected
Freon 114	60	Not Detected	420	Not Detected
Chloromethane	600	110 J	1200	230 J
Vinyl Chloride	60	Not Detected	150	Not Detected
1,3-Butadiene	60	Not Detected	130	Not Detected
Bromomethane	600	Not Detected	2300	Not Detected
Chloroethane	240	Not Detected	640	Not Detected
Freon 11	60	Not Detected	340	Not Detected
Ethanol	240	Not Detected ULS	460	Not Detected U
Freon 113	60	Not Detected	460	Not Detected
1,1-Dichloroethene	60	Not Detected	240	Not Detected
Acetone	600	120 J	1400	280 J
2-Propanol	240	Not Detected	590	Not Detected
Carbon Disulfide	240	150 J	750	480 J
3-Chloropropene	240	Not Detected	760	Not Detected
Methylene Chloride	600	32 J	2100	110 J
Methyl tert-butyl ether	60	8.0 J	220	29 J
trans-1,2-Dichloroethene	60	Not Detected	240	Not Detected
Hexane	60	Not Detected	210	Not Detected
1,1-Dichloroethane	60	Not Detected	240	Not Detected
2-Butanone (Methyl Ethyl Ketone)	240	Not Detected	710	Not Detected
cis-1,2-Dichloroethene	60	Not Detected	240	Not Detected
Tetrahydrofuran	60	Not Detected UJ	180	Not Detected 0 J
Chloroform	60	Not Detected	300	Not Detected
1,1,1-Trichloroethane	60	Not Detected	330	Not Detected
Cyclohexane	60	Not Detected	210	Not Detected
Carbon Tetrachloride	60	Not Detected	380	Not Detected
2,2,4-Trimethylpentane	60	10000	280	48000
Benzene	60	Not Detected	190	Not Detected
1,2-Dichloroethane	60	Not Detected	240	Not Detected
Heptane	60	Not Detected	250	Not Detected
Trichloroethene	60	Not Detected	320	Not Detected
1,2-Dichloropropane	60	Not Detected	280	Not Detected
1,4-Dioxane	240	Not Detected	870	Not Detected
Bromodichloromethane	60	Not Detected	400	Not Detected
cis-1,3-Dichloropropene	60	Not Detected	270	Not Detected
4-Methyl-2-pentanone	60	Not Detected	250	Not Detected
Toluene	60	60	230	230
trans-1,3-Dichloropropene	60	Not Detected	270	Not Detected
1,1,2-Trichloroethane	60	Not Detected	330	Not Detected
Tetrachloroethene	60	Not Detected	410	Not Detected
2-Hexanone	240	Not Detected	990	Not Detected

Page 6 of 16

Air Toxics

Client Sample ID: VMP-16-5-083012
Lab 1D\#: 1208722A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091011 \\ 121 \\ \hline \end{array}$	Date of Collection: 8/30/12 9:35:00 AM Date of Analysis: 9/10/12 02:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	60	Not Detected	520	Not Detected
1,2-Dibromoethane (EDB)	60	Not Detected	460	Not Detected
Chlorobenzene	60	57 J	280	260 J
Ethyl Benzene	60	Not Detected	260	Not Detected
m, p-Xylene	60	27 J	260	120 J
o-Xylene	60	Not Detected	260	Not Detected
Styrene	60	Not Detected	260	Not Detected
Bromoform	60	Not Detected	620	Not Detected
Cumene	60	17 J	300	84 J
1,1,2,2-Tetrachloroethane	60	Not Detected	420	Not Detected
Propylbenzene	60	Not Detected	300	Not Detected
4-Ethyltoluene	60	Not Detected	300	Not Detected
1,3,5-Trimethylbenzene	60	Not Detected	300	Not Detected
1,2,4-Trimethylbenzene	60	Not Detected	300	Not Detected
1,3-Dichlorobenzene	60	Not Detected	360	Not Detected
1,4-Dichlorobenzene	60	8.0 J	360	48 J
alpha-Chlorotoluene	60	Not Detected	310	Not Detected
1,2-Dichlorobenzene	60	Not Detected	360	Not Detected
1,2,4-Trichlorobenzene	240	Not Detected	1800	Not Detected
Hexachlorobutadiene	240	Not Detected	2600	Not Detected
Butane	240	Not Detected	580	Not Detected
Isopentane	240	400	710	1200
Ethyl Acetate	240	Not Detected	870	Not Detected
Propylene	240	Not Delected	420	Not Detected
Vinyl Acetate	240	Not Detected	850	Not Detected
Vinyl Bromide	240	Not Detected	1000	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	1200 J
Pentane, 2,4-dimethyl-	$108-08-7$	40%	860 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	50%	1400 NJ
Oxirane, (1-methylethyl)-	$1438-14-8$	56%	2000 NJ
Hexane, $2,2,5,5$-tetramethyl-	$1071-81-4$	56%	1400 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	83%	7100 NJ
Pentane, $2,3,3$-trimethyl-	$560-21-4$	78%	25000 NJ
Unknown	NA	NA	1500 J
Unknown	NA	NA	540 J
Octane, 2,2,6-trimethyl-	$62016-28-8$	78%	1100 NJ

eurofins

Air Toxics

Client Sample ID: VMP-16-5-083012

Lab ID\#: 1208722A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dii. Factor:	j091011 121	Date of Collection: 8/30/12 9:35:00 AM Date of Analysis: 9/10/12 02:22 PM
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.		
Container Type: 1 Lite		
Surrogates	\%Recovery	$y .$Method Limits
Toluene-d8	91	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	104	70-130

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208722A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091008a } \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/10/12 11:42 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.49 J	6.2	(1.5 J)
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	0.052 J	17	0.18 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Delected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	(0.059 J)	1.8	(0.21 J)
1,1-Dichloroethane	0.50	NofDertected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Delected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.079 J	1.9	0.30 J
trans-1,3-Dichloropropene	0.50	(0.16J)	2.3	(0.71 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics
Client Sample ID: Lab Blank
Lab ID\#: 1208722A-02A
EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091008 \mathrm{a} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: $9 / 10 / 12$ 11:42 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.41 J	2.3	(1.9J)
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	0.086 J	2.4	0.42 J
1,3-Dichlorobenzene	0.50	(0.16 J	3.0	0.95 J
1,4-Dichlorobenzene	0.50	(0.13 J	3.0	0.77 J
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	(0,14 J)	3.0	0.83 J
1,2,4-Trichlorobenzene	2.0	Not Defected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$\mathbf{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number \quad Match Quality \quad| Amount |
| :--- |
| ((ppbv)) |

None Identified
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	92	$70-130$
1,2-Dichloroethane-d4	100	$70-130$
4-Bromofluorobenzene	102	$70-130$

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1208722A-03A

EPA METHOD TO-15 GC/MS FULLSCAN

File Name: j 091002 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/10/12 08:06 AM
Compound	\%Recovery
Freon 12	123
Freon 114	126
Chloromethane	87
Vinyl Chloride	88
1,3-Butadiene	74
Bromomethane	109
Chloroethane	100
Freon 11	126
Ethanol	80
Freon 113	126
1,1-Dichloroethene	130
Acetone	75
2-Propanol	86
Carbon Disulfide	106
3-Chloropropene	114
Methylene Chloride	77
Methyl tert-butyl ether	124
trans-1,2-Dichloroethene	110
Hexane	92
1,1-Dichloroethane	95
2-Butanone (Methyl Ethyl Ketone)	102
cis-1,2-Dichloroethene	97
Tetrahydrofuran	78
Chloroform	110
1,1,1-Trichloroethane	120
Cyclonexane	105
Carbon Tetrachloride	122
2,2,4-Trimethylpentane	81
Berzene	102
1,2-Dichloroethane	111
Heptane	120
Trichloroethene	109
1,2-Dichloropropane	83
1,4-Dioxane	102
Bromodichloromethane	115
cis-1,3-Dichloropropene	107
4-Methyl-2-pentanone	86
Toluene	98
trans-1,3-Dichloropropene	120
1,1,2-Trichloroethane	105
Tetrachloroethene	110
2-Hexanone	93

eurofins

Air Toxics

Client Sample ID: CCVLab ID\#: 1208722A-03AEPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 091002	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 10 / 1208: 06$ AM

Compound		\%Recovery
Dibromochloromethane		119
1,2-Dibromoethane (EDB)		109
Chlorobenzene		92
Ethyl Benzene		108
m,p-Xylene		111
o-Xylene		109
Styrene		116
Bromoform		120
Cumene		117
1,1,2,2-Tetrachloroethane		98
Propylbenzene		115
4-Ethyltoluene		109
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		110
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		98
alpha-Chlorotoluene		114
1,2-Dichlorobenzene		101
1,2,4-Trichlorobenzene		106
Hexachlorobutadiene		123
Butane		85
Isopentane		79
Ethyl Acetate		66
Propylene		76
Vinyl Acetate		104
Vinyl Bromide		113
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	104	70-130

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208722A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 091003$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 10 / 1208: 36$ AM

Compound \%Recovery
Freon 12 126
Freon 114 129
Chloromethane 90
Vinyl Chloride 97
1,3-Butadiene 75
Bromomethane 112
Chloroethane 93
Freon 11 123
Ethanol 68 Q
Freon 113 726
11-Dichloroethene 134 Q
Acetone 73
2-Propanol 82
Carbon Disulfide 125
3-Chloropropene 126
Methylene Chloride 75
Methyl tert-butyl ether 122
trans-1,2-Dichloroethene 122
Hexane 87
1,1-Dichloroethane 91
2-Butanone (Methyl Ethyl Ketone) 97
cis-1,2-Dichloroethene 91
Tetrahydrofuran 70
Chloroform 108
1,1,1-Trichloroethane 120
Cyclohexane 106
Carbon Tetrachloride 121
2,2,4-Trimethylpentane 79
Benzene 100
1.2-Dichloroethane 107
Heptane 115
Trichloroethene 106
1,2-Dichloropropane 80
1,4-Dioxane 92
Bromodichloromethane 112
cis-1,3-Dichloropropene 99
4-Methyl-2-pentanone 78
Toluene 92
trans-1,3-Dichloropropene 117
1,1,2-Trichloroethane 103
Teirachloroethene 105
2-Hexanone 86

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208722A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 091003	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 10 / 12$ 08:36 AM

Compound		\%Recovery
Dibromochloromethane		113
1,2-Dibromoethane (EDB)		107
Chlorobenzene		88
Ethyl Benzene		103
m,p-Xylene		104
o-Xylene		105
Styrene		113
Bromoform		114
Cumene		114
1,1,2,2-Tetrachloroethane		94
Propylbenzene		114
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		105
1,3-Dichlorobenzene		96
1,4-Dichlorobenzene		96
alpha-Chlorotoluene		110
1,2-Dichlorobenzene		96
1,2,4-Trichlorobenzene		101
Hexachlorobutadiene		119
Butane		84
Isopentane		75
Ethyl Acetate		Not Spiked
Propylene		70
Vinyl Acetate		104
Vinyl Bromide		Not Spiked
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	103	70-130

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1208722A-04AA
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091004 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/10/12 09:18 AM
Compound		\%Recovery
Freon 12		128
Freon 114		130
Chloromethane		91
Vinyl Chloride		91
1,3-Butadiene		74
Bromomethane		112
Chloroethane		97
Freon 11		123
Ethanol		72
Freon 113		122
1,1-Dichloroethene		(142Q)
Acetone		73
2-Propanol		82
Carbon Disulfide		127
3-Chloropropene		122
Methylene Chloride		75
Methyl tert-butyl ether		121
trans-1,2-Dichloroethene		119
Hexane		86
1,1-Dichloroethane		91
2-Butanone (Methyl Ethyl Ketone)		106
cis-1,2-Dichloroethene		87
Tetrahydrofuran		69 Q
Chloroform		107
1,1,1-Trichloroethane		121
Cyclohexane		98
Carbon Tetrachloride		121
2,2,4-Trimethylpentane		77
Benzene		99
1,2-Dichloroethane		106
Heptane		110
Trichloroethene		105
1,2-Dichloropropane		77
1,4-Dioxane		94
Bromodichloromethane		109
cis-1,3-Dichloropropene		99
4-Methyi-2-pentanone		76
Toluene		88
trans-1,3-Dichloropropene		110
1,1,2-Trichloroethane		99
Tetrachloroethene		103
2-Hexanone		84

Air Toxics

Client Sample ID: LCSD
Lab ID\#: 1208722A-04AA
EPA METHOD TO-15 GC/MS FULL SCAN
j091004
1.00

File Name:	$j 091004$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/10/12 09:18 AM

Compound \quad \%Recovery
Dibromochloromethane 112
1,2-Dibromoethane (EDB) 104
Chlorobenzene 87
Ethyl Benzene 102
m,p-Xylene 106
o-Xylene 101
Styrene 108
Bromoform 111
Cumene 111
1,1,2,2-Tetrachloroethane 92
Propyibenzene 110
4-Ethyltoluene 96
1,3,5-Trimethylbenzene 100
1,2,4-Trimethylbenzene 104
1,3-Dichlorobenzene 94
1,4-Dichlorobenzene 92
alpha-Chlorotoluene 105
1,2-Dichlorobenzene 97
1,2,4-Trichlorobenzene 100
Hexachlorobutadiene 115
Butane 81
Isopentane 77
Ethyl Acetate Not Spiked
Propylene 70
Vinyl Acetate 96
Vinyl Bromide Not Spiked
$\mathrm{Q}=$ Exceeds Quality Control limits.
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	98	$70-130$
1,2-Dichloroethane-d4	102	$70-130$
4-Bromofluorobenzene	104	$70-130$

eurofins

Air Toxics

9/14/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1208722B

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 8/31/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

eurofins

Air Toxics

WORK ORDER \#: 1208722B

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation	BILL TO:	Accounts Payable Austin
	1001 Highlands Plaza Dr. West		URS Corporation
	Suite 300 BOX 203970		

CERTIFIED BY:

DATE: 09/14/12

Technical Director
Certification numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report stall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, hoc.

LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder\# 1208722B

One 1 Liter Summa Canister sample was received on August 31, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard clesely mathing the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100\% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates

as follows:

a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-083012

Lab ID\#: 1208722B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	4.6
Nitrogen	0.30	82
Methane	0.00030	0.0041
Carbon Dioxide	0.030	13

eurofins

Air Toxics

Client Sample ID: VMP-16-5-083012
Lab 1D\#: 1208722B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9090414 \\ 3.03 \end{array}$	Date of Collection: 8/30/12 9:35:00 AM Date of Analysis: 9/4/12 04:49 PM	
Compound		$\begin{gathered} \text { Rpt. Limit } \\ (\%) \\ \hline \end{gathered}$	Amount (\%)
Oxygen		0.30	4.6
Nitrogen		0.30	82
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	0.0041
Carbon Dioxide		0.030	13
Ethane		0.0030	Not Detected
Ethene		0.0030	Not Detected
Helium		0.15	Not Detected

Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID\#: 1208722B-02A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9090404 a Dil, Factor: 1.00	Date of Collection: NA Date of Analysis: 9/4/12 11:09 AM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.10	0.012 J
Nitrogen	0.10	0.060 J
Carbon Monoxide	0.010	Not Detected
Methane	0.00010	Not Detected
Carbon Dioxide	0.010	Not Detected
Ethane	0.0010	Not Detected
Ethene	0.0010	Not Detected
$\mathbf{J}=$ Estimated value.		
Container Type: NA - Not Applicable		

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1208722B-02B
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9090403 b	
Dil. Factor:	1.00	Date of Collection: NA
		Rate of Analysis: $9 / 4 / 1210: 47$ AM
Compound		$(\%)$
Helium		0.050
Amount	$(\%)$	

Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1208722B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9090402	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 4 / 12$ 10:24 AM

Compound	\%Recovery
Oxygen	99
Nitrogen	101
Carbon Monoxide	99
Methane	99
Carbon Dioxide	101
Ethane	100
Ethene	97
Helium	99

Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCSD
 Lab 1D\#: 1208722B-03AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9090426	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 4 / 12$ 10:44 PM

Compound	\%Recovery
Oxygen	98
Nitrogen	101
Carbon Monoxide	98
Methane	98
Carbon Dioxide	98
Ethane	100
Ethene	97
Helium	99
Container Type: NA - Not Applicable	

Sy Shell Oil Products Chain Of Custody Record
Mes

Roxana Soil Vapor Additional - Week 4-2012 Data Review

Laboratory SDG: 1209007A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/25/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-083012	VMP-42-10-083012
VMP-4-5-083012	VMP-11-5-083112
VMP-13-5-083112	VMP-10-5-083112

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Although not indicated in the laboratory case narrative, analytes were detected in the method blank. TO-15 CCV and LCS/LCSD recoveries were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209007A-07A	TO-15	Carbon disulfide	$0.38 \mathrm{ppbv} / 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	Benzene	$0.088 \mathrm{ppbv} / 0.28 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	Toluene	$0.11 \mathrm{ppbv} / 0.40 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	trans-1,3-Dichloropropene	$0.13 \mathrm{ppbv} / 0.59 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	Chlorobenzene	$0.30 \mathrm{ppbv} / 1.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	$1,2,4-$ Trimethylbenzene	$0.095 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	1,3 -Dichlorobenzene	$0.18 \mathrm{ppbv} / 1.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	1,4-Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.69 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007A-07A	TO-15	1,2 -Dichlorobenzene	$0.12 \mathrm{ppbv} / 0.73 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209007B-07A	Natural gases	Oxygen	0.012%

Blank ID	Parameter	Analyte	Concentration/ Amount
1209007B-07A	Natural gases	Nitrogen	0.062%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-083012	TO-15	Carbon disulfide	-	U
VMP-21-5-083012	TO-15	Chlorobenzene	-	U
VMP-21-5-083012	TO-15	1,3-Dichlorobenzene	-	U
VMP-21-5-083012	TO-15	1,4-Dichlorobenzene	-	U
VMP-21-5-083012	TO-15	1,2-Dichlorobenzene	-	U
VMP-42-10-083012	TO-15	Carbon disulfide	-	U
VMP-42-10-083012	TO-15	Chlorobenzene	-	U
VMP-42-10-083012	TO-15	1,2-Dichlorobenzene	-	U
VMP-4-5-083012	TO-15	1,3-Dichlorobenzene	-	U
VMP-4-5-083012	TO-15	1,4-Dichlorobenzene	-	U
VMP-4-5-083012	TO-15	1,2-Dichlorobenzene	-	U
VMP-11-5-083112	TO-15	Chlorobenzene	-	U
VMP-11-5-083112	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-083112	TO-15	Chlorobenzene	-	U
VMP-13-5-083112	TO-15	1,3-Dichlorobenzene	-	U
VMP-13-5-083112	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-083112	TO-15	1,2-Dichlorobenzene	-	U
VMP-10-5-083112	TO-15	Chlorobenzene	-	U
VMP-10-5-083112	TO-15	1,4-Dichlorobenzene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	$\begin{aligned} & \hline \hline \text { LCS/ } \\ & \text { LCSD } \\ & \text { RPD } \end{aligned}$	$\begin{gathered} \text { LCS/ } \\ \text { LCSD/RPD } \\ \text { Criteria } \end{gathered}$
$\begin{aligned} & \hline \text { 1209007A } \\ & \text {-09A/AA } \end{aligned}$	TO-15	Freon 12	142/144	1	70-130/25
$\begin{aligned} & 1209007 \mathrm{~A} \\ & -09 \mathrm{~A} / \mathrm{AA} \\ & \hline \end{aligned}$	TO-15	Freon 114	135/146	8	70-130/25
$\begin{gathered} \hline 1209007 \mathrm{~A} \\ -09 \mathrm{~A} / \mathrm{AA} \\ \hline \end{gathered}$	TO-15	Freon 11	137/140	2	70-130/25
$\begin{gathered} \hline 1209007 \mathrm{~A} \\ -09 \mathrm{~A} / \mathrm{AA} \\ \hline \end{gathered}$	TO-15	Freon 113	136/135	1	70-130/25
$\begin{gathered} \hline 1209007 \mathrm{~A} \\ -09 \mathrm{~A} / \mathrm{AA} \\ \hline \end{gathered}$	TO-15	1,1-Dichloroethene	140/142	1	70-130/25

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	LCS/ LCSD RPD	LCSD/RPD Criteria
1209007A $-09 A / A A ~$	TO-15	Carbon disulfide	$132 / 134$	2	$70-130 / 25$
1209007A $-09 A / A A$	TO-15	Methyl tert-butyl ether	$129 / 133$	3	$70-130 / 25$
1209007A $-09 A / A A$	TO-15	trans-1,2-Dichloroethene	$130 / 137$	5	$70-130 / 25$
1209007A $-09 A / A A ~$	TO-15	$1,1,1-T r i c h l o r o e t h a n e ~$	$133 / 133$	0	$70-130 / 25$
1209007A $-09 A / A A ~$	TO-15	Carbon tetrachloride	$133 / 130$	2	$70-130 / 25$

Analytical data that required qualification based on LCS data are included in the table below. LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
VMP-21-5-083012	TO-15	Freon 12	J
VMP-21-5-083012	TO-15	Freon 11	J
VMP-42-10-083012	TO-15	Freon 12	J
VMP-42-10-083012	TO-15	Freon 11	J
VMP-42-10-083012	TO-15	trans-1,2-Dichloroethene	J
VMP-4-5-083012	TO-15	Freon 12	J
VMP-4-5-083012	TO-15	Carbon disulfide	J
VMP-11-5-083112	TO-15	Freon 12	J
VMP-11-5-083112	TO-15	Freon 11	J
VMP-11-5-083112	TO-15	Carbon disulfide	J
VMP-13-5-083112	TO-15	Freon 12	J
VMP-13-5-083112	TO-15	Freon 11	J
VMP-13-5-083112	TO-15	Carbon disulfide	J
VMP-10-5-083112	TO-15	Freon 12	J
VMP-10-5-083112	TO-15	Freon 11	J
VMP-10-5-083112	TO-15	Carbon disulfide	J

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
The CCV percent recovery for acetone was outside evaluation criteria as summarized in the table below.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
1209007 A-08A	TO-15	Acetone	68	$70-130$

Data requiring qualification based on CCV recoveries are summarized in the following table.

Sample ID	Parameter	Analyte	Qualification
VMP-21-5-083012	TO-15	Acetone	J
VMP-42-10-083012	TO-15	Acetone	J
VMP-4-5-083012	TO-15	Acetone	J
VMP-11-5-083112	TO-15	Acetone	J
VMP-13-5-083112	TO-15	Acetone	J
VMP-10-5-083112	TO-15	Acetone	J

eurofins

Air Toxics

Abstract

9/24/2012 Ms. Elizabeth Kunke! URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1209007A Dear Ms. Elizabeth Kunkel The following report includes the data for the above referenced project for samples) received on 9/4/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettiner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buetner

Project Manager

Air Toxics

WORK ORDER \#: 1209007A

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel
	URS Corporation
	1001 Highlands Plaza Dr. West
	Suite 300
	St. Louis, MO 63110
PHONE:	$314-743-4179$
FAX:	
DATE RECEIVED:	$09 / 04 / 2012$
DATE COMPLETED:	$09 / 24 / 2012$

BILL TO: Accounts Payable Austin
 URS Corporation P.O. BOX 203970
 Austin, TX 78720-1088

P.O. \#

PROJECT \# 21562735.10100 Roxana Vapor CONTACT: Kedfy Bualtner

TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
Modified TO-15/TICs	10.0 "Hg	15 psi
Modified TO-15/TICs	11.0 "Hg	15 psi
Modified TO-15/TICs	11.0 "Hg	15 psi
Modified TO-15/TICs	8.5 " Hg	15 psi
Modified TO-15/TICs	$9.0{ }^{10} \mathrm{Hg}$	15 psi
Modified TO-15/TICs	9.0 " Hg	15 psi
Modified TO-15/TICs	NA	NA
Modified 'TO-15/TICs	NA	NA
Modified TO-15/TICs	NA	NA
Modified TO-15/TICs	NA	NA

DATE: $\quad \underline{09 / 24 / 12}$
Technical Director

FRACTION \#	NAME
01A	VMP-21-5-083012
02A	VMP-42-10-083012
03A	VMP-4-5-083012
04A	VMP-11-5-083112
05A	VMP-13-5-083112
06A	VMP-10-5-083112
07A	Lab Blank
08A	CCV
09A	LCS
09AA	LCSD

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1209007A

Six 1 Liter Summa Canister samples were received on September 04, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Oualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified

Air Toxics

b-File was quantified by a second column and detector rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-083012
Lab 1D\#: 1209007A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.49 J J	7.5	2.4 J J
Freon 11	1.5	0.32 J J	8.5	1.8 J J
Ethanol	6.1	23	11	44
Acetone	15	11 JJ	36	27 J J
2-Propanol	6.1	17	15	41
Carbon Disulfide	6.1	-1.4-5 4	19	-4.5-d-
Methylene Chloride	15	0.36 J	53	1.2 J
2-Butanone (Methyl Ethyl Ketone)	6.1	15	18	43
cis-1,2-Dichloroethene	1.5	0.73 J	6.0	2.9 J
Cyclohexane	1.5	0.32 J	5.2	1.1 J
2,2,4-Trimethylpentane	1.5	1.8	7.1	8.6
Benzene	1.5	5.7	4.8	18
Heptane	1.5	0.27 J	6.2	1.1 J
Trichloroethene	1.5	2.1	8.1	11
cis-1,3-Dichloropropene	1.5	0.34 J	6.9	1.5 J
4-Methyl-2-pentanone	1.5	37	6.2	150
Toluene	1.5	3.7	5.7	14
Tetrachloroethene	1.5	0.52 J	10	3.5 J
Chlorobenzene	1.5	1.3-4	7.0	-6.7-4
Ethyl Benzene	1.5	0.49 J	6.6	2.15
m,p-Xylene	1.5	1.15	6.6	4.6 J
o-Xylene	1.5	0.45 J	6.6	2.0 J
Styrene	1.5	0.54 J	6.4	2.3 J
Cumene	1.5	13	7.4	64
Propylbenzene	1.5	0.36 J	7.4	1.8 J
1,3,5-Trimethylbenzene	1.5	0.26 J	7.4	1.3 J
1,2,4-Trimethylbenzene	1.5	0.82 J	7.4	4.0 J
1,3-Dichlorobenzene	1.5	-0.36-2 4	9.1	$-2.2+4$
1,4-Dichlorobenzene	1.5	0.53-5-4	9.1	-3:2-5-4
1,2-Dichlorobenzene	1.5	-0.29- 4	9.1	$-1.75-4$

TENTATIVELY IDENTIFIED COMPOUNDS

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-083012
Lab ID\#: 1209007A-01A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Heptene, 3-methyl-	$4810-09-7$	50%	42 NJ
Unknown	NA	NA	76 J
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	64%	36 NJ
Unknown	NA	NA	30 J
Unknown	NA	NA	35 J
Decane, 2,2-dimethyl-	$17302-37-3$	53%	91 NJ
Dodecane, 2,7,10-trimethyl-	$74645-98-0$	53%	86 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	64%	190 NJ
Unknown	NA	NA	51 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	59%	110 NJ

Client Sample ID: VMP-42-10-083012
Lab ID\#: 1209007A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)		Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.70 J	5	7.9	3.4 J
Freon 11	1.6	0.29 J	J	9.0	1.6 J
Ethanol	6.4	49		12	93
Acetone	16	18 J	5	38	43 J
2-Propanol	6.4	34		16	84
Carbon Disulfide	6.4	-1.75		20	3.55
Methylene Chloride	16	0.64 J		55	2.2 J
trans-1,2-Dichloroethene	1.6	0.37 J	T	6.3	1.5 J
Hexane	1.6	1.0 J		5.6	3.6 J
2-Butanone (Methyl Ethyl Ketone)	6.4	26		19	76
Chloroform	1.6	0.71 J		7.8	3.4 J
2,2,4-Trimethylpentane	1.6	0.42 J		7.4	2.0 J
Benzene	1.6	8.6		5.1	28
Heptane	1.6	2.2		6.5	9.2
Trichloroethene	1.6	1.4 J		8.6	7.4 J
4-Methyl-2-pentanone	1.6	76		6.5	310
Toluene	1.6	6.4		6.0	24

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-083012					
Lab ID\#: 1209007A-02A					
Chlorobenzene	1.6	4.35	4	7.3	-5.9 J h
Ethyl Benzene	1.6	0.35 J		6.9	1.5 J
m,p-Xylene	1.6	2.0		6.9	8.7
o-Xylene	1.6	0.56 J		6.9	2.4 J
Styrene	1.6	0.74 J		6.8	3.2 J
Cumene	1.6	32		7.8	160
Propylbenzene	1.6	0.31 J		7.8	1.5 J
4-Ethyltoluene	1.6	1.1 J		7.8	5.6 J
1,3,5-Trimethylbenzene	1.6	0.42 J		7.8	2.1 J
1,2,4-Trimethylbenzene	1.6	0.99 J		7.8	4.9 J
1,4-Dichlorobenzene	1.6	0.63 J		9.6	3.8 J
1,2-Dichlorobenzene	1.6	-0.47-4 4		9.6	. 2.8 d

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
2-Heptene	$592-77-8$	47%	79 NJ
Unknown	NA	NA	150 J
1-Heptene, 3-methyl-	$4810-09-7$	53%	69 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	78%	59 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	180 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	56 NJ
Tetradecane, 2,5-dimethyl-	$56292-69-4$	72%	190 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	390 NJ
Unknown	NA	NA	110 J
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	59%	190 NJ

Client Sample ID: VMP-4-5-083012
Lab ID\#: 1209007A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)		Rpt. Limit ($\mathrm{ug} / \mathrm{m} 3$)	Amount (ug/m3)	
Freon 12	1.9	0.60 J		9.6	3.0 J	T
Ethanol	7.7	74		14	140	
Acetone	19	28 J	5	46	67 J	5
2-Propanol	7.7	35		19	86	
Carbon Disulfide	7.7	2.5 J	J	24	7.7 J	J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-083012				
Lab ID\#: 1209007A-03A				
Methylene Chloride	19	0.67 J	67	2.3 J
Hexane	1.9	0.91 J	6.8	3.2 J
2-Butanone (Methyl Ethyl Ketone)	7.7	32	23	96
Chloroform	1.9	0.39 J	9.4	1.9 J
2,2,4-Trimethylpentane	1.9	0.75 J	9.0	3.5 J
Benzene	1.9	83	6.2	260
Trichloroethene	1.9	1.8 J	10	9.9 J
4-Methyl-2-pentanone	1.9	81	7.9	330
Toluene	1.9	8.7	7.3	33
Tetrachloroethene	1.9	0.46 J	13	3.1 J
Chlorobenzene	1.9	1.8 J	8.9	8.2 J
Ethyl Benzene	1.9	0.89 J	8.4	3.9 J
m,p-Xylene	1.9	2.6	8.4	11
o-Xylene	1.9	1.0 J	8.4	4.3 J
Styrene	1.9	1.0 J	8.2	4.4 J
Cumene	1.9	35	9.5	170
Propylbenzene	1.9	0.50 J	9.5	2.4 J
4-Ethyltoluene	1.9	1.4 J	9.5	6.7 J
1,3,5-Trimethylbenzene	1.9	0.50 J	9.5	2.5 J
1,2,4-Trimethylbenzene	1.9	1.3 J	9.5	6.6 J
1,3-Dichlorobenzene	1.9	.0.67-J 4	12	$-3.4 \mathrm{~J}-4$
1,4-Dichlorobenzene	1.9	-0.49-d in	12	-2.9才-4
1,2-Dichlorobenzene	1.9	-0.42J M	12	-2.554
Butane	7.7	9.9	18	24
isopentane	7.7	11	23	32

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
2-Heptenal, (Z)-	$57266-86-1$	59%	89 NJ
Unknown	NA	NA	160 J
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	81 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	72%	220 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	64%	72 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	250 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	590 NJ

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-083012
Lab ID\#: 1209007A-03A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	200 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	53%	360 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	71 NJ

Client Sample ID: VMP-11-5-083112
Lab ID\#: 1209007A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.68 JJ	7.0	3.4 J J
Bromomethane	14	0.94 J	55	3.7 J
Freon 11	1.4	0.28 J J	7.9	1.6 J J
Ethanol	5.6	36	11	68
Acetone	14	15 J J	33	35 J J
2-Propanol	5.6	14	14	35
Carbon Disulfide	5.6	3.1 J J	18	9.8 JJ
2-Butanone (Methyl Ethyl Ketone)	5.6	14	17	43
Chloroform	1.4	0.85 J	6.9	4.1 J
2,2,4-Trimethylpentane	1.4	0.41 J	6.6	1.9 J
Benzene	1.4	44	4.5	140
Heptane	1.4	0.46 J	5.8	1.9 J
Trichloroethene	1.4	0.83 J	7.6	4.5 J
Bromodichloromethane	1.4	0.58 J	9.4	3.9 J
4-Methyl-2-pentanone	1.4	34	5.8	140
Toluene	1.4	3.4	5.3	13
Dibromochloromethane	1.4	0.71 J	12	6.0 J
Chlorobenzene	1.4	-74-4	6.5	-6.5-4
Ethyl Benzene	1.4	0.53 J	6.1	2.3 J
m,p-Xylene	1.4	0.96 J	6.1	4.2 J
o-Xyiene	1.4	0.38 J	6.1	1.6 J
Styrene	1.4	0.32 J	6.0	1.4 J
Bromoform	1.4	1.3 J	14	14 J
Cumene	1.4	12	6.9	61

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-083112				
Lab ID\#: 1209007A-04A				
Propylbenzene	1.4	0.33 J	6.9	1.6 J
4-Ethyltoluene	1.4	0.52 J	6.9	2.6 J
1,3,5-Trimethylbenzene	1.4	0.27 J	6.9	1.3 J
1,2,4-Trimethylbenzene	1.4	0.63 J	6.9	3.1 J
1,4-Dichlorobenzene	1.4	$0.34 \mathrm{Jn} \wedge$	8.5	$-2.0 \mathrm{~J}-4$

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	40 J
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	40%	69 NJ
Cyclopentane, 1,2,3-trimethyl-, (1.alpha	$2613-69-6$	72%	32 NJ
Unknown	NA	NA	37 J
Pentane, 2,2,3,4-tetramethyl-	$1186-53-4$	59%	37 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	59%	96 NJ
Undecane, 5,5-dimethyl-	$17312-73-1$	59%	95 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	220 NJ
Unknown	NA	NA	69 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	72%	150 NJ

Client Sample ID: VMP-13-5-083112
Lab ID\#: 1209007A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.4	0.69 J J	7.1	3.4 J J
Freon 11	1.4	0.36 J J	8.1	2.0 J J
Ethanol	5.8	34	11	65
Acetone	14	14 J J	34	33 J J
2-Propanol	5.8	13	14	32
Carbon Disulfide	5.8	3.8 J J	18	12 J J J
Hexane	1.4	0.66 J	5.1	2.3 J
2-Butanone (Methyl Ethyl Ketone)	5.8	12	17	36
Chloroform	1.4	0.54 J	7.0	2.6 J
2,2,4-Trimethylpentane	1.4	5.1	6.8	24
Benzene	1.4	39	4.6	120
Heptane	1.4	0.80 J	5.9	3.3 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-083112					
Lab 1D\#: 1209007A-05A					
Trichloroethene	1.4	0.99 ل	7.8	5.3 J	
4-Methyl-2-pentanone	1.4	34	5.9	140	
Toluene	1.4	3.6	5.4	14	
Chlorobenzene	1.4	10.tm 4	6.6	4.7- 5	4
Ethyl Benzene	1.4	0.54 J	6.3	2.4 J	
m,p-Xylene	1.4	0.76 J	6.3	3.3 J	
o-Xylene	1.4	0.43 J	6.3	1.9 J	
Styrene	1.4	0.40 J	6.2	1.7 J	
Cumene	1.4	15	7.1	74	
Propylbenzene	1.4	0.22 J	7.1	1.1 J	
1,2,4-Trimethylbenzene	1.4	0.58 J	7.1	2.9 J	
1,3-Dichlorobenzene	1.4	-0.4454	8.7	2.6at	4
1,4-Dichlorobenzene	1.4	.0.30-5-4	8.7	-1.85	4
1,2-Dichlorobenzene	1.4	-0.26- 4	8.7	1.65	4
Isopentane	5.8	1.5 J	17	4.3 J	

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	39 J
Unknown	NA	NA	69 J
Cyclopentane, 1,2,3-trimethyl-, (1,alpha	$2613-69-6$	74%	32 NJ
Unknown	NA	NA	36 J
Decane, 2,2,5-trimethyl-	$62237-96-1$	64%	40 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	100 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	100 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	42%	240 NJ
Unknown	NA	NA	84 J
Decane, 2,5,6-trimethyl-	$62108-23-0$	59%	96 NJ

Client Sample ID: VMP-10-5-083112

Lab ID\#: 1209007A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $($ ug $/ \mathrm{m} 3)$	Amount $($ ug/m3 $)$
Freon 12	1.4	0.44 J J	7.1	2.2 J J
Freon 11	1.4	0.32 J J	8.1	1.8 JJJ

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-083112				
Lab ID\#: 1209007A-06A				
Ethanol	5.8	25	11	48
Acetone	14	11 J J	34	26 JJ
2-Propanol	5.8	9.6	14	23
Carbon Disulfide	5.8	2.3 JJ	18	7.1 J J
2-Butanone (Methyl Ethyl Ketone)	5.8	12	17	34
2,2,4-Trimethylpentane	1.4	0.20 J	6.8	0.94 J
Benzene	1.4	12	4.6	39
Trichloroethene	1.4	0.78 J	7.8	4.2 J
4-Methyl-2-pentanone	1.4	27	5.9	110
Toluene	1.4	2.5	5.4	9.3
Chlorobenzene	1.4	-10.054	6.6	-4.6-4
Ethyl Benzene	1.4	0.52 J	6.3	2.2 J
m,p-Xylene	1.4	0.88 J	6.3	3.8 J
o-Xylene	1.4	0.35 J	6.3	1.5 J
Styrene	1.4	0.42 J	6.2	1.8 J
Cumene	1.4	13	7.1	65
Propylbenzene	1.4	0.25 J	7.1	1.2 J
4-Ethyltoluene	1.4	0.78 J	7.1	3.8 J
1,2,4-Trimethylbenzene	1.4	0.42 J	7.1	2.1 J
1,4-Dichlorobenzene	1.4	0.27 J -	8.7	-1.6-d 4

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Cyclopentane, 2-ethyl-1,1-dimethyl-	$54549-80-3$	43%	30 NJ
Cycloheptane, methyl-	$4126-78-7$	53%	51 NJ
Unknown	NA	NA	38 J
Octane, 2,2,6-trimethyl-	$62016-28-8$	83%	30 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	64%	96 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	93 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	230 NJ
Unknown	NA	NA	77 J
Cyclohexanone, 4-methyl-	$589-92-4$	50%	120 NJ
Ethanone, 1-phenyl-	$98-86-2$	87%	32 NJ

eurofins

Air Toxics
Client Sample ID: VMP-21-5-083012
Lab ID\#: 1209007A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091214 \\ 3.03 \end{array}$	Date of Collection: 8/30/12 11:08:00 AM Date of Analysis: 9/12/12 04:25 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.49 J J	7.5	2.4 J J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	0.32 J J	8.5	1.8 J J
Ethanol	6.1	23	11	44
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	11 J J	36	27 J J
2-Propanol	6.1	17	15	41
Carbon Disulfide	6.1	1.4-5 u	19	$4.5 \mathrm{~J}-l_{i}$
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	0.36 J	53	1.2 J
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	Not Detected	5.3	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	15	18	43
cis-1,2-Dichloroethene	1.5	0.73 J	6.0	2.9 J
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	Not Detected	7.4	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	0.32 J	5.2	1.1 J
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	1.8	7.1	8.6
Benzene	1.5	5.7	4.8	18
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	0.27 J	6.2	1.15
Trichloroethene	1.5	2.1	8.1	11
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	0.34 J	6.9	1.5 J
4-Methyl-2-pentanone	1.5	37	6.2	150
Toluene	1.5	3.7	5.7	14
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichioroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	0.52 J	10	3.5 J
2-Hexanone	6.1	Not Detected	25	Not Detected

File Name: Dil. Factor:	$\begin{array}{r} \mathbf{j} 091214 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 8/30/12 11:08:00 AM Date of Analysis: 9/12/12 04:25 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	-4.350	7.0	-6:1-1 u
Ethyl Benzene	1.5	0.49 J	6.6	2.15
m,p-Xylene	1.5	1.1 J	6.6	4.6 J
o-Xylene	1.5	0.45 J	6.6	2.0 J
Styrene	1.5	0.54 J	6.4	2.3 J
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	13	7.4	64
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.36 J	7.4	1.8 J
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	0.26 J	7.4	1.3 J
1,2,4-Trimethylbenzene	1.5	0.82 J	7.4	4.0 J
1,3-Dichlorobenzene	1.5	-0.36-1	9.1	22-d 4
1,4-Dichlorobenzene	1.5	0.53 d	9.1	$-3.2-4$
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	-0.29y is	9.1	$-1.7 \mathrm{~d}$
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	Not Detected	18	Not Detected
Ethyl Acetate	6.1	Not Defected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Heptene, 3-methyl-	$4810-09-7$	50%	42 NJ
Unknown	NA	NA	76 J
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	64%	36 NJ
Unknown	NA	NA	30 J
Unknown	NA	NA	35 J
Decane, 2,2-dimethyl-	$17302-37-3$	53%	91 NJ
Dodecane, 2,7,10-trimethyl-	$74645-98-0$	53%	86 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	64%	190 NJ
Unknown	NA	NA	51 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	59%	110 NJ

Air Toxics

\section*{Client Sample ID: VMP-21-5-083012
 Lab ID\#: 1209007A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | j 091214 | Date of Collection: $8 / 30 / 12$ 11:08:00 AM |
| :--- | ---: | :--- |
| Dil. Factor: | 3.03 | Date of Analysis: $9 / 12 / 1204: 25 \mathrm{PM}$ |}

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	99	$70-130$
1,2-Dichloroethane-d4	103	$70-130$
4-Bromofluorobenzene	104	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-42-10-083012
Lab ID\#: 1209007A-02A
EPA METHOD TO-15 GC/MS FULL, SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091215 \\ 3.19 \\ \hline \end{array}$	Date of Collection: 8/30/12 12:15:00 PM Date of Analysis: 9/12/12 05:17 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.70 J J	7.9	3.4 J
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	33	Not Detected
Vinyl Chioride	1.6	Not Detected	4.1	Not Detected
1,3-Butadiene	1.6	Not Detected	3.5	Not Detected
Bromomethane	16	Not Detected	62	Not Detected
Chloroethane	6.4	Not Detected	17	Not Detected
Freon 11	1.6	0.29 J J	9.0	1.6 J ?
Ethanol	6.4	49	12	93
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Acetone	16	18J J	38	43 J '
2-Propanol	6.4	34	16	84
Carbon Disulfide	6.4	4.4504	20	-3.5] 4
3-Chloropropene	6.4	Not Detected	20	Not Detected
Methylene Chloride	16	0.64 J	55	2.2 J
Methyl tert-butyl ether	1.6	Not Detected	5.8	Not Detected
trans-1,2-Dichloroethene	1.6	0.37 J - ${ }^{\text {d }}$	6.3	1.5 J J
Hexane	1.6	1.0 J	5.6	3.6 J
1.1-Dichloroethane	1.6	Not Detected	6.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.4	26	19	76
cis-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.7	Not Detected
Chloroform	1.6	0.71 J	7.8	3.4 J
1,1,1-Trichloroethane	1.6	Not Detected	8.7	Not Detected
Cyclohexane	1.6	Not Detected	5.5	Not Detected
Carbon Tetrachloride	1.6	Not Detected	10	Not Detected
2,2,4-Trimethylpentane	1.6	0.42 J	7.4	2.0 J
Benzene	1.6	8.6	5.1	28
1,2-Dichloroethane	1.6	Not Detected	6.4	Not Detected
Heptane	1.6	2.2	6.5	9.2
Trichloroethene	1.6	1.4 J	8.6	7.4 J
1,2-Dichloropropane	1.6	Not Detected	7.4	Not Detected
1,4-Dioxane	6.4	Not Detected	23	Not Detected
Bromodichloromethane	1.6	Not Detected	11	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
4-Methyl-2-pentanone	1.6	76	6.5	310
Toluene	1.6	6.4	6.0	24
trans-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.7	Not Detected
Tetrachloroethene	1.6	Not Detected	11	Not Detected
2-Hexanone	6.4	Not Detected	26	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-42-10-083012
Lab ID\#: 1209007A-02A
ERA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091215 \\ 3.19 \\ \hline \end{array}$	Date of Collection: 8/30/12 12:15:00 PM Date of Analysis: 9/12/12 05:17 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	14	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12.	Not Detected
Chlorobenzene	1.6	7.3.5-	7.3	5.9.du h
Ethyl Benzene	1.6	0.35 J	6.9	1.5 J
m , p -Xylene	1.6	2.0	6.9	8.7
o-Xylene	1.6	0.56 J	6.9	2.4 J
Styrene	1.6	0.74 J	6.8	3.2 J
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	32	7.8	160
1,1,2,2-Tetrachloroethane	1.6	Not Delected	11	Not Detected
Propylbenzene	1.6	0.31 J	7.8	1.5 J
4-Ethyltoluene	1.6	1.1 J	7.8	5.6 J
1,3,5-Trimethylbenzene	1.6	0.42 J	7.8	2.1 J
1,2,4-Trimethylbenzene	1.6	0.99 J	7.8	4.9 J
1,3-Dichlorobenzene	1.6	Not Detected	9.6	Not Detected
1,4-Dichlorobenzene	1.6	0.63 J	9.6	3.8 J
alpha-Chlorotoluene	1.6	Not Detected	8.2	Not Detected
1,2-Dichlorobenzene	1.6	-0.47J U	9.6	-2:85
1,2,4-Trichlorobenzene	6.4	Not Delected	47	Not Detected
Hexachlorobutadiene	6.4	Not Defected	68	Not Detected
Butane	6.4	Not Defected	15	Not Detected
Isopentane	6.4	Not Detected	19	Not Detected
Ethyl Acetate	6.4	Not Detected	23	Not Detected
Propylene	6.4	Not Detected	11	Not Detected
Vinyl Acetate	6.4	Not Detected	22	Not Detected
Vinyl Bromide	6.4	Not Detected	28	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
2-Heptene	$592-77-8$	47%	79 NJ
Unknown	NA	NA	150 J
1-Heptene, 3-methyl-	$4810-09-7$	53%	69 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	78%	59 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	180 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	56 NJ
Tetradecane, 2,5-dimethyl-	$56292-69-4$	72%	190 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	390 NJ
Unknown	NA	NA	110 J
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	59%	190 NJ

Air Toxics

Client Sample ID: VMP-42-10-083012
Lab ID\#: 1209007A-02A

EPA METHOD TO-15 GC/MS FULLSCAN

File Name:	$j 091215$	Date of Collection: $8 / 30 / 12$ 12:15:00 PM
Dil. Factor:	3.19	Date of Analysis: $9 / 12 / 1205: 17 \mathrm{PM}$

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	97	$70-130$
4-Bromofluorobenzene	108	$70-130$

eurofins

Air Toxics

Client Sample 1D: VMP-4-5-083012
Lab ID\#: 1209007A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091216 \\ 3.87 \\ \hline \end{array}$	Date of Collection: 8/30/12 1:15:00 PM Date of Analysis: 9/12/12 05:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.9	0.60 J J	9.6	3.0 J - J
Freon 114	1.9	Not Detected	14	Not Detected
Chloromethane	19	Not Detected	40	Not Detected
Vinyl Chloride	1.9	Not Detected	4.9	Not Detected
1,3-Butadiene	1.9	Not Detected	4.3	Not Detected
Bromomethane	19	Not Detected	75	Not Detected
Chloroethane	7.7	Not Detected	20	Not Detected
Freon 11	1.9	Not Detected	11	Not Detected
Ethanol	7.7	74	14	140
Freon 113	1.9	Not Detected	15	Not Detected
1,1-Dichforoethene	1.9	Not Detected	7.7	Not Detected ,
Acetone	19	28 J J	46	67 J
2-Propanol	7.7	35	19	86
Carbon Disulfide	7.7	2.5 J J	24	7.7 J J
3-Chloropropene	7.7	Not Detected	24	Not Detected
Methylene Chloride	19	0.67 J	67	2.3 J
Methyl tert-butyl ether	1.9	Not Detected	7.0	Not Detected
trans-1,2-Dichloroethene	1.9	Not Detected	7.7	Not Detected
Hexane	1.9	0.91 J	6.8	3.2 J
1,1-Dichloroethane	1.9	Not Detected	7.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	7.7	32	23	96
cis-1,2-Dichloroethene	1.9	Not Detected	7.7	Not Detected
Tetrahydrofuran	1.9	Not Detected	5.7	Not Detected
Chloroform	1.9	0.39 J	9.4	1.9 J
1,1,1-Trichloroethane	1.9	Not Detected	10	Not Detected
Cyclohexane	1.9	Not Detected	6.7	Not Detected
Carbon Tetrachloride	1.9	Not Detected	12	Not Detected
2,2,4-Trimethylpentane	1.9	0.75 J	9.0	3.5 J
Benzene	1.9	83	6.2	260
1,2-Dichloroethane	1.9	Not Detected	7.8	Not Detected
Heptane	1.9	Not Detected	7.9	Not Detected
Trichloroethene	1.9	1.8 J	10	9.9 J
1,2-Dichloropropane	1.9	Not Detected	8.9	Not Detected
1,4-Dioxane	7.7	Not Detected	28	Not Detected
Bromodichloromethane	1.9	Not Detected	13	Not Detected
cis-1,3-Dichloropropene	1.9	Not Detected	8.8	Not Detected
4-Methyl-2-pentanone	1.9	81	7.9	330
Toluene	1.9	8.7	7.3	33
trans-1,3-Dichloropropene	1.9	Not Detected	8.8	Not Detected
1,1,2-Trichloroethane	1.9	Not Detected	10	Not Detected
Tetrachloroethene	1.9	0.46 J	13	3.1 J
2-Hexanone	7.7	Not Detected	32	Not Detected

Page 19 of 38

Air Toxics
Client Sample ID: VMP-4-5-083012
Lab ID\#: 1209007A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091216 \\ 3.87 \\ \hline \end{array}$	Date of Collection: $8 / 30 / 12$ 1:15:00 PM Date of Analysis: 9/12/12 05:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.9	Not Detected	16	Not Detected
1,2-Dibromoethane (EDB)	1.9	Not Detected	15	Not Detected
Chlorobenzene	1.9	1.8 J	8.9	8.2 J
Ethyl Benzene	1.9	0.89 J	8.4	3.9 J
m,p-Xylene	1.9	2.6	8.4	11
a-Xylene	1.9	1.0 J	8.4	4.3 J
Styrene	1.9	1.0 J	8.2	4.4 J
Bromoform	1.9	Not Detected	20	Not Detected
Cumene	1.9	35	9.5	170
1,1,2,2-Tetrachtoroethane	1.9	Not Detected	13	Not Detected
Propylbenzene	1.9	0.50 J	9.5	2.4 J
4-Ethyltoluene	1.9	1.4 J	9.5	6.7 J
1,3,5-Trimethylbenzene	1.9	0.50 J	9.5	2.5 J
1,2,4-Trimethylbenzene	1.9	1.3 J	9.5	6.6 J
1,3-Dichlorobenzene	1.9	.0.57- u	12	-3.4. 4
1,4-Dichlorobenzene	1.9	$0.49-$ in	12	-290-4
alpha-Chlorotofuene	1.9	Not Detected	10	Not Detected
1,2-Dichlorobenzene	1.9	.0.42J M	12	.2.5.d. in
1,2,4-Trichlorobenzene	7.7	Not Detected	57	Not Detected
Hexachlorobutadiene	7.7	Not Detected	82	Not Detected
Butane	7.7	9.9	18	24
Isopentane	7.7	11	23	32
Ethyl Acetate	7.7	Not Detected	28	Not Detected
Propylene	7.7	Not Detected	13	Not Detected
Vinyl Acetate	7.7	Not Detected	27	Not Detected
Vinyl Bromide	7.7	Not Detected	34	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
2 -Heptenal, (Z)-	$57266-86-1$	59%	89 NJ
Unknown	NA	NA	160 J
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	81 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	72%	220 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	64%	72 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	72%	250 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	64%	590 NJ
Unknown	NA	NA	200 J
1 Pentanol, 4-methyl-2-propyl-	$54004-41-0$	53%	360 NJ
Ethanone, 1 -phenyl-	$98-86-2$	91%	71 NJ

Air Toxics

\section*{Client Sample ID: VMP-4-5-083012
 Lab ID\#: 1209007A-03A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | j 091216 | Date of Collection: $8 / 30 / 12$ 1:15:00 PM |
| :--- | ---: | :--- |
| Dil. Factor: | 3.87 | Date of Analysis: $9 / 12 / 1205: 44 \mathrm{PM}$ |}

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	102	$70-130$
4-Bromofluorobenzene	99	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-11-5-083112
 Lab ID\#: 1209007A-04A
 EPA METHOD TO-15 GC/MS FULL SCAN

Fite Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091217 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 8/31/12 9:12:00 AM Date of Analysis: 9/12/12 06:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.68 J)	7.0	3.4 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chioride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	14	0.94 J	55	3.7 J
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	0.28 J T	7.9	1.6 J J
Ethanol	5.6	36	11	68
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	15 J J	33	35 J
2-Propanol	5.6	14	14	35
Carbon Disulfide	5.6	3.1 J J	18	9.8 J J
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	49	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	Not Detected	5.0	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	14	17	43
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	0.85 J	6.9	4.1 J
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	0.41 J	6.6	1.9 J
Benzene	1.4	44	4.5	140
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	0.46 J	5.8	1.9 J
Trichloroethene	1.4	0.83 J	7.6	4.5 J
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	0.58 J	9.4	3.9 J
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	34	5.8	140
Toluene	1.4	3.4	5.3	13
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	Not Detected	9.6	Not Detected
2-Hexanone	5.6	Not Detected	23	Not Detected

File Name: Dil. Factor:	j091217 2.82	Date of Collection: 8/31/12 9:12:00 AM Date of Analysis: 9/12/12 06:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	0.71 J	12	6.0 J
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	1.4 u	6.5	-6.5-4
Ethyl Benzene	1.4	0.53 J	6.1	2.3 J
m,p-Xylene	1.4	0.96 J	6.1	4.2 J
o-Xylene	1.4	0.38 J	6.1	1.6 J
Styrene	1.4	0.32 J	6.0	1.4 J
Bromoform	1.4	1.3 J	14	14 J
Cumene	1.4	12	6.9	61
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	0.33 J	6.9	1.6 J
4-Ethyltoluene	1.4	0.52 J	6.9	2.6 J
1,3,5-Trimethylbenzene	1.4	0.27 J	6.9	1.3 J
1,2,4-Trimethylbenzene	1.4	0.63 J	6.9	3.1 J
1,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,4-Dichlorobenzene	1.4	0.34 J - 1	8.5	$-2 \theta-8$
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	Not Detected	13	Not Detected
Isopentane	5.6	Not Detected	17	Not Detected
Ethyl Acetate	5.6	Not Detected	20	Not Detected
Propylene	5.6	Not Detected	9.7	Not Detected
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

$J=$ Estimated value.
$J=$ Estimated value due to bias in the CCV .
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	40 J
Cyclopentane, 1-methyl-2-propyl-	$3728-57-2$	40%	69 NJ
Cyclopentane, 1,2,3-trimethyl-,	$2613-69-6$	72%	32 NJ
(1.alpha			
Unknown	NA	NA	37 J
Pentane, 2,2,3,4-tetramethyl-	$1186-53-4$	59%	37 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	59%	96 NJ
Undecane, 5,5-dimethyl-	$17312-73-1$	59%	95 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	220 NJ
Unknown	NA	NA	69 J

Air Toxics

Client Sample ID: VMP-11-5-083112
 Lab ID\#: 1209007A-04A
 EPA METHOD TO-15 GC/MS FULI, SCAN

File Name:	j091217			
Dil. Factor:	2.82	Date of Collection: 8/31/12 9:12:00 AM		
	TENTATIVELY IDENTIFIED COMPOUNDS			
		Date of Analysis: $9 / 12 / 1206: 24$ PM		

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	105	$70-130$
4-Bromofluorobenzene	100	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-13-5-083112
Lab ID\#: 1209007A-05A
EPA METHOD TO-15 GC/MS EULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 091218 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 8/31/12 10;07:00 AM Date of Analysis: 9/12/12 07:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.69 J	7.1	3.4 J J
Freon 114	1.4	Not Detected	10	Not Detected
Chioromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	0.36 J J	8.1	2.0 J T
Ethanot	5.8	34	11	65
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	14 J - $)$	34	33 s -
2-Propanol	5.8	13	14	32
Carbon Disulfide	5.8	3.8 J J	18	12 J J
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	0.66 J	5.1	2.3 J
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	12	17	36
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	0.54 J	7.0	2.6 J
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	5.1	6.8	24
Benzene	1.4	39	4.6	120
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	0.80 J	5.9	3.3 J
Trichloroethene	1.4	0.99 J	7.8	5.3 J
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	34	5.9	140
Toluene	1.4	3.6	5.4	14
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Delected	24	Not Detected

eurofins
Air Toxics

Client Sample ID: VMP-13-5-083112
Lab ID\#: 1209007A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091218 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 8/31/12 10:07:00 AM Date of Analysis: 9/12/12 07:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	1.05 4	6.6	-4.7.5 u
Ethyl Benzene	1.4	0.54 J	6.3	2.4 J
m,p-Xylene	1.4	0.76 J	6.3	3.3 J
o-Xylene	1.4	0.43 J	6.3	1.9 J
Styrene	1.4	0.40 J	6.2	1.7 J
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	15	7.1	74
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	0.22 J	7.1	1.1 J
4-Ethyitoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	0.58 J	7.1	2.9 J
1,3-Dichlorobenzene	1.4	-0.44才 u	8.7	-2.6- u
1,4-Dichlorobenzene	1.4	$-0.30 \mathrm{~d} u$	8.7	-18\% 4
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	..0.26-5 u	8.7	-1.6\% in
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Butane	5.8	Not Detected	14	Not Detected
Isopentane	5.8	1.5 J	17	4.3 J
Ethyl Acetate	5.8	Not Detected	21	Not Detected
Propylene	5.8	Not Detected	9.9	Not Detected
Vinyl Acetate	5.8	Not Detected	20	Not Detected
Vinyl Bromide	5.8	Not Detected	25	Not Detected

TENTATIVELY RENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	39 J
Unknown	NA	NA	69 J
Cyclopentane, 1,2,3-trimethyl-.	$2613-69-6$	74%	32 NJ
(1.alpha		NA	NA
Unknown	$62237-96-1$	64%	36 J
Decane, 2,2,5-trimethyl-	$17302-37-3$	64%	40 NJ
Decane, 2,2-dimethyl-	$62016-37-9$	72%	100 NJ
Octane, 2,4,6-trimethyl-	$1071-26-7$	42%	100 NJ
Heptane, 2,2-dimethyl-	NA	240 NJ	
Unknown	$62108-23-0$	NA	84 J
Decane, 2,5,6-trimethyl-		59%	96 NJ

Air Toxics

\section*{Client Sample ID: VMP-13-5-083112
 Lab ID\#: 1209007A-05A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | j 091218 | Date of Collection: $8 / 31 / 12$ 10:07:00 AM |
| :--- | ---: | :--- |
| Dil. Factor: | 2.89 | Date of Analysis: $9 / 12 / 12$ 07:00 PM |}

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	98	$70-130$
1,2-Dichloroethane-d4	106	$70-130$
4-Bromofluorobenzene	100	$70-130$

Air Toxics

Client Sample ID: VMP-10-5-083112
Lab ID\#: 1209007A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091219 \\ 2.89 \end{array}$	Date of Collection: 8/31/12 11:02:00 AM Date of Analysis: 9/12/12 07:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.44 J -	7.1	2.2 J ")
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	0.32 J S	8.1	1.8 J
Ethanol	5.8	25	11	48
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	11 J J	34	26 J J
2-Propanol	5.8	9.6	14	23
Carbon Disulfide	5.8	2.3 J 万	18	7.1 J - 5
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	50	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5.1	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	12	17	34
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	0.20 J	6.8	0.94 J
Benzene	1.4	12	4.6	39
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	0.78 J	7.8	4.2 J
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	27	5.9	110
Toluene	1.4	2.5	5.4	9.3
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Detected	24	Not Detected

Air Toxics

Client Sample ID: VMP-10-5-083112
Lab ID\#: 1209007A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 091219 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 8/31/12 11:02:00 AM Date of Analysis: 9/12/12 07:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ugim3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-4.0さ 4	6.6	-4.6J L_{1}
Ethyl Benzene	1.4	0.52 J	6.3	2.2 J
m,p-Xylene	1.4	0.88 J	6.3	3.8 J
o-Xylene	1.4	0.35 J	6.3	1.5 J
Styrene	1.4	0.42 J	6.2	1.8 J
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	13	7.1	65
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	0.25 J	7.1	1.2 J
4-Ethyitoluene	1.4	0.78 J	7.1	3.8 J
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	0.42 J	7.1	2.1 J
1,3-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,4-Dichlorobenzene	1.4	-.27才 4	8.7	1.6-d 4
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Butane	5.8	Not Detected	14	Not Detected
Isopentane	5.8	Not Detected	17	Not Detected
Ethyl Acetate	5.8	Not Detected	21	Not Detected
Propylene	5.8	Not Detected	9.9	Not Detected
Vinyl Acetate	5.8	Not Delected	20	Not Detected
Vinyl Bromide	5.8	Not Detected	25	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Cyclopentane,	$54549-80-3$	43%	30 NJ
2-ethyl-1,1-dimethyl-	$4126-78-7$	53%	$5 \uparrow \mathrm{NJ}$
Cycloheptane, methyl-	NA	NA	38 J
Unknown	$62016-28-8$	83%	30 NJ
Octane, 2,2,6-trimethyl-	$62237-96-1$	64%	96 NJ
Decane, 2,2,5-trimethyl-	$62016-37-9$	78%	93 NJ
Octane, 2,4,6-trimethyl-	$62237-97-2$	64%	230 NJ
Decane, 2,2,6-trimethyl-	NA	NA	77 J
Unknown	$589-92-4$	50%	120 NJ
Cyclohexanone, 4-methyl-	$98-86-2$	87%	32 NJ
Ethanone, 1-phenyl-			

\% eurofins

Air Toxics

Client Sample ID: VMP-10-5-083112

Lab ID\#: 1209007A-06A
EPA METHOD TO- 15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209007A-07A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091210a } \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: $9 / 12 / 12$ 01:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected UJ	12	Not Detected UJ
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	(0.38 J	6.2	(1.2)
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	(0.088 J	1.6	0.28 J
1,2-Dichloroethane	0.50	Not Detected	2.0	Not betected
Heptane	0.50	Not Detected	2.0	Not Delected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Deteeted	2.0	Not Detected
Toluene	0.50	0.11 J	1.9	0.40 J
trans-1,3-Dichloropropene	0.50	0.13 J	2.3	0.59 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209007A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091210a } \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/12/12 01:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	(0.30 J)	2.3	(1.4 J
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detecked	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	0.095 J	2.4	0.46 J
1,3-Dichlorobenzene	0.50	0.18 J	3.0	(1.1J)
1,4-Dichlorobenzene	0.50	(0.12J)	3.0	(0.69J)
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Defected
1,2-Dichlorobenzene	0.50	0.12 J	3.0	(0.73 J)
1,2,4 Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detecled	4.8	Not Detected
Isopentane	2.0	Not Defected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$\mathrm{UJ}=$ Non-detected compound associated with tow bias in the CCV and/or LCS.
$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
None Identified			
Container Type: NA - Not Applicable		Method	
		\%Recovery	Limits
Surrogates	91	$70-130$	
Toluene-d8	105	$70-130$	
1,2-Dichloroethane-d4	103	$70-130$	

eurofins

Air Toxics

Client Sample 1D: CCV Lab ID\#: 1209007A-08A		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 91203 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/12/12 09:18 AM
Compound		\%Recovery
Freon 12		120
Freon 114		120
Chloromethane		86
Vinyl Chloride		84
1,3-Butadiene		70
Bromomethane		108
Chloroethane		85
Freon 11		122
Ethanol		74
Freon 113		120
1,1-Dichloroethene		119
Acetone		(68Q)
2-Propanol		" 81
Carbon Disulfide		96
3-Chloropropene		102
Methylene Chloride		77
Methyl tert-butyl ether		113
trans-1,2-Dichloroethene		110
Hexane		86
1,1-Dichloroethane		87
2-Butanone (Methyl Ethyl Ketone)		100
cis-1,2-Dichloroethene		87
Tetrahydrofuran		76
Chloroform		103
1,1,1-Trichloroethane		116
Cyclohexane		97
Carbon Tetrachloride		115
2,2,4-Trimethylpentane		76
Benzene		94
1,2-Dichloroethane		109
Heptane		110
Trichloroethene		126
1,2-Dichloropropane		77
1,4-Dioxane		92
Bromodichloromethane		108
cis-1,3-Dichloropropene		95
4-Methyl-2-pentanone		78
Toluene		89
trans-1,3-Dichloropropene		111
1,1,2-Trichloroethane		96
Tetrachloroethene		103
2-Hexanone		84

eurofins

Air Toxics

Client Sample 1D: CCV
 Lab ID\#: 1209007A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j 091203 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/12/12 09:18 AM	
Compound		\%Recovery
Dibromochloromethane		114
1,2-Dibromoethane (EDB)		98
Chlorobenzene		83
Ethyl Benzene		101
m,p-Xylene		102
o-Xylene		101
Styrene		108
Bromoform		114
Cumene		109
1,1,2,2-Tetrachloroethane		71
Propylbenzene		107
4-Ethyltoluene		98
1,3,5-Trimethylbenzene		103
1,2,4-Trimethylbenzene		105
1,3-Dichlorobenzene		97
1,4-Dichlorobenzene		94
alpha-Chlorotoluene		110
1,2-Dichlorobenzene		96
1,2,4-Trichlorobenzene		102
Hexachlorobutadiene		123
Butane		80
Isopentane		76
Ethyl Acetate		70
Propyiene		71
Vinyl Acetate		97
Vinyl Bromide		108
$Q=$ Exceeds Quality Control limits.		
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	108	70-130

eurofins

Air Toxics

Client Sample ID: LCS
 Lab 1D\#: 1209007A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 091204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 12 / 12$ 09:52 AM

Compound	\%Recovery
Freon 12	(142Q)
Freon 114	(135Q)
Chloromethane	100
Vinyl Chloride	99
1,3-Butadiene	79
Bromomethane	116
Chloroethane	98 -
Freon 11	(137Q
Ethanol	79
Freon 113	(136Q)
1,1-Dichloroethene	(140 Q
Acetone	76
2-Propanol	93
Carbon Disulfide	132 Q
3-Chloropropene	122
Methylene Chloride	87
Methyl teri-butyl ether	129
trans-1,2-Dichloroethene	130
Hexane	95
1,1-Dichloroethane	102
2-Butanone (Methyl Ethyl Ketone)	109
cis-1,2-Dichloroethene	99
Tetrahydrofuran	82
Chloroform	119
1,1,1-Trichloroethane	(133 Q
Cyclohexane	113
Carbon Tetrachloride	(133Q)
2,2,4-Trimethylpentane	86
Benzene	106
1,2-Dichloroethane	119
Heptane	111
Trichloroethene	113
1,2-Dichloropropane	84
1,4-Dioxane	100
Bromodichloromethane	121
cis-1,3-Dichloropropene	105
4-Methyl-2-pentanone	84
Toluene	95
trans-1,3-Dichloropropene	120
1,1,2-Trichloroethane	98
Tetrachloroethene	108
2-Hexanone	87

eurofins

Air Toxics

Client Sample ID: LCS Lab ID\#: 1209007A-09A				
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091204 \\ 1.00 \\ \hline \end{array}$		Date of Collection: Date of Analysis:	$\begin{aligned} & \text { I: NA } \\ & \text { 9/12/12 09:52 AM } \end{aligned}$
Compound				\%Recovery
Dibromochloromethane				119
1,2-Dibromoethane (EDB)				108
Chlorobenzene				88
Ethyl Benzene				107
m,p-Xylene				110
o-Xylene				108
Styrene				115
Bromoform				119
Cumene				119
1,1,2,2-Tetrachloroethane				99
Propylbenzene				118
4-Ethyltoluene				105
1,3,5-Trimethylbenzene				109
1,2,4-Trimethylbenzene				110
1,3-Dichlorobenzene				102
1,4-Dichlorobenzene				103
alpha-Chlorotoluene				114
1,2-Dichlorobenzene				103
1,2,4-Trichlorobenzene				112
Hexachlorobutadiene				129
Butane				98
Isopentane				84
Ethyl Acetate				Not Spiked
Propylene				74
Vinyl Acetate				112
Vinyl Bromide				Not Spiked
$Q=$ Exceeds Quality Control limits.				
Container Type: NA - Not Applicable				
Surrogates		\%Recovery		Method Limits
Toluene-d8		99		70-130
1,2-Dichloroethane-d4		116		70-130
4-Bromofluorobenzene		109		70-130

eurofins

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209007A-09AA

EPA METHOD TO-15 GC/MS FULL SCAN

	$\mathbf{j i t e}$ Name:	$\mathbf{0 9 1 2 0 5}$
Dil. Factor:	1.00	Date of Collection: NA

Compound	\%Recovery
Freon 12	(144Q)
Freon 114	(146Q)
Chloromethane	99
Vinyl Chloride	97
1,3-Butadiene	83
Bromomethane	118
Chloroethane	102
Freon 11	140Q
Ethanol	80
Freon 113	135 Q
1,1-Dichloroethene	(142Q)
Acetone	78
2-Propanol	94
Carbon Disulfide	(134Q)
3-Chloropropene	128
Methylene Chloride	84
Methyl tert-butyl ether	(33Q
trans-1,2-Dichloroethene	(37Q)
Hexane	94
1,1-Dichloroethane	101
2-Butanone (Methyl Ethyl Ketone)	104
cis-1,2-Dichloroethene	97
Tetrahydrofuran	81
Chloroform	120
1,1,1-Trichloroethane	(133Q
Cyclohexane	115
Carbon Tetrachloride	130
2,2,4-Trimethylpentane	86
Benzene	100
1,2-Dichloroethane	114
Heptane	111
Trichloroethene	110
1,2-Dichloropropane	78
1,4-Dioxane	89
Bromodichloromethane	115
cis-1,3-Dichloropropene	100
4-Methyl-2-pentanone	81
Toluene	90
trans-1,3-Dichloropropene	116
1,1,2-Trichloroethane	103
Tetrachloroethene	106
2-Hexanone	88

eurofins

Air Toxics

Shell Oil Products Chain Of Custody Record
TEES

Gustody Seal Intact?
costiciasin
Y N None Temp

eurofins

Air Toxics

Abstract

9/18/2012 Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1209007B

Dear Ms. Elizabeth Kunkel The following report includes the data for the above referenced project for samples) received on 9/4/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1209007B
Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation
	1001 Highlands Plaza Dr. West
	Suite 300 St. Louis, MO 63110
PHONE:	$314-743-4179$
FAX:	
DATE RECEIVED:	$09 / 04 / 2012$
DATE COMPLETED:	$09 / 18 / 2012$

CERTIFIED BY:

DATE: \quad 09/18/12

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

Air Toxics

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1209007B

Six 1 Liter Summa Canister samples were received on September 04, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Axgon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a > $1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as $15 \%, ~ e i t h e r ~$ due analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J- Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-083012
Lab ID\#: 1209007B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	15
Nitrogen	0.30	80
Methane	0.00030	0.000046 J
Carbon Dioxide	0.030	5.2
Helium	0.15	0.20

Client Sample ID: VMP-42-10-083012
Lab 1D\#: 1209007B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.32	18
Nitrogen	0.32	80
Carbon Dioxide	0.032	1.8

Client Sample 1D: VMP-4-5-083012
Lab ID\#: 1209007B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.32	18
Nitrogen	0.32	81
Methane	0.00032	0.00019 J
Carbon Dioxide	0.032	1.2
Helium	0.16	0.054 J

Client Sample ID: VMP-11-5-083112
Lab ID\#: 1209007B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	18
Nitrogen	0.28	80
Methane	0.00028	0.000048 J
Carbon Dioxide	0.028	1.8

Air Toxics

Summary of Detected Compounds
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-13-5-083112
Lab ID\#: 1209007B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	18
Nitrogen	0.29	79
Methane	0.00029	0.000084 J
Carbon Dioxide	0.029	2.7
Helium	0.14	0.016 J
Client Sample ID: YMP-10-5-083112		Amount
Lab ID\#: 1209007B-06A	Rpt. Limit	$(\%)$
	$(\%)$	18
Compound	0.29	80
Oxygen	0.29	0.00014 J
Nitrogen	0.00029	1.5

eurofins

Air Toxics

Client Sample ID: VMP-21-5-083012

Lab ID\#: 1209007B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: VMP-42-10-083012

Lab ID\#: 1209007B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9090707 \\ 3.19 \end{array}$	Date of Collection: 8/30/12 12:15:00 PM Date of Analysis: 9/7/12 10:12 AM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.32	18
Nitrogen		0.32	80
Carbon Monoxide		0.032	Not Detected
Methane		0.00032	Not Detected
Carbon Dioxide		0.032	1.8
Ethane		0.0032	Not Detected
Ethene		0.0032	Not Detected
Helium		0.16	Not Detected

Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample ID: VMP-4-5-083012

Lab ID\#: 1209007B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics
Client Sample ID: VMP-11-5-083112
Lab ID\#: 1209007B-04A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9090709 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 8/31/12 9:12:00 AM Date of Analysis: 9/7/12 11:02 AM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.28	18
Nitrogen		0.28	80
Carbon Monoxide		0.028	Not Detected
Methane		0.00028	0.000048 J
Carbon Dioxide		0.028	1.8
Ethane		0.0028	Not Detected
Ethene		0.0028	Not Detected
Helium		0.14	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-13-5-083112
Lab 1D\#: 1209007B-05A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: VMP-10-5-083112
 Lab 1D\#: 1209007B-06A
 NATURAL GAS ANAI YSIS BY MODIEIED ASTM D-1946

File Name: 9090711 Dil. Factor: 2.89	Date of Colfection: 8/31/12 11:02:00 AM Date of Analysis: $9 / 7 / 12$ 11:55 AM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.29	18
Nitrogen	0.29	80
Carbon Monoxide	0.029	Not Detected
Methane	0.00029	0.00014 J
Carbon Dioxide	0.029	1.5
Ethane	0.0029	Not Detected
Ethene	0.0029	Not Detected
Helium	0.14	Not Detected
$\mathrm{J}=$ Estimated value.		
Container Type: 1 Liter Summa Canister		

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209007B-07A

NATURAI, GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9090705 a Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/7/12 09:18 AM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.10	Q. 012 J
Nitrogen	0.10	0.062 y
Carbon Monoxide	0.010	Not Detected
Methane	0.00010	Not Detected
Carbon Dioxide	0.010	Not Detected
Ethane	0.0010	Not Detected
Ethene	0.0010	Not Detected
$J=$ Estimated value.		
Container Type: NA - Not Applicable		

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209007B-07B

NATURAL GAS ANALYSIS BX MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1209007B-08A
 NATURAL GAS ANALYSIS BX MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9090702 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/7/12 07:37 AM
Compound		\%Recovery
Oxygen		99
Nitrogen		100
Carbon Monoxide		99
Methane		98
Carbon Dioxide		98
Ethane		100
Ethene		96
Helium		100

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209007B-08AA
 NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name: 9090735 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/7/12 11:04 PM
Compound	\%Recovery
Oxygen	100
Nitrogen	100
Carbon Monoxide	97
Methane	97
Carbon Dioxide	100
Ethane	98
Ethene	95
Helium	100
Container Type: NA - Not Applicable	

(1) Shell Oil Products Chain Of Custody Record
(T1 ${ }^{2}$

Gustody Seal Intact?
aserthantion
Y N None Temp Vif

Roxana Soil Vapor Additional - Week 5-2012 Data Review

Laboratory SDG: 1209148A,B

Data Reviewer: Melissa Mansker

Peer Reviewer: Elizabeth Kunkel
Date Reviewed: 9/25/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-090512	VMP-42-10-090512
VMP-4-5-090512	VMP-11-5-090612
VMP-13-5-090612	VMP-10-5-090612

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Although not indicated in the laboratory case narrative, analytes were detected in the method blank. This issue is addressed further in the appropriate section below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209148A-07A	TO-15	Carbon disulfide	$0.36 \mathrm{ppbv} / 1.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	Methylene chloride	$0.13 \mathrm{ppbv} / 0.45 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	Benzene	$0.072 \mathrm{ppbv} / 0.23 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	cis-1,3-Dichloropropene	$0.099 \mathrm{ppbv} / 0.45 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	Toluene	$0.11 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	trans-1,3-Dichloropropene	$0.12 \mathrm{ppbv} / 0.56 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	Chlorobenzene	$0.45 \mathrm{ppbv} / 2.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209148A-07A	TO-15	Ethyl benzene	$0.098 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209148 \mathrm{~A}-07 \mathrm{~A}$	TO-15	1,1,2,2-Tetrachloroethane	$0.073 \mathrm{ppbv} / 0.50 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209148 \mathrm{~A}-07 \mathrm{~A}$	TO-15	1,3 -Dichlorobenzene	$0.15 \mathrm{ppbv} / 0.89 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209148 \mathrm{~A}-07 \mathrm{~A}$	TO-15	1,4 -Dichlorobenzene	$0.17 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1209148A-07A	TO-15	alpha-Chlorotoluene	$0.11 \mathrm{ppbv} / 0.56 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209148 \mathrm{~A}-07 \mathrm{~A}$	TO-15	1,2-Dichlorobenzene	$0.16 \mathrm{ppbv} / 0.99 \mathrm{gg} / \mathrm{m}^{3}$
1209148B-07A	Natural gases	Oxygen	0.0079%
$1209148 \mathrm{~B}-07 \mathrm{~A}$	Natural gases	Nitrogen	0.033%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-090512	TO-15	Carbon disulfide	-	U
VMP-21-5-090512	TO-15	trans-1,3-Dichloropropene	-	U
VMP-21-5-090512	TO-15	Chlorobenzene	-	U
VMP-21-5-090512	TO-15	Ethyl benzene	-	U
VMP-21-5-090512	TO-15	1,3-Dichlorobenzene	-	U
VMP-21-5-090512	TO-15	1,4-Dichlorobenzene	-	U
VMP-21.5-090512	TO-15	1,2-Dichlorobenzene	-	U
VMP-42-10-090512	TO-15	Carbon disulfide	-	U
VMP-42-10-090512	TO-15	Chlorobenzene	-	U
VMP-42-10-090512	TO-15	1,3-Dichlorobenzene	-	U
VMP-42-10-090512	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-090512	TO-15	1,2-Dichlorobenzene	-	U
VMP-4-5-090512	TO-15	Carbon disulfide	-	U
VMP-4-5-090512	TO-15	trans-1,3-Dichloropropene	-	U
VMP-4-5-090512	TO-15	Chlorobenzene	-	U
VMP-4-5-090512	TO-15	1,3-Dichlorobenzene	-	U
VMP-4-5-090512	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-090612	TO-15	Carbon disulfide	-	U
VMP-11-5-090612	TO-15	trans-1,3-Dichloropropene	-	U
VMP-11-5-090612	TO-15	Chlorobenzene	-	U
VMP-11-5-090612	TO-15	1,3-Dichlorobenzene	-	U
VMP-11-5-090612	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-090612	TO-15	1,2-Dichlorobenzene	-	U
VMP-13-5-090612	TO-15	Carbon disulfide	-	U
VMP-13-5-090612	TO-15	Methylene chloride	-	U
VMP-13-5-090612	TO-15	Chlorobenzene	-	U
VMP-13-5-090612	TO-15	Ethyl benzene	-	U
VMP-13-5-090612	TO-15	1,3-Dichlorobenzene	-	U
VMP-13-5-090612	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-090612	TO-15	1,2-Dichlorobenzene	-	U
VMP-10-5-090612	TO-15	Carbon disulfide	-	U
VMP-10-5-090612	TO-15	Methylene chloride	-	U
VMP-10-5-090612	TO-15	trans-1,3-Dichloropropene	-	U

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-10-5-090612	TO-15	Chlorobenzene	-	U
VMP-10-5-090612	TO-15	1,3-Dichlorobenzene	-	U
VMP-10-5-090612	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-090612	TO-15	1,2-Dichlorobenzene	-	\mathbf{U}

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes, however, LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes
7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

Air Toxics

Abstract

9/24/2012 Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1209148A

Dear Ms. Elizabeth Kunkel The following report includes the data for the above referenced project for samples) received on 9/10/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Eurotns Air Toxics, Inc. $\quad 180$ lug Ravine Road. Suite B

[^7] Fold, CA 95330

Air Toxics

WORK ORDER \#: 1209148A

Work Order Summary

BILL TO: Accounts Payable Austin URS Corporation P.O. BOX 203970

Austin, TX 78720-1088

PrO. \#
PROJECT \# 21562735.10100 Roxana Vapor CONTACT: Redly Butter

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1209148A

Six 1 Liter Summa Canister samples were received on September 10, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Definition of Data Oualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector

eurofins

Air Toxics
rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Chient Sample 1D: VMP-21-5-090512

Lab ID\#: 1209148A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.55 J	7.5	2.7 J
Freon 11	1.5	0.24 J	8.5	1.4 J
Ethanol	6.1	15	11	28
Acetone	15	12 J	36	29 J
2-Propanol	6.1	19	15	46
Carbon Disulfide	6.1	-16-4	19	$-5.0 .4$
Methylene Chtoride	15	0.89 J	53	3.1 J
Hexane	1.5	0.36 J	5.3	1.3 J
2-Butanone (Methyl Ethyl Ketone)	6.1	6.3	18	19
Cyclohexane	1.5	0.27 J	5.2	0.93 J
2,2,4-Trimethylpentane	1.5	2.4	7.1	11
Benzene	1.5	4.4	4.8	14
1,2-Dichloroethane	1.5	0.42 J	6.1	1.7 J
Heptane	1.5	0.67 J	6.2	2.7 J
4-Methyl-2-pentanone	1.5	62	6.2	250
Toluene	1.5	3.5	5.7	13
trans-1,3-Dichloropropene	1.5	--0.54-5 4	6.9	$-2.5+3-4$
Tetrachloroethene	1.5	0.47 J	10	3.2 J
1,2-Dibromoethane (EDB)	1.5	0.42 J	12	3.2 J
Chlorobenzene	1.5	-1.3-4 4	7.0	-609-4
Ethyl Benzene	1.5	-0.49-d-4	6.6	2-idy 4
m,p-Xylene	1.5	0.92 J	6.6	4.0 J
o-Xylene	1.5	0.31 J	6.6	1.4 J
Styrene	1.5	0.51 J	6.4	2.2 J
Cumene	1.5	11	7.4	54
Propylbenzene	1.5	0.22 J	7.4	1.15
4-Ethyltoluene	1.5	0.42 J	7.4	2.15
1,3,5-Trimethylbenzene	1.5	0.28 J	7.4	1.4 J
1,2,4-Trimethylbenzene	1.5	0.60 J	7.4	2.9 J
1,3-Dichlorobenzene	1.5	-0.68-8 4	9.1	-4.1d-
1,4-Dichlorobenzene	1.5	-0.71-d u	9.1	-4.3-4
1,2-Dichlorobenzene	1.5	$-0.45 \mathrm{Ju}$	9.1	-2.7J 4
1,2,4-Trichlorobenzene	6.1	1.9 J	45	14 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-090512			
Lab ID\#: 1209148A-01A			
Isopentane 6.1	2.5 J	18	7.5 J
TENTATIVELY IDENTIFIED COMPOUNDS			
Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	32 J
Unknown	NA	NA	57 J
Cyclopentane, 1,2,3-trimethyl-, (1.alpha	2613-69-6	78\%	28 NJ
Heptane, 2,2,4,6,6-pentamethyl-	13475-82-6	72\%	30 NJ
Decane, 2,2,9-trimethyl-	62238-00-0	64\%	81 NJ
Decane, 2,2,8-trimethyl-	62238-01-1	50\%	25 NJ
Undecane, 2,5-dimethyl-	17301-22-3	50\%	83 NJ
Decane, 2,2,7-trimethyl-	62237-99-4	64\%	160 NJ
Unknown	NA	NA	38 J
1-Pentanol, 2-ethyl-4-methyl-	106-67-2	50\%	120 NJ

Client Sample ID: VMP-42-10-090512
Lab ID\#: 1209148A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount (ug/m3)
Freon 12	1.5	0.50 J	7.3	2.5 J
Freon 11	1.5	0.31 J	8.3	1.8 J
Ethanol	5.9	11	11	21
Acetone	15	25	35	60
2-Propanol	5.9	5.2 J	14	13 J
Carbon Disulfide	5.9	1.0 J	18	-3.2 J
Methylene Chloride	15	0.92 J	51	3.2 J
Hexane	1.5	1.0 J	5.2	3.7 J
2-Butanone (Methyl Ethyl Ketone)	5.9	9.3	17	27
Tetrahydrofuran	1.5	1.5	4.4	4.5
Chloroform	1.5	0.84 J	7.2	4.1 J
2,2,4-Trimethylpentane	1.5	0.71 J	6.9	3.3 J
Benzene	1.5	5.2	4.7	16
1,2-Dichloroethane	1.5	0.27 J	6.0	1.1 J
Heptane	1.5	1.7	6.1	6.8
4-Methyl-2-pentanone	1.5	46	6.1	190

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-090512				
Lab ID\#: 1209148A-02A				
Toluene	1.5	3.4	5.6	13
1,2-Dibromoethane (EDB)	1.5	0.45 J	11	3.4 J
Chlorobenzene	1.5	. $1.4-4-4$	6.8	-6.45
Ethyl Benzene	1.5	0.60 J	6.4	2.6 J
m,p-Xylene	1.5	1.0 J	6.4	4.6 J
o-Xylene	1.5	0.58 J	6.4	2.5 J
Styrene	1.5	0.54 J	6.3	2.3 J
Cumene	1.5	8.6	7.3	42
Propylbenzene	1.5	0.37 J	7.3	1.8 J
4-Ethyltoluene	1.5	0.42 J	7.3	2.0 J
1,2,4-Trimethylbenzene	1.5	0.49 J	7.3	2.4 J
1,3-Dichlorobenzene	1.5	0.69-du	8.9	-4.2d-4
1,4-Dichlorobenzene	1.5	-0.68-d 4	8.9	4.1d. 4
1,2-Dichlorobenzene	1.5	$0.56 \mathrm{~J}-4$	18.9	3.454
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Unknown		NA	NA	22 J
Unknown		NA	NA	38 J
Decane, 2,2,8-trimethyl-		62238-01-1	72\%	25 NJ
Heptane, 2,2,4,6,6-pentamethyl-		13475-82-6	64\%	74 NJ
Hexane, 2,2,3-trimethyl-		16747-25-4	59\%	20 NJ
Octane, 2,4,6-trimethyl-		62016-37-9	64\%	71 NJ
Undecane, 2,2-dimethyl-		17312-64-0	64\%	160 NJ
Unknown		NA	NA	42 J
1-Pentanol, 4-methyl-2-propyl-		54004-41-0	59\%	100 NJ
Ethanone, 1-phenyl-		98-86-2	91\%	32 NJ

Client Sample ID: VMP-4-5-090512

Lab ID\#: 1209148A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.54 J	7.3	2.7 J
Freon 11	1.5	0.35 J	8.3	2.0 J
Ethanol	5.9	21	11	40

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-090512				
Lab ID\#: 1209148A-03A				
Acetone	15	16	35	37
2-Propanol	5.9	16	14	40
Carbon Disulfide	5.9	-125-4	18	-36\% 4
Hexane	1.5	0.30 J	5.2	1.0 J
2-Butanone (Methyl Ethyl Ketone)	5.9	4.0 J	17	12 J
Tetrahydrofuran	1.5	1.3 J	4.4	3.9 J
2,2,4-Trimethylpentane	1.5	1.0 J	6.9	4.6 J
Benzene	1.5	11	4.7	35
4-Methyl-2-pentanone	1.5	9.0	6.1	37
Toluene	1.5	3.2	5.6	12
trans-1,3-Dichloropropene	1.5	0.56 g - h	6.7	-25J 4
1,2-Dibromoethane (EDB)	1.5	0.46 J	11	3.5 J
Chlorobenzene	1.5	425	6.8	.-5.8) 4
Ethyl Benzene	1.5	0.60 J	6.4	2.6 J
m,p-Xylene	1.5	1.0 J	6.4	4.4 J
o-Xylene	1.5	0.45 J	6.4	2.0 J
Cumene	1.5	1.1 J	7.3	5.4 J
1,2,4-Trimethylbenzene	1.5	0.58 J	7.3	2.8 J
1,3-Dichlorobenzene	1.5	$\cdots 0.445$	8.9	-2.6 J -
1,4-Dichlorobenzene	1.5	-0.76 -4	8.9	-4.6J-u

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	12 J
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	23 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	59%	34 NJ
Unknown	NA	NA	9.9 J
Unknown	NA	NA	110 J
Unknown	NA	NA	57 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	64%	65 NJ
Unknown	NA	NA	7.7 J
Ethanone, 1-phenyl-	$98-86-2$	91%	11 NJ

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.44 J	7.5	2.2 J
Ethanol	6.1	41	11	77
Acetone	15	34	36	80
2-Propanol	6.1	27	15	66
Carbon Disulfide	6.1	1.50t-u	19	$-4.7 \mathrm{~J}-4$
2-Butanone (Methyl Ethyl Ketone)	6.1	15	18	44
Cyclohexane	1.5	0.65 J	5.2	2.2 J
2,2,4-Trimethylpentane	1.5	29	7.1	130
Benzene	1.5	1.1 J	4.8	3.7 J
4-Methyl-2-pentanone	1.5	34	6.2	140
Toluene	1.5	3.7	5.7	14
trans-1,3-Dichloropropene	1.5	-0.4695 U	6.9	2.15 -
Tetrachloroethene	1.5	0.44 J	10	3.0 J
Chlorobenzene	1.5	.1.0) 4	7.0	$-4: 6 \mathrm{~J}-4$
Ethyl Benzene	1.5	0.61 J	6.6	2.6 J
m,p-Xylene	1.5	1.2 J	6.6	5.1 J
o-Xylene	1.5	0.49 J	6.6	2.15
Styrene	1.5	0.47 J	6.4	2.0 J
Cumene	1.5	11	7.4	55
Propylbenzene	1.5	0.29 J	7.4	1.4 J
1,2,4-Trimethylbenzene	1.5	0.66 J	7.4	3.2 J
1,3-Dichlorobenzene	1.5	$\cdots 0.54 \mathrm{~J}$ - 4	9.1	3.2 J
1,4-Dichlorobenzene	1.5	-0.46-5	9.1	--2.8J 4
1,2-Dichlorobenzene	1.5	$-0.34-4$	9.1	-20才 4
Isopentane	6.1	7.8	18	23

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Heptane, 2,4-dimethyl-	$2213-23-2$	56%	30 NJ
Unknown	NA	NA	40 J
Unknown	NA	NA	67 J
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	64%	33 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	72%	32 NJ

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148A-04A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	85 NJ
Methane, isocyanato-	$624-83-9$	53%	24 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	89 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	64%	140 NJ
Decane, 2,6,7-trimethyl-	$62108-25-2$	50%	52 NJ

Client Sample ID: VMP-13-5-090612
Lab ID\#: 1209148A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.61 J	6.0	3.0 J
Freon 11	1.2	0.35 J	6.8	1.9 J
Ethanol	4.8	19	9.1	36
Acetone	12	25	29	60
2-Propanol	4.8	17	12	41
Carbon Disulfide	4.8	1.4-5-9	15	$-4.2+4$
Methylene Chloride	12	$\xrightarrow{0.39-8} 4$	42	-4.45
Hexane	1.2	0.36 J	4.3	1.3 J
2-Butanone (Methyl Ethyl Ketone)	4.8	8.8	14	26
Tetrahydrofuran	1.2	1.1 J	3.6	3.2 J
Chloroform	1.2	0.83 J	5.9	4.0 J
2,2,4-Trimethylpentane	1.2	2.0	5.6	9.2
Benzene	1.2	4.1	3.9	13
4-Methyl-2-pentanone	1.2	31	5.0	130
Toluene	1.2	3.6	4.6	14
Chlorobenzene	1.2	1.0. d	5.6	-4.8-4
Ethyl Benzene	1.2	-0.335 4	5.2	-4.45 u
m,p-Xylene	1.2	1.2	5.2	5.3
o-Xylene	1.2	0.26 J	5.2	1.1 J
Styrene	1.2	0.41 J	5.2	1.7 J
Cumene	1.2	16	5.9	78
Propylbenzene	1.2	0.23 J	5.9	1.1 J

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-090612
Lab ID\#: 1209148A-05A

4-Ethyltoluene	1.2	0.59 J	5.9	2.9 J
1,3,5-Trimethylbenzene	1.2	0.30 J	5.9	1.5 J
1,2,4-Trimethylbenzene	1.2	0.72 J	5.9	3.5 J
1,3-Dichlorobenzene	1.2	-0.33-d-4	7.3	20.0-4
1,4-Dichlorobenzene	1.2	0.505 J	7.3	$-3.0 \mathrm{~g} 4$
1,2-Dichlorobenzene	1.2	$0.35-4$	7.3	-2:45
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Oxirane, (3-methylbutyl)-		53229-41-7	38\%	36 NJ
Cyclopentane, butyl-		2040-95-1	50\%	56 NJ
Unknown		NA	NA	34 J
Undecane, 2,2-dimethyl-		17312-64-0	72\%	29 NJ
Heptane, 2,2,4,6,6-pentamethyl-		13475-82-6	72\%	100 NJ
Decane, 2,2-dimethyl-		17302-37-3	72\%	31 NJ
Octane, 2,4,6-trimethyl-		62016-37-9	78\%	100 NJ
Heptane, 2,2,3,4,6,6-hexamethyl-		62108-32-1	72%	28 NJ
Decane, 2,2,5-trimethyl-		62237-96-1	64\%	210 NJ
1-Pentanol, 4-methyl-2-propyl-		54004-41-0	72\%	120 NJ

Client Sample ID: VMP-10-5-090612
Lab ID\#: 1209148A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.47 J	7.7	2.3 J
Ethanol	6.2	42	12	80
Acetone	16	36	37	85
2-Propanol	6.2	23	15	57
Carbon Disulfide	6.2	-0.0-4	19	3.2.1. 4
Methylene Chloride	16	0.39 J 4	54	.1.4.d-4
Hexane	1.6	0.85 J	5.5	3.0 J
2-Butanone (Methyl Ethyl Ketone)	6.2	14	18	42
Tetrahydrofuran	1.6	1.5 J	4.6	4.5 J
Cyclohexane	1.6	0.47 J	5.4	1.6 J
2,2,4-Trimethylpentane	1.6	5.0	7.3	23

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-090612
Lab ID\#: 1209148A-06A

Benzene	1.6	12		5.0	37
1,2-Dichloroethane	1.6	0.23 J		6.3	0.94 J
Heptane	1.6	0.75 J		6.4	3.1 J
4-Methyl-2-pentanone	1.6	40		6.4	160
Toluene	1.6	5.5		5.8	21
trans-1,3-Dichloropropene	1.6	-0.505	4	7.0	$-2.2-5-u$
Tetrachloroethene	1.6	0.93 J		10	6.3 J
Chlorobenzene	1.6	-4.3才	1	7.2	-6.0d 4
Ethyl Benzene	1.6	0.65 J		6.8	2.8 J
m,p-Xylene	1.6	1.3 J		6.8	5.7 J
o-Xylene	1.6	0.85 J		6.8	3.7 J
Styrene	1.6	0.39 J		6.6	1.7 J
Cumene	1.6	16		7.6	77
Propylbenzene	1.6	0.28 J		7.6	1.4 J
4-Ethyltoluene	1.6	0.48 J		7.6	2.4 J
1,3,5-Trimethylbenzene	1.6	0.31 J		7.6	1.5 J
1,2,4-Trimethylbenzene	1.6	0.60 J		7.6	2.9 J
1,3-Dichlorobenzene	1.6	-0.60-5	4	9.3	-3.6-t 14
1,4-Dichlorobenzene	1.6	0-39.5	4	9.3	-2.4-4
1,2-Dichlorobenzene	1.6	0.335-		49.3	-2.05 4
Isopentane	6.2	2.6 J		18	7.7 J
TENTATIVELY IDENTIFIED COMPOUNDS					
Compound		CAS Number		Match Quality	Amount (ppbv)
6-Oxabicyclo[3.1.0]hexane		285-67-6		43\%	44 NJ
Unknown		NA		NA	80 J
Cyclobutanone, 2,3,3-trimethyl-		28290-01-9		72\%	36 NJ
Undecane, 2,2-dimethyl-		17312-64-0		72\%	35 NJ
Decane, 2,9-dimethyl-		1002-17-1		64\%	18 NJ
Decane, 2,2,9-trimethyl-		62238-00-0		83\%	60 NJ
Decane, 6-ethyl-2-methyl-		62108-21-8		64\%	70 NJ
Decane, 2,2,4-trimethyl-		62237-98-3		72\%	100 NJ
Unknown		NA		NA	27 J
Dodecane, 1-fluoro-		334-68-9		53\%	28 NJ

Air Toxics

Client Sample ID: VMP-21-5-090512

Lab ID\#: 1209148A-01A
ERA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 091911 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/5/12 1:11:00 PM Date of Analysis: 9/19/12 01:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.55 J	7.5	2.7 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	0.24 J	8.5	1.4 J
Ethanol	6.1	15	11	28
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	12 J	36	29 J
2-Propanol	6.1	19	15	46
Carbon Disulfide	6.1	160y n	19	-50. 4
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	0.89 J	53	3.15
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	0.36 J	5.3	1.3 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	6.3	18	19
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	Not Detected	7.4	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	0.27 J	5.2	0.93 J
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	2.4	7.1	11
Benzene	1.5	4.4	4.8	14
1,2-Dichloroethane	1.5	0.42 J	6.1	1.7 J
Heptane	1.5	0.67 J	6.2	2.7 J
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	62	6.2	250
Toluene	1.5	3.5	5.7	13
trans-1,3-Dichloropropene	1.5	-0.54-J 1 入	6.9	-2.5- 4
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	0.47 J	10	3.2 J
2-Hexanone	6.1	Not Detected	25	Not Detected

Page 13 of 38

eurofins

Air Toxics

Client Sample ID: VMP-21-5-090512
Lab ID\#: 1209148A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} 091911 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/5/12 1:11:00 PM Date of Analysis: 9/19/12 01:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	0.42 J	12	3.2 J
Chlorobenzene	1.5	-1.3-5-4	7.0	5.95 V
Ethyl Benzene	1.5	-0:49J 4	6.6	-2.454
m,p-Xylene	1.5	0.92 J	6.6	4.0 J
o-Xylene	1.5	0.31 J	6.6	1.4 J
Styrene	1.5	0.51 J	6.4	2.2 J
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	11	7.4	54
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.22 J	7.4	1.1 J
4-Ethylioluene	1.5	0.42 J	7.4	2.1 J
1,3,5-Trimethylbenzene	1.5	0.28 J	7.4	1.4
1,2,4-Trimethylbenzene	1.5	0.60 J	7.4	2.9 J
1,3-Dichlorobenzene	1.5	-0.68-J u	9.1	-4.15
1,4-Dichlorobenzene	1.5	0.77	9.1	4.3 J
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	$-0.45 \mathrm{~J} u$	9.1	-27-5- U
1,2,4-Trichlorobenzene	6.1	1.9 J	45	14 J
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Delected	14	Not Detected
Isopentane	6.1	2.5 J	18	7.5 J
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected
$\mathrm{J}=$ Estimated value.				
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount ((ppbv))
Unknown		NA	NA	32 J
Unknown		NA	NA	57 J
Cyclopentane, 1,2,3-trimethyl-, (1.alpha		2613-69-6	78\%	28 NJ
Heptane, 2,2,4,6,6-pentamethyl-		13475-82-6	72\%	30 NJ
Decane, 2,2,9-trimethyl-		62238-00-0	64\%	81 NJ
Decane, 2,2,8-trimethyl-		62238-01-1	50\%	25 NJ
Undecane, 2,5-dimethyl-		17301-22-3	50\%	83 NJ
Decane, 2,2,7-trimethyl-		62237-99-4	64\%	160 NJ
Unknown		NA	NA	38 J
1-Pentanol, 2-ethyl-4-methyl-		106-67-2	50\%	120 NJ

Air Toxics

Client Sample 1D: VMP-21-5-090512
 Lab ID\#: 1209148A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j091911	Date of Collection: $9 / 5 / 12$ 1:11:00 PM
Dil. Factor:	3.03	Date of Analysis: $9 / 19 / 1201: 35 \mathrm{PM}$

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	104	$70-130$
1,2-Dichloroethane-d4	98	$70-130$
4-Bromofluorobenzene	98	$70-130$

eurofins
Air Toxics

Client Sample ID: VMP-42-10-090512
Lab ID\#: 1209148A-02A
EPA METHOD TO-15 GC/MS FULI, SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091912 \\ 2.96 \end{array}$	Date of Collection: 9/5/12 2:03:00 PM Date of Analysis: 9/19/12 02:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.50 J	7.3	2.5 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	30	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	57	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	0.31 J	8.3	1.8 J
Ethanoi	5.9	11	11	21
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	25	35	60
2-Propanol	5.9	5.2 J	14	13 J
Carbon Disulfide	5.9	-10才 U	18	$32 d$ u
3-Chloropropene	5.9	Not Detected	18	Not Detected
Methylene Chloride	15	0.92 J	51	3.2 J
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	1.0 J	5.2	3.7 J
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.9	9.3	17	27
cis-1,2-Dichloroethene	1.5	Not Defected	5.9	Not Delected
Tetrahydrofuran	1.5	1.5	4.4	4.5
Chloroform	1.5	0.84 J	7.2	4.1 J
1.1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	Not Detected	5.1	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected
2,2,4-Trimethylpentane	1.5	0.71 J	6.9	3.3 J
Benzene	1.5	5.2	4.7	16
1,2-Dichloroethane	1.5	0.27 J	6.0	1.15
Heptane	1.5	1.7	6.1	6.8
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromodichloromethane	1.5	Not Detected	9.9	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4-Methyl-2-pentanone	1.5	46	6.1	190
Toluene	1.5	3.4	5.6	13
trans-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	5.9	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-42-10-090512
Lab ID\#: 1209148A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 91912 \\ 2.96 \end{array}$	Date of Collection: 9/5/12 2:03:00 PM Date of Analysis: 9/19/12 02:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	0.45 J	11	3.4 J
Chlorobenzene	1.5	4.45 u	6.8	-6.4-5-
Ethyl Benzene	1.5	0.60 J	6.4	2.6 J
m,p-Xylene	1.5	1.0 J	6.4	4.6 J
o-Xylene	1.5	0.58 J	6.4	2.5 J
Styrene	1.5	0.54 J	6.3	2.3 J
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	8.6	7.3	42
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.37 J	7.3	1.8 J
4-Ethyltoluene	1.5	0.42 J	7.3	2.0 J
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	0.49 J	7.3	2.4 J
1,3-Dichlorobenzene	1.5	-0.69-4	8.9	.4.2. ${ }^{4}$
1,4-Dichlorobenzene	1.5	-0.68-J	8.9	-4.1-5
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	-0.56J u	8.9	$-3.4 \mathrm{~J}$
1,2,4-Trichlorobenzene	5.9	Not Detected	44	Not Detected
Hexachlorobutadiene	5.9	Not Detected	63	Not Detected
Butane	5.9	Not Delected	14	Not Detected
Isopentane	5.9	Not Detected	17	Not Detected
Ethyl Acetate	5.9	Not Detected	21	Not Detected
Propylene	5.9	Not Detected	10	Not Detected
Vinyl Acetate	5.9	Not Detected	21	Not Detected
Vinyl Bromide	5.9	Not Detected	26	Not Detected

$\mathbf{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
Unknown	NA	NA	22 J
Unknown	NA	NA	38 J
Decane, 2,2,8-trimethyl-	$62238-01-1$	72%	25 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	64%	74 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	59%	20 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	71 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	160 NJ
Unknown	NA	NA	42 J
1-Pentanol, 4-methyl-2-propyl-	$5400441-0$	59%	100 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	32 NJ

Air Toxics

Client Sample ID: VMP-42-10-090512
 LabID\#: 1209148A-02A
 EPA METHOD TO-15 GC/MS FULLSCAN

Air Toxics

Client Sample ID: VMP-4-5-090512
Lab ID\#: 1209148A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathbf{j} 091913 \\ 2.96 \end{array}$	Date of Collection: 9/5/12 2:55:00 PM Date of Analysis: 9/19/12 03:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.54 J	7.3	2.7 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	30	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	57	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	0.35 J	8.3	2.0 J
Ethanol	5.9	21	11	40
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	16	35	37
2-Propanol	5.9	16	14	40
Carbon Disulfide	5.9	12-du	18	-36-5 4
3-Chioropropene	5.9	Not Detected	18	Not Detected
Methylene Chloride	15	Not Detected	51	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	0.30 J	5.2	1.0 J
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.9	4.0 J	17	12 J
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	1.3 J	4.4	3.9 J
Chloroform	1.5	Not Detected	7.2	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	Not Detected	5.1	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected
2,2,4-Trimethylpentane	1.5	1.0 J	6.9	4.6 J
Benzene	1.5	11	4.7	35
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromodichloromethane	1.5	Not Detected	9.9	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4-Methyl-2-pentanone	1.5	9.0	6.1	37
Toluene	1.5	3.2	5.6	12
trans-1,3-Dichloropropene	1.5	.0.06-d u	6.7	-250- U
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
TetrachJoroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	5.9	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-4-5-090512
Lab ID\#: 1209148A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j091913 2.96	Date of Collection: 9/5/12 2:55:00 PM Date of Analysis: 9/19/12 03:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	0.46 J	11	3.5 J
Chlorobenzene	1.5	-1.2- 4	6.8	-5.8. ${ }^{\text {d }}$
Ethyl Benzene	1.5	0.60 J	6.4	2.6 J
m,p-Xylene	1.5	1.0 J	6.4	4.4 J
o-Xylene	1.5	0.45 J	6.4	2.0 J
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	1.1 J	7.3	5.4 J
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.3	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.3	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	0.58 J	7.3	2.8 J
1,3-Dichlorobenzene	1.5	-0.44J in	8.9	-2.6.5 n
1,4-Dichlorobenzene	1.5	-0.76J 4	8.9	-4.6-d 4
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,2,4-Trichlorobenzene	5.9	Not Detected	44	Not Detected
Hexachlorobutadiene	5.9	Not Detected	63	Not Detected
Butane	5.9	Not Detected	14	Not Detected
Isopentane	5.9	Not Detected	17	Not Detected
Ethyl Acetate	5.9	Not Detected	21	Not Detected
Propylene	5.9	Not Detected	10	Not Detected
Vinyl Acetate	5.9	Not Detected	21	Not Detected
Vinyl Bromide	5.9	Not Detected	26	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
Unknown	NA	NA	12 J
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	23 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	59%	34 NJ
Unknown	NA	NA	9.9 J
Unknown	NA	NA	110 J
Unknown	NA	NA	57 J
1-Pentanol, 4-methyl-2-propyl-	$54004-41-0$	64%	65 NJ
Unknown	NA	NA	7.7 J
Ethanone, 1-phenyl-	$98-86-2$	91%	11 NJ

Air Toxics

Client Sample ID: VMP-4-5-090512
 Lab ID\#: 1209148A-03A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091913 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/5/12 2:55:00 PM Date of Analysis: 9/19/12 03:22 PM
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value. Container Type: 1 Liter Summa Canister		
Surrogates	\%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	102	70-130

Air Toxics

Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091914 \\ 3.03 \end{array}$	Date of Collection: 9/6/12 9:00:00 AM Date of Analysis: 9/19/12 03:50 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.44 J	7.5	2.2 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.5	Not Detected
Ethanol	6.1	41	11	77
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	34	36	80
2-Propanol	6.1	27	15	66
Carbon Disulfide	6.1	1.5- n	19	-4.75 U
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	Not Detected	53	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	Not Detected	5.3	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	15	18	44
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	Not Detected	7.4	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	0.65 J	5.2	2.2 J
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	29	7.1	130
Benzene	1.5	1.1 J	4.8	3.7 J
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	Not Detected	6.2	Not Detected
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	34	6.2	140
Toluene	1.5	3.7	5.7	14
trans-1,3-Dichloropropene	1.5	-0:46J u	6.9	-21+ 4
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	0.44 J	10	3.0 J
2 -Hexanone	6.1	Not Detected	25	Not Detected

Air Toxics

Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091914 \\ 3.03 \end{array}$	Date of Collection: 9/6/12 9:00:00 AM Date of Analysis: 9/19/12 03:50 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	-4.0J 4	7.0	.4.6- 4
Ethyl Benzene	1.5	0.61 J	6.6	2.6 J
m, p -Xylene	1.5	1.2 J	6.6	5.1 J
o-Xylene	1.5	0.49 J	6.6	2.1 J
Styrene	1.5	0.47 J	6.4	2.0 J
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	11	7.4	55
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.29 J	7.4	1.4 J
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	0.66 J	7.4	3.2 J
1,3-Dichlorobenzene	1.5	0.54.5 4	9.1	. 3.254
1,4-Dichlorobenzene	1.5	-0.46.J in	9.1	$-2: 8 \mathrm{~J}$ -
alpha-Chtorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	-0.34 +... U	9.1	.2:0.u u
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	7.8	18	23
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
Heptane, 2,4-dimethyl-	$2213-23-2$	56%	30 NJ
Unknown	NA	NA	40 J
Unknown	NA	NA	67 J
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	64%	33 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	72%	32 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	85 NJ
Methane, isocyanato-	$624-83-9$	53%	24 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	89 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	64%	140 NJ
Decane, 2,6,7-trimethyl-	$62108-25-2$	50%	52 NJ

Air Toxics

```
Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148A-04A
EPA METHOD TO-15 GC/MS FULL SCAN
\begin{tabular}{lrl} 
File Name: & j091914 & Date of Collection: 9/6/12 9:00:00 AM \\
Dil. Factor: & 3.03 & Date of Analysis: \(9 / 19 / 1203: 50\) PM \\
\hline
\end{tabular}
```

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	102	$70-130$
1,2 -Dichloroethane-d4	103	$70-130$
4-Bromofluorobenzene	101	$70-130$

Client Sample ID: VMP-13-5-090612
Lab ID\#: 1209148A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j091915 2.42	Date of Collection: 9/6/12 9:58:00 AM Date of Analysis: 9/19/12 04:21 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	0.61 J	6.0	3.0 J
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	0.35 J	6.8	1.9 J
Ethanol	4.8	19	9.1	36
Freon 113	1.2	Not Detected	9.3	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	25	29	60
2-Propanol	4.8	17	12	41
Carbon Disulfide	4.8	-4.4-4 in	15	-4:2丁 u
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	-0.39] us	42	+4J is
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	0.36 J	4.3	1.3 J
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	8.8	14	26
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	1.1 J	3.6	3.2 J
Chloroform	1.2	0.83 J	5.9	4.0 J
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	Not Detected	4.2	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	2.0	5.6	9.2
Benzene	1.2	4.1	3.9	13
1,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	Not Detected	5.0	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichioropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	31	5.0	130
Toluene	1.2	3.6	4.6	14
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1,1,2-7richloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
2-Hexanone	4.8	Not Detected	20	Not Detected

Air Toxics

Client Sample ID: VMP-13-5-090612
Lab ID\#: 1209148A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j091915 2.42	Date of Collection: 9/6/12 9:58:00 AM Date of Analysis: 9/19/12 04:21 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected
Chlorobenzene	1.2	-7.0J U	5.6	-48小 4
Ethyl Benzene	1.2	-0.33-5	5.2	1.4 J -
m,p-Xylene	1.2	1.2	5.2	5.3
o-Xylene	1.2	0.26 J	5.2	1.1 J
Styrene	1.2	0.41 J	5.2	1.7 J
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	16	5.9	78
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	0.23 J	5.9	1.1 J
4-Ethyltoluene	1.2	0.59 J	5.9	2.9 J
1,3,5-Trimethylbenzene	1.2	0.30 J	5.9	1.5 J
1,2,4-Trimethylbenzene	1.2	0.72 J	5.9	3.5 J
1,3-Dichlorobenzene	1.2	0.33 J is	7.3	-2.0.d- 4
1,4-Dichlorobenzene	1.2	-0.50J	7.3	-307 4
alpha-Chiorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	-0.35-ju is	7.3	24-4 4
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected
Butane	4.8	Not Detected	12	Not Detected
Isopentane	4.8	Not Detected	14	Not Detected
Ethyl Acetate	4.8	Not Detected	17	Not Detected
Propylene	4.8	Not Detected	8.3	Not Detected
Vinyl Acetate	4.8	Not Detected	17	Not Detected
Vinyl Bromide	4.8	Not Detected	21	Not Detected
$J=$ Estimated value				

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Oxirane, (3-methylbutyl)-	$53229-41-7$	38%	36 NJ
Cyclopentane, butyl-	$2040-95-1$	50%	56 NJ
Unknown	NA	NA	34 J
Undecane, 2,2-dimethyl-	$17312-64-0$	72%	29 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	100 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	31 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	78%	100 NJ
Heptane, 2,2,3,4,6,6-hexamethyl-	$62108-32-1$	72%	28 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	64%	210 NJ
1 -Pentanol, 4-methyl-2-propyl-	$54004-41-0$	72%	120 NJ

eurofins

Air Toxics

Client Sample ID: VMP-13-5-090612
 Lab ID\#: 1209148A-05A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j091915 2.42		Date of Collection: 9/6/12 9:58:00 AM Date of Analysis: 9/19/12 04:21 PM
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value. Container Type: 1 Liter Summa Canister			
Surrogates		\%Recovery	Method Limits
Toluene-d8		104	70-130
1,2-Dichloroethane-d4		103	70-130
4-Bromofluorobenzene		101	70-130

eurofins
Air Toxics
Client Sample ID: VMP-10-5-090612
Lab ID\#: 1209148A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091916 \\ 3.11 \\ \hline \end{array}$	Date of Collection: 9/6/12 10:42:00 AM Date of Analysis: 9/19/12 04:52 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.47 J	7.7	2.3 J
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
1,3-Butadiene	1.6	Not Detected	3.4	Not Detected
Bromomethane	16	Not Detected	60	Not Detected
Chloroethane	6.2	Not Detected	16	Not Detected
Freon 11	1.6	Not Detected	8.7	Not Detected
Ethanol	6.2	42	12	80
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Acetone	16	36	37	85
2-Propanol	6.2	23 u	15	57
Carbon Disulfide	6.2	7.09	19	-3.2-4 4
3-Chloropropene	6.2	Not Detected	19	Not Detected
Methylene Chloride	16	.-0:39 J"	54	-4.4- ${ }^{\text {d }}$
Methyl tert-butyl ether	1.6	Not Detected	5.6	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Hexane	1.6	0.85 J	5.5	3.0 J
1,1-Dichloroethane	1.6	Not Detected	6.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.2	14	18	42
cis-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Tetrahydrofuran	1.6	1.5 J	4.6	4.5 J
Chloroform	1.6	Not Detected	7.6	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.5	Not Detected
Cyclohexane	1.6	0.47 J	5.4	1.6 J
Carbon Tetrachloride	1.6	Not Detected	9.8	Not Detected
2,2,4-Trimethylpentane	1.6	5.0	7.3	23
Benzene	1.6	12	5.0	37
1,2-Dichloroethane	1.6	0.23 J	6.3	0.94 J
Heptane	1.6	0.75 J	6.4	3.1 J
Trichloroethene	1.6	Not Detected	8.4	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
1,4-Dioxane	6.2	Not Detected	22	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
4-Methyl-2-pentanone	1.6	40	6.4	160
Toluene	1.6	5.5	5.8	21
trans-1,3-Dichloropropene	1.6	$0.50+4$	7.0	-2.zis 4
1,1,2-Trichloroethane	1.6	Not Detected	8.5	Not Detected
Tetrachloroethene	1.6	0.93 J	10	6.3 J
2-Hexanone	6.2	Not Detected	25	Not Detected

Page 28 of 38

Air Toxics

Client Sample ID: VNP-10-5-090612
Lab ID\#: 1209148A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091916 \\ 3.11 \\ \hline \end{array}$	Date of Collection: 9/6/12 10:42:00 AM Date of Analysis: 9/19/12 04:52 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	-4.35- in	7.2	-6.0.1. 4
Ethyl Benzene	1.6	0.65 J	6.8	2.8 J
m,p-Xylene	1.6	1.3 J	6.8	5.7 J
o-Xylene	1.6	0.85 J	6.8	3.7 J
Styrene	1.6	0.39 J	6.6	1.7 J
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	16	7.6	77
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	0.28 J	7.6	1.4 J
4-Ethyltoluene	1.6	0.48 J	7.6	2.4 J
1,3,5-Trimethylbenzene	1.6	0.31 J	7.6	1.5 J
1,2,4-Trimethylbenzene	1.6	0.60 J	7.6	2.9 J
1,3-Dichlorobenzene	1.6	-0.60 u	9.3	3.0 .1 d
1,4-Dichlorobenzene	1.6	-0.39J h	9.3	2.40
alpha-Chlorotoluene	1.6	Not Detected	8.0	Not Detected
1,2-Dichlorobenzene	1.6	-9.33+ in	9.3	-20.d 4
1,2,4-Trichlorobenzene	6.2	Not Detected	46	Not Detected
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
Butane	6.2	Not Detected	15	Not Detected
Isopentane	6.2	2.6 J	18	7.7 J
Ethyl Acetate	6.2	Not Detected	22	Not Detected
Propylene	6.2	Not Detected	11	Not Detected
Vinyl Acetate	6.2	Not Detected	22	Not Detected
Vinyl Bromide	6.2	Not Detected	27	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
6-Oxabicyclo[3.1.0]hexane	$285-67-6$	43%	44 NJ
Unknown	NA	NA	80 J
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	72%	36 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	72%	35 NJ
Decane, 2,9-dimethyl-	$1002-17-1$	64%	18 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	83%	60 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	64%	70 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	72%	100 NJ
Unknown	NA	NA	27 J
Dodecane, 1-fluoro-	$334-68-9$	53%	28 NJ

Air Toxics

Client Sample 1D: VMP-10-5-090612
 Lab ID\#: 1209148A-06A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j091916	Date of Collection: 9/6/12 10:42:00 AM
Dil. Factor:	3.11	Date of Analysis: $9 / 19 / 12$ 04:52 PM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	106	$70-130$
1,2-Dichloroethane-d4	100	$70-130$
4-Bromofluorobenzene	98	$70-130$

eurofins
Air Toxics

Client Sample ID: Lab Blank Lab ID\#: 1209148A-07A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091909a } \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 11:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	(0.36 J)	6.2	(1.1 J)
3-Chloropropene	2.0	NotDelected	6.3	Not Detected
Methylene Chloride	5.0	(0.13)	17	0.45 J
Methyl tert-butyl ether	0.50	Not Dẽtected	1.8	Nof Derected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Delected
Benzene	0.50	(0.072 J)	1.6	0.23 J
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichioropropene	0.50	0.099 J	2.3	$0.45 \mathrm{~J})$
4-Methyl-2-pentanone	0.50	Not Detected	2.0	NotDetected
Toluene	0.50	0.11 J	1.9	0.42 J
trans-1,3-Dichloropropene	0.50	(0.12 J)	2.3	0.56 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Teirachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Air Toxics

Chient Sample ID: Lab Blank
Lab ID\#: 1209148A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091909a } \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 11:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.45 ل)	2.3	2.1 J
Ethyl Benzene	0.50	(0.098 J)	2.2	(0.42)
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Defected
1,1,2,2-Tetrachloroethane	0.50	0.073 J	3.4	(0.50 J)
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	(0.15 J	3.0	0.89 J)
1,4-Dichlorobenzene	0.50	(0.17J)	3.0	(1.0)
alpha-Chlorotoluene	0.50	(0.11)	2.6	(0.56)
1,2-Dichlorobenzene	0.50	(0.16J)	3.0	(0.99 J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected
$\mathrm{j}=$ Estimated value .				
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount ((ppbv))

None Identified
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	97	$70-130$
4-Bromofluorobenzene	97	$70-130$

Client Sample ID: CCV
 Lab ID\#: 1209148A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091902 } \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 07:02 AM
Compound		\%Recovery
Freon 12		95
Freon 114		94
Chloromethane		91
Vinyl Chloride		97
1,3-Butadiene		97
Bromomethane		84
Chloroethane		89
Freon 11		96
Ethanol		85
Freon 113		93
1,1-Dichloroethene		98
Acetone		89
2-Propanol		98
Carbon Disulfide		88
3-Chloropropene		88
Methylene Chioride		93
Methyl tert-butyl ether		97
trans-1,2-Dichloroethene		99
Hexane		99
1,1-Dichloroethane		96
2-Butanone (Methyl Ethyl Ketone)		95
cis-1,2-Dichloroethene		97
Tetrahydrofuran		97
Chloroform		96
1,1,1-Trichloroethane		98
Cyclohexane		93
Carbon Tetrachloride		102
2,2,4-Trimethylpentane		101
Benzene		93
1,2-Dichloroethane		98
Heptane		101
Trichloroethene		88
1,2-Dichloropropane		94
1,4-Dioxane		91
Bromodichloromethane		95
cis-1,3-Dichloropropene		98
4-Methyl-2-pentanone		99
Toluene		92
trans-1,3-Dichloropropene		91
1,1,2-Trichloroethane		98
Tetrachloroethene		101
2-Hexanone		97

Client Sample ID: CCV
Lab ID\#: 1209148A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1209148A-09A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j091903
Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/19/12 07:40 AM
Compound \%Recovery
Freon 12 99
Freon 114 93
Chloromethane 95
Vinyl Chloride 103
1,3-Butadiene 100
Bromomethane 88
Chloroethane 89
Freon 11 101
Ethanol 86
Freon 113 99
1,1-Dichloroethene 102
Acetone 98
2-Propanol 103
Carbon Disulfide 114
3-Chboropropene 91
Methylene Chloride 94
Methyl tert-butyl ether 101
trans-1,2-Dichloroethene 116
Hexane 101
1,1-Dichloroethane 99
2-Butanone (Methyl Ethyl Ketone) 98
cis-1 2-Dichloroethene 102
Tetrahydrofuran 98
Chloroform 99
1,1,1-Trichloroethane 102
Cyclohexane 98
Carbon Tetrachloride 107
2,2,4-Trimethylpentane 103
Benzene 106
1,2-Dichloroethane 104
Heptane 109
Trichloroethene 99
1,2-Dichloropropane 101
1.4-Dioxane 107
Bromodichloromethane 104
cis-1,3-Dichloropropene 102
4-Methyl-2-pentanone 107
Toluene 101
trans-1,3-Dichloropropene 100
1,1,2-Trichloroethane 104
Tetrachloroethene 106
2-Hexanone 102

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1209148A-09A
 EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: LCSDLab ID\#: 1209148A-09AAEPA METHOD TO-15 GC/MS FULL SCAN		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091904 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 08:11 AM
Compound		\%Recovery
Freon 12		102
Freon 114		100
Chloromethane		98
Vinyl Chloride		108
1,3-Butadiene		99
Bromomethane		93
Chloroethane		89
Freon 11		105
Ethanol		93
Freon 113		100
1,1-Dichloroethene		113
Acetone		95
2-Propanol		106
Carbon Disulfide		112
3-Chloropropene		107
Methylene Chloride		98
		106
trans-1,2-Dichloroethene		121
Hexane		108
1,1-Dichloroethane		101
2-Butanone (Methyl Ethyl Ketone)		103
cis-1,2-Dichloroethene		109
Tetrahydrofuran		99
Chloroform		103
1,1,1-Trichloroethane		106
Cyclohexane		107
Carbon Tetrachloride		110
2,2,4-Trimethylpentane		104
Benzene		106
1,2-Dichloroethane		101
Heptane		111
Trichloroethene		97
1,2-Dichloropropane		101
1,4-Dioxane		103
Bromodichloromethane		106
cis-1,3-Dichloropropene		105
4-Methyl-2-pentanone		107
Toluene		102
trans-1,3-Dichloropropene		99
1,1,2-Trichloroethane		103
Tetrachloroethene		107
2-Hexanone		103

Air Toxics

EPA METH	$\begin{aligned} & \text { D: LCSD } \\ & \text { 48A-09AA } \\ & \text { C/MS FULL } \end{aligned}$	SCAN
File Name: j 091904 Dit. Factor: 1.00		Date of Collection: NA Date of Analysis: 9/19/12 08:11 AM
Compound		\%Recovery
Dibromochloromethane		105
1,2-Dibromoethane (EDB)		106
Chlorobenzene		92
Ethyl Benzene		105
m,p-Xylene		105
o-Xylene		112
Styrene		109
Bromoform		102
Cumene		113
1,1,2,2-Tetrachloroethane		102
Propylbenzene		107
4-Ethyltoluene		107
1,3,5-Trimethybenzene		110
1,2,4-Trimethylbenzene		110
1,3-Dichlorobenzene		104
1,4-Dichlorobenzene		102
alpha-Chlorotoluene		105
1,2-Dichlorobenzene		104
1,2,4-Trichlorobenzene		92
Hexachlorobutadiene		95
Butane		93
Isopentane		106
Ethyl Acetate		Not Spiked
Propylene		84
Vinyl Acetate		108
Vinyl Bromide		Not Spiked
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	99	70-130

Shell Oil Products Chain Of Custody Record

Custofdy Seal Intact?
Y None Temp Aly

eurofins

Air Toxics

Abstract

9/27/2012 Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana Vapor Additional Project \#: 21562735.10100 Workorder \#: 1209148B

Dear Ms. Elizabeth Kunkel The following report includes the data for the above referenced project for samples) received on 9/10/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

Air Toxics

WORK ORDER \#: 1209148B

Work Order Summary

Technical Director

DATE: $09 / 27 / 12$

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reprofthed, except in full, without the written approval of Eurofins Air Toxics, lac.

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1209148B

Six 1 Liter Summa Canister samples were received on September 10, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Moolifications
Calibration	A single point calibration is performed using a reference standard closely mathing the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100\% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100\% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J- Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-090512

Lab ID\#: 1209148B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	14
Nitrogen	0.30	80
Methane	0.00030	0.000045 J
Carbon Dioxide	0.030	5.6
Helium	0.15	0.020 J

Client Sample ID: VMP-42-10-090512
Lab ID\#: 1209148B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	19
Nitrogen	0.30	79
Carbon Dioxide	0.030	1.8

Client Sample ID: VMP-4-5-090512
Lab 1DH: 1209148B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	18
Nitrogen	0.30	80
Methane	0.00030	0.00016 J
Carbon Dioxide	0.030	1.7
Helium	0.15	0.048 J

Client Sample ID: VMP-11-5-090612
Lab ID\#: 1209148B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	18
Nitrogen	0.30	80
Methane	0.00030	0.000087 J
Carbon Dioxide	0.030	2.4

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-13-5-090612

Lab ID\#: 1209148B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.24	17
Nitrogen	0.24	80
Methane	0.00024	0.000076 J
Carbon Dioxide	0.024	3.4

Cient Sample ID: VMP-10-5-090612
Lab ID\#: 1209148B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.31	18
Nitrogen	0.31	80
Methane	0.00031	0.000038 J
Carbon Dioxide	0.031	2.0

Client Sample ID: VMP-21-5-090512
Lab ID\#: 1209148B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9091712 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/5/12 1:11:00 PM Date of Analysis: 9/17/12 01:22 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.30	14
Nitrogen		0.30	80
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	0.000045 J
Carbon Dioxide		0.030	5.6
Ethane		0.0030	Not Detected
Ethene		0.0030	Not Detected
Helium		0.15	0.020 J

$\mathrm{J}=$ Estimated value.
Container Type: 1 Liter Summa Canister

eurofins

Air Toxics

Client Sample ID: VMP-42-10-090512
 Lab IDA: 1209148B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: VMP-4-5-090512
 Lab ID\#: 1209148B-03A

NATURAL, GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name:	9091714 Dil. Factor:	2.96	
		Date of Collection: $9 / 5 / 12$ 2:55:00 PM Date of Analysis: $9 / 17 / 12$ Compound	Rpt. Limit $(\%)$
Oxygen	0.30	Amount	
Nitrogen	0.30	$(\%)$	
Carbon Monoxide	0.030	18	
Methane	0.00030	80	
Carbon Dioxide	0.030	Not Detected	
Ethane	0.0030	0.00016 J	
Ethene	0.0030	1.7	
Helium	0.15	Not Detected	
		Not Detected	
J Estimated value.		0.048 J	
Container Type: 1 Liter Summa Canister			

eurofins

Air Toxics

Client Sample ID: VMP-11-5-090612

Lab ID\#: 1209148B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

	NATURAL GAS ANALYSIS BX MODIFIED ASTM D-1946		
	9091715		Date of Collection: $9 / 6 / 129: 00: 00 \mathrm{AM}$
File Name:	3.03	Ractor:	$(\%)$

Air Toxics

Client Sample ID: VMP-13-5-090612
 Lab ID\#: 1209148B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9091716 Dil. Factor: 2.42	Date of Collection: 9/6/12 9:58:00 AM Date of Analysis: 9/17/12 03:44 PM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.24	17
Nitrogen	0.24	80
Carbon Monoxide	0.024	Not Detected
Methane	0.00024	0.000076 J
Carbon Dioxide	0.024	3.4
Ethane	0.0024	Not Detected
Ethene	0.0024	Not Detected
Helium	0.12	Not Detected
$\mathrm{J}=$ Estimated value.		
Container Type: 1 Liter Summa Canister		

eurofins

Air Toxics

Client Sample ID: VMP-10-5-090612
Lab ID\#: 1209148B-06A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1209148B-07A
NATURAL GAS ANALYSIS BX MODIEIED ASTM D-1946

File Name: 9091705 a Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/17/12 09:19 AM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.10	0.0079)
Nitrogen	0.10	0.033 J
Carbon Monoxide	0.010	Not Detected
Methane	0.00010	Not Detected
Carbon Dioxide	0.010	Not Detected
Ethane	0.0010	Not Detected
Ethene	0.0010	Not Detected
$\mathrm{J}=$ Estimated value.		
Container Type: NA - Not Applicable		

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209148B-07B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9091704 b		Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 17 / 12$ 08:46 AM	
		Rpt. Limit	Amount
Compound	$(\%)$	(\%)	
Helium	0.050	Not Detected	

Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCS
Lab ID\#: 1209148B-08A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9091702	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 17 / 12$ 07:55 AM

Oxygen 100
Nitrogen 100
Carbon Monoxide 99
Methane 99
Carbon Dioxide 101
Ethane 101
Ethene 98
Helium 101
Container Type: NA - Not Applicable

eurofins

Air Toxics

Client Sample ID: LCSD Lab ID\#: 1209148B-08AA		
File Name: Dil. Factor:	$\begin{array}{r} 9091727 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/17/12 09:35 PM
Compound		\%Recovery
Oxygen		99
Nitrogen		100
Carbon Monoxide		98
Methane		98
Carbon Dioxide		101
Ethane		100
Ethene		97
Helium		101

Container Type: NA - Not Applicable

ST3 Shell Oil Products Chain Of Custody Record
CHE

Custody seal Intact?
Y XNoñe Temp wht

Roxana Soil Vapor Additional - Week 5-2012 Data Review

Laboratory SDG: 1209274A,B

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/2/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-090512

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-090512 was diluted due to high levels of target analytes. Sample VMP-16-5-090512 was re-analyzed to bring the compound, 2,2,4-trimethylpentane within the calibration range of the instrument. The result for 2,2,4-trimethylpentane was reported from the re-anlysis run and the remaining compounds were reported from the original analysis. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209274A-02A	TO-15	Carbon disulfide	$0.36 \mathrm{ppbv} / 1.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	Methylene chloride	$0.13 \mathrm{ppbv} / 0.45 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	Benzene	$0.072 \mathrm{ppbv} / 0.23 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	cis-1,3-Dichloropropene	$0.099 \mathrm{ppbv} / 0.45 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	Toluene	$0.11 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	trans-1,3-Dichloropropene	$0.12 \mathrm{ppbv} / 0.56 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Chlorobenzene	$0.45 \mathrm{ppbv} / 2.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209274A-02A	TO-15	Ethyl benzene	$0.098 \mathrm{ppbv} / 0.42 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,1,2,2-Tetrachloroethane	$0.073 \mathrm{ppbv} / 0.50 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,3-Dichlorobenzene	$0.15 \mathrm{ppbv} / 0.89 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.17 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	alpha-Chlorotoluene	$0.11 \mathrm{ppbv} / 0.56 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,2-Dichlorobenzene	$0.16 \mathrm{ppbv} / 0.99 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209274 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Nitrogen	0.045%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results
 Were laboratory duplicate samples collected as part of this SDG?
 No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

eurofins

Air Toxics

9/30/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209274A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 / TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

$$
\begin{gathered}
\text { Reviewed } \\
\text { on } \\
10 / 2 / 2012
\end{gathered}
$$

WORK ORDER \#: 1209274A

Work Order Summary

CERTIFIED BY:

DATE: $09 / 30 / 12$

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduces, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE
 EPA Method TO-15 URS Corporation
 Workorder\# 1209274A

One 1 Liter Summa Canister sample was received on September 14, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Due to high-level target compounds, sample VMP-16-5-090512 was analyzed twice. In the "A" fraction, the sample was diluted to bring the highest-level compounds within the calibration range. The "B" fraction is also reported by client request and may be reported with " S " flags indicating the compound exceeds the calibration range. Both runs and associated QC are reported.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates

Air Toxics

as follows:

a-File was requantified
b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-090512 oy Do not use thes datan Use all other data.
Lab ID\#: 1209274A-01B $D F=2960 X$

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	15000	22000	35000	54000
2-Propanol	5900	940 J	14000	2300 J
Carbon Disulfide	5900	3200 J	18000	10000 J
Methyl tert-butyl ether	1500	130 J	5300	480 J
\& \qquad -1500 $\rightarrow 4400000-5$ \qquad 6900 $\rightarrow 6000900$				

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-090512				
Lab 1D\#: 1209274A-01B				
1,2-Dichloroethane	1500	380 J	6000	1600 J
Toluene	1500	3600	5600	14000
Chlorobenzene	1500	1300 J	6800	6000 J
Ethyl Benzene	1500	410 J	6400	1800 J
m,p-Xylene	1500	600 J	6400	2600 J
o-Xylene	1500	380 J	6400	1700 J
Styrene	1500	360 J	6300	1600 J
1,4-Dichlorobenzene	1500	330 J	8900	2000 J
Butane	5900	27000	14000	64000
Isopentane	5900	530000	17000	1600000
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
Unknown		NA	NA	430000 J
Pentane, 2-methyl-		107-83-5	4.0\%	350000 NJ
Pentane, 3-methyl-		96-14-0	43\%	420000 NJ
1-Pentene, 4-methyl-		691-37-2	59\%	870000 NJ
Unknown		NA	NA	1600000 J
Nonane, 2,5-dimethyl-		17302-27-1	45\%	180000 NJ
Unknown		NA	NA	270000 J
Pentane, 2,3,4-trimethyl-		565-75-3	74\%	790000 NJ
Octane, 4-methyl-		2216-34-4	50\%	1100000 NJ
Heptane, 2,2-dimethyl-		1071-26-7	56\%	160000 NJ

Air Toxics

Client Sample ID: VMP-16-5-090512* Use these results only Lab ID\#: 1209274A-01A All sther data was repoited EPA METHOD TO-15 GC/MS FULL SCAN from the $2940 \times$ dilation

Client Sample ID: VMP-16-5-090512
Lab ID\#: 1209274A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 091920 \\ 11800 \\ \hline \end{array}$	Date of Collection: 9/5/12 4:08:00 PM Date of Analysis: 9/19/12 07:33 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5900	Not Detected	50000	Not Detected
1,2-Dibromoethane (EDB)	5900	Not Detected	45000	Not Detected
Chlorobenzene	5900	4000 J	27000	18000 J
Ethyl Benzene	5900	Not Detected	26000	Not Detected
m,p-Xylene	5900	1000 J	26000	4300 J
o-Xylene	5900	Not Detected	26000	Not Detected
Styrene	5900	Not Detected	25000	Not Detected
Bromoform	5900	Not Detected	61000	Not Detected
Cumene	5900	Not Detected	29000	Not Detected
1,1,2,2-Tetrachloroethane	5900	Not Detected	41000	Not Detected
Propylbenzene	5900	Not Detected	29000	Not Detected
4-Ethyltoluene	5900	Not Detected	29000	Not Detected
1,3,5-Trimethylbenzene	5900	Not Detected	29000	Not Detected
1,2,4-Trimethylbenzene	5900	Not Detected	29000	Not Detected
1,3-Dichlorobenzene	5900	Not Detected	36000	Not Detected
1,4-Dichlorobenzene	5900	Not Detected	36000	Not Detected
alpha-Chlorotoluene	5900	Not Detected	31000	Not Detected
1,2-Dichlorobenzene	5900	Not Detected	36000	Not Detected
1,2,4-Trichlorobenzene	24000	Not Detected	180000	Not Detected
Hexachlorobutadiene	24000	Not Detected	250000	Not Detected
Butane	24000	27000	56000	64000
Isopentane	24000	520000	70000	1500000
Ethyl Acetate	24000	Not Detected	85000	Not Detected
Propylene	24000	Not Detected	41000	Not Detected
Vinyl Acetate	24000	Not Detected	83000	Not Detected
Vinyl Bromide	24000	Not Detected	100000	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	530000 J
Pentane, 2-methyl-	$107-83-5$	40%	420000 NJ
Pentane, 3-methyl-	$96-14-0$	40%	520000 NJ
1-Pentene, 4-methyl-	$691-37-2$	59%	1000000 NJ
Unknown	NA	NA	1900000 J
Nonane, 2,5-dimethyl-	$17302-27-1$	59%	180000 NJ
Unknown	NA	NA	270000 J
Pentane, 2,3,4-trimethyl-	$565-75-3$	78%	810000 NJ
Octane, 4-methyl-	$2216-34-4$	78%	1100000 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	50%	160000 NJ

Air Toxics

\section*{Client Sample ID: VMP-16-5-090512
 Lab ID\#: 1209274A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | j 091920 | Date of Collection: 9/5/12 4:08:00 PM |
| :--- | ---: | :--- |
| Dil. Factor: | 11800 | Date of Analysis: 9/19/12 07:33 PM |}

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	109	$70-130$
4-Bromofluorobenzene	98	$70-130$

Alr Toxics

Cient Sample ID: VMP-16-5-090512 2 D Do not use this data. LabID\#: 1209274A-01B Use all other data. EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 091917 \\ 2960 \\ \hline \end{array}$	Date of Collection: 9/5/12 4:08:00 PM Date of Analysis: 9/19/12 05:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1500	Not Detected	7300	Not Detected
Freon 114	1500	Not Detected	10000	Not Detected
Chloromethane	15000	Not Detected	30000	Not Detected
Vinyl Chloride	1500	Not Detected	3800	Not Detected
1,3-Butadiene	1500	Not Detected	3300	Not Detected
Bromomethane	15000	Not Detected	57000	Not Detected
Chloroethane	5900	Not Detected	16000	Not Detected
Freon 11	1500	Not Detected	8300	Not Detected
Ethanol	5900	Not Detected	11000	Not Detected
Freon 113	1500	Not Detected	11000	Not Detected
1,1-Dichloroethene	1500	Not Detected	5900	Not Detected
Acetone	15000	22000	35000	54000
2-Propanol	5900	940 J	14000	2300 J
Carbon Disulfide	5900	3200 J	18000	10000 J
3-Chloropropene	5900	Not Detected	18000	Not Detected
Methylene Chloride	15000	Not Detected	51000	Not Detected
Methyl tert-butyl ether	1500	130 J	5300	480 J
trans-1,2-Dichloroethene	1500	Not Detected	5900	Not Detected
Hexane	1500	Not Detected	5200	Not Detected
1,1-Dichloroethane	1500	Not Detected	6000	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5900	Not Detected	17000	Not Detected
cis-1,2-Dichloroethene	1500	Not Detected	5900	Not Detected
Tetrahydrofuran	1500	Not Detected	4400	Not Detected
Chloroform	1500	Not Detected	7200	Not Detected
1,1,1-Trichloroethane	1500	Not Detected	8100	Not Detected
Cyclohexane	1500	Not Detected	5100	Not Detected
Carbon Tetrachloride	1500	Not Detected	9300	Not Detected
2,2,4-Trimethylpentane-	- 4500	$\rightarrow 1400000-8$	-6900	$\rightarrow 6800000{ }^{-}$
Benzene	1500	2300	4700	7400
1,2-Dichloroethane	1500	380 J	6000	1600 J
Heptane	1500	Not Detected	6100	Not Detected
Trichloroethene	1500	Not Detected	8000	Not Detected
1,2-Dichloropropane	1500	Not Detected	6800	Not Detected
1.4-Dioxane	5900	Not Detected	21000	Not Detected
Bromodichloromethane	1500	Not Detected	9900	Not Detected
cis-1,3-Dichloropropene	1500	Not Detected	6700	Not Detected
4-Methyl-2-pentanone	1500	Not Detected	6100	Not Detected
Toluene	1500	3600	5600	14000
trans-1,3-Dichloropropene	1500	Not Detected	6700	Not Detected
1,1,2-Trichloroethane	1500	Not Detected	8100	Not Detected
Tetrachloroethene	1500	Not Detected	10000	Not Detected
2-Hexanone	5900	Not Detected	24000	Not Detected

File Name: Dil. Factor:	$\begin{array}{r} \text { j091917 } \\ 2960 \\ \hline \end{array}$	Date of Collection: 9/5/12 4:08:00 PM Date of Analysis: 9/19/12 05:36 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1500	Not Detected	13000	Not Detected
1,2-Dibromoethane (EDB)	1500	Not Detected	11000	Not Detected
Chlorobenzene	1500	1300 J	6800	6000 J
Ethyl Benzene	1500	410 J	6400	1800 J
m,p-Xylene	1500	600 J	6400	2600 J
o-Xylene	1500	380 J	6400	1700 J
Styrene	1500	360 J	6300	1600 J
Bromoform	1500	Not Detected	15000	Not Detected
Cumene	1500	Not Detected	7300	Not Detected
1,1,2,2-Tetrachloroethane	1500	Not Detected	10000	Not Detected
Propylbenzene	1500	Not Detected	7300	Not Detected
4-Ethyltoluene	1500	Not Detected	7300	Not Detected
1,3,5-Trimethylbenzene	1500	Not Detected	7300	Not Detected
1,2,4-Trimethylbenzene	1500	Not Detected	7300	Not Detected
1,3-Dichlorobenzene	1500	Not Detected	8900	Not Detected
1,4-Dichlorobenzene	1500	330 J	8900	2000 J
alpha-Chlorotoluene	1500	Not Detected	7700	Not Detected
1,2-Dichlorobenzene	1500	Not Detected	8900	Not Detected
1,2,4-Trichlorobenzene	5900	Not Detected	44000	Not Detected
Hexachlorobutadiene	5900	Not Detected	63000	Not Detected
Butane	5900	27000	14000	64000
Isopentane	5900	530000	17000	1600000
Ethyl Acetate	5900	Not Detected	21000	Not Detected
Propylene	5900	Not Detected	10000	Not Detected
Vinyl Acetate	5900	Not Detected	21000	Not Detected
Vinyl Bromide	5900	Not Detected	26000	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	430000 J
Pentane, 2-methyl-	$107-83-5$	4.0%	350000 NJ
Pentane, 3-methyl-	$96-14-0$	43%	420000 NJ
1-Pentene, 4-methyl-	$691-37-2$	59%	870000 NJ
Unknown	NA	NA	1600000 J
Nonane, 2,5-dimethyl-	$17302-27-1$	45%	180000 NJ
Unknown	NA	NA	270000 J
Pentane, 2,3,4-trimethyl-	$565-75-3$	74%	790000 NJ
Octane, 4-methyl-	$2216-34-4$	50%	1100000 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	56%	160000 NJ

Ais Toxics

Client Sample ID: VMP-16-5-090512

Lab ID\#: 1209274A-01B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dif. Factor:	$\begin{array}{r} j 091917 \\ 2960 \\ \hline \end{array}$		Date of Collection: 9/5/12 4:08:00 PM Date of Analysis: 9/19/12 05:36 PM
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Lite	ter		
Surrogates		\%Recovery	Limits
Toluene-d8		104	70-130
1,2-Dichloroethane-d4		108	70-130
4-Bromofluorobenzene		100	70-130

Air Toxics

Client Sample 1D: Lab Blank Lab ID\#: 1209274A-02A EPA METHOD TO- 15 GC/MS FULL SCAN				
File Name: Dil. Factor:	$\begin{array}{r} \text { j091909a } \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 11:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.36 J	6.2	1.1 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	0.13 J	17	0.45 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	0.072 J	1.6	023 J
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	0.099 J	2.3	0.45 J
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.11 D	1.9	Q42J
trans-1,3-Dichloropropene	0.50	(0.12)	2.3	(0.56 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics

Client Sample ID: Lab Blank

Lab ID\#: 1209274A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j091909a } \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 11:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.45 J	2.3	2.1 J
Ethyl Benzene	0.50	0.098 J	2.2	0.42 J
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	0.073 J	3.4	0.50 J
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	0.15 J	3.0	0.89 J
1,4-Dichlorobenzene	0.50	0.170	3.0	(1.0J)
alpha-Chlorotoluene	0.50	0.11 l	2.6	0.56 J
1,2-Dichlorobenzene	0.50	0.16 J	3.0	0.99 J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$J=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

None identified

Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2 -Dichloroethane-d4	97	$70-130$
4-Bromofluorobenzene	97	$70-130$

eurofins

Air Toxies

Client Sample ID: CCVLab ID\#: 1209274A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j091902	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/12 07:02 AM

Compound \%Recovery
Freon 12 95
Freon 114 94
Chloromethane 91
Vinyl Chloride 97
1,3-Butadiene 97
Bromomethane 84
Chloroethane 89
Freon 11 96
Ethanol 85
Freon 113 93
1,1-Dichloroethene 98
Acetone 89
2-Propanol 98
Carbon Disulfide 88
3-Chloropropene 88
Methylene Chloride 93
Methyl tert-butyl ether 97
trans-1,2-Dichloroethene 99
Hexane 99
1,1-Dichloroethane 96
2-Butanone (Methyl Ethyl Ketone) 95
cis-1,2-Dichloroethene 97
Tetrahydrofuran 97
Chloroform 96
1,1,1-Trichloroethane 98
Cyclohexane 93
Carbon Tetrachloride 102
2,2,4-Trimethylpentane 101
Benzene 93
1,2-Dichloroethane 98
Heptane 101
Trichloroethene 88
1,2-Dichloropropane 94
1,4-Dioxane 91
Bromodichloromethane 95
cis-1,3-Dichloropropene 98
4-Methyl-2-pentanone 99
Toluene 92
trans-1,3-Dichloropropene 91
1,1,2-Trichloroethane 98
Tetrachloroethene 101
2-Hexanone 97

Air Tozics

\section*{Client Sample ID: CCV
 Lab ID\#: 1209274A-03A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | j 091902 | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: $9 / 19 / 12$ 07:02 AM |}

Compound		\%Recovery
Dibromochloromethane		98
1,2-Dibromoethane (EDB)		98
Chlorobenzene		83
Ethyl Benzene		98
m,p-Xylene		93
o-Xylene		103
Styrene		102
Bromoform		97
Cumene		103
1,1,2,2-Tetrachloroethane		95
Propylbenzene		98
4-Ethyltoluene		102
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		105
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		93
alpha-Chlorotoluene		100
1,2-Dichlorobenzene		95
1,2,4-Trichlorobenzene		84
Hexachlorobutadiene		89
Butane		89
Isopentane		103
Ethyl Acetate		80
Propylene		92
Vinyl Acetate		104
Vinyl Bromide		115
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCS
Lab ID\#: 1209274A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 091903	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 19 / 12$ 07:40 AM

Compound \%Recovery
Freon 12 99
Freon 114 93
Chloromethane 95
Vinyl Chloride 103
1,3-Butadiene 100
Bromomethane 88
Chloroethane 89
Freon 11 101
Ethanol 86
Freon 113 99
1,1-Dichloroethene 102
Acetone 98
2-Propanof 103
Carbon Disulfide 114
3-Chloropropene 91
Methylene Chloride 94
Methyl tert-butyl ether 101
trans-1,2-Dichloroethene 116
Hexane 101
1,1-Dichloroethane 99
2-Butanone (Methyl Ethyl Ketone) 98
cis-1,2-Dichloroethene 102
Tetrahydrofuran 98
Chloroform 99
1,1,1-Trichloroethane 102
Cyclohexane 98
Carbon Tetrachloride 107
2,2,4-Trimethylpentane 103
Benzene 106
1,2-Dichloroethane 104
Heptane 109
Trichtoroethene 99
1,2-Dichloropropane 101
1,4-Dioxane 107
Bromodichloromethane 104
cis-1,3-Dichloropropene 102
4-Methyl-2-pentanone 107
Toluene 101
trans-1,3-Dichloropropene 100
1,1,2-Trichloroethane 104
Tetrachloroethene 106
2-Hexanone 102

Client Sample ID: LCS

Lab ID\#: 1209274A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 091903$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 19 / 12$ 07:40 AM

An Toxics

eurofins

Air Tomes

Sils Shell Oil Products Chain Of Custody Record

OUSTODY EAL INTACT?

eurofins

AIT Toxics

10/2/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209274B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

> Reviewed
> on
> $10 / 212012$

Air Toxics

WORK ORDER \#: 1209274B

Work Order Summary

CERTIFIED BY:

Technical Director

DATE: 10/02/12

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the write en approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder\# 1209274B

One 1 Liter Summa Canister sample was received on September 14, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol $\%$ for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 \% should not be analyzed by using sample volumes greater than $0.5 \mathrm{mL}$.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Oualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-090512

Lab ID\#: 1209274B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	1.9
Nitrogen	0.30	74
Methane	0.00030	6.8
Carbon Dioxide	0.030	17
Ethane	0.0030	0.00034 J
Helium	0.15	0.51

Lab ID\#: 1209274B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9091928 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/5/12 4:08:00 PM Date of Analysis: 9/19/12 10:30 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.30	1.9
Nitrogen		0.30	74
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	6.8
Carbon Dioxide		0.030	17
Ethane		0.0030	0.00034 J
Ethene		0.0030	Not Detected
Helium		0.15	0.51

$\mathrm{J}=$ Estimated value.
Container Type: 1 Liter Summa Canister

eurofins

Client Sample ID: Lab Blank
Lab ID\#: 1209274B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Ar Toxics

Client Sample ID: Lab Blank
Lab ID\#: 12092741B-02B
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9091903 \mathrm{~b} \\ 1.00 \\ \hline \end{array}$		Date of Collection: NA Date of Analysis: 9/19/12 09:30 AM
Compound		Rpt. Limit (\%)	Amount (\%)
Helium		0.050	Not Detecte

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCS
 Lab ID\#: 1209274B-03A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9091902 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/19/12 09:06 AM
Compound		\%Recovery
Oxygen		100
Nitrogen		100
Carbon Monoxide		98
Methane		98
Carbon Dioxide		102
Ethane		100
Ethene		96
Helium		100

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209274B-03AA
 NATURAL GAS ANALYSIS BY MODIRIED ASTM D-1946

File Name:	9091929 Dil. Factor:	Date of Collection: NA Date of Analysis: $\mathbf{9 / 1 9 / 1 2 ~ 1 0 : 5 4 ~ P M ~}$
Compound		\%Recovery
Oxygen	99	
Nitrogen		100
Carbon Monoxide	97	
Methane	98	
Carbon Dioxide	102	
Ethane	99	
Ethene	96	
Helium	99	
Container Type: NA - Not Applicable		

Shell Oil Products Chain Of Custody Record
THes

OUSTODY SEAL INTACT?

Roxana Soil Vapor Additional - Week 6 - Data Review

Laboratory SDG: 1209275A,B

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/4/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-091112

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated sample VMP-16-5-091112 was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.
No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209275A-02A	TO-15	$2,2,4$-Trimethylpentane	$0.078 \mathrm{ppbv} / 0.36 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209275A-02A	TO-15	1,2-Dichloroethane	$0.11 \mathrm{ppbv} / 0.44 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209275A-02A	TO-15	Trichloroethene	$0.25 \mathrm{ppbv} / 1.3 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209275A-02A	TO-15	Toluene	$0.11 \mathrm{ppbv} / 0.40 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209275A-02A	TO-15	Tetrachloroethene	$0.21 \mathrm{ppbv} / 1.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Chlorobenzene	$0.34 \mathrm{ppbv} / 1.6 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	m,p-Xylenes	$0.12 \mathrm{ppbv} / 0.52 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Propylbenzene	$0.093 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,3 -Dichlorobenzene	$0.16 \mathrm{ppbv} / 0.94 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.17 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209275 \mathrm{~A}-02 \mathrm{~A}$	TO-15	alpha-Chlorotoluene	$0.098 \mathrm{ppbv} / 0.51 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1209275A-02A	TO-15	1,2-Dichlorobenzene	$0.16 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209275B-02A	Natural gases	Oxygen	0.0098%
$1209275 \mathrm{~B}-02 \mathrm{~A}$	Natural gases	Nitrogen	0.066%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results
 Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications
 Were additional qualifications applied?

No

eurofins

10/1/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209275A
Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.
The data and associated QC analyzed by Modified TO-15/ TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.
Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

$$
\begin{aligned}
& \text { Reviewed } \\
& \text { on } \\
& 10 / 4 / 2012
\end{aligned}
$$

AI Toxics

WORK ORDER \#: 1209275A

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel	BILL TO:	Accounts Payable Austin URS Corporation
	URS Corporation 1001 Highlands Plaza Dr. West Suite 300		P.O. BOX 203970

CERTIFIED BY:

DATE: 10/01/12
Technical Director
Certfication numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1209275A

One 1 Liter Summa Canister sample was received on September 14, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Dilution was performed on sample VMP-16-5-091112 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J- Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector

Air Toxics

rl-File was requantified for the purpose of reissue

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-091112

Lab ID\#: 1209275A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	59	16 J	140	39 J
Carbon Disulfide	59	7.9 J	180	25 J
2,2,4-Trimethylpentane	15	4700	69	22000
Benzene	15	3.6 J	47	12 J
4-Methyl-2-pentanone	15	44	61	180
Toluene	15	27	56	100
Chlorobenzene	15	9.0 J	68	41 J
Cumene	15	4.6 J	73	23 J
Isopentane	59	63	170	190

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	460 J
Pentane, 2,4-dimethyl-	$108-08-7$	50%	200 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	39%	740 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	64%	520 NJ
Unknown	NA	NA	510 J
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	78%	480 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	78%	2000 NJ
Octane, 4-methyl-	$2216-34-4$	72%	9100 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	64%	240 NJ
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	220 NJ

Air Toxics

Client Sample ID: VMP-16-5-091112
Lab ID\#: 1209275A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 092120 \\ 29.6 \\ \hline \end{array}$	Date of Collection: 9/11/12 10:04:00 AM Date of Analysis: 9/21/12 11:03 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	15	Not Detected	73	Not Detected
Freon 114	15	Not Detected	100	Not Detected
Chloromethane	150	Not Detected	300	Not Detected
Vinyl Chloride	15	Not Detected	38	Not Detected
1,3-Butadiene	15	Not Detected	33	Not Detected
Bromomethane	150	Not Detected	570	Not Detected
Chloroethane	59	Not Detected	160	Not Detected
Freon 11	15	Not Detected	83	Not Detected
Ethanol	59	Not Detected	110	Not Detected
Freon 113	15	Not Detected	110	Not Detected
1,1-Dichloroethene	15	Not Detected	59	Not Detected
Acetone	150	Not Detected	350	Not Detected
2-Propanol	59	16 J	140	39 J
Carbon Disulfide	59	7.9 J	180	25 J
3-Chloropropene	59	Not Detected	180	Not Detected
Methylene Chloride	150	Not Detected	510	Not Detected
Methyl tert-butyl ether	15	Not Detected	53	Not Detected
trans-1,2-Dichloroethene	15	Not Detected	59	Not Detected
Hexane	15	Not Detected	52	Not Detected
1,1-Dichloroethane	15	Not Detected	60	Not Detected
2-Butanone (Methyl Ethyl Ketone)	59	Not Detected	170	Not Detected
cis-1,2-Dichloroethene	15	Not Detected	59	Not Detected
Tetrahydrofuran	15	Not Detected	44	Not Detected
Chioroform	15	Not Detected	72	Not Detected
1,1,1-Trichloroethane	15	Not Detected	81	Not Detected
Cyclohexane	15	Not Detected	51	Not Detected
Carbon Tetrachloride	15	Not Detected	93	Not Detected
2,2,4-Trimethylpentane	15	4700	69	22000
Benzene	15	3.6 J	47	12 J
1,2-Dichloroethane	15	Not Detected	60	Not Detected
Heptane	15	Not Detected	61	Not Detected
Trichloroethene	15	Not Detected	80	Not Detected
1,2-Dichloropropane	15	Not Detected	68	Not Detected
1,4-Dioxane	59	Not Detected	210	Not Detected
Bromodichloromethane	15	Not Detected	99	Not Detected
cis-1,3-Dichloropropene	15	Not Detected	67	Not Detected
4-Methyl-2-pentanone	15	44	61	180
Toluene	15	27	56	100
trans-1,3-Dichloropropene	15	Not Detected	67	Not Detected
1,1,2-Trichloroethane	15	Not Detected	81	Not Detected
Tetrachloroethene	15	Not Detected	100	Not Detected
2-Hexanone	59	Not Detected	240	Not Detected

eurofins

Air Toxics

Client Sample 1D: VMP-16-5-091112
Lab 1D\#: 1209275A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j092120 } \\ 29.6 \end{array}$	Date of Collection: 9/11/12 10:04:00 AM Date of Analysis: 9/21/12 11:03 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	15	Not Detected	130	Not Detected
1,2-Dibromoethane (EDB)	15	Not Detected	110	Not Detected
Chlorobenzene	15	9.0 J	68	41 J
Ethyl Benzene	15	Not Detected	64	Not Detected
m,p-Xylene	15	Not Detected	64	Not Detected
o-Xylene	15	Not Detected	64	Not Detected
Styrene	15	Not Detected	63	Not Detected
Bromoform	15	Not Detected	150	Not Detected
Cumene	15	4.6 J	73	23 J
1,1,2,2-Tetrachloroethane	15	Not Detected	100	Not Detected
Propylbenzene	15	Not Detected	73	Not Detected
4-Ethyltoluene	15	Not Detected	73	Not Detected
1,3,5-Trimethylbenzene	15	Not Detected	73	Not Detected
1,2,4-Trimethylbenzene	15	Not Detected	73	Not Detected
1,3-Dichlorobenzene	15	Not Detected	89	Not Detected
1,4-Dichlorobenzene	15	Not Detected	89	Not Detected
alpha-Chlorotoluene	15	Not Detected	77	Not Detected
1,2-Dichlorobenzene	15	Not Detected	89	Not Detected
1,2,4-Trichlorobenzene	59	Not Detected	440	Not Detected
Hexachlorobutadiene	59	Not Detected	630	Not Detected
Butane	59	Not Detected	140	Not Detected
Isopentane	59	63	170	190
Ethyl Acetate	59	Not Detected	210	Not Detected
Propylene	59	Not Detected	100	Not Detected
Vinyl Acetate	59	Not Detected	210	Not Detected
Vinyl Bromide	59	Not Detected	260	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	460 J
Pentane, 2,4-dimethyl-	$108-08-7$	50%	200 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	39%	740 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	64%	520 NJ
Unknown	NA	NA	510 J
Hexane, 2,2,5,5-tetramethyl-	$1071-81-4$	78%	480 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	78%	2000 NJ
Octane, 4-methyl-	$2216-34-4$	72%	9100 NJ
Heptane,	$62108-31-0$	64%	240 NJ
4-ethyl-2,2,6,6-tetramethyl-	$62238-01-1$	64%	220 NJ
Decane, 2,2,8-trimethyl-			

Ar Toxics

Client Sample ID: VMP-16-5-091112

Lab ID\#: 1209275A-01A
EPA METHOD TO- 15 GC/MS FULL SCAN
File Name:

Dil. Factor:
j092120
29.6

Date of Collection: 9/11/12 10:04:00 AM Date of Analysis: $9 / 21 / 12$ 11:03 PM
$N J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	106	$70-130$
1,2-Dichloroethane-d4	122	$70-130$
4-Bromofluorobenzene	95	$70-130$

Air Toxics

Client Sample ID: Lab Blank

Lab ID\#: 1209275A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092108 \mathrm{c} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 01:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetranydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	0.078 J	2.3	0.36 J
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	0.11 J	2.0	$<0.44 \mathrm{~J}$
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	0.25 J	2.7	-1.3 J
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	(0.11 J)	1.9	0.40 J
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	-0.21J	3.4	$\bigcirc 1.4 \mathrm{~J}$,
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1209275A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092108 \mathrm{c} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 01:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.34 J	2.3	-1.6J?
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	0.12 J	2.2	0.52 J
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	<0.093	2.4	(0.46J)
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	0.16 ,	3.0	0.94 J
1,4-Dichlorobenzene	0.50	0.1715	3.0	1.0 J
alpha-Chlorotoluene	0.50	0098	2.6	251J
1,2-Dichlorobenzene	0.50	0.16 J	3.0	10J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$j=$ Estimated value .
TENTATIVELY IDENTIFIED COMPOUNDS
$\left.\begin{array}{lcc}\text { Compound } & \text { CAS Number } & \text { Match Quality }\end{array} \begin{array}{c}\text { Amount } \\ \text { ((ppbv)) }\end{array}\right]$

Client Sample ID: CCV
 Lab ID\#: 1209275A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j092102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/12 08:03 AM

Compound \%Recovery
Freon 12 102
Freon 114 91
Chloromethane 95
Vinyl Chloride 96
1,3-Butadiene 99
Bromomethane 85
Chloroethane 87
Frean 11 103
Ethanol 92
Freon 113 93
1,1-Dichloroethene 98
Acetone 88
2-Propanol 110
Carbon Disulfide 84
3-Chloropropene 80
Methylene Chloride 103
Methyl tert-butyl ether 97
trans-1,2-Dichloroethene 100
Hexane 104
1,1-Dichloroethane 101
2-Butanone (Methyl Ethyl Ketone) 96
cis-1,2-Dichloroethene 102
Tetrahydrofuran 109
Chloroform 101
1,1,1-Trichloroethane 106
Cyclohexane 99
Carbon Tetrachloride 109
2,2,4-Trimethylpentane 105
Benzene 93
1,2-Dichloroethane 106
Heptane 97
Trichloroethene 96
1,2-Dichloropropane 92
1,4-Dioxane 102
Bromodichloromethane 101
cis-1,3-Dichloropropene 99
4-Methyl-2-pentanone 105
Toluene 95
trans-1,3-Dichloropropene 93
1.1,2-Trichloroethane 94
Tetrachloroethene 101
2-Hexanone 98

Air Toxics

\section*{Client Sample ID: CCV
 Lab ID\#: 1209275A-03A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | $j 092102$ | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: 9/21/12 08:03 AM |}

Compound \%Recovery
Dibromochloromethane 102
1,2-Dibromoethane (EDB) 98
Chlorobenzene 86
Ethyl Benzene 101
m,p-Xylene 98
o-Xylene 106
Styrene 106
Bromoform 101
Cumene 106
1,1,2,2-Tetrachloroethane 99
Propylbenzene 103
4-Ethyltoluene 107
1,3,5-Trimethylbenzene 109
1,2,4-Trimethylbenzene 107
1,3-Dichlorobenzene 102
1,4-Dichlorobenzene 101
alpha-Chlorotoluene 108
1,2-Dichlorobenzene 102
1,2,4-Trichlorobenzene 93
Hexachlorobutadiene 99
Butane 89
Isopentane 100
Ethyl Acetate 73
Propylene 93
Vinyl Acetate 113
Vinyl Bromide 107
Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	105	$70-130$
1,2-Dichloroethane-d4	118	$70-130$
4-Bromofluorobenzene	104	$70-130$

Client Sample 1D: LCS

Lab ID\#: 1209275A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 092103$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 21 / 12$ 08:41 AM

Compound \%Recovery
Freon 12 113
Freon 114 103
Chloromethane 111
Vinyl Chloride 107
1,3-Butadiene 108
Bromomethane 98
Chloroethane 95
Freon 11 112
Ethanol 99
Freon 113 108
11-Dichloroethene 106
Acetone 97
2-Propanol 116
Carbon Disulfide 115
3-Chloropropene 106
Methylene Chloride 112
Methyl tert-butyl ether 110
trans-1,2-Dichloroethene 119
Hexane 111
1.1-Dichloroethane 107
2-Butanone (Methyl Ethyl Ketone) 106
cis-1,2-Dichloroethene 109
Tetrahydrofuran 110
Chloroform 110
1,1,1-Trichloroethane 117
Cyclohexane 112
Carbon Tetrachloride 120
2,2,4-Trimethylpentane 114
Benzene 107
1,2-Dichloroethane 120
Heptane 106
Trichloroethene 104
1,2-Dichloropropane 110
1,4-Dioxane 109
Bromodichloromethane 114
cis-1,3-Dichloropropene 111
4-Methyl-2-pentanone 115
Toluene 107
trans-1,3-Dichloropropene 97
1,1,2-Trichloroethane 101
Tetrachloroethene 103
2-Hexanone 104

Client Sample ID: LCS
Lab ID\#: 1209275A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j092103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 21 / 1208: 41$ AM

Compound		\%Recovery
Dibromochloromethane		108
1,2-Dibromoethane (EDB)		108
Chlorobenzene		91
Ethyl Benzene		106
$\mathrm{m}, \mathrm{p}-\mathrm{Xyl} \mathrm{m}^{\text {e }}$		103
o-Xylene		115
Styrene		110
Bromoform		105
Cumene		113
1,1,2,2-Tetrachloroethane		105
Propylbenzene		111
4-Ethyltoluene		109
1,3,5-Trimethylbenzene		117
1,2,4-Trimethylbenzene		119
1,3-Dichlorobenzene		110
1,4-Dichlorobenzene		103
alpha-Chlorotoluene		109
1,2-Dichlorobenzene		108
1,2,4-Trichlorobenzene		95
Hexachlorobutadiene		101
Butane		90
Isopentane		119
Ethyl Acetate		Not Spiked
Propylene		92
Vinyl Acetate		108
Vinyl Bromide		Not Spiked
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	110	70-130
1,2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	103	70-130

An Toxics

Client Sample 1D: LCSD

Lab ID\#: 1209275A-04AA
EPA METHIOD TO-15 GC/MS FULL SCAN

File Name:	$j 092104$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 21 / 12$ 09:15 AM

Compound \%Recovery
Freon 12 112
Freon 114 102
Chloromethane 107
Vinyl Chloride 108
1,3-Butadiene 110
Bromomethane 94
Chloroethane 92
Freon 11 111
Ethanol 100
Freon 113 106
1,1-Dichloroethene 108
Acetone 101
2-Propanol 115
Carbon Disulfide 114
3-Chloropropene 104
Methylene Chloride 109
Methyl tert-butyl ether 106
trans-1,2-Dichloroethene 112
Hexane 109
1,1-Dichloroethane 105
2-Butanone (Methyl Ethyl Ketone) 106
cis-1,2-Dichloroethene 113
Tetrahydrofuran 114
Chloroform 109
1,1,1-Trichloroethane 113
Cyclohexane 110
Carbon Tetrachloride 117
2,2,4-Trimethylpentane 109
Benzene 105
1,2-Dichloroethane 112
Heptane 103
Trichloroethene 98
1,2-Dichloropropane 97
1,4-Dioxane 104
Bromodichloromethane 107
cis-1,3-Dichloropropene 102
4-Methyl-2-pentanone 110
Toluene 101
trans-1,3-Dichloropropene 100
1,1,2-Trichloroethane 100
Tetrachloroethene 109
2-Hexanone 110

An Toxics

Client Sample ID: LCSD Lab ID\#: 1209275A-04AA EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092104 \\ 1.00 \\ \hline \end{array}$		Date of Collection Date of Analysis:	$\begin{aligned} & \text { : NA } \\ & 9 / 21 / 1209: 15 \text { AM } \end{aligned}$
Compound				\%Recovery
Dibromochloromethane				109
1,2-Dibromoethane (EDB)				106
Chlorobenzene				92
Ethyl Benzene				107
m,p-Xylene				104
o-Xylene				112
Styrene				111
Bromoform				108
Cumene				114
1,1,2,2-Tetrachloroethane				108
Propylbenzene				113
4-Ethyltoluene				110
1,3,5-Trimethylbenzene				118
1,2,4-Trimethylbenzene				116
1,3-Dichlorobenzene				110
1,4-Dichlorobenzene				107
alpha-Chlorotoluene				114
1,2-Dichlorobenzene				109
1,2,4-Trichlorobenzene				100
Hexachlorobutadiene				101
Butane				94
Isopentane				114
Ethyl Acetate				Not Spiked
Propylene				95
Vinyl Acetate				113
Vinyl Bromide				Not Spiked
Container Type: NA - Not Applicable				
Surrogates		\%Recovery		Method Limits
Toluene-d8		104		70-130
1,2-Dichloroethane-d4		114		70-130
4-Bromofluorobenzene		103		70-130

Sith Shell Oil Products Chain Of Custody Record
HRS

eurofins

10/2/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209275B

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

$$
\begin{aligned}
& \text { Reviewed } \\
& \text { on } \\
& 10 / 4 / 2012
\end{aligned}
$$

[^8]
WORK ORDER \#: 1209275B

Work Order Summary

DATE: $\quad 10 / 02 / 12$
Technical Director
Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the written approval of Etrofins Air Toxics, lIne.

LABORATORY NARRATIVE
 Modified ASTM D-1946
 URS Corporation Workorder\#1209275B

One 1 Liter Summa Canister sample was received on September 14, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol $\%$ for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than $0.5 \mathrm{mL}$.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC . Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Nomalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either duc to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-091112
Lab ID\#: 1209275B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	6.0
Nitrogen	0.30	82
Methane	0.00030	0.00022 J
Carbon Dioxide	0.030	12
Helium	0.15	0.024 J

Air Toxics

Client Sample ID: VMP-16-5-091112

Lab ID\#: 1209275B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample 1D: Lab Blank

Lab ID\#: 1209275B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

An Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209275B-02B
 NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

\(\left.\begin{array}{|lrrr|}\hline \& \& \&

File Name: \& 9092504 \mathrm{~b} \& \& Date of Collection: NA

Dii. Factor: \& 1.00 \& Rate of Analysis: 9/25/12 09:23 AM\end{array}\right]\)| Amount |
| :--- |
| Compound |

Container Type: NA - Not Applicable

An Toxics

\section*{Client Sample ID: LCS
 Lab ID\#: 1209275B-03A
 NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946
 | File Name: | 9092502 | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: $9 / 25 / 12$ 08:15 AM |}

Compound \%Recovery
Oxygen 100
Nitrogen 100
Carbon Monoxide 99
Methane 98
Carbon Dioxide 105
Ethane 100
Ethene 97
Helium 100
Container Type: NA - Not Applicable

Air Toxics

Client Sample 1D: LCSD Lab ID\#: 1209275B-03AA		
File Name: Dil. Factor:	$\begin{array}{r} 9092531 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/25/12 10:14 PM
Compound		\%Recovery
Oxygen		99
Nitrogen		100
Carbon Monoxide		98
Methane		98
Carbon Dioxide		104
Ethane		99
Ethene		96
Helium		100
Container Type:		

Roxana Soil Vapor Additional - Week 6 - Data Review

Laboratory SDG: 1209276A,B

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/8/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-091112	VMP-42-10-091112
VMP-4-5-091112	VMP-11-5-091112
VMP-13-5-091112	VMP-13-5-091112-Dup
VMP-10-5-091112	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form
 Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times
 Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209276A-08A	TO-15	2,2,4-Trimethylpentane	$0.078 \mathrm{ppbv} / 0.36 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,2-Dichloroethane	$0.11 \mathrm{ppbv} / 0.44 \mathrm{\mu g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Trichloroethene	$0.25 \mathrm{ppbv} / 1.3 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Toluene	$0.11 \mathrm{ppbv} / 0.40 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Tetrachloroethene	$0.21 \mathrm{ppbv} / 1.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Chlorobenzene	$0.34 \mathrm{ppbv} / 1.6 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	m,p-Xylenes	$0.12 \mathrm{ppbv} / 0.52 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	Propylbenzene	$0.093 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,3-Dichlorobenzene	$0.16 \mathrm{ppbv} / 0.94 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,4-Dichlorobenzene	$0.17 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	alpha-Chlorotoluene	$0.098 \mathrm{ppbv} / 0.51 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~A}-08 \mathrm{~A}$	TO-15	1,2-Dichlorobenzene	$0.16 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1209276 \mathrm{~B}-08 \mathrm{~A}$	Natural gases	Oxygen	0.0098%
$1209276 \mathrm{~B}-08 \mathrm{~A}$	Natural gases	Nitrogen	0.066%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-091112	TO-15	Tetrachloroethene	-	U
VMP-21-5-091112	TO-15	Chlorobenzene	-	U
VMP-21-5-091112	TO-15	Propylbenzene	-	U
VMP-21-5-091112	TO-15	1,3-Dichlorobenzene	-	U
VMP-21-5-091112	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-091112	TO-15	1,2-Dichloroethane	-	U
VMP-42-10-091112	TO-15	Trichloroethene	-	U
VMP-42-10-091112	TO-15	Tetrachloroethene	-	U
VMP-42-10-091112	TO-15	Chlorobenzene	-	U
VMP-42-10-091112	TO-15	1,3-Dichlorobenzene	-	U
VMP-42-10-091112	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-091112	TO-15	1,2-Dichlorobenzene	-	U
VMP-4-5-091112	TO-15	Trichloroethene	-	U
VMP-11-5-091112	TO-15	Trichloroethene	-	U
VMP-11-5-091112	TO-15	Chlorobenzene	-	U
VMP-11-5-091112	TO-15	1,3-Dichlorobenzene	-	U
VMP-11-5-091112	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-091112	TO-15	Chlorobenzene	-	U
VMP-13-5-091112	TO-15	1,3-Dichlorobenzene	-	U
VMP-13-5-091112	TO-15	1,4-Dichlorobenzene	-	U
VMP-13-5-091112-Dup	TO-15	$\begin{gathered} \hline 2,2,4- \\ \text { Trimethylpentane } \\ \hline \end{gathered}$	-	U
VMP-13-5-091112-Dup	TO-15	Toluene	-	U
VMP-13-5-091112-Dup	TO-15	Tetrachloroethene	-	U
VMP-13-5-091112-Dup	TO-15	Chlorobenzene	-	U
VMP-13-5-091112-Dup	TO-15	1,3-Dichlorobenzene	-	U
VMP-13-5-091112-Dup	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-091112	TO-15	Tetrachloroethene	-	U
VMP-10-5-091112	TO-15	Chlorobenzene	-	U
VMP-10-5-091112	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-091112	TO-15	alpha-Chlorotoluene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes
7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
Yes

Field ID	Field Duplicate ID
VMP-13-5-091112	VMP-13-5-091112-Dup

Were field duplicate sample RPDs within evaluation criteria?
Yes

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

eurofins

10/1/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209276A

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

folly Butte

Kelly Buettner
Project Manager

$$
\begin{gathered}
\text { Reviewed } \\
\text { on } \\
10 / 8 / 2012
\end{gathered}
$$

Air Toxics
WORK ORDER \#: 1209276A
Work Order Summary

CERTIFIED BY:

DATE: 10/01/12

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - I1291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

[^9]

eurofins

LABORATORY NARRATIVE
 EPA Method TO-15 URS Corporation Workorder\# 1209276A

Seven 1 Liter Summa Canister samples were received on September 14, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-091112

Lab ID\#: 1209276A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.38 J	7.0	1.9 J
Ethanol	5.6	9.0	11	17
Acetone	14	18	33	42
2-Propanol	5.6	6.4	14	16
Carbon Disulfide	5.6	0.86 J	18	2.7 J
Hexane	1.4	0.46 J	5.0	1.6 J
2-Butanone (Methyl Ethyl Ketone)	5.6	3.4 J	17	9.9 J
Cyclohexane	1.4	0.44 J	4.8	1.5 J
2,2,4-Trimethylpentane	1.4	1.6	6.6	7.6
Benzene	1.4	2.7	4.5	8.8
Heptane	1.4	0.60 J	5.8	2.4 J
4-Methyl-2-pentanone	1.4	24	5.8	97
Toluene	1.4	16	5.3	60
trans-1,3-Dichloropropene	1.4	0.36 J	6.4	1.6 J
Tetrachloroethene	1.4	$\theta .52-J u$	9.6	$3.5-5 u$
Chlorobenzene	1.4	$4.2 \mathrm{~J} u$	6.5	-5.4 J U
Ethyl Benzene	1.4	0.70 J	6.1	3.0 J
m,p-Xylene	1.4	2.6	6.1	11
o-Xylene	1.4	1.5	6.1	6.4
Cumene	1.4	3.0	6.9	14
Propylbenzene	1.4	$-0.32 \mathrm{~J} \mathrm{U}$	6.9	1.6 J U
4-Ethyltoluene	1.4	1.1 J	6.9	5.5 J
1,3,5-Trimethylbenzene	1.4	0.34 J	6.9	1.7 J
1,2,4-Trimethylbenzene	1.4	1.2 J	6.9	6.0 J
1,3-Dichlorobenzene	1.4	0.39 JU	8.5	$-2.4 \mathrm{~J} \mathrm{u}$
1,4-Dichlorobenzene	1.4	0.40 J U	8.5	2.4 J u
Isopentane	5.6	2.1 J	17	6.2 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number Match Quality	Amount (ppbv)	
Unknown	NA	NA	10 J
Unknown	NA	NA	20 J
Heptane, 2,2,3,4,6,6-hexamethyl-	$62108-32-1$	64%	9.1 NJ

eurofins

Summary of Detected Compounds
 EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-091112
Lab ID\#: 1209276A-01A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	32 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	59%	9.6 NJ
Undecane	$1120-21-4$	59%	37 NJ
Tetradecane, 1-iodo-	$19218-94-1$	53%	12 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	75 NJ
1-Octanol, 2-butyl-	$3913-02-8$	47%	29 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	14 NJ

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	6.1	18	11	34
Acetone	15	21	36	50
2-Propanol	6.1	20	15	50
Carbon Disulfide	6.1	1.1 J	19	3.6 J
2-Butanone (Methyl Ethyl Ketone)	6.1	8.9	18	26
Chloroform	1.5	1.2 J	7.4	5.8 J
2,2,4-Trimethylpentane	1.5	0.65 J	7.1	3.0 J
Benzene	1.5	4.3	4.8	14
1,2-Dichloroethane	1.5	- 0.17 Ju	6.1	0.70 Ju
Heptane	1.5	0.96 J	6.2	3.9 J
Trichloroethene	1.5	0.68.J u	8.1	.3 .7 J U
4-Methyl-2-pentanone	1.5	67	6.2	270
Toluene	1.5	41	5.7	160
Tetrachloroethene	1.5	-0.56-Ju	10	-3.8-J U
Chlorobenzene	1.5	$4.5-\mathrm{Ju}$	7.0	6.9 Ju
Ethyl Benzene	1.5	0.92 J	6.6	4.0 J
m,p-Xylene	1.5	1.8	6.6	8.0
o-Xylene	1.5	0.71 J	6.6	3.1 J
Styrene	1.5	0.56 J	6.4	2.4 J
Cumene	1.5	8.2	7.4	40

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-091112

Lab ID\#: 1209276A-02A

1,1,2,2-Tetrachloroethane	1.5	0.55 J	10	3.8 J
Propylbenzene	1.5	0.31 J	7.4	1.5 J
4-Ethyltoluene	1.5	0.94 J	7.4	4.6 J
1,3,5-Trimethylbenzene	1.5	0.49 J	7.4	2.4 J
1,2,4-Trimethylbenzene	1.5	0.64 J	7.4	3.15
1,3-Dichlorobenzene	1.5	0.49 Ju	9.1	29.5 J
1,4-Dichlorobenzene	1.5	0.54 Ju	9.1	"3.1J U
1,2-Dichlorobenzene	1.5	0.28 JU	9.1	$\uparrow 7 \mathrm{~J}$ U
Isopentane	6.1	2.2 J	18	6.5 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	29 J
Decane, 2,2-dimethyl-	$17302-37-3$	64%	100 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	30 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	53%	110 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	240 NJ
Unknown	NA	NA	150 J
Ethanone, 1-phenyl-	$98-86-2$	74%	82 NJ
Unknown	NA	NA	58 J
Unknown	NA	NA	36 J
Unknown	NA	NA	29 J

Client Sample ID: VMP-4-5-091112
Lab ID\#: 1209276A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.4	0.44 J	7.0	2.2 J
Ethanol	5.6	20	11	38
Acetone	14	24	33	56
2-Propanol	5.6	13	14	31
Carbon Disulfide	5.6	1.7 J	18	5.2 J
Methylene Chloride	14	0.74 J	49	2.6 J
2-Butanone (Methyl Ethyl Ketone)	5.6	7.8	17	23
2,2,4-Trimethylpentane	1.4	4.9	6.6	23

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-091112

Lab ID\#: 1209276A-03A

Benzene	1.4	25	4.5	80
Heptane	1.4	0.93 J	5.8	3.8 J
Trichloroethene	1.4	-0.48 J u	7.6	$\cdots 2.6 \mathrm{~J}$ d
4-Methyl-2-pentanone	1.4	67	5.8	270
Toluene	1.4	31	5.3	120
Tetrachloroethene	1.4	0.71 J	9.6	4.8 J
Chlorobenzene	1.4	1.2 J	6.5	5.3 J
Ethyl Benzene	1.4	0.48 J	6.1	2.15
m, p -Xylene	1.4	1.6	6.1	7.0
o-Xylene	1.4	0.56 J	6.1	2.4 J
Styrene	1.4	0.67 J	6.0	2.9 J
Cumene	1.4	7.7	6.9	38
Propylbenzene	1.4	0.34 J	6.9	1.7 J
4-Ethyltoluene	1.4	0.94 J	6.9	4.6 J
1,3,5-Trimethylbenzene	1.4	0.47 J	6.9	2.3 J
1,2,4-Trimethylbenzene	1.4	0.66 J	6.9	3.2 J
1,3-Dichlorobenzene	1.4	0.51 J	8.5	3.1 J
1,4-Dichlorobenzene	1.4	0.44 J	8.5	2.6 J
1,2-Dichlorobenzene	1.4	0.27 J	8.5	1.6 J
Butane	5.6	7.7	13	18
Isopentane	5.6	10	17	30
Propylene	5.6	2.7 J	9.7	4.7 J

TENTATIVEL.Y IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	35 J
Decane, 2,2,5-trimethyl-	$62237-96-1$	72%	30 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	97 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	56%	30 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	110 NJ
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	260 NJ
Unknown	NA	NA	73 J
Cyclohexanone, 4-methyl-	$589-92-4$	50%	190 NJ
Ethanone, 1-phenyl-	$98-86-2$	90%	71 NJ
Unknown	NA	NA	48 J

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-091212
Lab ID\#: 1209276A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.42 J	7.3	2.1 J
Freon 11	1.5	0.28 J	8.3	1.6 J
Acetone	15	19	35	44
2-Propanol	5.9	1.8 J	14	4.4 J
Carbon Disulfide	5.9	1.8 J	18	5.6 J
Methylene Chloride	15	1.5 J	51	5.4 J
2-Butanone (Methyl Ethyl Ketone)	5.9	3.2 J	17	9.6 J
Cyclohexane	1.5	0.60 J	5.1	2.0 J
2,2,4-Trimethylpentane	1.5	4.9	6.9	23
Benzene	1.5	4.4	4.7	14
Trichloroethene	1.5	0.65 Ju	8.0	$3.5-\mathrm{J} u$
4-Methyl-2-pentanone	1.5	1.6	6.1	6.4
Toluene	1.5	0.81 J	5.6	3.1 J
Tetrachloroethene	1.5	14	10	96
Chlorobenzene	1.5	$4: 2 \mathrm{Ju}$	6.8	-56-J u
m,p-Xylene	1.5	0.33 J	6.4	1.4 J
Cumene	1.5	0.21 J	7.3	1.0 J
1,3-Dichlorobenzene	1.5	-0.90. J u	8.9	$2 \underline{2} \cdot \mathrm{~J} u$
1,4-Dichlorobenzene	1.5	0.37 J Ul	8.9	$2: z J u$
Isopentane	5.9	2.3 J	17	6.9 J

TENTATIVELY IDENTIFIED COMPOUNDS

| Compound | CAS Number Match Quality | Amount
 (ppbv) | |
| :--- | :---: | :---: | :---: | :---: |
| Unknown | NA | NA | 13 J |

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.5	0.53 J	7.5	2.6 J
Ethanol	6.1	3.8 J	11	7.1 J
Acetone	15	26	36	61
2-Propanol	6.1	1.1 J	15	2.7 J

eurofins

Air Toxics

Summary of Detected Compounds
 EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276A-05A

Carbon Disulfide	6.1	6.2	19	19
Hexane	1.5	0.44 J	5.3	1.5 J
2-Butanone (Methyl Ethyl Ketone)	6.1	3.5 J	18	10 J
Chloroform	1.5	0.64 J	7.4	3.1 J
$2,2,4$-Trimethylpentane	1.5	0.84 J	7.1	3.9 J
Benzene	1.5	3.1	4.8	9.9
Toluene	1.5	0.75 J	5.7	2.8 J
Chlorobenzene	1.5	-4.3 J U	7.0	.6 .8 J U
1,3-Dichlorobenzene	1.5	0.35 J U	9.1	$2.4-\mathrm{J} \mathrm{U}$
1,4-Dichlorobenzene	1.5	0.38 J U	9.1	2.5 J U
Propylene	6.1	3.0 J	10	5.1 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	10%	15 NJ
Unknown	NA	NA	7.7 J
1-Pentene, 4,4-dimethyl-	$762-62-9$	37%	14 NJ
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	64%	13 NJ

Client Sample ID: VMP-13-5-091212-Dup
Lab ID\#: 1209276A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.3	0.53 J	6.5	2.6 J
Freon 11	1.3	0.29 J	7.4	1.6 J
Ethanol	5.3	5.3	9.9	9.9
Acetone	13	19	31	45
2-Propanol	5.3	1.0 J	13	2.6 J
Carbon Disulfide	5.3	1.8 J	16	5.8 J
Methylene Chloride	13	0.42 J	46	1.4 J
Hexane	1.3	0.31 J	4.6	1.1 J
2-Butanone (Methyl Ethyl Ketone)	5.3	3.2 J	16	9.4 J
Chloroform	1.3	0.80 J	6.4	3.9 J
2,2,4-Trimethylpentane	1.3	0.39 J U	6.2	$-7.8-\mathrm{J} \mathrm{u}$
Benzene	1.3	1.7	4.2	5.5

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-091212-Dup				
Lab ID\#: 1209276A-06A				
4-Methyl-2-pentanone	1.3	0.50 J	5.4	2.0 J
Toluene	1.3	-0.47 J U	5.0	-4.8 J U
trans-1,3-Dichloropropene	1.3	0.42 J	6.0	1.9 J
Tetrachloroethene	1.3	0.47 J U	9.0	-3.2 J U
Chlorobenzene	1.3	$4.0 . \mathrm{J} \mathrm{U}$	6.1	-4.6 J U
Ethyl Benzene	1.3	0.34 J	5.7	1.5 J
1,3-Dichlorobenzene	1.3	0.32 J U	7.9	$-1.9-\mathrm{J} \mathrm{U}$
1,4-Dichlorobenzene	1.3	$0.26-\mathrm{J} \mathrm{U}$	7.9	.4 .6 J U
Isopentane	5.3	1.4 J	16	4.0 J
Propylene	5.3	1.2 J	9.1	2.0 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	86%	15 NJ

Client Sample ID: VMP-10-5-091212
Lab ID\#: 1209276A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.6	0.48 J	7.9	2.4 J
Freon 11	1.6	0.28 J	9.0	1.6 J
Acetone	16	15 J	38	35 J
Carbon Disulfide	6.4	1.8 J	20	5.7 J
Methylene Chloride	16	0.36 J	55	1.3 J
Hexane	1.6	1.4 J	5.6	4.8 J
Cyclohexane	1.6	0.60 J	5.5	2.1 J
2,2,4-Trimethylpentane	1.6	3.4	7.4	16
Benzene	1.6	2.6	5.1	8.4
Heptane	1.6	1.0 J	6.5	4.3 J
Toluene	1.6	2.6	6.0	9.6
Tetrachloroethene	1.6	-0.97 J U	11	$-2.5-\mathrm{J} \mathrm{U}$
Chlorobenzene	1.6	$1.3-\mathrm{J} \mathrm{U}$	7.3	-5.8 J U
Ethyl Benzene	1.6	0.67 J	6.9	2.9 J
m,p-Xylene	1.6	2.2	6.9	9.6
o-Xylene	1.6	0.72 J	6.9	3.1 J

eurofins

Bir Toxics

Summary of Detected Compounds
 EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-10-5-091212				
Lab ID\#: 1209276A-07A				
1,1,2,2-Tetrachloroethane	1.6	0.21 J	11	1.4 J
4-Ethyltoluene	1.6	0.70 J	7.8	3.4 J
1,2,4-Trimethylbenzene	1.6	0.46 J	7.8	2.3 J
1,4-Dichlorobenzene	1.6	$0-30 \cdot \mathrm{~J} \mathrm{U}$	9.6	78-du
alpha-Chlorotoluene	1.6	-0.25 J u	8.2	4.3 JU
Isopentane	6.4	6.4	19	19
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-		115-11-7	10\%	26 NJ

At Toxics

Client Sample 1D: VMP-21-5-091112
Lab ID\#: 1209276A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092113 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 9/11/12 11:23:00 AM Date of Analysis: 9/21/12 07:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.38 J	7.0	1.9 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	7.9	Not Detected
Ethanol	5.6	9.0	11	17
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	7.4	Not Detected	5.6	Not Detected
Acetone	14	18	33	42
2-Propanol	5.6	6.4	14	16
Carbon Disulfide	5.6	0.86 J	18	2.7 J
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	49	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	0.46 J	5.0	1.6 J
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	3.4 J	17	9.9 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	Not Detected	6.9	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	0.44 J	4.8	1.5 J
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	1.6	6.6	7.6
Benzene	1.4	2.7	4.5	8.8
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	0.60 J	5.8	2.4 J
Trichloroethene	1.4	Not Detected	7.6	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	24	5.8	97
Toluene	1.4	16	5.3	60
trans-1,3-Dichloropropene	1.4	0.36 J	6.4	1.6 J
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	$\cdot 0.52 \mathrm{~J} \mathrm{U}$	9.6	-3.5-J U
2-Hexanone	5.6	Not Detected	23	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-21-5-091112
Lab ID\#: 1209276A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092113 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 9/11/12 11:23:00 AM Date of Analysis: $9 / 21 / 12$ 07:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	+2-tu	6.5	5.4 J U
Ethyl Benzene	1.4	0.70 J	6.1	3.0 J
m,p-Xylene	1.4	2.6	6.1	11
o-Xylene	1.4	1.5	6.1	6.4
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	3.0	6.9	14
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	'0.32 J U	6.9	1.6 J L
4-Ethyltoluene	1.4	1.1 J	6.9	5.5 J
1,3,5-Trimethylbenzene	1.4	0.34 J	6.9	1.7 J
1,2,4-Trimethylbenzene	1.4	1.2 J	6.9	6.0 J
1,3-Dichlorobenzene	1.4	0.39 J U	8.5	2.4 Ju
1,4-Dichlorobenzene	1.4	0.40 Ju	8.5	2.4 JU
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	Not Detected	13	Not Detected
Isopentane	5.6	2.1 J	17	6.2 J
Ethyl Acetate	5.6	Not Detected	20	Not Detected
Propylene	5.6	Not Detected	9.7	Not Detected
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

$\mathbf{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv))
Unknown	NA	NA	10 J
Unknown	NA	NA	20 J
Heptane, 2,2,3,4,6,6-hexamethyl-	$62108-32-1$	64%	9.1 NJ
Decane, $2,2,8$-trimethyl-	$62238-01-1$	64%	32 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	59%	9.6 NJ
Undecane	$1120-21-4$	59%	37 NJ
Tetradecane, 1-iodo-	$19218-94-1$	53%	12 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	75 NJ
1-Octanol, 2-butyl-	$3913-02-8$	47%	29 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	14 NJ

eurofins

Air Toxics

\section*{Client Sample ID: VMP-21-5-091112
 Lab ID\#: 1209276A-01A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | | | |
| :--- | ---: | :--- |
| File Name: | j 092113 | Date of Collection: $9 / 11 / 12$ 11:23:00 AM |
| Dil. Factor: | 2.82 | Date of Analysis: $9 / 21 / 12$ 07:14 PM |}

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	102	$70-130$
1,2-Dichloroethane-d4	104	$70-130$
4-Bromofluorobenzene	102	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092114 \\ 3.03 \end{array}$	Date of Collection: 9/11/12 12:30:00 PM Date of Analysis: 9/21/12 07:39 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	Not Detected	7.5	Not Detected
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.5	Not Detected
Ethanol	6.1	18	11	34
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	21	36	50
2-Propanol	6.1	20	15	50
Carbon Disulfide	6.1	1.1 J	19	3.6 J
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	Not Detected	53	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	Not Detected	5.3	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	8.9	18	26
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	1.2 J	7.4	5.8 J
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	0.65 J	7.1	3.0 J
Benzene	1.5	4.3	4.8	14
1,2-Dichloroethane	1.5	-0-17J u	6.1	0.70 J U
Heptane	1.5	0.96 J	6.2	3.9 J
Trichloroethene	1.5	0.68 J U	8.1	$3.7-3$ u
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	67	6.2	270
Toluene	1.5	41	5.7	160
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	0.56 J U	10	.-8.J U
2-Hexanone	6.1	Not Detected	25	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092114 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/11/12 12:30:00 PM Date of Analysis: 9/21/12 07:39 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	-4.5- J il	7.0	-6.9-J U
Ethyl Benzene	1.5	0.92 J	6.6	4.0 J
m,p-Xylene	1.5	1.8	6.6	8.0
o-Xylene	1.5	0.71 J	6.6	3.1 J
Styrene	1.5	0.56 J	6.4	2.4 J
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	8.2	7.4	40
1,1,2,2-Tetrachloroethane	1.5	0.55 J	10	3.8 J
Propylbenzene	1.5	0.31 J	7.4	1.5 J
4-Ethyltoluene	1.5	0.94 J	7.4	4.6 J
1,3,5-Trimethylbenzene	1.5	0.49 J	7.4	2.4 J
1,2,4-Trimethylbenzene	1.5	0.64 J	7.4	3.1 J
1,3-Dichlorobenzene	1.5	- 0.49 J U	9.1	2.9 Ju
1,4-Dichlorobenzene	1.5	$0.54 . J$ u	9.1	3.75 U
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	-0.28-J u	9.1	47 J U
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	2.2 J	18	6.5 J
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

$\mathrm{J}=$ Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Unknown	NA	NA	29 J
Decane, 2,2-dimethyl-	$17302-37-3$	64%	100 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	72%	30 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	53%	110 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	240 NJ
Unknown	NA	NA	150 J
Ethanone, 1-phenyl-	$98-86-2$	74%	82 NJ
Unknown	NA	NA	58 J
Unknown	NA	NA	36 J
Unknown	NA	NA	29 J

eurofins

Air Toxics

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 092114$	Date of Collection: $9 / 11 / 12$ 12:30:00 PM
Dil. Factor:	3.03	Date of Analysis: $9 / 21 / 1207: 39 \mathrm{PM}$

$N J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	102	$70-130$
1,2-Dichloroethane-d4	106	$70-130$
4-Bromofluorobenzene	107	$70-130$

eurofins

Air Toxics

Client Sample 1D: VMP-4-5-091112
Lab ID\#: 1209276A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092115 \\ 2.82 \\ \hline \end{array}$	Date of Collection: 9/11/12 1:23:00 PM Date of Analysis: 9/21/12 08:05 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.44 J	7.0	2.2 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	7.9	Not Detected
Ethanol	5.6	20	11	38
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	24	33	56
2-Propanol	5.6	13	14	31
Carbon Disulfide	5.6	1.7 J	18	5.2 J
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	0.74 J	49	2.6 J
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	Not Detected	5.0	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	7.8	17	23
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	Not Detected	6.9	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	4.9	6.6	23
Benzene	1.4	25	4.5	80
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	0.93 J	5.8	3.8 J
Trichloroethene	1.4	.0.48.J U	7.6	-2-6-d
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	67	5.8	270
Toluene	1.4	31	5.3	120
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachioroethene	1.4	0.71 J	9.6	4.8 J
2-Hexanone	5.6	Not Detected	23	Not Detected

Air Toxics

Client Sample ID: VMP-4-5-091112
Lab ID\#: 1209276A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j092115 2.82	Date of Collection: 9/11/12 1:23:00 PM Date of Analysis: 9/21/12 08:05 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	1.2 J	6.5	5.3 J
Ethyl Benzene	1.4	0.48 J	6.1	2.15
m,p-Xylene	1.4	1.6	6.1	7.0
o-Xylene	1.4	0.56 J	6.1	2.4 J
Styrene	1.4	0.67 J	6.0	2.9 J
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	7.7	6.9	38
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	0.34 J	6.9	1.7 J
4-Ethyltoluene	1.4	0.94 J	6.9	4.6 J
1,3,5-Trimethylbenzene	1.4	0.47 J	6.9	2.3 J
1,2,4-Trimethylbenzene	1.4	0.66 J	6.9	3.2 J
1,3-Dichlorobenzene	1.4	0.51 J	8.5	3.1 J
1,4-Dichlorobenzene	1.4	0.44 J	8.5	2.6 J
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	0.27 J	8.5	1.6 J
1,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	7.7	13	18
Isopentane	5.6	10	17	30
Ethyl Acetate	5.6	Not Detecked	20	Not Detected
Propylene	5.6	2.7 J	9.7	4.7 J
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

$\mathrm{J}=$ Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbbv}))$
Unknown	NA	NA	35 J
Decane, 2,2,5-trimethyl-	$62237-96-1$	72%	30 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	97 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	56%	30 NJ
Octane, 2,4,6-trimethyl-	$62016-37-9$	64%	110 NJ
Decane, 2,2,7-trimethyl-	$62237-99-4$	64%	260 NJ
Unknown	NA	NA	73 J
Cyclohexanone, 4-methyl-	$589-92-4$	50%	190 NJ
Ethanone, 1-phenyl-	$98-86-2$	90%	71 NJ
Unknown	NA	NA	48 J

Ar Toxics

Client Sample ID: VMP-4-5-091112
Lab ID\#: 1209276A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092115 \\ 2.82 \\ \hline \end{array}$		Date of Collection: 9/11/12 1:23:00 PM Date of Analysis: 9/21/12 08:05 PM
NJ =The identification is based on presumptive evidence; estimated value. Container Type: 1 Liter Summa Canister			
Surrogates		\%Recovery	Method Limits
Toluene-d8		106	70-130
1,2-Dichloroethane-d4		100	70-130
4-Bromofluorobenzene		107	70-130

At Toxics

Client Sample ID: VMP-11-5-091212
Lab ID\#: 1209276A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092116 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/12/12 9:34:00 AM Date of Analysis: 9/21/12 08:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.42 J	7.3	2.15
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	30	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	57	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	0.28 J	8.3	1.6 J
Ethanol	5.9	Not Detected	11	Not Detected
Freon 113	1.5	Not Detected	11	Not Detected
1.1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	19	35	44
2-Propanol	5.9	1.8 J	14	4.4 J
Carbon Disulfide	5.9	1.8 J	18	5.6 J
3 -Chloropropene	5.9	Not Detected	18	Not Detected
Methylene Chloride	15	1.5 J	51	5.4 J
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	Not Detected	5.2	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.9	3.2 J	17	9.6 J
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.4	Not Detected
Chloroform	1.5	Not Detected	7.2	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	0.60 J	5.1	2.0 J
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected
2,2,4-Trimethylpentane	1.5	4.9	6.9	23
Benzene	1.5	4.4	4.7	14
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	O.65J U	8.0	$\cdot 3.5 \mathrm{~J}$ u
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromadichloromethane	1.5	Not Detected	9.9	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4-Methyl-2-pentanone	1.5	1.6	6.1	6.4
Toluene	1.5	0.81 J	5.6	3.1 J
trans-1,3-Dichloropropene	1.5	Not Derected	6.7	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	14	10	96
2-Hexanone	5.9	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-11-5-091212
Lab ID\#: 1209276A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 092116 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/12/12 9:34:00 AM Date of Analysis: 9/21/12 08:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	-7.2. Jl	6.8	5.6 J U
Ethyl Benzene	1.5	Not Detected	6.4	Not Detected
m,p-Xylene	1.5	0.33 J	6.4	1.4 J
o-Xylene	1.5	Not Detected	6.4	Not Detected
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	0.21 J	7.3	1.0 J
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.3	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.3	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,3-Dichlorobenzene	1.5	$0: 36 ゙ J U$	8.9	-2:2J U
1,4-Dichlorobenzene	1.5	-0:37'J U	8.9	$2: 2 \mathrm{~J}$ U
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,2,4-Trichlorobenzene	5.9	Not Detected	44	Not Detected
Hexachlorobutadiene	5.9	Not Detected	63	Not Detected
Butane	5.9	Not Detected	14	Not Detected
Isopentane	5.9	2.3 J	17	6.9 J
Ethyl Acetate	5.9	Not Detected	21	Not Detected
Propylene	5.9	Not Detected	10	Not Detected
Vinyl Acetate	5.9	Not Detected	21	Not Detected
Vinyl Bromide	5.9	Not Detected	26	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv $))$
Unknown	NA	NA	13 J

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	111	$70-130$
4-Bromofluorobenzene	99	$70-130$

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092117 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/12/12 10:47:00 AM Date of Analysis: 9/21/12 09:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.53 J	7.5	2.6 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.5	Not Detected
Ethanol	6.1	3.8 J	11	7.1 J
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	26	36	61
2-Propanol	6.1	1.1 J	15	2.7 J
Carbon Disulfide	6.1	6.2	19	19
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	Not Detected	53	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	0.44 J	5.3	1.5 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	3.5 J	18	10 J
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	0.64 J	7.4	3.1 J
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	0.84 J	7.1	3.9 J
Benzene	1.5	3.1	4.8	9.9
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	Not Detected	6.2	Not Detected
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.2	Not Detected
Toluene	1.5	0.75 J	5.7	2.8 J
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	6.1	Not Detected	25	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092117 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/12/12 10:47:00 AM Date of Analysis: 9/21/12 09:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	$4.3-5$ U	7.0	. 5.8 JJ U
Ethyl Benzene	1.5	Not Detected	6.6	Not Detected
m,p-Xylene	1.5	Not Detected	6.6	Not Detected
o-Xylene	1.5	Not Detected	6.6	Not Detected
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	Not Detected	7.4	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.4	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethyibenzene	1.5	Not Detected	7.4	Not Detected
1,3-Dichlorobenzene	1.5	-0.35 J U	9.1	2015 J
1,4-Dichlorobenzene	1.5	-0.38 J U	9.1	$2.3-54$
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	Not Detected	18	Not Detected
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	3.0 J	10	5.1 J
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

$J=$ Estimated value

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene, 2-methyl-	$115-11-7$	10%	15 NJ
Unknown	NA	NA	7.7 J
1-Pentene, 4,4-dimethyl-	$762-62-9$	37%	14 NJ
1-Pentanol, 2-ethyl-4-methyl-	$106-67-2$	64%	13 NJ
$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Liter Summa Canister			
Surrogates	\%Recovery	Method	
Toluene-d8	101	Limits	

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

| File Name: | j092117 | Date of Collection: $9 / 12 / 12$ 10:47:00 AM |
| :--- | ---: | ---: | ---: |
| Dil. Factor: | 3.03 | Date of Analysis: $9 / 21 / 1209: 15 \mathrm{PM}$ |
| | | Method |
| Surrogates | | Limits |
| 1,2-Dichloroethane-d4 | 97 | $70-130$ |
| 4-Bromofluorobenzene | 102 | $70-130$ |

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091212-Dup
Lab ID\#: 1209276A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092118 \\ 2.64 \\ \hline \end{array}$	Date of Collection: 9/12/12 10:47:00 AM Date of Analysis: 9/21/12 09:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.53 J	6.5	2.6 J
Freon 114	1.3	Not Detected	9.2	Not Detected
Chloromethane	13	Not Detected	27	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	2.9	Not Detected
Bromomethane	13	Not Detected	51	Not Detected
Chloroethane	5.3	Not Detected	14	Not Detected
Freon 11	1.3	0.29 J	7.4	1.6 J
Ethanol	5.3	5.3	9.9	9.9
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.2	Not Detected
Acetone	13	19	31	45
2-Propanol	5.3	1.0 J	13	2.6 J
Carbon Disulfide	5.3	1.8 J	16	5.8 J
3-Chloropropene	5.3	Not Detected	16	Not Detected
Methylene Chloride	13	0.42 J	46	1.4 J
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
Hexane	1.3	0.31 J	4.6	1.1 J
1,1-Dichloroethane	1.3	Not Detected	5.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.3	3.2 J	16	9.4 J
cis-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.9	Not Detected
chloroform	1.3	0.80 J	6.4	3.9 J
1,1,1-Trichloroethane	1.3	Not Detected	7.2	Not Detected
Cyclohexane	1.3	Not Detected	4.5	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.3	Not Detected
2,2,4-Trimethylpentane	1.3	$\theta: 39 \mathrm{~J} \mathrm{u}$	6.2	$7.8 . \mathrm{J} \mathrm{U}$
Benzene	1.3	1.7	4.2	5.5
1,2-Dichloroethane	1.3	Not Detected	5.3	Not Detected
Heptane	1.3	Not Detected	5.4	Not Detected
Trichloroethene	1.3	Not Detected	7.1	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.1	Not Detected
1,4-Dioxane	5.3	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	8.8	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.0	Not Detected
4-Methyl-2-pentanone	1.3	0.50 J	5.4	2.0 J
Toluene	1.3	0.47~」 ひ	5.0	1.8-d ul
trans-1,3-Dichloropropene	1.3	0.42 J	6.0	1.9 J
1,1,2-Trichloroethane	1.3	Not Detected	7.2	Not Detected
Tetrachloroethene	1.3	. 0.47 J U	9.0	\cdots
2-Hexanone	5.3	Not Detected	22	Not Detected

Air Tonics

Client Sample ID: VMP-13-5-091212-Dup
Lab ID\#: 1209276A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092118 \\ 2.64 \end{array}$	Date of Collection: 9/12/12 10:47:00 AM Date of Analysis: 9/21/12 09:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	1.3	1.0.J U	6.1	-4:0-J U
Ethyl Benzene	1.3	0.34 J	5.7	1.5 J
m,p-Xylene	1.3	Not Detected	5.7	Not Detected
o-Xylene	1.3	Not Detected	5.7	Not Detected
Styrene	1.3	Not Detected	5.6	Not Detected
Bromoform	1.3	Not Detected	14	Not Detected
Cumene	1.3	Not Detected	6.5	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.1	Not Detected
Propylbenzene	1.3	Not Detected	6.5	Not Detected
4-Ethyitoluene	1.3	Not Detected	6.5	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.5	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.5	Not Detected
1,3-Dichlorobenzene	1.3	-0.32 J u	7.9	-4.9J U
1,4-Dichlorobenzene	1.3	$0: 26 \mathrm{Ju}$	7.9	4.6 JU
alpha-Chlorotoluene	1.3	Not Detected	6.8	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.9	Not Detected
1,2,4-Trichlorobenzene	5.3	Not Detected	39	Not Detected
Hexachlorobutadiene	5.3	Not Detected	56	Not Detected
Butane	5.3	Not Detected	12	Not Detected
Isopentane	5.3	1.4 J	16	4.0 J
Ethyl Acetate	5.3	Not Detected	19	Not Detected
Propylene	5.3	1.2 J	9.1	2.0 J
Vinyl Acetate	5.3	Not Detected	18	Not Detected
Vinyl Bromide	5.3	Not Detected	23	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $($ (ppbv $))$
1-Propene, 2-methyl-	$115-11-7$	86%	15 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	109	$70-130$
4-Bromofluorobenzene	104	$70-130$

eurofins

Alr Toxics

Client Sample ID: VMP-10-5-091212
Lab ID\#: 1209276A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 092119 \\ 3.19 \end{array}$	Date of Collection: 9/12/12 11:57:00 AM Date of Analysis: 9/21/12 10:32 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.48 J	7.9	2.4 J
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	33	Not Detected
Vinyl Chloride	1.6	Not Detected	4.1	Not Detected
1,3-Butadiene	1.6	Not Detected	3.5	Not Detected
Bromomethane	16	Not Detected	62	Not Detected
Chloroethane	6.4	Not Detected	17	Not Detected
Freon 11	1.6	0.28 J	9.0	1.6 J
Ethanol	6.4	Not Detected	12	Not Detected
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Acetone	16	15 J	38	35 J
2-Propanol	6.4	Not Detected	16	Not Detected
Carbon Disulfide	6.4	1.8 J	20	5.7 J
3-Chloropropene	6.4	Not Detected	20	Not Detected
Methylene Chloride	16	0.36 J	55	1.3 J
Methyl tert-butyl ether	1.6	Not Detected	5.8	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Hexane	1.6	1.4 J	5.6	4.8 J
1,1-Dichloroethane	1.6	Not Detected	6.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.4	Not Detected	19	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.7	Not Detected
Chloroform	1.6	Not Detected	7.8	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.7	Not Detected
Cyclohexane	1.6	0.60 J	5.5	2.1 J
Carbon Tetrachloride	1.6	Not Detected	10	Not Detected
2,2,4-Trimethylpentane	1.6	3.4	7.4	16
Benzene	1.6	2.6	5.1	8.4
1,2-Dichloroethane	1.6	Not Detected	6.4	Not Detected
Heptane	1.6	1.0 J	6.5	4.3 J
Trichloroethene	1.6	Not Detected	8.6	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.4	Not Detected
1,4-Dioxane	6.4	Not Detected	23	Not Detected
Bromodichloromethane	1.6	Not Detected	11	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.5	Not Detected
Toluene	1.6	2.6	6.0	9.6
trans-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.7	Not Detected
Tetrachloroethene	1.6	-0.37J U	11	-2.5-J U
2-Hexanone	6.4	Not Detected	26	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-10-5-091212
Lab ID\#: 1209276A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 092119 \\ 3.19 \end{array}$	Date of Collection: 9/12/12 11:57:00 AM Date of Analysis: 9/21/12 10:32 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	14	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	-4.3- J	7.3	5.8 J U
Ethyl Benzene	1.6	0.67 J	6.9	2.9 J
m,p-Xylene	1.6	2.2	6.9	9.6
o-Xylene	1.6	0.72 J	6.9	3.1 J
Styrene	1.6	Not Detected	6.8	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.8	Not Detected
1,1,2,2-Tetrachloroethane	1.6	0.21 J	11	1.4 J
Propylbenzene	1.6	Not Detected	7.8	Not Detected
4-Ethyltoluene	1.6	0.70 J	7.8	3.4 J
1,3,5-Trimethylbenzene	1.6	Not Detected	7.8	Not Detected
1,2,4-Trimethylbenzene	1.6	0.46 J	7.8	2.3 J
1,3-Dichlorobenzene	1.6	Not Detected	9.6	Not Detected
1,4-Dichlorobenzene	1.6	0.30 J il	9.6	4:8.J U
alpha-Chlorotoluene	1.6	$-0.25-J u$	8.2	-4.3 JU
1,2-Dichlorobenzene	1.6	Not Detected	9.6	Not Detected
1,2,4-Trichdorobenzene	6.4	Not Detected	47	Not Detected
Hexachlorobutadiene	6.4	Not Detected	68	Not Detected
Butane	6.4	Not Detected	15	Not Detected
Isopentane	6.4	6.4	19	19
Ethyl Acetate	6.4	Not Detected	23	Not Detected
Propylene	6.4	Not Detected	11	Not Detected
Vinyl Acetate	6.4	Not Detected	22	Not Detected
Vinyl Bromide	6.4	Not Detected	28	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $)$
1-Propene, 2-methyl-	$115-11-7$	10%	26 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	96	$70-130$
1,2-Dichloroethane-d4	108	$70-130$
4-Bromofluorobenzene	104	$70-130$

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1209276A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092108 \mathrm{c} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 01:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chioromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 14	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chtoropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl teri-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	0.078 J	2.3	(-0.36 J $)$
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	0.11 l	2.0	< 0.44J
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	$\langle 0.25 \mathrm{~J}$,	2.7	< 13 J
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.11 J	1.9	-0.40 ${ }^{\text {a }}$
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	<0.21J ${ }^{\text {d }}$	3.4	8 1.4J 3
2 -Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Ah Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1209276A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092108 \mathrm{c} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 01:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.34 J	2.3	(16J)
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	(0.12J)	2.2	$\leqslant 0.52 \mathrm{~J}\rangle$
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	0.093 J	2.4	$<0.46 \mathrm{~J}$
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	0.16 J	3.0	0.94 J ,
1,4-Dichlorobenzene	0.50	-0.17 J	3.0	< 1.0 J)
alpha-Chlorotoluene	0.50	00098	2.6	$<0.51 \mathrm{~J}$,
1,2-Dichlorobenzene	0.50	0.16 J ,	3.0	-1:0J
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS
Amount
Compound \quad CAS Number \quad Match Quality $\left.\quad \begin{array}{l}\text { Amount } \\ (\text { (ppbv })\end{array}\right)$

None Identified

Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	99	$70-130$
1,2-Dichloroethane-d4	111	$70-130$
4-Bromofluorobenzene	99	$70-130$

eurofins

Air Toxics

Client Sample ID: CCV
 Lab ID\#: 1209276A-09A

EPA METHOD TO- 15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 092102 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 08:03 AM
Compound		\%Recovery
Freon 12		102
Freon 114		91
Chloromethane		95
Vinyl Chloride		96
1,3-Butadiene		99
Bromomethane		85
Chloroethane		87
Freon 11		103
Ethanol		92
Freon 113		93
1,1-Dichloroethene		98
Acetone		88
2-Propanol		110
Carbon Disulfide		84
3-Chloropropene		80
Methylene Chloride		103
Methyl tert-butyl ether		97
trans-1,2-Dichloroethene		100
Hexane		104
1,1-Dichloroethane		101
2-Butanone (Methyl Ethyl Ketone)		96
cis-1,2-Dichloroethene		102
Tetrahydrofuran		109
Chloroform		101
1,1,1-Trichloroethane		106
Cyclohexane		99
Carbon Tetrachloride		109
2,2,4-Trimethylpentane		105
Benzene		93
1,2-Dichloroethane		106
Heptane		97
Trichloroethene		96
1,2-Dichloropropane		92
1,4-Dioxane		102
Bromodichloromethane		101
cis-1,3-Dichloropropene		99
4-Methyl-2-pentanone		105
Toluene		95
trans-1,3-Dichloropropene		93
1,1,2-Trichloroethane		94
Tetrachloroethene		101
2-Hexanone		98

eurofins

Air Toxics

Client Sample ID: CCV

Lab ID\#: 1209276A-09A
EPA METHOD TO-15 GC/MS FULL, SCAN

File Name: j 092102 Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/21/12 08:03 AM	
Compound		\%Recovery
Dibromochloromethane		102
1,2-Dibromoethane (EDB)		98
Chlorobenzene		86
Ethyl Benzene		101
m, p-Xylene		98
o-Xylene		106
Styrene		106
Bromoform		101
Cumene		106
1,1,2,2-Tetrachloroethane		99
Propylbenzene		103
4-Ethyltoluene		107
1,3,5-Trimethylbenzene		109
1,2,4-Trimethylbenzene		107
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		101
alpha-Chlorotoluene		108
1,2-Dichlorobenzene		102
1,2,4-Trichlorobenzene		93
Hexachlorobutadiene		99
Butane		89
Isopentane		100
Ethyl Acetate		73
Propylene		93
Vinyl Acetate		113
Vinyl Bromide		107
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	118	70-130
4-Bromofluorobenzene	104	70-130

eurofins

Ar Tonics

Client Sample 1D: LCS

Lab ID\#: 1209276A-10A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 092103 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 9/21/12 08:41 AM
Compound		\%Recovery
Freon 12		113
Freon 114		103
Chloromethane		111
Vinyl Chloride		107
1,3-Butadiene		108
Bromomethane		98
Chloroethane		95
Freon 11		112
Ethanol		99
Freon 113		108
1,1-Dichloroethene		106
Acetone		97
2-Propanol		116
Carbon Disulfide		115
3-Chloropropene		106
Methylene Chloride		112
Methyl tert-butyl ether		110
trans-1,2-Dichloroethene		119
Hexane		111
1,1-Dichloroethane		107
2-Butanone (Methyl Ethyl Ketone)		106
cis-1,2-Dichloroethene		109
Tetrahydrofuran		110
Chloroform		110
1,1,1-Trichloroethane		117
Cyclohexane		112
Carbon Tetrachloride		120
2,2,4-Trimethylpentane		114
Benzene		107
1,2-Dichforoethane		120
Heptane		106
Trichloroethene		104
1,2-Dichloropropane		110
1,4-Dioxane		109
Bromodichloromethane		114
cis-1,3-Dichloropropene		111
4-Methyl-2-pentanone		115
Toluene		107
trans-1,3-Dichloropropene		97
1,1,2-Trichloroethane		101
Tetrachloroethene		103
2-Hexanone		104

Aiv Toxics

Client Sample 1D: LCS

Lab ID\#: 1209276A-10A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j 092103 Dit. Factor: 1.00	Date of Collection: NA Date of Analysis: 9/21/12 08:41 AM	
Compound		\%Recovery
Dibromochloromethane		108
1,2-Dibromoethane (EDB)		108
Chlorobenzene		91
Ethyl Benzene		106
m,p-Xylene		103
o-Xylene		115
Styrene		110
Bromoform		105
Cumene		113
1,1,2,2-Tetrachloroethane		105
Propylbenzene		111
4-Ethyltoluene		109
1,3,5-Trimethylbenzene		117
1,2,4-Trimethylbenzene		119
1,3-Dichlorobenzene		110
1,4-Dichlorobenzene		103
alpha-Chlorotoluene		109
1,2-Dichlorobenzene		108
1,2,4-Trichlorobenzene		95
Hexachlorobutadiene		101
Butane		90
Isopentane		119
Ethyl Acetate		Not Spiked
Propylene		92
Vinyl Acetate		108
Vinyl Bromide		Not Spiked
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	110	70-130
1,2-Dichlaroethane-d4	115	70-130
4-Bromofluorobenzene	103	70-130

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209276A-10AA
 EPA METHOD TO- 15 GC/MS FULL SCAN

Alr Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209276A-10AA
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j 092104 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 9/21/12 09:15 AM
Compound		\%Recovery
Dibromochloromethane		109
1,2-Dibromoethane (EDB)		106
Chlorobenzene		92
Ethyl Benzene		107
m,p-Xylene		104
o-Xylene		112
Styrene		111
Bromoform		108
Cumene		114
1,1,2,2-Tetrachloroethane		108
Propylbenzene		113
4-Ethyltoluene		110
1,3,5-Trimethylbenzene		118
1,2,4-Trimethylbenzene		116
1,3-Dichlorobenzene		110
1,4-Dichlorobenzene		107
alpha-Chlorotoluene		114
1,2-Dichlorobenzene		109
1,2,4-Trichlorobenzene		100
Hexachlorobutadiene		101
Butane		94
Isopentane		114
Ethyl Acetate		Not Spiked
Propylene		95
Vinyl Acetate		113
Vinyl Bromide		Not Spiked
Container Type: NA - Not Applicable		
Surrogates	\%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	103	70-130

Sins Shell Oil Products Chain Of Custody Record
T"R

eurofins

Air Toxics

10/2/2012

Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209276B
Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/14/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

$$
\begin{gathered}
\text { Reviewed } \\
\text { on }
\end{gathered}
$$

$$
10 / 8 / 2012
$$

WORK ORDER \#: 1209276B
Work Order Summary

DATE: $10 / 02 / 12$

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

[^10]

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1209276B

Seven 1 Liter Summa Canister samples were received on September 14, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 \% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J- Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-091112
Lab ID\#: 1209276B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	14
Nitrogen	0.28	80
Methane	0.00028	0.000038 J
Carbon Dioxide	0.028	5.9

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276B-02A

	Rpt. Limit	Amount
Compound	$(\%)$	$(\%)$
Oxygen	0.30	18
Nitrogen	0.30	80
Methane	0.00030	0.00013 J
Carbon Dioxide	0.030	1.6

Client Sample ID: VMP-4-5-091112
Lab ID\#: 1209276B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	18
Nitrogen	0.28	80
Methane	0.00028	0.00016 J
Carbon Dioxide	0.028	1.7
Helium	0.14	0.14

Client Sample ID: VMP-11-5-091212
Lab ID\#: 1209276B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.60	19
Nitrogen	0.60	79
Methane	0.00060	0.000057 J
Carbon Dioxide	0.060	1.8

eurofins

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-11-5-091212
Lab ID\#: 1209276B-04A
$\begin{array}{lll}\text { Helium } & 0.30 & 0.063\end{array}$

Client Sample ID: VMP-13-5-091212
Lab ID\#: 1209276B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	17
Nitrogen	0.30	80
Methane	0.00030	0.000062 J
Carbon Dioxide	0.030	2.8
Helium	0.15	0.020 J

Client Sample ID: VMP-13-5-091212-Dup
Lab ID\#: 1209276B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	17
Nitrogen	0.29	80
Methane	0.00029	0.000065 J
Carbon Dioxide	0.029	2.8
Helium	0.14	0.021 J

Client Sample ID: VMP-10-5-091212
Lab ID\#: 1209276B-07A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.32	18
Nitrogen	0.32	80
Methane	0.00032	0.000034 J
Carbon Dioxide	0.032	2.0
Helium	0.16	0.060

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-42-10-091112
Lab ID\#: 1209276B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-4-5-091112
Lab ID\#: 1209276B-03A
NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

Lab 1D\#: 1209276B-04A

NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

Fite Name:	9092517		Date of Collection: $9 / 12 / 129: 34: 00 \mathrm{AM}$
Dil. Factor:	5.98	Rpt. Limit	(\%)

Lab ID\#: 1209276B-05A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

| File Name: | 9092514
 Dil. Factor: | Date of Collection: $9 / 12 / 12$ 10:47:00 AM
 Date of Analysis: $9 / 25 / 12$ 02:35 PM |
| :--- | ---: | :---: | :---: |
| | Rpt. Limit
 $(\%)$ | Amount |
| Compound | 0.30 | $(\%)$ |
| Oxygen | 0.30 | 17 |
| Nitrogen | 0.030 | 80 |
| Carbon Monoxide | 0.00030 | Not Detected |
| Methane | 0.030 | 0.000062 J |
| Carbon Dioxide | 0.0030 | 2.8 |
| Ethane | 0.0030 | Not Detected |
| Ethene | 0.15 | Not Detected |
| Helium | | 0.020 J |
| | | |
| J Estimated value. | | |
| Container Type: 1 Liter Summa Canister | | |

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091212-Dup
Lab ID\#: 1209276B-06A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9092515 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 9/12/12 10:47:00 AM Date of Analysis: $9 / 25 / 12$ 03:08 PM
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.29	17
Nitrogen	0.29	80
Carbon Monoxide	0.029	Not Detected
Methane	0.00029	0.000065 J
Carbon Dioxide	0.029	2.8
Ethane	0.0029	Not Detected
Ethene	0.0029	Not Detected
Helium	0.14	0.021 J
$\mathrm{J}=$ Estimated value		
Container Type: 1 Liter Summa Canister		

Air Toxics

Client Sample ID: VMP-10-5-091212
 Lab ID\#: 1209276B-07A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9092516 \\ 3.19 \\ \hline \end{array}$	Date of Collection: 9/12/12 11:57:00 AM Date of Analysis: 9/25/12 03:38 PM
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.32	18
Nitrogen	0.32	80
Carbon Monoxide	0.032	Not Detected
Methane	0.00032	0.000034 J
Carbon Dioxide	0.032	2.0
Ethane	0.0032	Not Detected
Ethene	0.0032	Not Detected
Helium	0.16	0.060
$\mathrm{J}=$ Estimated value. Container Type: 1 Liter Summa Canister		

eurofins

Client Sample ID: Lab Blank
 Lab ID\#: 1209276B-08A
 NATURAL GAS ANALYSIS BY MODIFLED ASTM D-1946

 Air Toxics

Client Sample 1D: Lab Blank
 Lab ID\#: 1209276B-08B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9092504 \mathrm{~b} \\ 1.00 \\ \hline \end{array}$		Date of Collection: NA Date of Analysis: 9/25/12 09:23 AM
Compound		Rpt. Limit (\%)	Amount (\%)
Helium		0.050	Not Detected

Container Type: NA - Not Applicable

eurofins

Ar Toxics

Client Sample ID: LCS
 Lab ID\#: 1209276B-09A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $9 / 25 / 12$ 08:15 AM

Compound \%Recovery
Oxygen 100
Nitrogen 100
Carbon Monoxide 99
Methane 98
Carbon Dioxide 105
Ethane 100
Ethene 97
Helium 100
Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCSD Lab 1D\#: 1209276B-09AA		
File Name: Dil. Factor:	$\begin{array}{r} 9092531 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: $9 / 25 / 12$ 10:14 PM
Compound		\%Recovery
Oxygen		99
Nitrogen		100
Carbon Monoxide		98
Methane		98
Carbon Dioxide		104
Ethane		99
Ethene		96
Helium		100
Container Type:		

Shell Oil Products Chain Of Custody Record
H2es

Roxana Soil Vapor Additional - Week 7 - Data Review

Laboratory SDG: 1209540A,B

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/11/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-091712	VMP-42-10-091712
VMP-4-5-091712	VMP-11-5-091812
VMP-13-5-091812	VMP-10-5-091812

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Although not indicated in the laboratory case narrative, analytes were detected in the method blank. This issue is addressed further in the appropriate section below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration/ Amount
1209540A-07A	TO-15	Carbon disulfide	$0.30 \mathrm{ppbv} / 0.94 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209540A-07A	TO-15	Toluene	$0.071 \mathrm{ppbv} / 0.27 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209540A-07A	TO-15	1,2-Dibromoethane (EDB)	$0.42 \mathrm{ppbv} / 1.9 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209540B-07A	Natural gases	Oxygen	0.011%
1209540B-07A	Natural gases	Nitrogen	0.057%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-091712	TO-15	Carbon disulfide	-	U
VMP-21-5-091712	TO-15	Chlorobenzene	-	U
VMP-42-10-091712	TO-15	Carbon disulfide	-	U
VMP-42-10-091712	TO-15	Chlorobenzene	-	U
VMP-4-5-091712	TO-15	Chlorobenzene	-	U
VMP-11-5-091812	TO-15	Carbon disulfide	-	U
VMP-11-5-091812	TO-15	Chlorobenzene	-	U
VMP-13-5-091812	TO-15	Chlorobenzene	-	U
VMP-10-5-091812	TO-15	Carbon disulfide	-	U
VMP-10-5-091812	TO-15	Chlorobenzene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results
 Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications
 Were additional qualifications applied?

No

eurofins

10/10/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209540A
Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/26/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

$$
\begin{gathered}
\text { Reviewed } \\
\text { on } \\
10 / 11 / 2012
\end{gathered}
$$

Air Toxics

WORK ORDER \#: 1209540A

Work Order Summary

CERTIFIED BY:

DATE: $10 / 10 / 12$

Technical Director
Cerffication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall noe be reproduced, except in full, without the written approval of Enrofins Air Toxics, Inc.
180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563
(916) 985-1000. (800) 985-5955 . FAX (916) 985-1020

eurofins

Ar Toxics

LABORATORY NARRATIVE
EPA Method TO-15
URS Corporation
Workorder\# 1209540A

Six 1 Liter Summa Canister samples were received on September 26, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Oualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J- Estimated value.
E-Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-091712
Lab ID\#: 1209540A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.29 J	7.0	1.4 J
Ethanol	5.7	5.9	11	11
Acetone	14	8.3 J	34	20 J
2-Propanol	5.7	4.6 J	14	11 J
Carbon Disulfide	5.7	$-0.84 \mathrm{~J} \mathrm{U}$	18	$-2.5 \mathrm{~J} \mathrm{u}$
Methylene Chloride	14	0.15 J	49	0.53 J
Hexane	1.4	0.28 J	5.0	0.98 J
2-Butanone (Methyl Ethyl Ketone)	5.7	3.8 J	17	11 J
Tetrahydrofuran	1.4	0.38 J	4.2	1.1 J
2,2,4-Trimethylpentane	1.4	0.73 J	6.6	3.4 J
Benzene	1.4	0.88 J	4.5	2.8 J
Heptane	1.4	0.62 J	5.8	2.5 J
4-Methyl-2-pentanone	1.4	25	5.8	100
Toluene	1.4	34	5.3	130
Tetrachloroethene	1.4	0.40 J	9.6	2.7 J
Chlorobenzene	1.4	$\cdot 0: 89 \mathrm{Jul}$	6.5	-4.4.J U
Ethyl Benzene	1.4	0.39 J	6.1	1.7 J
m,p-Xylene	1.4	0.76 J	6.1	3.3 J
o-Xylene	1.4	0.32 J	6.1	1.4 J
Cumene	1.4	2.5	7.0	12
1,1,2,2-Tetrachloroethane	1.4	0.21 J	9.7	1.4 J
4-Ethyltoluene	1.4	0.36 J	7.0	1.8 J
1,2,4-Trimethylbenzene	1.4	0.23 J	7.0	1.1 J
1,4-Dichlorobenzene	1.4	0.22 J	8.5	1.3 J
Propylene	5.7	1.3 J	9.7	2.2 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Hexanal	$66-25-1$	59%	9.1 NJ
4-Nonene	$2198-23-4$	59%	11 NJ
Propanal, 2-hydroxy-2-methyl-	$20818-81-9$	25%	19 NJ
Heptane, 2,2,4-trimethyl-	$14720-74-2$	59%	8.8 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	29 NJ

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-091712
Lab ID\#: 1209540A-01A
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	8.4 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	64%	35 NJ
Hexane, 2,2,4-trimethyl-	$16747-26-5$	64%	50 NJ
Heptane, 3,3'-[oxybis(methylene)]bis-	$10143-60-9$	50%	21 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	11 NJ

Client Sample ID: VMP-42-10-091712
Lab ID\#: 1209540A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.49 J	7.1	2.4 J
Ethanol	5.7	16	11	30
Acetone	14	11 J	34	27 J
2-Propanol	5.7	4.4 J	14	11 J
Carbon Disulfide	5.7	$\theta .79 \mathrm{~J} \mathrm{U}$	18	-2.5 J u
Methylene Chloride	14	0.25 J	50	0.87 J
Hexane	1.4	0.25 J	5.0	0.89 J
2-Butanone (Methyl Ethyl Ketone)	5.7	4.2 J	17	12 J
Chloroform	1.4	1.3 J	7.0	6.6 J
Cyclohexane	1.4	1.7	4.9	5.7
2,2,4-Trimethylpentane	1.4	140	6.7	680
Benzene	1.4	14	4.6	45
4-Methyl-2-pentanone	1.4	17	5.8	71
Toluene	1.4	30	5.4	110
Chlorobenzene	1.4	$7.2-\mathrm{J} \mathrm{U}$	6.6	$-5.3-\mathrm{J} \mathrm{U}$
Ethyl Benzene	1.4	0.54 J	6.2	2.3 J
m,p-Xylene	1.4	0.86 J	6.2	3.7 J
o-Xylene	1.4	0.30 J	6.2	1.3 J
Cumene	1.4	2.7	7.0	13
Propylbenzene	1.4	0.52 J	7.0	2.6 J
4-Ethyltoluene	1.4	0.50 J	7.0	2.5 J
1,3,5-Trimethylbenzene	1.4	0.31 J	7.0	1.5 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-091712				
Lab ID\#: 1209540A-02A				
1,2,4-Trimethylbenzene	1.4	0.42 J	7.0	2.1 J
1,4-Dichlorobenzene	1.4	0.26 J	8.6	1.6 J
Isopentane	5.7	7.2	17	21

TENTATIVELY IDENTIFIED COMPOUNDS

Amount

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,4-dimethyl-	$108-08-7$	80%	68 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	47%	200 NJ
Cyclohexane, methyl-	$108-87-2$	37%	58 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	91%	220 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	320 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	78%	60 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	72%	53 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	42 NJ
Decane, 2,3,5-trimethyl-	$62238-11-3$	78%	45 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	53%	92 NJ

Client Sample ID: VMP-4-5-091712

Lab ID\#: 1209540A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.5	0.38 J	7.5	1.9 J
Ethanol	6.1	21	11	39
Acetone	15	11 J	36	26 J
2-Propanol	6.1	4.5 J	15	11 J
Methylene Chloride	15	0.32 J	53	1.1 J
Hexane	1.5	0.50 J	5.3	1.7 J
2-Butanone (Methyl Ethyl Ketone)	6.1	4.8 J	18	14 J
Tetrahydrofuran	1.5	0.64 J	4.5	1.9 J
2,2,4-Trimethylpentane	1.5	0.88 J	7.1	4.1 J
Benzene	1.5	25	4.8	80
Heptane	1.5	0.78 J	6.2	3.2 J
4-Methyl-2-pentanone	1.5	15	6.2	63
Toluene	1.5	38	5.7	140
Chlorobenzene	1.5	4.4 J U	7.0	9.0 J U

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-4-5-091712				
Lab ID\#: 1209540A-03A	1.5	0.31 J	6.6	1.4 J
Ethyl Benzene	1.5	0.76 J	6.6	3.3 J
m,p-Xylene	1.5	0.39 J	6.6	1.7 J
o-Xylene	1.5	1.8	7.4	8.7
Cumene	1.5	0.25 J	7.4	1.2 J
1,2,4-Trimethylbenzene	1.5	0.23 J	9.1	1.4 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Acetaldehyde	$75-07-0$	9.0%	8.0 NJ
1-Hexyn-3-ol	$105-31-7$	59%	14 NJ
Hexanal	$66-25-1$	86%	8.8 NJ
Unknown	NA	NA	8.8 J
Decane, 2,2,8-trimethyl-	$62238-01-1$	78%	10 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	78%	21 NJ
Undecane, 4,6-dimethyl-	$17312-82-2$	64%	30 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	59%	66 NJ
1-Hexene, 3-methyl-	$3404-61-3$	22%	23 NJ
Decanedioic acid, didecyl ester	$2432-89-5$	59%	27 NJ

Client Sample ID: VMP-11-5-091812
Lab ID\#: 1209540A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.36 J	7.1	1.8 J
Ethanol	5.7	9.0	11	17
Acetone	14	8.2 J	34	20 J
2-Propanol	5.7	5.0 J	14	12 J
Carbon Disulfide	5.7	0.90 J u	18	-2.8 J u
Methylene Chloride	14	0.26 J	50	0.90 J
Hexane	1.4	0.16 J	5.0	0.57 J
2-Butanone (Methyl Ethyl Ketone)	5.7	3.3 J	17	9.7 J
Tetrahydrofuran	1.4	4.0	4.2	12
Cyciohexane	1.4	0.63 J	4.9	2.2 J
2,2,4-Trimethylpentane	1.4	18	6.7	83

eurofins

Af Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-11-5-091812				
Lab ID\#: 1209540A-04A				
Benzene	1.4	8.8	4.6	28
Heptane	1.4	0.62 J	5.9	2.6 J
4-Methyl-2-pentanone	1.4	13	5.8	52
Toluene	1.4	48	5.4	180
Chlorobenzene	1.4	-7.2 J J	6.6	.5 .5 J U
Ethyl Benzene	1.4	0.38 J	6.2	1.6 J
m,p-Xylene	1.4	0.82 J	6.2	3.5 J
o-Xylene	1.4	0.31 J	6.2	1.4 J
Cumene	1.4	1.5	7.0	7.5
Propylbenzene	1.4	0.22 J	7.0	1.1 J
4-Ethyltoluene	1.4	0.34 J	7.0	1.7 J
1,2,4-Trimethylbenzene	1.4	0.33 J	7.0	1.6 J
Isopentane	5.7	5.1 J	17	15 J

TENTATIVEL.Y IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,4-dimethyl-	$108-08-7$	64%	11 NJ
Unknown	NA	NA	11 J
Pentane, 2,3-dimethyl-	$565-59-3$	43%	27 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	86%	23 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	83%	30 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	8.8 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	20 NJ
Undecane, 3,8-dimethyl-	$17301-30-3$	64%	26 NJ
Unknown	NA	NA	18 J
Cyclooctane, 1,4-dimethyl-, cis-	$13151-99-0$	78%	23 NJ

Client Sample ID: VMP-13-5-091812
Lab ID\#: 1209540A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.5	0.36 J	7.4	1.8 J
Ethanol	6.0	2.2 J	11	4.1 J
Acetone	15	8.9 J	36	21 J
Carbon Disulfide	6.0	2.4 J	19	7.4 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-091812				
Lab ID\#: 1209540A-05A				
Methylene Chloride	15	0.49 J	52	1.7 J
Hexane	1.5	0.46 J	5.3	1.6 J
Tetrahydrofuran	1.5	0.56 J	4.4	1.7 J
Chloroform	1.5	0.36 J	7.3	1.7 J
2,2,4-Trimethylpentane	1.5	2.0	7.0	9.5
Benzene	1.5	0.95 J	4.8	3.0 J
Heptane	1.5	0.47 J	6.1	1.9 J
Toluene	1.5	1.0 J	5.6	3.9 J
Chlorobenzene	1.5	$-1-2 \mathrm{~J} \mathrm{U}$	6.9	-5.6 J U
1,4-Dichlorobenzene	0.18 J	9.0	1.1 J	

Client Sample ID: VMP-10-5-091812
Lab ID\#: 1209540A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.41 J	7.1	2.0 J
Acetone	14	13 J	34	30 J
Carbon Disulfide	5.8	-0.88.JU	18	-2.8-5 u
Methylene Chloride	14	0.17 J	50	0.59 J
Hexane	1.4	0.33 J	5.1	1.2 J
2,2,4-Trimethylpentane	1.4	1.5	6.8	7.1
Benzene	1.4	4.6	4.6	15
Heptane	1.4	0.28 J	5.9	1.2 J
Toluene	1.4	0.43 J	5.4	1.6 J
Chlorobenzene	1.4	4-1.j u	6.6	$-4.9 . \mathrm{J} \mathrm{U}$

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	80%	32 NJ

eurofins

Air Toxics

Client Sample ID: VMP-21-5-091712
Lab ID\#: 1209540A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100116 \\ 2.83 \\ \hline \end{array}$	Date of Collection: 9/17/12 11:12:00 AM Date of Analysis: 10/1/12 04:26 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.29 J	7.0	1.4 J
Freon 114	1.4	Not Detected	9.9	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.7	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.0	Not Detected
Ethanol	5.7	5.9	11	11
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	8.3 J	34	20 J
2-Propanol	5.7	4.6 J	14	11 J
Carbon Disulfide	5.7	-08f J U	18	-2.5-J l
3-Chloropropene	5.7	Not Detected	18	Not Detected
Methylene Chloride	14	0.15 J	49	0.53 J
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	0.28 J	5.0	0.98 J
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.7	3.8 J	17	11 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	0.38 J	4.2	1.1 J
Chloroform	1.4	Not Detected	6.9	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	Not Detected	4.9	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	0.73 J	6.6	3.4 J
Benzene	1.4	0.88 J	4.5	2.8 J
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	0.62 J	5.8	2.5 J
Trichloroethene	1.4	Not Detected	7.6	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.7	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.5	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	25	5.8	100
Toluene	1.4	34	5.3	130
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	0.40 J	9.6	2.7 J
2-Hexanone	5.7	Not Detected	23	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-21-5-091712
Lab ID\#: 1209540A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100116 \\ 2.83 \end{array}$	Date of Collection: 9/17/12 11:12:00 AM Date of Analysis: 10/1/12 04:26 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-0.89J U	6.5	-4-4-J U
Ethyl Benzene	1.4	0.39 J	6.1	1.7 J
m,p-Xylene	1.4	0.76 J	6.1	3.3 J
o-Xylene	1.4	0.32 J	6.1	1.4 J
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	2.5	7.0	12
1,1,2,2-Tetrachloroethane	1.4	0.21 J	9.7	1.4 J
Propylbenzene	1.4	Not Detected	7.0	Not Detected
4-Ethyltoluene	1.4	0.36 J	7.0	1.8 J
1,3,5-Trimethylbenzene	1.4	Not Detected	7.0	Not Detected
1,2,4-Trimethyibenzene	1.4	0.23 J	7.0	1.1 J
1,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,4-Dichlorobenzene	1.4	0.22 J	8.5	1.3 J
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2,4-Trichlorobenzene	5.7	Not Detected	42	Not Detected
Hexachlorobutadiene	5.7	Not Detected	60	Not Detected
Butane	5.7	Not Detected	13	Not Detected
Isopentane	5.7	Not Detected	17	Not Detected
Ethyl Acetate	5.7	Not Detected	20	Not Detected
Propylene	5.7	1.3 J	9.7	2.2 J
Vinyl Acetate	5.7	Not Detected	20	Not Detected
Vinyl Bromide	5.7	Not Detected	25	Not Detected

$J=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Hexanal	$66-25-1$	59%	9.1 NJ
4-Nonene	$2198-23-4$	59%	11 NJ
Propanal, 2-hydroxy-2-methyl-	$20818-81-9$	25%	19 NJ
Heptane, 2,2,4-trimethyl-	$14720-74-2$	59%	8.8 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	29 NJ
Decane, 2,2,9-trimethyl-	$62238-00-0$	72%	8.4 NJ
Decane, 6-ethyl-2-methyl-	$62108-21-8$	64%	35 NJ
Hexane, 2,2,4-trimethyl-	$16747-26-5$	64%	50 NJ
Heptane,	$10143-60-9$	50%	21 NJ
3,3'-[oxybis(methylene)]bis-			
Ethanone, 1-phenyl-	$98-86-2$	91%	11 NJ

Air Toxios

Client Sample ID: VMP-21-5-091712

Lab ID\#: 1209540A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

eurofins

Ar Toxics

Client Sample ID: VMP-42-10-091712
Lab ID\#: 1209540A-02A
EPA METHOD TO-15 GC/MS FULLSCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100117 \\ 2.86 \end{array}$	Date of Collection: 9/17/12 12:08:00 PM Date of Analysis: 10/1/12 05:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.49 J	7.1	2.4 J
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.7	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.0	Not Detected
Ethanol	5.7	16	11	30
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	11 J	34	27 J
2-Propanol	5.7	4.4 J	14	11 J
Carbon Disulfide	5.7	$\cdot 0.79 \mathrm{~J} \mathrm{U}$	18	$-2.501 \mathrm{ll}$
3-Chloropropene	5.7	Not Detected	18	Not Detected
Methylene Chloride	14	0.25 J	50	0.87 J
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	0.25 J	5.0	0.89 J
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.7	4.2 J	17	12 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	1.3 J	7.0	6.6 J
1,1,1-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Cyclohexane	1.4	1.7	4.9	5.7
Carbon Tetrachloride	1.4	Not Detected	9.0	Not Detected
2,2,4-Trimethylpentane	1.4	140	6.7	680
Benzene	1.4	14	4.6	45
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	Not Detected	7.7	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.6	Not Detected
1,4-Dioxane	5.7	Not Detected	21	Not Detected
Bromodichtoromethane	1.4	Not Detected	9.6	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
4-Methyl-2-pentanone	1.4	17	5.8	71
Toluene	1.4	30	5.4	110
trans-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Tetrachloroethene	1.4	Not Detected	9.7	Not Detected
2-Hexanone	5.7	Not Detected	23	Not Detected

Client Sample ID: VMP-42-10-091712
Lab ID\#: 1209540A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100117 \\ 2.86 \end{array}$	Date of Collection: 9/17/12 12:08:00 PM Date of Analysis: 10/1/12 05:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-2.J U	6.6	-5.3-J U
Ethyl Benzene	1.4	0.54 J	6.2	2.3 J
m,p-Xylene	1.4	0.86 J	6.2	3.7 J
o-Xylene	1.4	0.30 J	6.2	1.3 J
Styrene	1.4	Not Detected	6.1	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	2.7	7.0	13
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.8	Not Detected
Propylbenzene	1.4	0.52 J	7.0	2.6 J
4-Ethyltoluene	1.4	0.50 J	7.0	2.5 J
1,3,5-Trimethylbenzene	1.4	0.31 J	7.0	1.5 J
1,2,4-Trimethylbenzene	1.4	0.42 J	7.0	2.1 J
1,3-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,4-Dichlorobenzene	1.4	0.26 J	8.6	1.6 J
alpha-Chlorotoluene	1.4	Not Detected	7.4	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,2,4-Trichlorobenzene	5.7	Not Detected	42	Not Detected
Hexachlorobutadiene	5.7	Not Detected	61	Not Detected
Butane	5.7	Not Detected	14	Not Detected
Isopentane	5.7	7.2	17	21
Ethyl Acetate	5.7	Not Detected	21	Not Detected
Propylene	5.7	Not Detected	9.8	Not Detected
Vinyl Acetate	5.7	Not Detected	20	Not Detected
Vinyl Bromide	5.7	Not Detected	25	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Pentane, 2,4-dimethyl-	$108-08-7$	80%	68 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	47%	200 NJ
Cyclohexane, methyl-	$108-87-2$	37%	58 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	91%	220 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	320 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	78%	60 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	72%	53 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	42 NJ
Decane, 2,3,5-trimethyl-	$62238-11-3$	78%	45 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	53%	92 NJ

Client Sample ID: VMP~42-10-091712
 Lab ID\#: 1209540A-02A
 EPA METHOD TO-15 GC/MS FULL SCAN
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">File Name:</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">j 100117</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Date of Collection: $9 / 17 / 12$ 12:08:00 PM</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Dil. Factor:</td>
<td style="text-align: right; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">2.86</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Date of Analysis: $10 / 1 / 1205: 00 \mathrm{PM}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| File Name: | j 100117 | Date of Collection: $9 / 17 / 12$ 12:08:00 PM |
| :--- | ---: | :--- |
| Dil. Factor: | 2.86 | Date of Analysis: $10 / 1 / 1205: 00 \mathrm{PM}$ |</table-markdown></div>

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	106	$70-130$
1,2-Dichloroethane-d4	95	$70-130$
4-Bromofluorobenzene	87	$70-130$

eurofins

Ar Toxics

Client Sample ID: VMP-4-5-091712
Lab ID\#: 1209540A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j100118 3.03	Date of Collection: 9/17/12 1:00:00 PM Date of Analysis: 10/1/12 05:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.38 J	7.5	1.9 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.5	Not Detected
Ethanol	6.1	21	11	39
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	11 J	36	26 J
2-Propanol	6.1	4.5 J	15	11 J
Carbon Disulfide	6.1	Not Detected	19	Not Detected
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	0.32 J	53	1.1 J
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	0.50 J	5.3	1.7 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	4.8 J	18	14 J
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	0.64 J	4.5	1.9 J
Chloroform	1.5	Not Detected	7.4	Not Detected
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	0.88 J	7.1	4.1 J
Benzene	1.5	25	4.8	80
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	0.78 J	6.2	3.2 J
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	15	6.2	63
Toluene	1.5	38	5.7	140
trans-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2.-Hexanone	6.1	Not Detected	25	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-4-5-091712
Lab ID\#: 1209540A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100118 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/17/12 1:00:00 PM Date of Analysis: 10/1/12 05:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	--4.4 u	7.0	-500- U
Ethyl Benzene	1.5	0.31 J	6.6	1.4 J
m,p-Xylene	1.5	0.76 J	6.6	3.3 J
o-Xylene	1.5	0.39 J	6.6	1.7 J
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	1.8	7.4	8.7
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.4	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	0.25 J	7.4	1.2 J
1,3-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,4-Dichlorobenzene	1.5	0.23 J	9.1	1.4 J
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.1	Not Detected
1,2,4-Trichlorobenzene	6.1	Not Detected	45	Not Detected
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	Not Detected	18	Not Detected
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	Not Detected	10	Not Detected
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

$J=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
Acetaldehyde	$75-07-0$	9.0%	8.0 NJ
1-Hexyn-3-0l	$105-31-7$	59%	14 NJ
Hexanal	$66-25-1$	86%	8.8 NJ
Unknown	NA	NA	8.8 J
Decane, 2,2,8-trimethyl-	$62238-01-1$	78%	10 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	78%	21 NJ
Undecane, 4,6-dimethyl-	$17312-82-2$	64%	30 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	59%	66 NJ
1-Hexene, 3-methyl-	$3404-61-3$	22%	23 NJ
Decanedioic acid, didecyl ester	$2432-89-5$	59%	27 NJ

eurofins

Client Sample ID: VMP-4-5-091712
Lab ID\#: 1209540A-03A
EPA METHOD TO-15 GC/MS FULL.SCAN

eurofins
Air Toxics

Client Sample 1D: VMP-11-5-091812
Lab ID\#: 1209540A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100121 \\ 2.86 \\ \hline \end{array}$	Date of Collection: 9/18/12 10:20:00 AM Date of Analysis: 10/1/12 07:16 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.36 J	7.1	1.8 J
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.7	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.0	Not Detected
Ethanol	5.7	9.0	11	17
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	8.2 J	34	20 J
2-Propanol	5.7	5.0 J	14	12 J
Carbon Disulfide	5.7	$10.90 \cdot \mathrm{~J}$ u	18	$-2.8-\mathrm{J}$ U
3-Chloropropene	5.7	Not Detected	18	Not Detected
Methylene Chloride	14	0.26 J	50	0.90 J
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	0.16 J	5.0	0.57 J
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.7	3.3 J	17	9.7 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	4.0	4.2	12
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Cyclohexane	1.4	0.63 J	4.9	2.2 J
Carbon Tetrachloride	1.4	Not Detected	9.0	Not Detected
2,2,4-Trimethylpentane	1.4	18	6.7	83
Benzene	1.4	8.8	4.6	28
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	0.62 J	5.9	2.6 J
Trichloroethene	1.4	Not Detected	7.7	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.6	Not Detected
1,4-Dioxane	5.7	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.6	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
4-Methyl-2-pentanone	1.4	13	5.8	52
Toluene	1.4	48	5.4	180
trans-1,3-Dichloropropene	1.4	Not Detected	6.5	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.8	Not Detected
Tetrachloraethene	1.4	Not Detected	9.7	Not Detected
2-Hexanone	5.7	Not Detected	23	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-11-5-091812
Lab ID\#: 1209540A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100121 \\ 2.86 \\ \hline \end{array}$	Date of Collection: 9/18/12 10:20:00 AM Date of Analysis: $10 / 1 / 12$ 07:16 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochioromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	-4.2J U	6.6	-5.5u
Ethyl Benzene	1.4	0.38 J	6.2	1.6 J
m,p-Xylene	1.4	0.82 J	6.2	3.5 J
o-Xylene	1.4	0.31 J	6.2	1.4 J
Styrene	1.4	Not Detected	6.1	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	1.5	7.0	7.5
1,1,2,2-Tetrachioroethane	1.4	Not Detected	9.8	Not Detected
Propylbenzene	1.4	0.22 J	7.0	1.1 J
4-Ethyltoluene	1.4	0.34 J	7.0	1.7 J
1,3,5-Trimethylbenzene	1.4	Not Detected	7.0	Not Detected
1,2,4-Trimethylbenzene	1.4	0.33 J	7.0	1.6 J
1,3-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.4	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.6	Not Detected
1,2,4-Trichlorobenzene	5.7	Not Detected	42	Not Detected
Hexachlorobutadiene	5.7	Not Detected	61	Not Detected
Butane	5.7	Not Detected	14	Not Detected
Isopentane	5.7	5.1 J	17	15 J
Ethyl Acetate	5.7	Not Detected	21	Not Detected
Propylene	5.7	Not Detected	9.8	Not Detected
Vinyl Acetate	5.7	Not Detected	20	Not Detected
Vinyl Bromide	5.7	Not Detected	25	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $)$)
Pentane, 2,4-dimethyl-	$108-08-7$	64%	11 NJ
Unknown	NA	NA	11 J
Pentane, 2,3-dimethyl-	$565-59-3$	43%	27 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	86%	23 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	83%	30 NJ
Decane, 2,2-dimethyl-	$17302-37-3$	72%	8.8 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	20 NJ
Undecane, 3,8-dimethyl-	$17301-30-3$	64%	26 NJ
Unknown	NA	NA	18 JJ
Cyclooctane, 1,4-dimethyl-, cis-	$13151-99-0$	78%	23 NJ

eurofins

Client Sample ID: VMP-11-5-091812

Lab ID\#: 1209540A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091812
Lab ID\#: 1209540A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100123 \\ 3.00 \\ \hline \end{array}$	Date of Collection: 9/18/12 11:27:00 AM Date of Analysis: 10/1/12 08:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.36 J	7.4	1.8 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	58	Not Detected
Chloroethane	6.0	Not Detected	16	Not Detected
Freon 11	1.5	Not Detected	8.4	Not Detected
Ethanol	6.0	2.2 J	11	4.1 J
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	8.9 J	36	21 J
2-Propanol	6.0	Not Detected	15	Not Detected
Carbon Disulfide	6.0	2.4 J	19	7.4 J
3-Chloropropene	6.0	Not Detected	19	Not Detected
Methylene Chloride	15	0.49 J	52	1.7 J
Methyl tert-butyl ether	1.5	Not Detected	5.4	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	0.46 J	5.3	1.6 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.0	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	0.56 J	4.4	1.7 J
Chloroform	1.5	0.36 J	7.3	1.7 J
1,1,1-Trichloroethane	1.5	Not Detected	8.2	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.4	Not Detected
2,2,4-Trimethylpentane	1.5	2.0	7.0	9.5
Benzene	1.5	0.95 J	4.8	3.0 J
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	0.47 J	6.1	1.9 J
Trichloroethene	1.5	Not Detected	8.1	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.9	Not Detected
1,4-Dioxane	6.0	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.8	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.1	Not Detected
Toluene	1.5	1.0 J	5.6	3.9 J
trans-1,3-Dichloropropene	1.5	Not Detected	6.8	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.2	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	6.0	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-13-5-091812
Lab ID\#: 1209540A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100123 \\ 3.00 \end{array}$	Date of Collection: 9/18/12 11:27:00 AM Date of Analysis: $10 / 1 / 12$ 08:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount ($\mathrm{ug} / \mathrm{m} 3$)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.5	$-1-2-14$	6.9	$-5.6 . J d$
Ethyl Benzene	1.5	Not Detected	6.5	Not Detected
m,p-Xylene	1.5	Not Detected	6.5	Not Detected
o-Xylene	1.5	Not Detected	6.5	Not Detected
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	Not Detected	7.4	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.4	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.4	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	9.0	Not Detected
1,4-Dichlorobenzene	1.5	0.18 J	9.0	1.1 J
alpha-Chlorotoluene	1.5	Not Detected	7.8	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.0	Not Detected
1,2,4-Trichlorobenzene	6.0	Not Detected	44	Not Detected
Hexachlorobutadiene	6.0	Not Detected	64	Not Detected
Butane	6.0	Not Detected	14	Not Detected
Isopentane	6.0	Not Detected	18	Not Detected
Ethyl Acetate	6.0	Not Detected	22	Not Detected
Propylene	6.0	Not Detected	10	Not Detected
Vinyl Acetate	6.0	Not Detected	21	Not Detected
Vinyl Bromide	6.0	Not Detected	26	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS
$\left.\begin{array}{lcc}\text { Compound } & \text { CAS Number } & \text { Match Quality }\end{array} \begin{array}{c}\text { Amount } \\ \text { ((ppbv)) }\end{array}\right]$

eurofins

Air Toxics

Client Sample ID: VMP-10-5-091812
Lab ID\#: 1209540A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100122 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 9/18/12 12:30:00 PM Date of Analysis: 10/1/12 07:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.41 J	7.1	2.0 J
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.1	Not Detected
Ethanol	5.8	Not Detected	11	Not Detected
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	13 J	34	30 J
2-Propanol	5.8	Not Detected	14	Not Detected
Carbon Disulfide	5.8	\cdots	18	-2.8-J U
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	0.17 J	50	0.59 J
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	0.33 J	5.1	1.2 J
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	1.5	6.8	7.1
Benzene	1.4	4.6	4.6	15
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	0.28 J	5.9	1.2 J
Trichloroethene	1.4	Not Detected	7.8	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	0.43 J	5.4	1.6 J
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-10-5-091812
Lab ID\#: 1209540A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100122 \\ 2.89 \end{array}$	Date of Collection: 9/18/12 12:30:00 PM Date of Analysis: 10/1/12 07:44 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochioromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	$-4.4 \mathrm{~J} \mathrm{U}$	6.6	-4.9 J U
Ethyl Benzene	1.4	Not Detected	6.3	Not Detected
m,p-Xylene	1.4	Not Detected	6.3	Not Detected
o-Xylene	1.4	Not Detected	6.3	Not Detected
Styrene	1.4	Not Detected	6.2	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propylbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,4-Dichlorabenzene	1.4	Not Detected	8.7	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Butane	5.8	Not Detected	14	Not Detected
Isopentane	5.8	Not Detected	17	Not Detected
Ethyl Acetate	5.8	Not Detected	21	Not Detected
Propylene	5.8	Not Detected	9.9	Not Detected
Vinyl Acetate	5.8	Not Detected	20	Not Detected
Vinyl Bromide	5.8	Not Detected	25	Not Detected

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene, 2-methyl-	$115-11-7$	80%	32 NJ
NJ =The identification is based on presumptive evidence; estimated value.			
Container Type: 1 Liter Summa Canister		Method	
	\%Recovery	Limits	
Surrogates	103	$70-130$	
Toluene-d8	93	$70-130$	
1,2-Dichloroethane-d4	89	$70-130$	

eurofins

Air Toxics

Client Sample 1D: Lab Blank
Lab ID\#: 1209540A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100115 \mathrm{a} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 10/1/12 03:18 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.30 J	6.2	0.94 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	(0.071	1.9	-0.27J
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID\#: 1209540A-07A EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100115 \mathrm{a} \\ 1.00 \\ \hline \end{array}$		Collection: Analysis:	03:18 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	(0.42J)	2.3	1.9 J
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethytbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS
$\left.\begin{array}{lcc}\text { Compound } & \text { CAS Number } & \text { Match Quality }\end{array} \begin{array}{c}\text { Amount } \\ ((\text { ppbv) }\end{array}\right]$

eurofins

Air Toxics

Client Sample ID: CCV Lab ID\#: 1209540A-08A		
File Name: Dil. Factor:	$\begin{array}{r} \mathbf{j} 100102 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 10/1/12 08:19 AM
Compound		\%Recovery
Freon 12		89
Freon 114		86
Chloromethane		81
Vinyl Chloride		82
1,3-Butadiene		76
Bromomethane		83
Chloroethane		82
Freon 11		87
Ethanol		84
Freon 113		82
1,1-Dichloroethene		78
Acetone		82
2-Propanol		87
Carbon Disulfide		81
3-Chloropropene		80
Methylene Chloride		87
Methyl tert-butyl ether		84
trans-1,2-Dichloroethene		84
Hexane		81
1,1-Dichloroethane		88
2-Butanone (Methyl Ethyl Ketone)		94
cis-1,2-Dichloroethene		90
Tetrahydrofuran		91
Chloroform		94
1,1,1-Trichloroethane		89
Cyclohexane		90
Carbon Tetrachloride		92
2,2,4-Trimethylpentane		84
Benzene		95
1,2-Dichloroethane		93
Heptane		97
Trichloroethene		99
1,2-Dichloropropane		96
1,4-Dioxane		99
Bromodichloromethane		98
cis-1,3-Dichloropropene		103
4-Methyl-2-pentanone		85
Toluene		99
trans-1,3-Dichloropropene		89
1,1,2-Trichloroethane		96
Tetrachloroethene		90
2-Hexanone		85

Client Sample ID: CCV
 Lab ID\#: 1209540A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$\mathbf{1 0 0 1 0 2}$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 1 / 12$ 08:19 AM

Compound		\%Recovery
Dibromochloromethane		94
1,2-Dibromoethane (EDB)		96
Chlorobenzene		83
Ethyl Benzene		92
m,p-Xylene		90
o-Xylene		90
Styrene		83
Bromoform		89
Cumene		90
1,1,2,2-Tetrachloroethane		100
Propylbenzene		96
4-Ethyltoluene		91
1,3,5-Trimethylbenzene		88
1,2,4-Trimethylbenzene		84
1,3-Dichlorobenzene		87
1,4-Dichlorobenzene		87
apha-Chlorotoluene		87
1,2-Dichlorobenzene		85
1,2,4-Trichlorobenzene		79
Hexachlorobutadiene		78
Butane		81
Isopentane		90
Ethyi Acetate		101
Propylene		96
Vinyl Acetate		90
Vinyl Bromide		92
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	95	70-130

eurofins

Air Toxics

Client Sample ID: LCS
Lab ID\#: 1209540A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100104$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 1 / 12$ 09:11 AM

Compound \%Recovery
Freon 12 86
Freon 114 83
Chloromethane 79
Vinyl Chloride 82
1,3-Butadiene 76
Bromomethane 80
Chloroethane 79
Freon 11 86
Ethano 74
Freon 113 81
1.1-Dichloroethene 80
Acetone 82
2-Propanol 84
Carbon Disulfide 100
3-Chloropropene 89
Methylene Chloride 86
Methyl tert-butyl ether 85
trans-1,2-Dichloroethene 92
Hexane 78
1,1-Dichloroethane 86
2-Butanone (Methyl Ethyl Ketone) 93
cis-1,2-Dichloroethene 90
Tetrahydrofuran 85
Chloroform 93
1,1,1-Trichloroethane 86
Cyclohexane 92
Carbon Tetrachloride 94
2,2,4-Trimethylpentane 81
Benzene 100
1,2-Dichloroethane 93
Heptane 99
Trichloroethene 103
1,2-Dichloropropane 99
1,4-Dioxane 95
Bromodichloromethane 100
cis-1,3-Dichloropropene 102
4-Methyl-2-pentanone 82
Toluene 101
trans-1,3-Dichloropropene 93
1,1,2-Trichloroethane 103
Tetrachloroethene 92
2-Hexanone 83

Client Sample ID: LCS
 Lab ID\#: 1209540A-09A
 EPA METHOD TO-15 GC/MS FULL SCAN

eurofins

Air Toxics

Client Sample ID: LCSD

Lab ID\#: 1209540A-09AA
EPA METHOD TO-15.GC/MS FULL SCAN
Fite Name: j100108 Date of Collection: NA
1.00 Date of Analysis: 10/1/12 11:58 AM
Compound \%Recovery
Freon 12 92
Freon 114 90
Chloromethane 84
Vinyl Chloride 85
1,3-Butadiene 77
Bromomethane 84
Chloroethane 85
Freon 11 89
Ethanol 77
Freon 113 84
1,1-Dichloroethene 83
Acetone 84
2-Propanol 84
Carbon Disulfide 101
3-Chloropropene 90
Methylene Chloride 86
Methyl tert-butyl ether 87
trans-1,2-Dichloroethene 97
Hexane 79
1.1-Dichloroethane 89
2-Butanone (Methyl Ethyl Ketone) 97
cis-1,2-Dichloroethene 90
Tetrahydrofuran 86
Chloroform 96
1,1,1-Trichloroethane 90
Cyclohexane 93
Carbon Tetrachloride 94
2,2,4-Trimethylpentane 82
Benzene 100
1,2-Dichloroethane 93
Heptane 97
Trichloroethene 102
1,2-Dichloropropane 98
1,4-Dioxane 96
Bromodichloromethane 98
cis-1,3-Dichloropropene 103
4-Methyl-2-pentanone 81
Toluene 100
trans-1,3-Dichloropropene 94
1,1,2-Trichloroethane 103
Tetrachloroethene 92
2-Hexanone 84

eurofins

Air Toxics

SHell Oil Products Chain Of Custody Record
wes

eurofins

Air Toxics

10/10/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209540B

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/26/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buetner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Reviewed
 on

$10 / 11 / 2012$

Air Toxics

WORK ORDER \#: 1209540B

Work Order Summary

CERTIFIED BY:

DATE: $10 / 10 / 12$

Certfication numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report sta th not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563
(916) 985-1000 . (800) 985-5955. FAX (916) 985-1020

Page 2 of 16

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation Workorder\# 1209540B

Six 1 Liter Summa Canister samples were received on September 26, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matehing the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5\% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is comnected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15\%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue
eurofins
Air Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-091712
Lab ID\#: 1209540B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	15
Nitrogen	0.28	80
Methane	0.00028	0.000034 J
Carbon Dioxide	0.028	5.5
Helium	0.14	0.038 J

Client Sample ID: VMP-42-10-091712
Lab ID\#: 1209540B-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	19
Nitrogen	0.29	79
Carbon Dioxide	0.029	1.7

Client Sample ID: VMP-4-5-091712
Lab ID\#: 1209540B-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	19
Nitrogen	0.30	80
Methane	0.00030	0.00016 J
Carbon Dioxide	0.030	1.1
Helium	0.15	0.087 J

Client Sample ID: VMP-11-5-091812
Lab ID\#: 1209540B-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	18
Nitrogen	0.29	80
Methane	0.00029	0.000096 J
Carbon Dioxide	0.029	1.8

Ar Toxics

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

```
Client Sample ID: VMP-11-5-091812
Lab ID#: 1209540B-04A
Helium 0.14 0.016 J
```

Client Sample ID: VMP-13-5-091812
Lab ID\#: 1209540B-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	18
Nitrogen	0.30	80
Methane	0.00030	0.000057 J
Carbon Dioxide	0.030	2.4
Helium	0.15	0.042 J

Client Sample ID: VMP-10-5-091812
Lab ID\#: 1209540B-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.29	18
Nitrogen	0.29	80
Methane	0.00029	0.000047 J
Carbon Dioxide	0.029	1.6
Helium	0.14	0.081 J

Air Toxics

Client Sample ID: VMP-21-5-091712
 Lab ID\#: 1209540B-01A
 NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100119 \\ 2.83 \\ \hline \end{array}$	Date of Collection: 9/17/12 11:12:00 AM Date of Analysis: 10/1/12 05:18 PM
Compound	$\begin{aligned} & \text { Rpt. Limit } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Amount (\%)
Oxygen	0.28	15
Nitrogen	0.28	80
Carbon Monoxide	0.028	Not Detected
Methane	0.00028	0.000034 J
Carbon Dioxide	0.028	5.5
Ethane	0.0028	Not Detected
Ethene	0.0028	Not Detected
Helium	0.14	0.038 J
$J=$ Estimated value.Container Type: 1 Liter Summa Canister		

Air Toxics
Client Sample ID: VMP-42-10-091712
Lab ID\#: 1209540B-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

	9100120		Date of Collection: $9 / 17 / 12$ 12:08:00 PM
File Name:	2.86	Rpt. Limit Dil. Factor:	$(\%)$

Air Toxics

Client Sample ID: VMP-4-5-091712

Lab ID\#: 1209540B-03A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100121 \\ 3.03 \end{array}$	Date of Collection: 9/17/12 1:00:00 PM Date of Analysis: 10/1/12 06:15 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.30	19
Nitrogen		0.30	80
Carbon Monoxide		0.030	Not Detected
Methane		0.00030	0.00016 J
Carbon Dioxide		0.030	1.1
Ethane		0.0030	Not Detected
Ethene		0.0030	Not Detected
Helium		0.15	0.087 J
$\mathrm{J}=$ Estimated value			
Container Type: 1			

eurofins

Client Sample ID: VMP-11-5-091812
Lab ID\#: 1209540B-04A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Client Sample ID: VMP-13-5-091812

Lab ID\#: 1209540B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: VMP-10-5-091812

Lab ID\#: 1209540B-06A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: Lab Blank
Lab ID\#: 1209540B-07A
NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1209540B-07B
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946.

Container Type: NA - Not Applicable

Air Toxics

Client Sample 1D: LCS
 Lab ID\#: 1209540B-08A
 NATURAL GAS ANALYSIS BY MODIEIED ASTM D-1946

File Name: Dii. Factor:	9100114 Compound	Date of Collection: NA Date of Analysis: $10 / 1 / 12$
Oxygen		\%Recovery
Nitrogen		99
Carbon Monoxide	100	
Methane	100	
Carbon Dioxide	99	
Ethane	100	
Ethene	101	
Helium	98	

Container Type: NA - Not Applicable

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1209540B-08AA
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

| File Name:
 Dil. Factor: | 9100139

 Compound | Date of Collection: NA
 Date of Analysis:
 10/2/12 11:46 AM |
| :--- | ---: | ---: | ---: |
| Oxygen | | \%Recovery |
| Nitrogen | | 100 |
| Carbon Monoxide | 101 | |
| Methane | | 97 |
| Carbon Dioxide | | 99 |
| Ethane | 101 | |
| Ethene | 100 | |
| Helium | | 97 |

Container Type: NA - Not Applicable
(iv) Shell Oil Products Chain Of Custody Record

Uyes

Roxana Soil Vapor Additional - Week 7 - Data Review

Laboratory SDG: 1209541A,B

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/12/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification

VMP-16-5-091712

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?
Yes, the laboratory case narrative indicated that sample VMP-16-5-091712 was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, analytes were detected in the method blank. These issues are addressed further in the appropriate sections below.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
1209541A-02A	TO-15	Carbon disulfide	$0.30 \mathrm{ppbv} / 0.94 \mathrm{~g} / \mathrm{m}^{3}$
$1209541 \mathrm{~A}-02 \mathrm{~A}$	TO-15	Toluene	$0.071 \mathrm{ppbv} / 0.27 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209541A-02A	TO-15	Chlrobenzene	$0.42 \mathrm{ppbv} / 1.9 \mu \mathrm{~g} / \mathrm{m}^{3}$
1209541B-02A	Natural gases	Oxygen	0.011%
1209541B-02A	Natural gases	Nitrogen	0.057%

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes
7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?
MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications
 Were additional qualifications applied?
 No

eurofins

Air Toxics

10/11/2012
Ms, Elizabeth Kunke
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209541A

Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 9/26/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

> Reviewed
> on
> $10 / 11 / 2012$

Air Toxics

WORK ORDER \#: 1209541A

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable Austin URS Corporation P.O. BOX 203970 Austin, TX 78720-1088	
PHONE:	314-743-4179	P.O. \#		
FAX:		PROJECT \#	21562735.10100 Roxana Vapor	
DATE RECEIVED:	09/26/2012	CONTACT:	Additional Kelly Buettner	
DATE COMPLETED:	10/10/2012			
ERACTION \#	NAME	TEST	RECEIPT VAC./PRES.	$\begin{aligned} & \text { FINAL } \\ & \text { PRESSURE } \end{aligned}$
01A	VMP-16-5-091712 ,	Modified TO-1	5/TICs $8.6{ }^{\mathrm{H}} \mathrm{Hg}$	15 psi
02A	Lab Blank	Modified TO-1	5/TICs NA	NA
03A	CCV	Modified TO-1	5/TICs NA	NA
04A	LCS	Modified TO-1	5/TICs NA	NA
04AA	LCSD	Modified TO-1	5/7ICs NA	NA

\qquad
\qquad

DATE: $\quad 10 / 11 / 12$
Technical Director
Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

[^11]

LABORATORY NARRATIVE
 EPA Method TO-15
 URS Corporation
 Workorder\# 1209541A

One 1 Liter Summa Canister sample was received on September 26, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Dilution was performed on sample VMP-16-5-091712 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.
E - Excceds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-091712
Lab ID\#: 1209541A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	56000	45000 J	130000	110000 J
Carbon Disulfide	23000	4000 J	70000	12000 J
$2,2,4$-Trimethylpentane	5600	1600000	26000	7300000
Benzene	5600	3400 J	18000	11000 J
Toluene	5600	1800 J	21000	6600 J
Chlorobenzene	5600	3900 J	26000	18000 J
Butane	23000	24000	54000	57000
Isopentane	23000	500000	67000	1500000

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2-methyl-	$107-83-5$	23%	500000 NJ
Pentane, 3-methyl-	$96-14-0$	47%	570000 NJ
Pentane, 2,4-dimethyl-	$108-08-7$	80%	1300000 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	87%	2400000 NJ
Hexane, 2,5-dimethyl-	$592-13-2$	87%	240000 NJ
Cyclohexane, methyl-	$108-87-2$	43%	360000 NJ
Pentane, 2,2,3-trimethyl-	$564-02-3$	74%	170000 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	87%	1100000 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	1500000 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	72%	220000 NJ

Air Toxics

Client Sample ID: VMP-16-5-091712
Lab ID\#: 1209541A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100119 \\ 11300 \end{array}$	Date of Collection: 9/17/12 9:50:00 AM Date of Analysis: 10/1/12 05:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5600	Not Detected	28000	Not Detected
Freon 114	5600	Not Detected	39000	Not Detected
Chloromethane	56000	Not Detected	120000	Not Detected
Vinyl Chloride	5600	Not Detected	14000	Not Detected
1,3-Butadiene	5600	Not Detected	12000	Not Detected
Bromomethane	56000	Not Detected	220000	Not Detected
Chloroethane	23000	Not Detected	60000	Not Detected
Freon 11	5600	Not Detected	32000	Not Detected
Ethanol	23000	Not Detected	42000	Not Detected
Freon 113	5600	Not Detected	43000	Not Detected
1,1-Dichloroethene	5600	Not Detected	22000	Not Detected
Acetone	56000	45000 J	130000	110000 J
2-Propanol	23000	Not Detected	56000	Not Detected
Carbon Disulfide	23000	4000 J	70000	12000 J
3-Chloropropene	23000	Not Detected	71000	Not Detected
Methylene Chloride	56000	Not Detected	200000	Not Detected
Methyl tert-butyl ether	5600	Not Detected	20000	Not Detected
trans-1,2-Dichloroethene	5600	Not Detected	22000	Not Detected
Hexane	5600	Not Detected	20000	Not Detected
1,1-Dichloroethane	5600	Not Detected	23000	Not Detected
2-Butanone (Methyl Ethyl Ketone)	23000	Not Detected	67000	Not Detected
cis-1,2-Dichloroethene	5600	Not Detected	22000	Not Detected
Tetrahydrofuran	5600	Not Detected	17000	Not Detected
Chloroform	5600	Not Detected	28000	Not Detected
1,1,1-Trichloroethane	5600	Not Detected	31000	Not Detected
Cyclohexane	5600	Not Detected	19000	Not Detected
Carbon Tetrachloride	5600	Not Detected	36000	Not Detected
2,2,4-Trimethyipentane	5600	1600000	26000	7300000
Benzene	5600	3400 J	18000	11000 J
1,2-Dichloroethane	5600	Not Detected	23000	Not Detected
Heptane	5600	Not Detected	23000	Not Detected
Trichloroethene	5600	Not Detected	30000	Not Detected
1,2-Dichloropropane	5600	Not Detected	26000	Not Detected
1,4-Dioxane	23000	Not Detected	81000	Not Detected
Bromodichloromethane	5600	Not Detected	38000	Not Detected
cis-1,3-Dichloropropene	5600	Not Detected	26000	Not Detected
4-Methyl-2-pentanone	5600	Not Detected	23000	Not Detected
Toluene	5600	1800 J	21000	6600 J
trans-1,3-Dichloropropene	5600	Not Detected	26000	Not Detected
1,1,2-Trichloroethane	5600	Not Detected	31000	Not Detected
Tetrachloroethene	5600	Not Detected	38000	Not Detected
2-Hexanone	23000	Not Detected	92000	Not Detected

eurofins

Air Toxics

Client Sample 1D: VMP-16-5-091712
Lab ID\#: 1209541A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

$\mathrm{J}=$ Estimated value.
TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Pentane, 2-methyl-	$107-83-5$	23%	500000 NJ
Pentane, 3-methyl-	$96-14-0$	47%	570000 NJ
Pentane, 2,4-dimethyl-	$108-08-7$	80%	1300000 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	87%	2400000 NJ
Hexane, 2,5-dimethyl-	$592-13-2$	87%	240000 NJ
Cyclohexane, methyl-	$108-87-2$	43%	360000 NJ
Pentane, 2,2,3-trimethyl-	$564-02-3$	74%	170000 NJ
Pentane, 2,3,4-trimethyl-	$565-75-3$	87%	1100000 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	1500000 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	72%	220000 NJ

Air Toxics

Client Sample ID: VMP-16-5-091712
lab ID\#: 1209541A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

Fite Name:	$\mathbf{j 1 0 0 1 1 9}$	Date of Collection: 9/17/12 9:50:00 AM
Dil. Factor:	11300	Date of Analysis: 10/1/12 05:48 PM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	106	$70-130$
1,2-Dichloroethane-d4	98	$70-130$
4-Bromofluorobenzene	88	$70-130$

Client Sample ID: Lab Blank Lab ID\#: 1209541A-02A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100115 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/1/12 03:18 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.30 J	6.2	0.94 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	0.071 J	1.9	$\underbrace{0.27 \mathrm{~J}}$
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Ar Toxics

Client Sample ID: Lab Blank Lab ID\#: 1209541A-02A EPA METHOD TO- 15 GC/MS FULL SCAN				
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100115 \mathrm{a} \\ 1.00 \end{array}$		Collection: Analysis:	03:18 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.42 J	2.3	C 1.9 J
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS
$\left.\begin{array}{lcc}\text { Compound } & \text { CAS Number } & \text { Match Quality }\end{array} \begin{array}{c}\text { Amount } \\ (\text { (ppbv }) \text {) }\end{array}\right]$
Client Sample ID: CCVLab ID\#: 1209541A-03AEPA METHOD TO- 15 GC/MS FULL SCAN

File Name:	$j 100102$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 1 / 12$ 08:19 AM

Compound \%Recovery
Freon 12 89
Freon 114 86
Chloromethane 81
Vinyl Chloride 82
1,3-Butadiene 76
Bromomethane 83
Chloroethane 82
Freon 11 87
Ethanol 84
Freon 113 82
1.1-Dichloroethene 78
Acetone 82
2-Propanol 87
Carbon Disulfide 81
3-Chloropropene 80
Methylene Chloride 87
Methyl fert-butyl ether 84
trans-1,2-Dichloroethene 84
Hexane 81
1,1-Dichloroethane 88
2-Butanone (Methyl Ethyl Ketone) 94
cis-1,2-Dichloroethene 90
Tetrahydrofuran 91
Chloroform 94
1,1,1-Trichloroethane 89
Cyclohexane 90
Carbon Tetrachloride 92
2,2,4-Trimethylpentane 84
Benzene 95
1,2-Dichloroethane 93
Heptane 97
Trichloroethene 99
1,2-Dichloropropane 96
1,4-Dioxane 99
Bromodichloromethane 98
cis-1,3-Dichloropropene 103
4-Methyl-2-pentanone 85
Toluene 99
trans-1,3-Dichloropropene 89
1,1,2-Trichloroethane 96
Tetrachloroethene 90
2-Hexanone 85

eurofins

Air Toxics

Client Sample ID: LCS Lab ID\#: 1209541A-04A		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100104 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/1/12 09:11 AM
Compound		\%Recovery
Freon 12		86
Freon 114		83
Chloromethane		79
Vinyl Chloride		82
1,3-Butadiene		76
Bromomethane		80
Chloroethane		79
Freon 11		86
Ethanol		74
Freon 113		81
1,1-Dichloroethene		80
Acetone		82
2-Propanol		84
Carbon Disulfide		100
3-Chloropropene		89
Methylene Chloride		86
Methyl tert-butyl ether		85
trans-1,2-Dichloroethene		92
Hexane		78
1.1-Dichloroethane		86
2-Butanone (Methyl Ethyl Ketone)		93
cis-1,2-Dichloroethene		90
Tetrahydrofuran		85
Chloroform		93
1,1,1-Trichloroethane		86
Cyclohexane		92
Carbon Tetrachloride		94
2,2,4-Trimethylpentane		81
Benzene		100
1,2-Dichloroethane		93
Heptane		99
Trichloroethene		103
1,2-Dichloropropane		99
1,4-Dioxane		95
Bromodichloromethane		100
Cis-1,3-Dichloropropene		102
4-Methyl-2-pentanone		82
Toluene		101
trans-1,3-Dichloropropene		93
1,1,2-Trichloroethane		103
Tetrachloroethene		92
2-Hexanone		83

eurofins

eurofins

Air Toxics

Client Sample 1D: LCSD Lab ID\#: 1209541A-04AA		
File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100108 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: $10 / 1 / 12$ 11:58 AM
Compound		\%Recovery
Freon 12		92
Freon 114		90
Chloromethane		84
Vinyl Chloride		85
1,3-Butadiene		77
Bromomethane		84
Chloroethane		85
Freon 11		89
Ethanol		77
Freon 113		84
1,1-Dichloroethene		83
Acetone		84
2-Propanol		84
Carbon Disulfide		101
3-Chloropropene		90
Methylene Chloride		86
Methyl tert-butyl ether		87
trans-1,2-Dichloroethene		97
Hexane		79
1,1-Dichloroethane		89
2-Butanone (Methyl Ethyl Ketone)		97
cis-1,2-Dichloroethene		90
Tetrahydrofuran		86
Chloroform		96
1,1,1-Trichloroethane		90
Cyciohexane		93
Carbon Tetrachloride		94
2,2,4-Trimethylpentane		82
Benzene		100
1,2-Dichloroethane		93
Heptane		97
Trichloroethene		102
1,2-Dichloropropane		98
1,4-Dioxane		96
Bromodichloromethane		98
cis-1,3-Dichloropropene		103
4-Methyl-2-pentanone		81
Toluene		100
trans-1,3-Dichloropropene		94
1,1,2-Trichloroethane		103
Tetrachloroethene		92
2-Hexanone		84

eurofins

GUSTODY HAL PATGB
8) M 10

eurofins

10/10/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1209541B

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 9/26/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

$$
\begin{aligned}
& \text { Reviewed } \\
& \text { on } \\
& 10 / 11 / 2012
\end{aligned}
$$

[^12]
WORK ORDER \#: 1209541B

Work Order Summary

ClIENT:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis, MO 63110	BILL TO:	Accounts Payable Austin URS Corporation P.O. BOX 203970 Austin, TX 78720-1088
PHONE:	314-743-4179	P.o. \#	
FAX:		PROJECT \#	21562735.10100 Roxana Vapor
DATE RECEIVED:	09/26/2012	CONTACT:	Additional
DATE COMPLETED:	10/10/2012		

FRACTION井	NAME	TEST	$\begin{aligned} & \text { RECEIP'T } \\ & \text { YAC/PRES. } \end{aligned}$	$\begin{gathered} \text { FINAL } \\ \text { PRESSURE } \end{gathered}$
01A	VMP-16-5-091712	Modified ASTM D-1946	8.6 "Hg	15 psi
02A	Lab Blank	Modified ASTM D-1946	NA	NA
02B	Lab Blank	Modified ASTM D-1946	NA	NA
03A	LCS	Modified ASTM D-1946	NA	NA
03AA	LCSD	Modified ASTM D-1946	NA	NA

DATE: $10 / 10 / 12$

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards
This report shall not be reproduced, except in full, without the writren approval of Eurofins Air Toxics, Ine.
180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563
(916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946
 URS Corporation
 Workorder\# 1209541B

One 1 Liter Summa Canister sample was received on September 26, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol $\%$ for any component.	The standards used by ATL arc blended to a $>1=95 \%$ accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample containcr is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags arc loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections $>5 \mathrm{X}$ s the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-16-5-091712
Lab ID\#: 1209541B-01A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	1.4
Nitrogen	0.28	74
Methane	0.00028	7.9
Carbon Dioxide	0.028	16
Ethane	0.0028	0.00030 J

eurofins

Air Toxics

Client Sample ID: VMP-16-5-091712

Lab ID\#: 1209541B-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9100125 Dil. Factor: 2.83	Date of Collection: 9/17/12 9:50:00 AM Date of Analysis: 10/1/12 08:16 PM	
Compound	Rpt. Limit (\%)	Amount (\%)
Oxygen	0.28	1.4
Nitrogen	0.28	74
Carbon Monoxide	0.028	Not Detected
Methane	0.00028	7.9
Carbon Dioxide	0.028	16
Ethane	0.0028	0.00030 J
Ethene	0.0028	Not Detected
Helium	0.14	Not Detected
$\mathrm{J}=$ Estimated value.		
Container Type: 1 Liter Summa Canister		

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: 1209541B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Air Toxics

Client Sample ID: Lab Blank
 Lab ID\#: $\mathbf{1 2 0 9 5 4 1 B - 0 2 B}$

NATURAL GAS ANALYSIS BY MODIFLED ASTM D-1946

Container Type: NA - Not Applicable

Client Sample 1D: LCS
 Lab ID\#: 1209541B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9100114	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 1 / 1201: 14$ PM

Compound \%Recovery
Oxygen 99
Nitrogen 100
Carbon Monoxide 100
Methane 99
Carbon Dioxide 100
Ethane 101
Ethene 98
Helium 100
Container Type: NA - Not Applicable

eurofins

Client Sample ID: LCSD
 Lab ID\#: 1209541B-03AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	 Dil. Factor:	Date of Collection: NA Date of Analysis: 10/2/12 11:46 AM
Compound		
Oxygen		\%Recovery
Nitrogen		100
Carbon Monoxide		101
Methane		97
Carbon Dioxide		99
Ethane	101	
Ethene	100	
Helium		97

Container Type: NA - Not Applicable

Shell Oil Products Chain Of Custody Record
Uss

Roxana Soil Vapor Additional - Week 8 - Data Review

Laboratory SDG: 1210008A,BR1

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Steve Gragert
Date Reviewed: 10/15/2012

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Sample Identification	Sample Identification
VMP-21-5-092712	VMP-42-10-092712
VMP-42-10-092712-Dup	VMP-16-5-092712
VMP-4-5-092712	VMP-11-5-092812
VMP-11-5-092812-Dup	VMP-13-5-092812
VMP-10-5-092812	VMP-10-5-092812-Dup

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?
Yes

2.0 Laboratory Case Narrative \Cooler Receipt Form
 Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative, analytes were detected in the method blanks. These issues are addressed further in the appropriate sections below. Additionally, the laboratory report was revised on October 23,2012 to correct a laboratory error in the original ASTM D-1946 analysis of sample VMP-21-5-092712.

No problems were indicated in the cooler receipt form.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?
Yes

4.0 Blank Contamination

Were any analytes detected in the Blanks?
Yes

Blank ID	Parameter	Analyte	Concentration Amount
$1210008 \mathrm{~A}-11 \mathrm{~A}$	TO-15	Methylene chloride	$0.094 \mathrm{ppbv} / 0.33 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	1,1-Dichloroethane	$0.070 \mathrm{ppbv} / 0.28 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	1,2-Dichloroethane	$0.089 \mathrm{ppbv} / 0.36 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	cis-1,3-Dichloropropene	$0.11 \mathrm{ppbv} / 0.49 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	trans-1,3-Dichloropropene	$0.14 \mathrm{ppbv} / 0.62 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	Chlorobenzene	$0.52 \mathrm{ppbv} / 2.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
$1210008 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{TO}-15$	$1,1,2,2$-Tetrachloroethane	$0.071 \mathrm{ppbv} / 0.49 \mu \mathrm{~g} / \mathrm{m}^{3}$

Blank ID	Parameter	Analyte	Concentration/ Amount
1210008A-11A	TO-15	Propylbenzene	$0.10 \mathrm{ppbv} / 0.50 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,3,5-Trimethylbenzene	$0.084 \mathrm{ppbv} / 0.41 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,2,4-Trimethylbenzene	$0.094 \mathrm{ppbv} / 0.46 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,3-Dichlorobenzene	$0.25 \mathrm{ppbv} / 1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,4-Dichlorobenzene	$0.28 \mathrm{ppbv} / 1.7 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	alpha-Chlorotoluene	$0.091 \mathrm{ppbv} / 0.47 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,2-Dichlorobenzene	$0.20 \mathrm{ppbv} / 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11A	TO-15	1,2,4-Trichlorobenzene	$0.58 \mathrm{ppbv} / 4.3 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Bromomethane	$0.13 \mathrm{ppbv} / 0.52 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Carbon disulfide	$0.32 \mathrm{ppbv} / 1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Methylene chloride	$0.11 \mathrm{ppbv} / 0.39 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Chloroform	$0.089 \mathrm{ppbv} / 0.43 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,2-Dichloroethane	$0.074 \mathrm{ppbv} / 0.30 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	trans-1,3-Dichloropropene	$0.14 \mathrm{ppbv} / 0.63 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Chlorobenzene	$0.48 \mathrm{ppbv} / 2.2 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,1,2,2-Tetrachloroethane	$0.078 \mathrm{ppbv} / 0.54 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	Propylbenzene	$0.12 \mathrm{ppbv} / 0.60 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,3,5-Trimethylbenzene	$0.12 \mathrm{ppbv} / 0.58 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,2,4-Trimethylbenzene	$0.15 \mathrm{ppbv} / 0.76 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,3-Dichlorobenzene	$0.26 \mathrm{ppbv} / 1.6 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,4-Dichlorobenzene	$0.30 \mathrm{ppbv} / 1.8 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	alpha-Chlorotoluene	$0.13 \mathrm{ppbv} / 0.67 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,2-Dichlorobenzene	$0.23 \mathrm{ppbv} / 1.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008A-11B	TO-15	1,2,4-Trichlorobenzene	$0.72 \mathrm{ppbv} / 5.3 \mu \mathrm{~g} / \mathrm{m}^{3}$
1210008B-11A	Natural gases	Oxygen	0.018\%
1210008B-11A	Natural gases	Nitrogen	0.090\%

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-21-5-092712	TO-15	Chlorobenzene	-	\mathbf{U}
VMP-21-5-092712	TO-15	$1,3,5-$ Trimethylbenzene	-	\mathbf{U}
VMP-21-5-092712	TO-15	$1,2,4-$ Trimethylbenzene	-	\mathbf{U}
VMP-21-5-092712	TO-15	1,3-Dichlorobenzene	-	\mathbf{U}
VMP-21-5-092712	TO-15	1,4-Dichlorobenzene	-	U
VMP-21-5-092712	TO-15	alpha-Chlorotoluene	-	U
VMP-21-5-092712	TO-15	1,2-Dichlorobenzene	-	\mathbf{U}
VMP-42-10-092712	TO-15	Methylene chloride	-	\mathbf{U}
VMP-42-10-09271	TO-15	Chlorobenzene	$\mathbf{7 . 0}$	\mathbf{U}
VMP-42-10-09271	TO-15	Propylbenzene	-	\mathbf{U}

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-42-10-09271	TO-15	1,3,5- Trimethylbenzene	-	U
VMP-42-10-09271	TO-15	1,2,4- Trimethylbenzene	-	U
VMP-42-10-09271	TO-15	1,3-Dichlorobenzene	-	U
VMP-42-10-09271	TO-15	1,4-Dichlorobenzene	-	U
VMP-42-10-09271	TO-15	1,2-Dichlorobenzene	-	U
VMP-42-10-092712-Dup	TO-15	Methylene chloride	-	U
VMP-42-10-092712-Dup	TO-15	Chlorobenzene	-	U
VMP-42-10-092712-Dup	TO-15	$\begin{gathered} \text { 1,2,4- } \\ \text { Trimethylbenzene } \\ \hline \end{gathered}$	-	U
VMP-42-10-092712-Dup	TO-15	1,4-Dichlorobenzene	-	U
VMP-16-5-092712	TO-15	Chlorobenzene	6.3	U
VMP-16-5-092712	TO-15	1,4-Dichlorobenzene	-	U
VMP-4-5-092712	TO-15	Methylene chloride	-	U
VMP-4-5-092712	TO-15	Chlorobenzene	-	U
VMP-4-5-092712	TO-15	1,2,4- Trimethylbenzene	-	U
VMP-4-5-092712	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-092812	TO-15	Chlorobenzene	-	U
VMP-11-5-092812	TO-15	1,4-Dichlorobenzene	-	U
VMP-11-5-092812-Dup	TO-15	Chlorobenzene	-	U
VMP-13-5-092812	TO-15	1,1,2,2- Tetrachloroethane	-	U
VMP-13-5-092812	TO-15	Propylbenzene	-	U
VMP-13-5-092812	TO-15	$\begin{gathered} 1,3,5- \\ \text { Trimethylbenzene } \\ \hline \end{gathered}$	-	U
VMP-13-5-092812	TO-15	1,2,4- Trimethylbenzene	-	U
VMP-13-5-092812	TO-15	$\begin{gathered} 1,2,4- \\ \text { Trichlorobenzene } \\ \hline \end{gathered}$	-	U
VMP-10-5-092812	TO-15	Carbon disulfide	-	U
VMP-10-5-092812	TO-15	Methylene chloride	-	U
VMP-10-5-092812	TO-15	Chloroform	-	U
VMP-10-5-092812	TO-15	trans-1,3- Dichloropropene	-	U
VMP-10-5-092812	TO-15	Chlorobenzene	8.1	U
VMP-10-5-092812	TO-15	$\begin{gathered} \hline 1,1,2,2- \\ \text { Tetrachloroethane } \\ \hline \end{gathered}$	-	U
VMP-10-5-092812	TO-15	Propylbenzene	-	U
VMP-10-5-092812	TO-15	$\begin{gathered} \hline 1,3,5- \\ \text { Trimethylbenzene } \end{gathered}$	-	U
VMP-10-5-092812	TO-15	1,2,4- Trimethylbenzene	-	U
VMP-10-5-092812	TO-15	1,3-Dichlorobenzene	-	U
VMP-10-5-092812	TO-15	1,4-Dichlorobenzene	-	U

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
VMP-10-5-092812	TO-15	alpha-Chlorotoluene	-	U
VMP-10-5-092812	TO-15	1,2-Dichlorobenzene	-	U
VMP-10-5-092812	TO-15	1,2,4- Trichlorobenzene	-	U
VMP-10-5-092812-Dup	TO-15	Carbon disulfide	-	U
VMP-10-5-092812-Dup	TO-15	Chloroform	-	U
VMP-10-5-092812-Dup	TO-15	trans-1,3Dichloropropene	-	U
VMP-10-5-092812-Dup	TO-15	Chlorobenzene	7.8	U
VMP-10-5-092812-Dup	TO-15	Propylbenzene	-	U
VMP-10-5-092812-Dup	TO-15	1,2,4- Trimethylbenzene	-	U
VMP-10-5-092812-Dup	TO-15	1,3-Dichlorobenzene	-	U
VMP-10-5-092812-Dup	TO-15	1,4-Dichlorobenzene	-	U
VMP-10-5-092812-Dup	TO-15	alpha-Chlorotoluene	-	U
VMP-10-5-092812-Dup	TO-15	1,2-Dichlorobenzene	-	U
VMP-10-5-092812-Dup	TO-15	$\overline{1,2,4-}$ Trichlorobenzene	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?
Yes; LCS recoveries for non-standard compounds, ethyl acetate and vinyl bromide, could not be evaluated due to the absence of these compounds in the spiking mixture. CCV recoveries for ethyl acetate and vinyl bromide were within acceptance criteria and did not require qualification. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?
Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries
 Were MS/MSD samples analyzed as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results
 Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
Yes

Field ID	Field Duplicate ID
VMP-42-10-092712	VMP-42-10-092712-Dup
VMP-11-5-092812	VMP-11-5-092812-Dup
VMP-10-5-092812	VMP-10-5-092812-Dup

Were field duplicate sample RPDs within evaluation criteria?
Yes

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?
Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?
No

Air Tokes

10/15/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110
Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1210008A
Dear Ms. Elizabeth Kunkel
The following report includes the data for the above referenced project for samples) received on 10/1/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15/TICs are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

$$
\begin{gathered}
\text { Reviewed } \\
\text { on } \\
10 / 15 / 2012
\end{gathered}
$$

[^13]Ar Toxics

WORK ORDER \#: 1210008A

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel	BILL TO:	Accounts Payable Austin
	URS Corporation		
	URS Corporation		
	Suit 300		P.O. BOX 203970

CERTIFIED BY:

DATE: $10 / 15 / 12$

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA 300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Lid. certifies that the test results contained in this report meet all requirements of the NELAC standards

Page 2 of 56

LABORATORY NARRATIVE
 EPA Method TO-15 URS Corporation Workorder\# 1210008A

Ten 1 Liter Summa Canister samples were received on October 01, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Chlorobenzene was detected in the laboratory blank analyzed on 10/8/12 at less than 5X the reporting limit. Associatcd samples that contained Chlorobenzene were flagged as indicated.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:
B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J-Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the reporting limit.
UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
N - The identification is based on presumptive evidence.
File extensions may have been used on the data analysis sheets and indicates as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-092712

Lab ID\#: 1210008A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.47 J	6.8	2.3 J
Freon 11	1.4	0.28 J	7.8	1.6 J
Ethanot	5.5	6.8	10	13
Acetone	14	11 J	33	25 J
2-Propanol	5.5	20	14	49
Methylene Chloride	14	0.85 J	48	3.0 J
Hexane	1.4	0.15 J	4.9	0.52 J
2-Butanone (Methyl Ethyl Ketone)	5.5	5.3 J	16	16 J
Tetrahydrofuran	1.4	0.78 J	4.1	2.3 J
2,2,4-Trimethylpentane	1.4	0.33 J	6.4	1.5 J
Benzene	1.4	1.3 J	4.4	4.1 J
1,4-Dioxane	5.5	1.4 J	20	4.9 J
4-Methyl-2-pentanone	1.4	32	5.6	130
Toluene	1.4	1.4	5.2	5.4
Tetrachloroethene	1.4	0.65 J	9.4	4.4 J
Chlorobenzene	1.4	7.3. Ji	6.4	5.9 J U
Ethyl Benzene	1.4	0.41 J	6.0	1.8 J
m,p-Xylene	1.4	0.79 J	6.0	3.4 J
o-Xylene	1.4	0.31 J	6.0	1.3 J
Styrene	1.4	0.30 J	5.9	1.3 J
Cumene	1.4	6.6	6.8	32
Propylbenzene	1.4	0.24 J	6.8	1.2 J
4-Ethyltoluene	1.4	0.46 J	6.8	2.3 J
1,3,5-Trimethylbenzene	1.4	-0.27 J U	6.8	- 3.3 JU
1,2,4-Trimethylbenzene	1.4	$-0.43 \mathrm{Ju}$	6.8	$-27 \mathrm{Ju}$
1,3-Dichlorobenzene	1.4	-0.55 J u	8.3	$3: 3 \mathrm{~J} \mathrm{u}$
1,4-Dichlorobenzene	1.4	-0.58 Ju	8.3	$-3.5 \mathrm{Ju}$
alpha-Chlorotoluene	1.4	0.40 JU	7.1	coosu
1,2-Dichlorobenzene	1.4	0.42 J U	8.3	2.6 J it
Propylene	5.5	1.8 J	9.5	3.1 J

TENTATIVELY IDENTIFIED COMPOUNDS

eurofins

At Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-21-5-092712
Lab ID\#: 1210008A-01A

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Hexanal	$66-25-1$	42%	18 NJ
4-Nonene	$2198-23-4$	72%	31 NJ
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	50%	16 NJ
Propanal, 2-hydroxy-2-methyl-	$20818-81-9$	16%	15 NJ
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	51 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	83%	16 NJ
Nonane, 2-methyl-5-propyl-	$31081-17-1$	72%	57 NJ
Decane, 2,6,6-trimethyl-	$62108-24-1$	72%	16 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	72%	83 NJ
Undecane, 2,8-dimethyl-	$17301-25-6$	78%	34 NJ

Client Sample ID: VMP-42-10-092712
Lab ID\#: 1210008A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.52 J	6.6	2.6 J
Ethanol	5.4	3.5 J	10	6.5 J
Acetone	13	11 J	32	26 J
2-Propanol	5.4	2.3 J	13	5.6 J
Carbon Disulfide	5.4	0.75 J	17	2.3 J
Methylene Chioride	13	-0.40 Ju	47	$4.6 . \mathrm{J}$ u
Hexane	1.3	0.27 J	4.7	0.97 J
2-Butanone (Methyl Ethyl Ketone)	5.4	3.4 J	16	10 J
Chloroform	1.3	1.0 J	6.6	5.0 J
2,2,4-Trimethylpentane	1.3	0.20 J	6.3	0.94 J
Benzene	1.3	2.4	4.3	7.6
4-Methyl-2-pentanone	1.3	17	5.5	71
Toluene	1.3	1.1 J	5.1	4.1 J
Tetrachloroethene	1.3 - 5	0.44 J	9.1	3.0 J
Chlorobenzene	$4.3{ }^{1.5}$	4.58 Bu	6.2 .7 .0	$7.0-\mathrm{BU}$
Ethyl Benzene	1.3	0.27 J	5.8	1.2 J
m,p-Xylene	1.3	0.78 J	5.8	3.4 J

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-092712

Lab ID\#: 1210008A-02A

o-Xylene	1.3	0.35 J	5.8	1.5 J
Cumene	1.3	7.3	6.6	36
Propylbenzene	1.3	- 0.24 JU	6.6	4.2U
1,3,5-Trimethylbenzene	1.3	0.25 Ju	6.6	1-2 J u
1,2,4-Trimethylbenzene	1.3	0.43 JU	6.6	$2+4 J U$
1,3-Dichlorobenzene	1.3	0.36 J u	8.1	- -4 J U
1,4-Dichlorobenzene	1.3	- $0.43 \cdot \mathrm{~J} \mathrm{U}$	8.1	$2-6 \mathrm{Ju}$
1,2-Dichlorobenzene	1.3	-0.36JU	8.1	$z-2-J u$

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
4-Nonene	$2198-23-4$	74%	17 NJ
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	15 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	56 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	83%	17 NJ
Hexane, 3,3-dimethyl-	$563-16-6$	64%	62 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	53%	14 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	72%	100 NJ
Hexane, 1-(hexyloxy)-5-methyl-	$74421-19-5$	50%	50 NJ
Cycloheptane, methoxy-	$42604-04-6$	28%	15 NJ
Ethanone, 1-phenyl-	$98-86-2$	94%	22 NJ

Client Sample 1D: VMP-42-10-092712-Dup
Lab ID\#: 1210008A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $($ ug $/ \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.3	0.54 J	6.4	2.7 J
Freon 11	1.3	0.22 J	7.2	1.2 J
Ethanol	5.2	4.0 J	9.7	7.5 J
Acetone	13	10 J	31	24 J
2-Propanol	5.2	1.4 J	13	3.6 J
Carbon Disulfide	5.2	0.76 J	16	2.4 J
Methylene Chloride	13	9.46 J U	45	$4.6-\mathrm{J}$ u
2-Butanone (Methyl Ethyl Ketone)	5.2	1.8 J	15	5.4 J
Chloroform	1.3	0.89 J	6.3	4.4 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-42-10-092712-Dup

Lab ID\#: 1210008A-03A

Benzene	1.3	0.52 J	4.1	1.7 J
Heptane	1.3	0.18 J	5.3	0.73 J
4-Methyl-2-pentanone	1.3	15	5.3	61
Toluene	1.3	0.91 J	4.9	3.4 J
Chlorobenzene	1.3	-4.4 J U	5.9	$5.4-\mathrm{J} \mathrm{u}$
m,p-Xylene	1.3	0.66 J	5.6	2.9 J
Cumene	1.3	5.8	6.3	28
1,2,4-Trimethylbenzene	1.3	0.30 J U	6.3	4.5 J U
1,4-Dichlorobenzene	1.3	9.25 J U	7.8	4.5 J u

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
4-Nonene	$2198-23-4$	80%	15 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	72%	10 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	42 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	83%	13 NJ
Nonane, 3-methyl-5-propyl-	$31081-18-2$	72%	48 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	72%	11 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	59%	80 NJ
Undecane, 2,8-dimethyl-	$17301-25-6$	64%	30 NJ
Propanoic acid, 2-methyl-, 2-(hydroxymet	$74367-32-1$	9.0%	12 NJ
Ethanone, 1-phenyl-	$98-86-2$	91%	16 NJ

Client Sample ID: VMP-16-5-092712
Lab ID\#: 1210008A-04A

Compound	Rpt. Limit $(\mathbf{p p b v})$	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.3	0.62 J	6.6	3.1 J
Ethanol	5.4	7.6	10	14
Acetone	13	48	32	110
2-Propano!	5.4	2.7 J	13	6.7 J
Carbon Disulfide	5.4	0.90 J	17	2.8 J
Methylene Chloride	13	0.65 J	47	2.2 J
2-Butanone (Methyl Ethyl Ketone)	5.4	12	16	35
Chloroform	1.3	1.6	6.6	7.9

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-16-5-092712				
Lab ID\#: 1210008A-04A				
2,2,4-Trimethylpentane	1.3	480	6.3	2200
Benzene	1.3	2.1	4.3	6.8
4-Methyl-2-pentanone	1.3	25	5.5	100
Toluene	1.3	1.7	5.1	6.5
Tetrachloroethene	1.3	0.37 J	9.1	2.5 J
Chlorobenzene	$4.3{ }^{1.4}$. 4.4 B U	$-0.26 .3$	-6.3-B u
Ethyl Benzene	1.3	0.94 J	5.8	4.0 J
m, p-Xylene	1.3	1.0 J	5.8	4.4 J
o-Xylene	1.3	0.32 J	5.8	1.4 J
Cumene	1.3	5.8	6.6	28
Propylbenzene	1.3	0.95 J	6.6	4.6 J
1,3,5-Trimethylbenzene	1.3	0.44 J	6.6	2.2 J
1,2,4-Trimethylbenzene	1.3	0.85 J	6.6	4.2 J
1,4-Dichlorobenzene	1.3	0.20 J u	8.1	4.2 Ju
isopentane	5.4	9.3	16	28
Propylene	5.4	3.8 J	9.2	6.5 J

TENTATIVELY IDENTIFIED COMPOUNDS

Amount

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,4-dimethyl-	$108-08-7$	86%	170 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	56%	180 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	43%	500 NJ
Unknown	NA	NA	130 J
Pentane, 2,3,4-trimethyl-	$565-75-3$	90%	600 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	1700 NJ
Hexane, 3,4-dimethyl-	$583-48-2$	64%	77 NJ
Hexane, 2,2,4-trimethyl-	$16747-26-5$	78%	170 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	56%	63 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	72%	73 NJ

Client Sample ID: VMP-4-5-092712
Lab ID\#: 1210008A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathrm{ug} / \mathrm{m} 3)$	Amount $(\mathrm{ug} / \mathrm{m} 3)$
Freon 12	1.3	0.56 J	6.2	2.7 J

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample 1D: VMP-4-5-092712				
Lab ID\#: 1210008A-05A				
Freon 11	1.3	0.35 J	7.1	2.0 J
Ethanol	5.0	6.5	9.5	12
Acetone	13	16	30	38
2-Propanol	5.0	2.7 J	12	6.7 J
Carbon Disulfide	5.0	1.2 J	16	3.7 J
Methylene Chloride	13	0.30 JU	44	+.3 J u
2-Butanone (Methyl Ethyl Ketone)	5.0	5.0	15	15
Chloroform	1.3	0.18 J	6.2	0.90 J
Cyclohexane	1.3	0.20 J	4.3	0.70 J
2,2,4-Trimethylpentane	1.3	4.1	5.9	19
Benzene	1.3	3.4	4.0	11
Heptane	1.3	0.23 J	5.2	0.96 J
4-Methyl-2-pentanone	1.3	19	5.2	76
Toluene	1.3	0.94 J	4.7	3.5 J
Chlorobenzene	1.3	4.2 Ju	5.8	5.0 J U
Ethyl Benzene	1.3	0.24 J	5.5	1.0 J
m,p-Xylene	1.3	0.56 J	5.5	2.4 J
Cumene	1.3	3.8	6.2	18
1,2,4-Trimethylbenzene	1.3	$\theta .24 \mathrm{Ju}$	6.2	4.2 Ju
1,4-Dichlorobenzene	1.3	$\theta .20 \mathrm{~J} \mathrm{u}$	7.6	$4.2{ }^{-J}$ u
Propylene	5.0	1.8 J	8.7	3.2 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 2,3,3-trimethyl-	$560-21-4$	72%	11 NJ
1-Hexene, 5-methyl-	$3524-73-0$	55%	12 NJ
Cyclopropane, 1-ethyl-2-heptyl-	$74663-86-8$	59%	20 NJ
2-Decene, 8-methyl-, (Z)-	$74630-25-4$	64%	12 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	64%	15 NJ
Decane, 2,6,7-trimethyl-	$62108-25-2$	53%	9.2 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	27 NJ
Eicosane, 10-methyl-	$54833-23-7$	64%	34 NJ
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	64%	59 NJ
Decane, 3,4 -dimethyl-	$17312-45-7$	53%	21 NJ

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Ciient Sample ID: VMP-11-5-092812
Lab ID\#: 1210008A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.56 J	7.3	2.8 J
Freon 11	1.5	0.33 J	8.3	1.8 J
Ethanol	5.9	1.9 J	11	3.5 J
Acetone	15	6.4 J	35	15 J
2-Propanol	5.9	1.1 J	14	2.6 J
Carbon Disulfide	5.9	1.0 J	18	3.2 J
Methylene Chloride	15	0.50 J	51	1.7 J
Hexane	1.5	0.45 J	5.2	1.6 J
Tetrahydrofuran	1.5	0.61 J	4.4	1.8 J
Chloroform	1.5	0.20 J	7.2	0.97 J
2,2,4-Trimethylpentane	1.5	2.6	6.9	12
Benzene	1.5	3.5	4.7	11
Chlorobenzene	1.5	4.2 JU	6.8	-5.7 J u
1,4-Dichlorobenzene	1.5	-0.ze JU	8.9	.7.5. Ju
Propylene	5.9	1.5 J	10	2.6 J

Client Sample ID: VMP-11-5-092812-Dup
Lab ID\#: 1210008A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathbf{u g} / \mathrm{m} 3)$	Amount $(\mathbf{u g} / \mathrm{m} 3)$
Freon 12	1.4	0.59 J	7.1	2.9 J
Ethanol	5.8	2.1 J	11	4.0 J
Acetone	14	7.1 J	34	17 J
2-Propanol	5.8	1.1 J	14	2.7 J
Carbon Disulfide	5.8	0.98 J	18	3.1 J
Methylene Chloride	14	0.70 J	50	2.4 J
2-Butanone (Methyl Ethyl Ketone)	5.8	1.6 J	17	4.7 J
2,2,4-Trimethylpentane	1.4	0.48 J	6.8	2.3 J
Benzene	1.4	4.4	4.6	14
Chlorobenzene	1.4	$4.3-\mathrm{J} \mathrm{U}$	6.6	-6.1 J ut
Isopentane	5.8	2.2 J	17	6.4 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-092812

Lab ID\#: 1210008A-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.50 J	7.0	2.5 J
Chloromethane	14	6.2 J	29	13 J
Freon 11	1.4	0.30 J	7.9	1.7 J
Ethanol	5.6	3.6 J	11	6.7 J
Acetone	14	33	33	78
2-Propanol	5.6	1.2 J	14	2.9 J
Carbon Disulfide	5.6	3.0 J	18	9.3 J
Methylene Chloride	14	0.94 J	49	3.3 J
trans-1,2-Dichloroethene	1.4	0.64 J	5.6	2.6 J
Hexane	1.4	0.86 J	5.0	3.0 J
1,1-Dichloroethane	1.4	0.20 J	5.7	0.80 J
2-Butanone (Methyl Ethyl Ketone)	5.6	7.6	17	22
cis-1,2-Dichloroethene	1.4	0.57 J	5.6	2.2 J
Chloroform	1.4	0.89 J	6.9	4.4 J
Cyclohexane	1.4	0.49 J	4.8	1.7 J
2,2,4-Trimethylpentane	1.4	4.5	6.6	21
Benzene	1.4	7.6	4.5	24
Heptane	1.4	1.0 J	5.8	4.3 J
Trichloroethene	1.4	1.3 J	7.6	6.9 J
cis-1,3-Dichloropropene	1.4	1.0 J	6.4	4.5 J
4-Methyl-2-pentanone	1.4	0.66 J	5.8	2.7 J
Toluene	1.4	0.62 J	5.3	2.3 J
trans-1,3-Dichloropropene	1.4	1.5	6.4	6.7
1,1,2-Trichloroethane	1.4	0.48 J	7.7	2.6 J
Tetrachloroethene	1.4	0.94 J	9.6	6.4 J
1,2-Dibromoethane (EDB)	1.4	1.3 J	11	10 J
Chlorobenzene	1.4	3.8	6.5	17
Ethyl Benzene	1.4	0.40 J	6.1	1.7 J
m,p-Xylene	1.4	0.50 J	6.1	2.2 J
o-Xylene	1.4	0.28 J	6.1	1.2 J
Styrene	1.4	0.63 J	6.0	2.7 J
Bromoform	1.4	0.39 J	14	4.0 J
Cumene	1.4	0.24 J	6.9	1.2 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VMP-13-5-092812				
Lab 1D\#: 1210008A-08A				
1,1,2,2-Tetrachloroethane	1.4	0.30 J U	9.7	2.4. ${ }^{\text {a }}$
Propylbenzene	1.4	0.40 Ju	6.9	2.35 J
4-Ethyltoluene	1.4	0.63 J	6.9	3.1 J
1,3,5-Trimethylbenzene	1.4	0.46 JU	6.9	-2.35 u
1,2,4-Trimethylbenzene	1.4	0.82 J U	6.9	9.05 u
1,3-Dichlorobenzene	1.4	1.7	8.5	10
1,4-Dichlorobenzene	1.4	1.9	8.5	12
alpha-Chlorotoluene	1.4	0.93 J	7.3	4.8 J
1,2-Dichlorobenzene	1.4	1.3 J	8.5	7.6 J
1,2,4-Trichlorobenzene	5.6	3.4 JU	42	-25-J U
Isopentane	5.6	1.7 J	17	5.0 J
Propylene	5.6	4.0 J	9.7	6.9 J

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-	$115-11-7$	46%	19 NJ
Acetaldehyde	$75-07-0$	3.0%	12 NJ
Hexane, 2,3,4-trimethyl-	$921-47-1$	64%	10 NJ

Client Sample ID: VMP-10-5-092812
Lab ID\#: 1210008A-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.58 J	7.7	2.8 J
Freon 11	1.6	0.28 J	8.7	1.6 J
Ethanol	6.2	2.7 J	12	5.0 J
Acetone	16	17	37	41
2-Propanol	6.2	1.8 J	15	4.4 J
Carbon Disulfide	6.2	7.2 JU	19	$-3.6 \mathrm{~J} u$
Methylene Chloride	16	0.46 Ju	54	-1.6JU
trans-1,2-Dichloroethene	1.6	0.54 J	6.2	2.2 J
Hexane	1.6	0.40 J	5.5	1.4 J
2-Butanone (Methyl Ethyl Ketone)	6.2	3.9 J	18	12 J
Chloroform	1.6	-0.36J U	7.6	4.7 JU
1,1,1-Trichloroethane	1.6	0.15 J	8.5	0.82 J

eurofins

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample 1D: VMP-10-5-092812				
Lab ID\#: 1210008A-09A				
Benzene	1.6	0.35 J	5.0	1.1 J
Heptane	1.6	0.52 J	6.4	2.1 J
Bromodichloromethane	1.6	0.24 J	10	1.6 J
Toluene	1.6	0.28 J	5.8	1.15
trans-1,3-Dichloropropene	1.6	0.58 J u	7.0	$2.0 . \mathrm{Ju}$
Tetrachloroethene	1.6	0.50 J	10	3.4 J
Chlorobenzene	7.6. 1.8	7.80	.7 .28 .1	$8.4 U$
m,p-Xylene	1.6	0.31 J	6.8	1.3 J
1,1,2,2-Tetrachloroethane	1.6	0.22 J U	11	4.5 .5 Ju
Propylbenzene	1.6	-.37 J U	7.6	$4.8-\mathrm{Ju}$
4-Ethyltoluene	1.6	0.41 J	7.6	2.0 J
1,3,5-Trimethylbenzene	1.6	-0.28 J U	7.6	$4.4 . \mathrm{J} \mathrm{U}$
1,2,4-Trimethylbenzene	1.6	0.49 Jul	7.6	$-2.4 . \mathrm{JU}$
1,3-Dichlorobenzene	1.6	0.94 J 4	9.3	5.5 Ju
1,4-Dichlorobenzene	1.6	92J u	9.3	7.5-J u
alpha-Chlorotoluene	1.6	0.48 JU	8.0	2.5 JU
1,2-Dichlorobenzene	1.6	0.70 JU	9.3	A. 2 Ju
1,2,4-Trichlorobenzene	6.2	-2.8JU	46	$\cdots 2+J$ U
Isopentane	6.2	1.6 J	18	4.6 J
Propylene	6.2	1.7 J	11	2.9 J

Client Sample 1D: VMP-10-5-092812-Dup
Lab ID\#: 1210008A-10A

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit $(\mathbf{u g} / \mathrm{m} 3)$	Amount (ug/m3)
Freon 12	1.5	0.45 J	7.5	2.2 J
Freon 11	1.5	0.24 J	8.5	1.4 J
Ethanol	6.1	2.1 J	11	4.0 J
Acetone	15	19	36	45
2-Propanol	6.1	2.4 J	15	5.9 J
Carbon Disulfide	6.1	$4.0 . \mathrm{J} \mathrm{U}$	19	-3.3 J U
Methylene Chloride	15	0.63 J	53	2.2 J
Hexane	1.5	0.54 J	5.3	1.9 J
2-Butanone (Methyl Ethyl Ketone)	6.1	3.0 J	18	9.0 J
Chloroform	1.5	0.22 J U	7.4	-4.0 J U

eurofins

An Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample 1D: VMP-10-5-092812-Dup				
Lab ID\#: 1210008A-10A				
Benzene	1.5	1.3 J	4.8	4.3 J
Heptane	1.5	0.69 J	6.2	2.8 J
Trichloroethene	1.5	0.36 J	8.1	1.9 J
Toluene	1.5	0.25 J	5.7	0.96 J
trans-1,3-Dichloropropene	1.5	0.67 JU	6.9	$\cdots 3.0 \mathrm{~J}$ il
Tetrachloroethene	1.5	0.44 J	10	3.0 J
Chlorobenzene	-4.5 1-7	-1.7U	$7.0-7.8$	7.0-U
Propylbenzene	1.5	$0 \cdot 30 \mathrm{~J} \mathrm{id}$	7.4	$-4.4 \mathrm{~J} \mathrm{u}$
1,2,4-Trimethylbenzene	1.5	0.34 JU	7.4	-4.5J U
1,3-Dichlorobenzene	1.5	0.68 Ju	9.1	4.4 J U
1,4-Dichlorobenzene	1.5	-90.JU	9.1	$5.4-\mathrm{J}$ U
alpha-Chlorotoluene	1.5	Q 029 Ju	7.8	4.50
1,2-Dichlorobenzene	1.5	0.52 Ju	9.1	-3-4J U
1,2,4-Trichlorobenzene	6.1	-4.0. U U	45	44-J U
Propylene	6.1	1.6 J	10	2.8 J
TENTATIVELY IDENTIFIED COMPOUNDS				
Compound		CAS Number	Match Quality	Amount (ppbv)
1-Propene, 2-methyl-		115-11-7	64\%	9.1 NJ

eurofins

Air Toxics

Client Sample ID: VMP-21-5-092712
Lab IDH: 1210008A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100835 \\ 2.76 \\ \hline \end{array}$	Date of Collection: 9/27/12 11:45:00 AM Date of Analysis: 10/9/12 07:09 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.47 J	6.8	2.3 J
Freon 114	1.4	Not Detected	9.6	Not Detected
Chloromethane	14	Not Detected	28	Not Detected
Vinyl Chloride	1.4	Not Detected	3.5	Not Detected
1,3-Butadiene	1.4	Not Detected	3.0	Not Detected
Bromomethane	14	Not Detected	54	Not Detected
Chloroethane	5.5	Not Detected	14	Not Detected
Freon 11	1.4	0.28 J	7.8	1.6 J
Ethanol	5.5	6.8	10	13
Freon 113	1.4	Not Detected	10	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Acetone	14	11 J	33	25 J
2-Propanol	5.5	20	14	49
Carbon Disulfide	5.5	Not Detected	17	Not Detected
3-Chloropropene	5.5	Not Detected	17	Not Detected
Methylene Chloride	14	0.85 J	48	3.0 J
Methyl tert-butyl ether	1.4	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Hexane	1.4	0.15 J	4.9	0.52 J
1,1-Dichloroethane	1.4	Not Detected	5.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.5	5.3 J	16	16 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Tetrahydrofuran	1.4	0.78 J	4.1	2.3 J
Chforoform	1.4	Not Detected	6.7	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Cyclohexane	1.4	Not Detected	4.8	Not Detected
Carbon Tetrachloride	1.4	Not Detected	8.7	Not Detected
2,2,4-Trimethylpentane	1.4	0.33 J	6.4	1.5 J
Benzene	1.4	1.3 J	4.4	4.1 J
1,2-Dichloroethane	1.4	Not Detected	5.6	Not Detected
Heptane	1.4	Not Detected	5.6	Not Detected
Trichloroethene	1.4	Not Detected	7.4	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.4	Not Detected
1,4-Dioxane	5.5	1.4 J	20	4.9 J
Bromodichtoromethane	1.4	Not Detected	9.2	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
4-Methyl-2-pentanone	1.4	32	5.6	130
Toluene	1.4	1.4	5.2	5.4
trans-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Tetrachloroethene	1.4	0.65 J	9.4	4.4 J
2-Hexanone	5.5	Not Detected	23	Not Detected

eurofins

Air Toxies

Client Sample ID: VMP-21-5-092712
Lab ID\#: 1210008A-01A
EPA METHOD TO-15 GC/MS FULL SCAN

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
Hexanal	$66-25-1$	42%	18 NJ
4-Nonene	$2198-23-4$	72%	31 NJ
Cyclobutanone, 2,3,3-trimethyl-	$28290-01-9$	50%	16 NJ
Propanal, 2-hydroxy-2-methyl-	$20818-81-9$	16%	15 NJ
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	51 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	\cdots	83%
Nonane, 2-methyl-5-propyl-	$31081-17-1$	72%	16 NJ
Decane, 2,6,6-trimethyl-	$62108-24-1$	72%	57 NJ
Heptane,	$62108-31-0$	72%	16 NJ
4-ethyl-2,2,6,6-tetramethyl-			
Undecane, 2,8-dimethyl-	$17301-25-6$	78%	83 NJ

File Name:	j 100835	Date of Collection: 9/27/12 11:45:00 AM
Dil. Factor:	2.76	
NJ = The identification is based on presumptive evidence; estimated value.		
Container Type: 1 Liter Summa Canister		
		Method
Surrogates	\%Recovery	Limits
Toluene-d8	102	$70-130$
1,2-Dichloroethane-d4	101	$70-130$
4-Bromofluorobenzene	77	$70-130$

Air Toxics

Client Sample ID: VMP-42-10-092712

LabID\#: 1210008A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100836 \\ 2.69 \\ \hline \end{array}$	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: 10/9/12 07:32 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.52 J	6.6	2.6 J
Freon 114	1.3	Not Detected	9.4	Not Detected
Chloromethane	13	Not Detected	28	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	3.0	Not Detected
Bromomethane	13	Not Detected	52	Not Detected
Chloroethane	5.4	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.6	Not Detected
Ethanol	5.4	3.5 J	10	6.5 J
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	13	11 J	32	26 J
2-Propanol	5.4	2.3 J	13	5.6 J
Carbon Disulfide	5.4	0.75 J	17	2.3 J
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	13	0.46 JU	47	4.6 y if
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Hexane	1.3	0.27 J	4.7	0.97 J
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.4	3.4 J	16	10 J
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Tetrahydrofuran	1.3	Not Detected	4.0	Not Detected
Chloroform	1.3	1.0 J	6.6	5.0 J
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Cyclohexane	1.3	Not Detected	4.6	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.5	Not Detected
2,2,4-Trimethylpentane	1.3	0.20 J	6.3	0.94 J
Benzene	1.3	2.4	4.3	7.6
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Heptane	1.3	Not Detected	5.5	Not Detected
Trichloroethene	1.3	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
1,4-Dioxane	5.4	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	17	5.5	71
Toluene	1.3	1.1 J	5.1	4.1 J
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Tetrachloroethene	1.3	0.44 J	9.1	3.0 J
2-Hexanone	5.4	Not Detected	22	Not Detecled

eurofins

Ar Toxics

Client Sample ID: VMP-42-10-092712

Lab ID\#: 1210008A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$j 100836$ 2.69	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: 10/9/12 07:32 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	4.3 1.5	4, 5 B U	-6.2 7.0	7.0 BCl
Ethyl Benzene	1.3	0.27 J	5.8	1.2 J
m,p-Xylene	1.3	0.78 J	5.8	3.4 J
o-Xylene	1.3	0.35 J	5.8	1.5 J
Styrene	1.3	Not Detected	5.7	Not Detected
Bromoform	1.3	Not Detected	14	Not Detected
Cumene	1.3	7.3	6.6	36
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.2	Not Detected
Propylbenzene	1.3	- 0.24 J U	6.6	$4-2 \sim 3$
4-Ethyltoluene	1.3	Not Detected	6.6	Not Detected
1,3,5-Trimethylbenzene	1.3	$-0.25 \mathrm{~J} \mathrm{U}$	6.6	-4.2J U
1,2,4-Trimethylbenzene	1.3	$0 \cdot 43-\mathrm{JU}$	6.6	$-2+5$ d
1,3-Dichlorobenzene	1.3	- $\theta \cdot 36-\mathrm{J}$ U	8.1	2f-J u
1,4-Dichlorobenzene	1.3	- $0.43 \mathrm{~J} u$	8.1	$2.6-J u$
alpha-Chlorotoluene	1.3	Not Detected	7.0	Not Detected
1,2-Dichlorobenzene	1.3	0.36 JU	8.1	$2-2 . J U$
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected
Hexachlorobutadiene	5.4	Not Detected	57	Not Detected
Butane	5.4	Not Detected	13	Not Detected
Isopentane	5.4	Not Detected	16	Not Detected
Ethyl Acetate	5.4	Not Detected	19	Not Detected
Propylene	5.4	Not Detected	9.2	Not Detected
Vinyl Acetate	5.4	Not Detected	19	Not Detected
Vinyl Bromide	5.4	Not Detected	24	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
4-Nonene	$2198-23-4$	74%	17 NJ
Decane, 2,2,8-trimethyl-	$62238-01-1$	64%	15 NJ
Decane, 2,2,4-trimethyl-	$62237-98-3$	64%	56 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	83%	17 NJ
Hexane, 3,3-dimethyl-	$563-16-6$	64%	62 NJ
Hexane, 2,2,5-trimethyl-	$3522-94-9$	53%	14 NJ
Heptane, 2,2-dimethyl-	$1071-26-7$	72%	100 NJ
Hexane, 1-(hexyloxy)-5-methyl-	$74421-19-5$	50%	50 NJ
Cycloheptane, methoxy-	$42604-04-6$	28%	15 NJ
Ethanone, 1-phenyl-	$98-86-2$	94%	22 NJ

Air Toxics

Client Sample 1D: VMP-42-10-092712

Lab 1D\#: 1210008A-02A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100836$	Date of Collection: $9 / 27 / 12$ 12:47:00 PM
Dil. Factor:	2.69	Date of Analysis: $10 / 9 / 12$ 07:32 AM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	104	$70-130$
1,2-Dichloroethane-d4	98	$70-130$
4-Bromofiuorobenzene	81	$70-130$

Air Toxics

Client Sample ID: VMP-42-10-092712-Dup
Lab ID\#: 1210008A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100843 \\ 2.58 \\ \hline \end{array}$	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: 10/9/12 11:51 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.54 J	6.4	2.7 J
Freon 114	1.3	Not Detected	9.0	Not Detected
Chloromethane	13	Not Detected	27	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	13	Not Detected	50	Not Detected
Chloroethane	5.2	Not Detected	14	Not Detected
Freon 11	1.3	0.22 J	7.2	1.2 J
Ethanol	5.2	4.0 J	9.7	7.5 J
Freon 113	1.3	Not Detected	9.9	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	13	10 J	31	24 J
2-Propanol	5.2	1.4 J	13	3.6 J
Carbon Disulfide	5.2	0.76 J	16	2.4 J
3-Chloropropene	5.2	Not Detected	16	Not Detected
Methylene Chloride	13	$0.46-\mathrm{J}$ U	45	-6.JU
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	Not Detected	4.5	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.2	1.8 j	15	5.4 j
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	0.89 J	6.3	4.4 J
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.1	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.0	Not Detected
Benzene	1.3	0.52 J	4.1	1.7 J
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	0.18 J	5.3	0.73 j
Trichloroethene	1.3	Not Detected	6.9	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.0	Not Detected
1,4-Dioxane	5.2	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.6	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	15	5.3	61
Toluene	1.3	0.91 J	4.9	3.4 J
trans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	Not Detected	8.8	Not Detected
2-Hexanone	5.2	Not Detected	21	Not Detected

Air Toxics

Client Sample ID: VMP-42-10-092712-Dup Lab ID\#: 1210008A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100843 \\ 2.58 \\ \hline \end{array}$	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: 10/9/12 11:51 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.9	Not Detected
Chlorobenzene	1.3	-4.4 J U	5.9	-5.4 J U
Ethyl Benzene	1.3	Not Detected	5.6	Not Detected
m,p-Xylene	1.3	0.66 J	5.6	2.9 J
o-Xylene	1.3	Not Detected	5.6	Not Detected
Styrene	1.3	Not Detected	5.5	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	5.8	6.3	28
1,1,2,2wTetrachloroethane	1.3	Not Detected	8.8	Not Detected
Propylbenzene	1.3	Not Detected	6.3	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.3	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,2,4-Trimethylbenzene	1.3	-0.30J ul	6.3	1-5-J U
1,3-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,4-Dichlorobenzene	1.3	$0.25-1 /$	7.8	-5-5 U
alpha-Chlorotoluene	1.3	Not Detected	6.7	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,2,4-Trichlorobenzene	5.2	Not Detected	38	Not Detected
Hexachlorobutadiene	5.2	Not Detected	55	Not Detected
Butane	5.2	Not Detected	12	Not Detected
Isopentane	5.2	Not Detected	15	Not Detected
Ethyl Acetate	5.2	Not Detected	18	Not Detected
Propylene	5.2	Not Detected	8.9	Not Detected
Vinyl Acetate	5.2	Not Detected	18	Not Detected
Vinyl Bromide	5.2	Not Detected	22	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
4-Nonene	$2198-23-4$	80%	15 NJ
Octane, 2,2,6-trimethyl-	$62016-28-8$	72%	10 NJ
Undecane, 2,2-dimethyl-	$17312-64-0$	64%	42 NJ
Heptane, 2,2,4,6,6-pentamethyl-	$13475-82-6$	83%	13 NJ
Nonane, 3-methyl-5-propyl-	$31081-18-2$	72%	48 NJ
Heptane,	$62108-31-0$	72%	11 NJ
4-ethyl-2,2,6,6-tetramethyl-	$1071-26-7$	59%	
Heptane, 2,2-dimethyl-	$17301-25-6$	64%	80 NJ
Undecane, 2,8-dimethyl-	$74367-32-1$	9.0%	30 NJ
Propanoic acid, 2-methyl-,			12 NJ
2-(hydroxymet	\cdots		

An Toxics

Client Sample ID: VMP-42-10-092712-Dup
Lab ID\#: 1210008A-03A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100843$	Date of Collection: $9 / 27 / 12$ 12:47:00 PM
Dil. Factor:	2.58	Date of Analysis: $10 / 9 / 12$ 11:51 AM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	((ppbv))
Ethanone, 1-phenyl-	$98-86-2$	91%	16 NJ

$\mathrm{N} J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	103	$70-130$
1,2-Dichloroethane-d4	107	$70-130$
4-Bromofluorobenzene	82	$70-130$

Air Toxics

Client Sample ID: VMP-16-5-092712
Lab ID\#: 1210008A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100845 \\ 2.69 \\ \hline \end{array}$	Date of Collection: 9/27/12 9:38:00 AM Date of Analysis: 10/9/12 12:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.62 J	6.6	3.1 J
Freon 114	1.3	Not Detected	9.4	Not Detected
Chloromethane	13	Not Detected	28	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	3.0	Not Detected
Bromomethane	13	Not Detected	52	Not Detected
Chloroethane	5.4	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.6	Not Detected
Ethanol	5.4	7.6	10	14
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	13	48	32	110
2-Propano	5.4	2.7 J	13	6.7 J
Carbon Disulfide	5.4	0.90 J	17	2.8 J
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	13	0.65 J	47	2.2 j
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Hexane	1.3	Not Detected	4.7	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.4	12	16	35
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Tetrahydrofuran	1.3	Not Detected	4.0	Not Detected
Chloroform	1.3	1.6	6.6	7.9
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Cyclohexane	1.3	Not Detected	4.6	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.5	Not Detected
2,2,4-Trimethylpentane	1.3	480	6.3	2200
Benzene	1.3	2.1	4.3	6.8
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Heptane	1.3	Not Detected	5.5	Not Detected
Trichloroethene	1.3	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
1,4-Dioxane	5.4	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	25	5.5	100
Toluene	1.3	1.7	5.1	6.5
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Tetrachloroethene	1.3	0.37 J	9.1	2.5 J
2-Hexanone	5.4	Not Detected	22	Not Detected

eurofins

Ar Toxics

Client Sample ID: VMP-16-5-092712
Lab IDH: 1210008A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Pentane, 2,4-dimethyl--	$108-08-7$	86%	170 NJ
Butane, 2,2,3-trimethyl-	$464-06-2$	56%	180 NJ
Pentane, 2,3-dimethyl-	$565-59-3$	43%	500 NJ
Unknown	NA	NA	130 J
Pentane, 2,3,4-trimethyl-	$565-75-3$	90%	600 NJ
Pentane, 2,3,3-trimethyl-	$560-21-4$	90%	1700 NJ
Hexane, 3,4-dimethyl-	$583-48-2$	64%	77 NJ
Hexane, 2,2,4-trimethyl-	$16747-26-5$	78%	170 NJ
Hexane, 2,2,3-trimethyl-	$16747-25-4$	56%	63 NJ

Air Toxics

Client Sample ID: VMP-16-5-092712
Lab 1D\#: 1210008A-04A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100845$	Date of Collection: 9/27/12 9:38:00 AM
Dil. Factor:	2.69	Date of Analysis: 10/9/12 12:51 PM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
Heptane, 4-ethyl-2,2,6,6-tetramethyl-	$62108-31-0$	72%	73 NJ

$\mathrm{N} J=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	107	$70-130$
1,2-Dichloroethane-d4	114	$70-130$
4-Bromofluorobenzene	81	$70-130$

Atr Toxics

Client Sample ID: VMP-4-5-092712
Lab ID\#: 1210008A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100846 \\ 25 ? \end{array}$	Date of Collection: 9/27/12 1:33:00 PM Date of Analysis: 10/9/12 01:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	0.56 J	6.2	2.7 J
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	13	Not Detected	26	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	13	Not Detected	49	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.3	0.35 J	7.1	2.0 J
Ethanol	5.0	6.5	9.5	12
Freon 113	1.3	Not Detected	9.6	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	13	16	30	38
2-Propanol	5.0	2.7 J	12	6.7 J
Carbon Disulfide	5.0	1.2 J	16	3.7 J
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chioride	13	$0.36-5 u$	44	-4.3y
Methyl tert-butyl ether	1.3	Not Detected	4.5	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	5.0	15	15
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	0.18 J	6.2	0.90 J
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	0.20 J	4.3	0.70 J
Carbon Tetrachloride	1.3	Not Detected	7.9	Not Detected
2,2,4-Trimethylpentane	1.3	4.1	5.9	19
Benzene	1.3	3.4	4.0	11
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	0.23 J	5.2	0.96 J
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.0	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.4	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	19	5.2	76
Toluene	1.3	0.94 J	4.7	3.5 J
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.5	Not Detected
2-Hexanone	5.0	Not Detected	21	Not Detected

Client Sample ID: VMP-4-5-092712
Lab ID\#: 1210008A-05A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j100846 2.52	Date of Collection: 9/27/12 1:33:00 PM Date of Analysis: $10 / 9 / 12$ 01:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	4.2 J U	5.8	5.6 Ju
Ethyl Benzene	1.3	0.24 J	5.5	1.0 J
m,p-Xylene	1.3	0.56 J	5.5	2.4 J
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	3.8	6.2	18
1,1,2,2-Tetrachforoethane	1.3	Not Detected	8.6	Not Detected
Propylbenzene	1.3	Not Detected	6.2	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.2	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.3	0.24-J U	6.2	$4-2 \mathrm{~J}$ U
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	-20J U	7.6	-4.2.ju
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichforobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	5.0	Not Detected	54	Not Detected
Butane	5.0	Not Detected	12	Not Detected
Isopentane	5.0	Not Detected	15	Not Detected
Ethyl Acetate	5.0	Not Detected	18	Not Detected
Propylene	5.0	1.8 J	8.7	3.2 J
Vinyl Acetate	5.0	Not Detected	18	Not Detected
Vinyl Bromide	5.0	Not Detected	22	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
Pentane, 2,3,3-trimethyl-	$560-21-4$	72%	11 NJ
1-Hexene, 5-methyl-	$3524-73-0$	55%	12 NJ
Cyclopropane, 1-ethyl-2-heptyl-	$74663-86-8$	59%	20 NJ
2-Decene, 8-methyl-, (Z)-	$74630-25-4$	64%	12 NJ
Decane, 2,2,5-trimethyl-	$62237-96-1$	64%	15 NJ
Decane, 2,6,7-trimethyl-	$62108-25-2$	53%	9.2 NJ
Decane, 2,2,6-trimethyl-	$62237-97-2$	64%	27 NJ
Eicosane, 10-methyl-	$54833-23-7$	64%	34 NJ
Heptane,	$62108-31-0$	64%	59 NJ
4-ethyl-2,2,6,6-tetramethyl-			
Decane, 3,4-dimethyl-	$17312-45-7$	53%	21 NJ

Client Sample ID: VMP-4-5-092712
 Lab ID\#: 1210008A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100846$	Date of Collection: 9/27/12 1:33:00 PM
Dil. Factor:	2.52	Date of Analysis: $10 / 9 / 1201: 31$ PM

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	104	$70-130$
1,2 -Dichloroethane-d4	104	$70-130$
4 -Bromofluorobenzene	80	$70-130$

eurofins

Air Toxics

Client Sample 1D: VMP-11-5-092812

Lab ID\#: 1210008A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100847 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/28/12 10:30:00 AM Date of Analysis: 10/9/12 02:05 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.56 J	7.3	2.8 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	30	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	57	Not Detected
Chloroethane	5.9	Not Detected	16	Not Detected
Freon 11	1.5	0.33 J	8.3	1.8 J
Ethanol	5.9	1.9 J	11	3.5 J
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	$6,4 \mathrm{~J}$	35	15 J
2-Propanol	5.9	1.1 J	14	2.6 J
Carbon Disulfide	5.9	1.0 J	18	3.2 J
3-Chloropropene	5.9	Not Detected	18	Not Detected
Methylene Chloride	15	0.50 J	51	1.7 J
Methyl tert-butyl ether	1.5	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	0.45 J	5.2	1.6 J
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.9	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	0.61 J	4.4	1.8 J
Chloroform	1.5	0.20 J	7.2	0.97 J
1,1,1-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Cyclohexane	1.5	Not Detected	5.1	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.3	Not Detected
2,2,4-Trimethylpentane	1.5	2.6	6.9	12
Benzene	1.5	3.5	4.7	11
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.8	Not Detected
1,4-Dioxane	5.9	Not Detected	21	Not Detected
Bromodichloromethane	1.5	Not Detected	9.9	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
4 -Methyl-2-pentanone	1.5	Not Detected	6.1	Not Detected
Toluene	1.5	Not Detected	5.6	Not Detected
trans-1,3-Dichloropropene	1.5	Not Detected	6.7	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	Not Detected	10	Not Detected
2-Hexanone	5.9	Not Detected	24	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-11-5-092812
Lab ID\#: 1210008A-06A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100847 \\ 2.96 \\ \hline \end{array}$	Date of Collection: 9/28/12 10:30:00 AM Date of Analysis: $10 / 9 / 12$ 02:05 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	- 7.2.Ju	6.8	-5.73 U
Ethyl Benzene	1.5	Not Detected	6.4	Not Detected
m, p-Xylene	1.5	Not Detected	6.4	Not Detected
o-Xylene	1.5	Not Detected	6.4	Not Detected
Styrene	1.5	Not Detected	6.3	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	1.5	Not Detected	7.3	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	Not Detected	7.3	Not Detected
4-Ethyltoluene	1.5	Not Detected	7.3	Not Detected
1,3,5-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,2,4-Trimethylbenzene	1.5	Not Detected	7.3	Not Detected
1,3-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,4-Dichlorobenzene	1.5	-0.25-d U	8.9	7.5-ju
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	8.9	Not Detected
1,2,4-Trichlorobenzene	5.9	Not Detected	44	Not Detected
Hexachlorobutadiene	5.9	Not Detected	63	Not Detected
Butane	5.9	Not Detected	14	Not Detected
Isopentane	5.9	Not Detected	17	Not Detected
Ethyl Acetate	5.9	Not Detected	21	Not Detected
Propylene	5.9	1.5 J	10	2.6 J
Vinyl Acetate	5.9	Not Detected	21	Not Detected
Vinyl Bromide	5.9	Not Detected	26	Not Detected
$J=$ Estimated value .				

TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number \quad Match Quality \quad| Amount |
| :--- |
| ((ppbv)) |

None Identified
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	99	$70-130$
1,2-Dichloroethane-d4	108	$70-130$
4-Bromofluorobenzene	81	$70-130$

eurofins

Alr Toxics

Client Sample ID: VMP-11-5-092812-Dup
Lab ID\#: 1210008A-07A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100848 \\ 2.89 \\ \hline \end{array}$	Date of Collection: 9/28/12 10:30:00 AM Date of Analysis: 10/9/12 02:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.59 J	7.1	2.9 J
Freon 114	1.4	Not Detected	10	Not Detected
Chloromethane	14	Not Detected	30	Not Detected
Vinyl Chloride	1.4	Not Detected	3.7	Not Detected
1,3-Butadiene	1.4	Not Detected	3.2	Not Detected
Bromomethane	14	Not Detected	56	Not Detected
Chloroethane	5.8	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	8.1	Not Detected
Ethanol	5.8	2.1 J	11	4.0 J
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Acetone	14	7.1 J	34	17 J
2-Propanol	5.8	1.15	14	2.7 J
Carbon Disulfide	5.8	0.98 J	18	3.15
3-Chloropropene	5.8	Not Detected	18	Not Detected
Methylene Chloride	14	0.70 J	50	2.4 J
Methyl tert-butyl ether	1.4	Not Detected	5.2	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Hexane	1.4	Not Detected	5.1	Not Detected
1,1-Dichloroethane	1.4	Not Detected	5.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.8	1.6 J	17	4.7 J
cis-1,2-Dichloroethene	1.4	Not Detected	5.7	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.3	Not Detected
Chloroform	1.4	Not Detected	7.0	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Cyclohexane	1.4	Not Detected	5.0	Not Detected
Carbon Tetrachloride	1.4	Not Detected	9.1	Not Detected
2,2,4-Trimethylpentane	1.4	0.48 J	6.8	2.3 J
Benzene	1.4	4.4	4.6	14
1,2-Dichloroethane	1.4	Not Detected	5.8	Not Detected
Heptane	1.4	Not Detected	5.9	Not Detected
Trichloroethene	1.4	Not Detected	7.8	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.7	Not Detected
1,4-Dioxane	5.8	Not Detected	21	Not Detected
Bromodichloromethane	1.4	Not Detected	9.7	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.9	Not Detected
Toluene	1.4	Not Detected	5.4	Not Detected
trans-1,3-Dichloropropene	1.4	Not Detected	6.6	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.9	Not Detected
Tetrachloroethene	1.4	Not Detected	9.8	Not Detected
2-Hexanone	5.8	Not Detected	24	Not Detected

Air Toxics

Client Sample ID: VMP-11-5-092812-Dup
Lab ID\#: $1210008 \mathrm{~A}-07 \mathrm{~A}$
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100848 \\ 2.89 \end{array}$	Date of Collection: 9/28/12 10:30:00 AM Date of Analysis: 10/9/12 02:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	1.3-J U	6.6	-6.9-J U
Ethyl Benzene	1.4	Not Detected	6.3	Not Detected
m, p-Xylene	1.4	Not Detected	6.3	Not Detected
0-Xylene	1.4	Not Detected	6.3	Not Detected
Styrene	1.4	Not Detected	6.2	Not Detected
Bromoform	1.4	Not Detected	15	Not Detected
Cumene	1.4	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.9	Not Detected
Propytbenzene	1.4	Not Detected	7.1	Not Detected
4-Ethyltoluene	1.4	Not Detected	7.1	Not Detected
1,3,5-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,2,4-Trimethylbenzene	1.4	Not Detected	7.1	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,4-Dichbrobenzene	1.4	Not Detected	8.7	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.7	Not Detected
1,2,4-Trichlorobenzene	5.8	Not Detected	43	Not Detected
Hexachlorobutadiene	5.8	Not Detected	62	Not Detected
Butane	5.8	Not Detected	14	Not Detected
Isopentane	5.8	2.2 J	17	6.4 J
Ethyl Acetate	5.8	Not Detected	21	Not Detected
Propylene	5.8	Not Detected	9.9	Not Detected
Vinyl Acetate	5.8	Not Detected	20	Not Detected
Vinyi Bromide	5.8	Not Detected	25	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound \quad CAS Number Match Quality \quad| Amount |
| :--- |
| $((\mathrm{ppbv}))$ |

None Identified
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	102	$70-130$
4-Bromofluorobenzene	84	$70-130$

Ar Toxics

Client Sample ID: VMP-13-5-092812
Lab ID\#: 1210008A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$j 100909$ 2.82	Date of Collection: 9/28/12 11:25:00 AM Date of Analysis: 10/9/12 08:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	0.50 J	7.0	2.5 J
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	6.2 J	29	13 J
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	Not Detected	3.1	Not Detected
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	0.30 J	7.9	1.7 J
Ethanol	5.6	3.6 J	11	6.7 J
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	33	33	78
2-Propanol	5.6	1.2 J	14	2.9 J
Carbon Disulfide	5.6	3.0 J	18	9.3 J
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	0.94 j	49	3.3 J
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	0.64 J	5.6	2.6 J
Hexane	1.4	0.86 J	5.0	3.0 J
1,1-Dichloroethane	1.4	0.20 J	5.7	0.80 J
2-Butanone (Methyl Ethyl Ketone)	5.6	7.6	17	22
cis-1,2-Dichloroethene	1.4	0.57 J	5.6	2.2 J
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	0.89 J	6.9	4.4 J
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	0.49 J	4.8	1.7 J
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	4.5	6.6	21
Benzene	1.4	7.6	4.5	24
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
Heptane	1.4	1.0 J	5.8	4.3 J
Trichloroethene	1.4	1.3 J	7.6	6.9 J
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
1,4-Dioxane	5.6	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	1.0 J	6.4	4.5 J
4-Methyl-2-pentanone	1.4	0.66 J	5.8	2.7 J
Toluene	1.4	0.62 J	5.3	2.3 J
trans-1,3-Dichloropropene	1.4	1.5	6.4	6.7
1,1,2-Trichloroethane	1.4	0.48 J	7.7	2.6 J
Tetrachoroethene	1.4	0.94 J	9.6	6.4 J
2-Hexanone	5.6	Not Detected	23	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-13-5-092812
Lab ID\#: 1210008A-08A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j100909 2.82	Date of Collection: 9/28/12 11:25:00 AM Date of Analysis: 10/9/12 08:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	1.3 J	11	10 J
Chlorobenzene	1.4	3.8	6.5	17
Ethyl Benzene	1.4	0.40 J	6.1	1.7 J
m,p-Xylene	1.4	0.50 J	6.1	2.2 J
o-Xylene	1.4	0.28 J	6.1	1.2 J
Styrene	1.4	0.63 J	6.0	2.7 J
Bromoform	1.4	0.39 J	14	4.0 J
Cumene	1.4	0.24 J	6.9	1.2 J
1,1,2,2-Tetrachloroethane	1.4	0.30 J U	9.7	$2.4-3$
Propylbenzene	1.4	Q.46-J L	6.9	-2.93 U
4-Ethyltoluene	1.4	0.63 J	6.9	3.1 J
1,3,5-Trimethylbenzene	1.4	-0.46-Ju	6.9	-2.3-4
1,2,4-Trimethylbenzene	1.4	-0:62-du	6.9	-3:0-1 U
1,3-Dichlorobenzene	1.4	1.7	8.5	10
1,4-Dichlorobenzene	1.4	1.9	8.5	12
alpha-Chlorotoluene	1.4	0.93 J	7.3	4.8 J
1,2-Dichlorobenzene	1.4	1.3 J	8.5	7.6 J
1,2,4-Trichlorobenzene	5.6	-3.4-Ju	42	-25-d U
Hexachlorobutadiene	5.6	Not Detected	60	Not Detected
Butane	5.6	Not Detected	13	Not Detected
Isopentane	5.6	1.7 J	17	5.0 J
Ethyl Acetate	5.6	Not Detected	20	Not Detected
Propylene	5.6	4.0 J	9.7	6.9 J
Vinyl Acetate	5.6	Not Detected	20	Not Detected
Vinyl Bromide	5.6	Not Detected	25	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
1-Propene, 2-methyl-	$115-11-7$	46%	19 NJ
Acetaldehyde	$75-07-0$	3.0%	12 NJ
Hexane, 2,3,4-trimethyl-	$921-47-1$	64%	10 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	102	$70-130$
1,2-Dichloroethane-d4	107	$70-130$

Client Sample ID: VMP-13-5-092812
 Lab ID\#: 1210008A-08A
 EPA METHOD TO-15 GC/MS FULL SCAN

\(\left.\begin{array}{lrrr}File Name: \& \mathrm{j} 100909 \& Date of Collection: 9/28/12 11:25:00 AM

Dil. Factor: \& 2.82 \& Date of Analysis: 10/9/12 08:13 PM\end{array}\right]\)| | | Method |
| :--- | :--- | :--- |
| Surrogates | | \%Recovery |

Air Toxics

Client Sample ID: VMP-10-5-092812
Lab ID\#: 1210008A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} 100910 \\ 3.11 \\ \hline \end{array}$		Date of Collection: 9/28/12 12:16:00 PM Date of Analysis: 10/9/12 08:54 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.6	0.58 J	7.7	2.8 J
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
1,3-Butadiene	1.6	Not Detected	3.4	Not Detected
Bromomethane	16	Not Detected	60	Not Detected
Chloroethane	6.2	Not Detected	16	Not Detected
Freon 11	1.6	0.28 J	8.7	1.6 J
Ethanol	6.2	2.7 J	12	5.0 J
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Acetone	16	17	37	41
2-Propanol	6.2	1.8 J	15	4.4 J
Carbon Disulfide	6.2	-1.2Ju	19	$9.6+U$
3-Chloropropene	6.2	Not Detected	19	Not Detected
Methylene Chloride	16	$0.46-14$	54	\%.0] U
Methyl tert-butyl ether	1.6	Not Detected	5.6	Not Detected
trans-1,2-Dichloroethene	1.6	0.54 J	6.2	2.2 J
Hexane	1.6	0.40 J	5.5	1.4 J
1,1-Dichloroethane	1.6	Not Detected	6.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.2	3.9 J	18	12 J
cis-1,2-Dichloroethene	1.6	Not Detected	6.2	Not Detected
Tetrahydrofuran	1.6	Not Detected	4.6	Not Detected
Chloroform	1.6	-0.36d U	7.6	4.7-d
1,1,1-Trichloroethane	1.6	0.15 J	8.5	0.82 J
Cyclohexane	1.6	Not Detected	5.4	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.8	Not Detected
2,2,4-Trimethylpentane	1.6	Not Detected	7.3	Not Detected
Benzene	1.6	0.35 J	5.0	1.1 J
1,2-Dichloroethane	1.6	Not Detected	6.3	Not Detected
Heptane	1.6	0.52 J	6.4	2.15
Trichloroethene	1.6	Not Detected	8.4	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
1,4-Dioxane	6.2	Not Detected	22	Not Detected
Bromodichforomethane	1.6	0.24 J	10	1.6 J
cis-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.4	Not Detected
Toluene	1.6	0.28 J	5.8	1.1 J
trans-1,3-Dichloropropene	1.6	. 0.58 J U	7.0	-20-1 4
1,1,2-Trichloroethane	1.6	Not Detected	8.5	Not Detected
Tetrachloroethene	1.6	0.50 J	10	3.4 j
2-Hexanone	6.2	Not Detected	25	Not Detected

eurofins

Air Toxics

Client Sample ID: VMP-10-5-092812
Lab ID\#: 1210008A-09A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100910 \\ 3.11 \\ \hline \end{array}$	Date of Collection: 9/28/12 12:16:00 PM Date of Analysis: 10/9/12 08:54 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.6	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	-1.6. 1.8	17.8 U	7.288 .1	8.4-4
Ethyl Benzene	1.6	Not Detected	6.8	Not Detected
m, p-Xylene	1.6	0.31 J	6.8	1.3 J
o-Xylene	1.6	Not Detected	6.8	Not Detected
Styrene	1.6	Not Detected	6.6	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Cumene	1.6	Not Detected	7.6	Not Detected
1,1,2,2-Tetrachloroethane	1.6	$\theta: 2 z-J u$	11	-7-5-Ju
Propylbenzene	1.6	$0.37-\mathrm{J}$ U	7.6	$4.8-\mathrm{JU}$
4-Ethyltoluene	1.6	0.41 J	7.6	2.0 J
1,3,5-Trimethylbenzene	1.6	0.28-Ju	7.6	-7.4. 4
1,2,4-Trimethylbenzene	1.6	0.49 y U	7.6	-2-4-du
1,3-Dichlorobenzene	1.6	$0.94-J u$	9.3	-5.5.J U
1,4-Dichlorobenzene	1.6	- $2-2 u$	9.3	7.50
alpha-Chlorotoluene	1.6	O.48-d U	8.0	-2-5-3 4
1,2-Dichlorobenzene	1.6	- 0.70 Ju	9.3	4.2-JU
1,2,4-Trichlorobenzene	6.2	-zor uld	46	-24JU
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
Butane	6.2	Not Detected	15	Not Detected
Isopentane	6.2	1.6 J	18	4.6 J
Ethyl Acetate	6.2	Not Detected	22	Not Detected
Propylene	6.2	1.7 J	11	2.9 J
Vinyl Acetate	6.2	Not Detected	22	Not Detected
Vinyl Bromide	6.2	Not Detected	27	Not Detected ${ }^{\prime \prime}$

TENTATIVELY IDENTIFIED COMPOUNDS
Amount

Compound \quad CAS Number \quad Match Quality \quad| Amount |
| :--- |
| $((\mathrm{ppbv}))$ |

None Identified
Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	103	$70-130$
1,2-Dichloroethane-d4	108	$70-130$
4-Bromofluorobenzene	82	$70-130$

Air Toxics

Client Sample 1D: VMP-10-5-092812-Dup
Lab ID\#: 1210008A-10A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j100911 3.03	Date of Collection: 9/28/12 12:16:00 PM Date of Analysis: 10/9/12 09:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.45 J	7.5	2.2 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.9	Not Detected
1,3-Butadiene	1.5	Not Detected	3.4	Not Detected
Bromomethane	15	Not Detected	59	Not Detected
Chloroethane	6.1	Not Detected	16	Not Detected
Freon 11	1.5	0.24 J	8.5	1.4 J
Ethanol	6.1	2.1 J	11	4.0 J
Freon 113	1.5	Not Detected	12	Not Detected
1,1-Dichforoethene	1.5	Not Detected	6.0	Not Detected
Acetone	15	19	36	45
2-Propanol	6.1	2.4 J	15	5.9 J
Carbon Disulfide	6.1	F.0.Ju	19	8.3-d U
3-Chloropropene	6.1	Not Detected	19	Not Detected
Methylene Chloride	15	0.63 J	53	2.2 J
Methyl tert-butyl ether	1.5	Not Detected	5.5	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Hexane	1.5	0.54 J	5.3	1.9 J
1,1-Dichloroethane	1.5	Not Detected	6.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.1	3.0 J	18	9.0 J
cis-1,2-Dichloroethene	1.5	Not Detected	6.0	Not Detected
Tetrahydrofuran	1.5	Not Detected	4.5	Not Detected
Chloroform	1.5	0:22-J 4	7.4	-4.0. u
1,1,1-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Cyclohexane	1.5	Not Detected	5.2	Not Detected
Carbon Tetrachloride	1.5	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	1.5	Not Detected	7.1	Not Detected
Benzene	1.5	1.3 J	4.8	4.3 J
1,2-Dichloroethane	1.5	Not Detected	6.1	Not Detected
Heptane	1.5	0.69 J	6.2	2.8 J
Trichloroethene	1.5	0.36 J	8.1	1.9 J
1,2-Dichloropropane	1.5	Not Detected	7.0	Not Detected
1,4-Dioxane	6.1	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.9	Not Detected
4-Methyl-2-pentanone	1.5	Not Detected	6.2	Not Detected
Toluene	1.5	0.25 J	5.7	0.96 J
trans-1,3-Dichloropropene	1.5	0.07 J U	6.9	3-0. 4
1,1,2-Trichloroethane	1.5	Not Detected	8.3	Not Detected
Tetrachloroethene	1.5	0.44 J	10	3.0 J
2-Hexanone	6.1	Not Detected	25	Not Detected

Air Toxics

Client Sample ID: VMP-10-5-092812-Dup
 Lab ID\#: 1210008A-10A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100911 \\ 3.03 \\ \hline \end{array}$	Date of Collection: 9/28/12 12:16:00 PM Date of Analysis: 10/9/12 09:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	12	Not Detected
Chlorobenzene	1.51 .7	4.7 U	$-7.0-7.8$	7.8 U
Ethyl Benzene	1.5	Not Detected	6.6	Not Detected
m,p-Xylene	1.5	Not Detected	6.6	Not Detected
o-Xylene	1.5	Not Detected	6.6	Not Detected
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	16	Not Detected
Cumene	1.5	Not Detected	7.4	Not Detected
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.30 J 4	7.4	-4.4-J U^{-}
4-Ethyltoluene	1.5	Not Detected	7.4	Not Detected
1,3,5-Trimethyłbenzene	1.5	Not Detected	7.4	Not Detected
1,2,4-Trimethylbenzene	1.5	0.34 JU	7.4	F5-dU
1,3-Dichlorobenzene	1.5	o.68-J u	9.1	-4.4-3ul
1,4-Dichlorobenzene	1.5	$0.00-14$	9.1	$-5.4-54$
alpha-Chlorotoluene	1.5	-0.29-J U	7.8	$4.5-\mathrm{Ju}$
1,2-Dichlorobenzene	1.5	0.52 J 4	9.1	$\cdots 3.4 \mathrm{~J}$
1,2,4-Trichlorobenzene	6.1	-1.9-d 4	45	14-d U
Hexachlorobutadiene	6.1	Not Detected	65	Not Detected
Butane	6.1	Not Detected	14	Not Detected
Isopentane	6.1	Not Detected	18	Not Detected
Ethyl Acetate	6.1	Not Detected	22	Not Detected
Propylene	6.1	1.6 J	10	2.8 J
Vinyl Acetate	6.1	Not Detected	21	Not Detected
Vinyl Bromide	6.1	Not Detected	26	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount $(($ ppbv $))$
1-Propene, 2-methyl-	$115-11-7$	64%	9.1 NJ

$\mathrm{NJ}=$ The identification is based on presumptive evidence; estimated value.

Container Type: 1 Liter Summa Canister

Surrogates	\%Recovery	Method Limits
Toluene-d8	101	$70-130$
1,2-Dichloroethane-d4	103	$70-130$
4-Bromofluorobenzene	81	$70-130$

Client Sample ID: Lab Blank
Lab ID\#: 1210008A-11A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \text { j100834a } \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/8/12 10:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chioroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanof	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	0.0945	17	0.33 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	0.070 J	2.0	S 0.28 J
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	0.089 J	2.0	C 0.36 J
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	0.11 J	2.3	Y 0.49 J
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	-0.14 J	2.3	-0.62 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

eurofins

Ah Toxics

Client Sample 1D: Lab Blank

Lab ID\#: 1210008A-11A
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100834 \mathrm{a} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/8/12 10:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	0.52	2.3	(2.4)
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	0.071 J	3.4	0.49 J
Propylbenzene	0.50	0.10 J	2.4	< 0.50 J
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	0.084 J	2.4	0.41 J
1,2,4-Trimethylbenzene	0.50	$0.094 \mathrm{~J}$	2.4	0.46 J
1,3-Dichlorobenzene	0.50	0.25 J	3.0	1.5 J
1,4-Dichlorobenzene	0.50	0.28 J	3.0	1.7 J
alpha-Chlorotoluene	0.50	0.091 J	2.6	0.47 J
1,2-Dichlorobenzene	0.50	0.20 J	3.0	1.2 J
1,2,4-Trichlorobenzene	2.0	Q 28.	15	4.35
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Butane	2.0	Not Detected	4.8	Not Detected
Isopentane	2.0	Not Detected	5.9	Not Detected
Ethyl Acetate	2.0	Not Detected	7.2	Not Detected
Propylene	2.0	Not Detected	3.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Bromide	2.0	Not Detected	8.7	Not Detected

TENTATIVELY IDENTIFIED COMPOUNDS
Amount

Compound \quad CAS Number \quad Match Quality \quad| Amount |
| :--- |
| $((\mathrm{ppbv}))$ |

None Identified

Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	101	$70-130$
1,2-Dichloroethane-d4	101	$70-130$
4-Bromofluorobenzene	78	$70-130$

Air Toxics

Client Sample ID: Lab Blank
Lab ID\#: 1210008A-11B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100908 \mathrm{a} \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 10/9/12 07:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	0.13 j	19	0.52 J
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	0.32 J	6.2	1.0 J
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	011 J	17	0.39 J
Methyl tert-butyl ether	0.50	Not Detected	1.8	NotDetected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	0.089 J	2.4	0.43 J
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyciohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	0.074 J	2.0	0.30 J
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	0.14 J	2.3	0.63 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank
Lab ID\#: 1210008A-1 IB
EPA METHOD TO-15 GC/MS FULL SCAN

TENTATIVELY IDENTIFIED COMPOUNDS
Amount

Compound	CAS Number	Match Quality	Amount $((\mathrm{ppbv}))$
None Identified			

Container Type: NA - Not Applicable

Surrogates	\%Recovery	Method Limits
Toluene-d8	100	$70-130$
1,2-Dichloroethane-d4	103	$70-130$
4-Bromofluorobenzene	82	$70-130$

Ar Toxice

Client Sample ID: CCV
 Lab ID\#: 1210008A-12A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100823$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/8/12 04:08 PM

Compound \%Recovery
Freon 12 108
Freon 114 100
Chloromethane 101
Vinyl Chloride 88
1,3-Butadiene 77
Bromomethane 89
Chloroethane 85
Freon 11 104
Ethanol 80
Freon 113 88
1,1-Dichloroethene 85
Acetone 84
2-Propanol 83
Carbon Disulfide 87
3-Chloropropene 84
Methylene Chloride 95
Methyl tert-butyl ether 89
trans-1,2-Dichloroethene 89
Hexane 78
1,1-Dichloroethane 95
2-Butanone (Methyl Ethyl Ketone) 98
cis-1,2-Dichloroethene 95
Tetrahydrofuran 90
Chloroform 105
1,1,1-Trichloroethane 99
Cyclohexane 100
Carbon Tetrachloride 109
2,2,4-Trimethylpentane 85
Benzene 113
1,2-Dichloroethane 117
Heptane 112
Trichloroethene 114
1,2-Dichloropropane 108
1,4-Dioxane 106
Bromodichloromethane 115
cis-1,3-Dichloropropene 111
4-Methyl-2-pentanone 86
Toluene 109
trans-1,3-Dichloropropene 117
1,1,2-Trichloroethane 126
Tetrachloroethene 109
2-Hexanone 101

Au Toxics

\section*{Client Sample ID: CCV
 Lab ID\#: 1210008A-12A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | $j 100823$ | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: 10/8/12 04:08 PM |}

Compound		\%Recovery
Dibromochloromethane		118
1,2-Dibromoethane (EDB)		119
Chlorobenzene		101
Ethyl Benzene		111
m,p-Xylene		106
o-Xylene		108
Styrene		100
Bromoform		106
Cumene		110
1,1,2,2-Tetrachloroethane		125
Propylbenzene		120
4-Ethyltoluene		106
1,3,5-Trimethylbenzene		106
1,2,4-Trimethylbenzene		100
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		102
alpha-Chlorotoluene		97
1,2-Dichlorobenzene		100
1,2,4-Trichlorobenzene		88
Hexachlorobutadiene		90
Butane		83
Isopentane		97
Ethyl Acetate		105
Propylene		102
Vinyl Acetate		90
Vinyl Bromide		90
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	82	70-130

eurofins

Air Toxics

Client Sample ID: CCV

Lab ID\#: 1210008A-12B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100902$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/9/12 03:39 PM

Compound

Freon 12
108
Freon 114 95
Chloromethane 97
Vinyl Chloride 84
1,3-Butadiene 76
Bromomethane 86
Chloroethane 88
Freon 11 104
Ethanol 81
Freon 113 87
1,1-Dichloroethene
Acetone 83
2-Propanol 86
Carbon Disulfide 86
3-Chloropropene 85
Methylene Chloride 94
Methyl tert-butyl ether 90
trans-1,2-Dichloroethene 90
Hexane 80
1,1-Dichloroethane 96
2-Butanone (Methyl Ethyl Ketone) 100
cis-1,2-Dichloroethene 93
Tetrahydrofuran 92
Chloroform 108
1,1,1-Trichtoroethane 101
Cyclohexane
Carbon Tetrachloride 110
2,2,4-Trimethylpentane 87
Benzene 109
1,2-Dichloroethane 118
Heptane 109
Trichloroethene 113
1,2-Dichloropropane 107
1,4-Dioxane 108
Bromodichloromethane 116
cis-1,3-Dichloropropene 113
4-Methyl-2-pentanone 89
Toluene . 108
trans-1,3-Dichloropropene 113
$1,1,2$-Trichloroethane 119

2-Hexanone 98

Ar Toxics

\section*{Client Sample ID: CCV
 Lab 1D\#: 1210008A-12B
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | $j 100902$ | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: $10 / 9 / 12$ 03:39 PM |}

Compound		\%Recovery
Dibromochloromethane		117
1,2-Dibromoethane (EDB)		114
Chlorobenzene		97
Ethyl Benzene		106
m,p-Xylene		105
o-Xylene		104
Styrene		95
Bromoform		104
Cumene		106
1,1,2,2-Tetrachloroethane		121
Propylbenzene		116
4-Ethyltoluene		103
1,3,5-Trimethylbenzene		101
1,2,4-Trimethybenzene		96
1,3-Dichlorobenzene		99
1,4-Dichlorobenzene		99
alpha-Chlorotoluene		96
1,2-Dichlorobenzene		98
1,2,4-Trichlorobenzene		85
Hexachlorobutadiene		89
Butane		81
Isopentane		95
Ethyl Acetate		102
Propylene		97
Vinyl Acetate		89
Vinyl Bromide		91
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	86	70-130

Ar Toxics

Client Sample ID: LCS
 Lab ID\#: 1210008A-13A
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	$j 100824$	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 8 / 1205: 00$ PM

Compound
Freon 12 112
Freon 114 99
Chloromethane 105
Vinyl Chloride 93
1,3-Butadiene 79
Bromomethane 90
Chloroethane 86
Freon 11 106
Ethanol 79
Freon 113 90
1,1-Dichloroethene 88
Acetone 85
2-Propanol 87
Carbon Disulfide 109
3-Chloropropene 95
Methylene Chloride 95
Methyl tert-butyl ether 90
trans-1,2-Dichloroethene 103
Hexane 82
1,1-Dichloroethane 99
2-Butanone (Methyl Ethyl Ketone) 102
cis-1,2-Dichloroethene 98
Tetrahydrofuran 92
Chloroform 111
1,1,1-Trichloroethane 104
Cyclohexane 103
Carbon Tetrachloride 113
2,2,4-Trimethylpentane 84
Benzene 113
1,2-Dichloroethane 116
Heptane 112
Trichloroethene 115
1,2-Dichloropropane 111
1,4-Dioxane 107
Bromodichloromethane 117
cis-1,3-Dichloropropene 114
4-Methyl-2-pentanone 86
Toluene 109
trans-1,3-Dichforopropene 117
1,1,2-Trichloroethane 125
Tetrachloroethene 108
2-Hexanone 99

Air Toxics

\section*{Client Sample 1D: LCS
 Lab ID\#: 1210008A-13A
 EPA METHOD TO-15 GC/MS FULL SCAN
 | File Name: | $j 100824$ | Date of Collection: NA |
| :--- | ---: | :--- |
| Dil. Factor: | 1.00 | Date of Analysis: $10 / 8 / 12$ 05:00 PM |}

Compound		\%Recovery
Dibromochloromethane		117
1,2-Dibromoethane (EDB)		120
Chlorobenzene		101
Ethyl Benzene		110
m, p -Xylene		109
o-Xylene		108
Styrene		97
Bromoform		102
Cumene		110
1,1,2,2-Tetrachloroethane		126
Propylbenzene		119
4-Ethyltoluene		102
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		94
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		100
alpha-Chlorotoluene		94
1,2-Dichlorobenzene		100
1,2,4-Trichlorobenzene		87
Hexachlorobutadiene		87
Butane		83
Isopentane		102
Ethyl Acetate		Not Spiked
Propylene		92
Vinyl Acetate		88
Vinyl Bromide		Not Spiked
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	82	70-130

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1210008A-13AA
 EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: LCSD
 Lab ID\#: 1210008A-13AA
 EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

Client Sample ID: LCS

Lab ID\#: 1210008A-13B
EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} j 100903 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/9/1	04:22 PM
Compound			\%Recovery
Freon 12			115
Freon 114			101
Chloromethane			111
Vinyt Chloride			92
1,3-Butadiene			82
Bromomethane			90
Chloroethane			90
Freon 11			109
Ethanol			82
Freon 113			91
1,1-Dichloroethene			92
Acetone			92
2-Propanol			91
Carbon Disulfide			111
3-Chloropropene			97
Methylene Chloride			100
Methyl tert-butyl ether			94
trans-1,2-Dichloroethene			104
Hexane			84
1,1-Dichloroethane			100
2-Butanone (Methyl Ethyl Ketone)			100
cis-1,2-Dichloroethene			95
Tetrahydrofuran			92
Chloroform			112
1,1,1-Trichloroethane			107
Cyclohexane			97
Carbon Tetrachloride			116
2,2,4-Trimethylpentane			86
Benzene			110
1,2-Dichloroethane			121
Heptane			112
Trichloroethene			118
1,2-Dichloropropane			108
1,4-Dioxane			106
Bromodichloromethane			120
cis-1,3-Dichloropropene			119
4-Methyl-2-pentanone			90
Toluene			110
trans-1,3-Dichloropropene			118
1,1,2-Trichloroethane			119
Tetrachloroethene			104
2-Hexanone			97

Ar Toxics

Client Sample 1D: LCS
 Lab ID\#: 1210008A-13B
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	$\begin{array}{r} \mathrm{j} 100903 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/9/12 04:22 PM	
Compound			\%Recovery
Dibromochloromethane			117
1,2-Dibromoethane (EDB)			117
Chlorobenzene			99
Ethyl Benzene			109
m,p-Xylene			105
o-Xylene			106
Styrene			96
Bromoform			104
Cumene			109
1,1,2,2-Tetrachloroethane			120
Propylbenzene			115
4-Ethyltoluene			101
1,3,5-Trimethylbenzene			99
1,2,4-Trimethylbenzene			91
1,3-Dichlorobenzene			97
1,4-Dichlorobenzene			94
alpha-Chlorotoluene			94
1,2-Dichlorobenzene			96
1,2,4-Trichlorobenzene			81
Hexachlorobutadiene			85
Butane			85
Isopentane			103
Ethyl Acetate			Not Spiked
Propylene			96
Vinyl Acetate			96
Vinyl Bromide			Not Spiked
Container Type: NA - Not			
Surrogates			Method Limits
Toluene-d8			70-130
1,2-Dichloroethane-d4			70-130
4-Bromofluorobenzene			70-130

Alr Toxics

Client Sample ID: LCSD
 Lab ID\#: 1210008A-13BB
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 100904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/9/12 04:40 PM

Compound \%Recovery
Freon 12 108
Freon 114 94
Chloromethane 107
Vinyl Chloride 90
1,3-Butadiene 79
Bromomethane 90
Chloroethane 86
Freon 11 106
Ethanol 78
Freon 113 90
1,1-Dichloroethene 89
Acetone 87
2-Propanol 89
Carbon Disulfide 107
3-Chloropropene 94
Methylene Chloride 98
Methyl tert-butyl ether 92
trans-1,2-Dichloroethene 97
Hexane 83
1,1-Dichloroethane 99
2-Butanone (Methyl Ethyl Ketone) 101
cis-1,2-Dichloroethene 97
Tetrahydrofuran 91
Chloroform 110
1,1,1-Trichloroethane 106
Cyclohexane 101
Carbon Tetrachloride 116
2,2,4-Trimethylpentane 88
Benzene 109
1,2-Dichloroethane 116
Heptane 106
Trichloroethene 114
1,2-Dichforopropane 105
1,4-Dioxane 106
Bromodichloromethane 116
cis-1,3-Dichloropropene 111
4-Methyl-2-pentanone 86
Toluene 105
trans-1,3-Dichloropropene 117
1,1,2-Trichloroethane 122
Tetrachloroethene 106
2-Hexanone 98

Air Toxics

Client Sample ID: LCSD
 Lab ID\#: 1210008A-13BB
 EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j 100904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 9 / 12$ 04:40 PM

Compound		\%Recovery
Dibromochloromethane		117
1,2-Dibromoethane (EDB)		119
Chlorobenzene		100
Ethyl Benzene		110
m,p-Xylene		106
o-Xylene		107
Styrene		96
Bromoform		105
Cumene		110
1,1,2,2-Tetrachloroethane		126
Propylbenzene		120
4-Ethyltoluene		103
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		98
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		101
alpha-Chlorotoluene		97
1,2-Dichlorobenzene		101
1,2,4-Trichlorobenzene		88
Hexachlorobutadiene		90
Butane		78
Isopentane		97
Ethyl Acetate		Not Spiked
Propylene		93
Vinyl Acetate		86
Vinyl Bromide		Not Spiked
Container Type: NA - Not		
Surrogates	\%Recovery	Method Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	87	70-130

Shell Oil Products Chain Of Custody Record
URES

eurofins

Air Toxics

10/23/2012
Ms. Elizabeth Kunkel
URS Corporation
1001 Highlands Plaza Dr. West
Suite 300
St. Louis MO 63110

Project Name: Roxana Vapor Additional
Project \#: 21562735.10100
Workorder \#: 1210008BR1

Dear Ms. Elizabeth Kunkel

The following report includes the data for the above referenced project for samples) received on 10/1/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner
Project Manager

[^14]
WORK ORDER \#: 1210008BR1

Work Order Summary

CLIENT:	Ms. Elizabeth Kunkel URS Corporation 1001 Highlands Plaza Dr. West
	Suite 300 St. Louis, MO 63110
PHONE:	$314-743-4179$
FAX:	
DATE RECEIVED:	$10 / 01 / 2012$
DATE COMPLETED:	$10 / 12 / 2012$
DATE REISSUED:	$10 / 23 / 2012$

BILL TO: Accounts Payable Austin URS Corporation P.O. BOX 203970 Austin, TX 78720-1088

P.O. \#

PROJECT \# 21562735.10100 Roxana Vapor CONPACT: Additional Buetner

DATE $10 / 23 / 2012$

CERTIFIED BY:

Technical Director

DATE: $10 / 23 / 12$

Certification numbers: AZ Licensure AZ 0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.
Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder\# 1210008BR1

Ten 1 Liter Summa Canister samples were received on October 01, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or $\mathrm{GC} / \mathrm{TCD}$. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Refercnce Standard	The composition of any reference standard must be known to within 0.01 mol \% for any component.	The standards used by ATL are blended to a $>/=95 \%$ aecuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5% should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mLL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than I.0\%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25\% RPD for detcctions >5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit.

SAMPLE VMP-21-5-092712 WAS REANALYZED ON OCTOBER 19, 2012 DUE TO A LABORATORY ERROR THAT OCCURRED DURING THE ORIGINAL ANALYSIS OF THIS SAMPLE (WORKORDER\# 1210008B). THE WORK ORDER WAS REISSUED ON OCTOBER 23, 2012 TO REPORT THE CORRECT RESULTS FROM THE REANALYSIS OF SAMPLE VMP-21-5-092712.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:
B - Compound present in laboratory blank greater than reporting limit.
J - Estimated value.
E - Exceeds instrument calibration range.
S - Saturated peak.
Q - Exceeds quality control limits.
U - Compound analyzed for but not detected above the detection limit.
M - Reported value may be biased due to apparent matrix interferences.
File extensions may have been used on the data analysis sheets and indicates
as follows:
a-File was requantified
b-File was quantified by a second column and detector
rl-File was requantified for the purpose of reissue

eurofins

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-21-5-092712
Lab ID\#: 1210008BR1-01A

Compound	Rpt. Limit $(\%)$	Amount (\%)
Oxygen	0.33	16
Nitrogen	0.33	80
Methane	0.00033	0.000064 J
Carbon Dioxide	0.033	3.6
Helium	0.17	0.027 J

Client Sample ID: VMP-42-10-092712
Lab ID\#: 1210008BR1-02A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.27	20
Nitrogen	0.27	79
Carbon Dioxide	0.027	1.3

Client Sample ID: VMP-42-10-092712-Dup
Lab 1D\#: 1210008BR1-03A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.26	17
Nitrogen	0.26	82
Carbon Dioxide	0.026	1.1

Client Sample 1D: VMP-16-5-092712
Lab ID\#: 1210008BR1-04A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.27	13
Nitrogen	0.27	81
Methane	0.00027	0.000036 J
Carbon Dioxide	0.027	6.3
Helium	0.13	0.012 J

eurofins

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-4-5-092712
Lab ID\#: 1210008BR1-05A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.25	19
Nitrogen	0.25	79
Methane	0.00025	0.00013 J
Carbon Dioxide	0.025	0.82
Helium	0.13	0.93

Client Sample ID: VMP-11-5-092812
Lab ID\#: 1210008BR1-06A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	19
Nitrogen	0.30	79
Methane	0.00030	0.000055 J
Carbon Dioxide	0.030	1.6
Helium	0.15	0.031 J

Client Sample 1D: VMP-11-5-092812-Dup
Lab ID\#: 1210008BR1-07A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.39	19
Nitrogen	0.39	79
Methane	0.00039	0.000057 J
Carbon Dioxide	0.039	1.8
Helium	0.19	0.022 J

Client Sample 1D: VMP-13-5-092812
Lab ID\#: 1210008BR1-08A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.28	17
Nitrogen	0.28	81

eurofins

Summary of Detected Compounds
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VMP-13-5-092812

Lab ID\#: 1210008BR1-08A

Methane	0.00028	0.000073 J
Carbon Dioxide	0.028	2.4
Helium	0.14	0.050 J

Helium 0.14 0.050 J
Client Sample ID: VMP-10-5-092812
Lab ID\#: 1210008BR1-09A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.31	18
Nitrogen	0.31	80
Carbon Dioxide	0.031	1.7
Helium	0.16	0.24

Client Sample ID: VMP-10-5-092812-Dup
Lab ID\#: 1210008BRI-10A

Compound	Rpt. Limit $(\%)$	Amount $(\%)$
Oxygen	0.30	18
Nitrogen	0.30	80
Carbon Dioxide	0.030	1.6
Helium	0.15	0.026 J

Client Sample ID: VMP-21-5-092712
Lab ID\#: 1210008BR1-01A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9101907 \\ 3.34 \\ \hline \end{array}$	Date of Collection: 9/27/12 11:45:00 AM Date of Analysis: 10/19/12 03:43 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.33	16
Nitrogen		0.33	80
Carbon Monoxide		0.033	Not Detected
Methane		0.00033	0.000064 J
Carbon Dioxide		0.033	3.6
Ethane		0.0033	Not Detected
Ethene		0.0033	Not Detected
Helium		0.17	0.027 J
$J=$ Estimated valu			
Container Type: 1			

An Toxics

Client Sample 1D: VMP-42-10-092712
Lab ID\#: 1210008BRI-02A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100934 \\ 2.69 \\ \hline \end{array}$	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: $10 / 9 / 12$ 03:30 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.27	20
Nitrogen		0.27	79
Carbon Monoxide		0.027	Not Detected
Methane		0.00027	Not Detected
Carbon Dioxide		0.027	1.3
Ethane		0.0027	Not Detected
Ethene		0.0027	Not Detected
Helium		0.13	Not Detected

Container Type: 1 Liter Summa Canister

Client Sample 1D: VMP-42-10-092712-Dup
Lab ID\#: 1210008BR1-03A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100935 \\ 2.58 \\ \hline \end{array}$	Date of Collection: 9/27/12 12:47:00 PM Date of Analysis: 10/9/12 03:52 PM	
Compound		$\begin{gathered} \text { Rpt. Limit } \\ (\%) \\ \hline \end{gathered}$	Amount (\%)
Oxygen		0.26	17
Nitrogen		0.26	82
Carbon Monoxide		0.026	Not Detected
Methane		0.00026	Not Detected
Carbon Dioxide		0.026	1.1
Ethane		0.0026	Not Detected
Ethene		0.0026	Not Detected
Helium		0.13	Not Detected

Container Type: 1 Liter Summa Canister

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100936 \\ 2.69 \\ \hline \end{array}$	Date of Collection: 9/27/12 9:38:00 AM Date of Analysis: 10/9/12 04:15 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.27	13
Nitrogen		0.27	81
Carbon Monoxide		0.027	Not Detected
Methane		0.00027	0.000036 J
Carbon Dioxide		0.027	6.3
Ethane		0.0027	Not Detected
Ethene		0.0027	Not Detected
Helium		0.13	0.012 J
$\mathrm{J}=$ Estimated value			
Container Type: 1	ster		

Air Toxics

Client Sample ID: VMP-4-5-092712
Lab ID\#: 1210008BR1-05A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946		
File Name:	$\mathbf{9 1 0 0 9 3 7}$	2.52

Client Sample ID: VMP-11-5-092812
Lab ID\#: 1210008BR1-06A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Client Sample ID: VMP-13-5-092812

Lab ID\#: 1210008BR1-08A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

eurofins

Client Sample ID: VMP-10-5-092812

Lab ID\#: 1210008BR1-09A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100941 \\ 3.11 \\ \hline \end{array}$		Date of Collection: 9/28/12 12:16:00 PM Date of Analysis: 10/9/12 06:39 PM
Compound		Rpt. Limit (\%)	Amount (\%)
Oxygen		0.31	18
Nitrogen		0.34	80
Carbon Monoxide		0.031	Not Detected
Methane		0.00031	Not Detected
Carbon Dioxide		0.031	1.7
Ethane		0.0031	Not Detected
Ethene		0.0031	Not Detected
Helium		0.16	0.24

Container Type: 1 Liter Summa Canister

eurofins

Client Sample ID: VMP-10-5-092812-Dup

Lab ID\#: 1210008BR1-10A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: Lab Blank
 Lab 1D\#: 1210008BR1-11A
 NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: Lab Blank
 Lab ID\#: 1210008BR1-11B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9100927 b	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 10/9/12 10:47 AM	
		Rpt. Limit	Amount
Compound	$(\%)$	(\%)	
Helium		0.050	Not Detected

Container Type: NA - Not Applicable

Client Sample ID: Lab Blank

Lab ID\#: 1210008BR1-11C
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

An Toxics

Client Sample 1D: Lab Blank
Lab ID\#: 1210008BR1-11D
NATURAL, GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9101905 \mathrm{~b} \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/19/12 02:42 PM	
Compound		Rpt. Limit (\%)	Amount (\%)
Helium		0.050	Not Detected

Container Type: NA - Not Applicable

Client Sample ID: LCS

Lab ID\#: 1210008BR1-12A
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100926 \\ 1.00 \\ \hline \end{array}$	Date of Collection: NA Date of Analysis: 10/9/12 10:21 AM
Compound		\%Recovery
Oxygen		100
Nitrogen		100
Carbon Monoxide		99
Methane		98
Carbon Dioxide		100
Ethane		99
Ethene		96
Helium		100

Container Type: NA - Not Applicable

Client Sample ID: LCSD
Lab ID\#: 1210008BR1-12AA
NATURAL GAS ANAL YSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	$\begin{array}{r} 9100946 \\ 1.00 \end{array}$	Date of Collection: NA Date of Analysis: 10/9/12 08:49 PM	
Compound			\%Recov
Oxygen			99
Nitrogen			100
Carbon Monoxide			95
Methane			98
Carbon Dioxide			103
Ethane			99
Ethene			96
Helium			100

Container Type: NA - Not Applicable

Client Sample ID: LCS
 Lab IDH: 1210008BR1-12B

NATURAL GASANALYSIS BY MODIFIED ASTM D-1946

Fite Name:	9101902	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: $10 / 19 / 12$ 12:49 PM

Compound \%Recovery
Oxygen 98
Nitrogen 100
Carbon Monoxide 99
Methane 98
Carbon Dioxide 100
Ethane 100
Ethene 97
Helium 100
Container Type: NA - Not Applicable

Client Sample ID: LCSD
Lab ID\#: 1210008BR1-12BB
NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9101916	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/19/12 09:49 PM

Compound \%Recovery
Oxygen 98
Nitrogen 100
Carbon Monoxide 101
Methane 99
Carbon Dioxide 100
Ethane 101
Ethene 98
Helium 110
Container Type: NA - Not Applicable

Shell Oil Products Chain Of Custody Record
URES

[^0]: ${ }^{1}$ ConocoPhillips Company announced the separation of the Refining and Marketing business from the Exploration \& Production business on July 14, 2011. The separation included an ownership change as well as a name change that became effective May 1, 2012. Phillips 66 is now the operator of the WRB WRR.
 ${ }^{2}$ Phillips 66 Air Sampling Plan, dated June 8, 2012
 ${ }^{3}$ WRB, formed January 1, 2007, is a 50/50 joint venture between ConocoPhillips (COP) and EnCana US Refineries, LLC (now known as Cenovus Energy, Inc.).
 21562735. 10100

[^1]: ${ }^{4}$ The purge volume was calculated using the following assumptions: vapor port tubing ($1 / 8$-in diameter): 2.41 $\mathrm{ml} /$ foot (single volume) and sample train assembly ($1 / 4$-in diameter): $9.65 \mathrm{~mL} /$ foot (single volume).

[^2]: ${ }^{5}$ The analyte list includes constituents on the SOPUS Roxana quarterly soil vapor program plus those on the P66 Air Sampling Plan dated June 8, 2012.

[^3]: T 1 916-985-1000
 F $-916.985 \cdot 2020$
 mwnairtexics.com

[^4]: T:916-985-:000
 F : 916.985 .1020
 wwwairtcxicc,com

[^5]: This report stall not be reproduced, except in fill, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563
 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

[^6]: as follows:
 a-File was requantified
 b-File was quantified by a second column and detector
 rl-File was requantified for the purpose of reissue

[^7]: T:916-985-1000

[^8]:

[^9]: This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc
 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

[^10]: This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.
 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA -9563 (916) 985-1000. (800) 985-5955 . FAX (916) 985-1020

[^11]: This report shall not be reprotheed, except in full, without the written appronal of Eurofins Air Toxics, lux.

[^12]:

[^13]:

[^14]:

