

April 14, 2011

Mr. Steven F. Nightingale, P.E. Manager, Permit Section Illinois Environmental Protection Agency Bureau of Land 1021 North Grand Avenue East Springfield, Illinois 62794

Subject: Groundwater Monitoring Report – 1st Quarter 2011

Roxana, Illinois

119115002 - Madison County

Equilon Enterprises LLC d/b/a Shell Oil Products US

Log No. B-43-CA-16 and 18

Dear Mr. Nightingale:

On behalf of Shell Oil Products US, URS Corporation is submitting the enclosed report for your review. This sampling was required by Condition 7 of the Agency's letter dated August 5, 2010.

If you have any questions during your review, please contact Kevin Dyer, SOPUS project manager, at kevin.dyer@shell.com (618/288-7237), or me at bob_billman@urscorp.com (314/743-4108).

Sincerely,

Robert B. Billman

Senior Project Manager

Lebat B Bellman

Enclosures: RCRA Corrective Action Certification and Report (original plus 2 copies)

Cc: Kevin Dyer, SOPUS

Marty Reynolds, Village of Roxana Eric Petersen, ConocoPhillips

1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110

Phone: 314.429.0100 Fax: 314.429.0462

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

Name: WRB Refining LLC - Wood River Refinery	County: Madison
	· · · · · · · · · · · · · · · · · · ·
Street Address: 900 South Central Ave.	·
City: Roxana, IL 62084	
OWNER INFORMATION	3.0 OPERATOR INFORMATION
Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
Mailing Address:	17 Junction Drive, PMB #399
	Glen Carbon, IL 62034
Contact Name:	Kevin Dyer
Contact Title:	Principal Program Manager
Phone No.:	618-288-7237
TYPE OF SUBMISSION (check applicable item and	provide requested information, as applicable)
☐ RFI Phase I Workplan/Report ☐ RFI Phase II Workplan/Report ☐ CMP Report; Phase ☐ Other (describe): Groundwater Sampling Report – 1st Quarter 2011 Date of Submittal	IEPA Permit Log No
DESCRIPTION OF SUBMITTAL : (briefly describe	what is being submitted and its purpose)
Groundwater sampling report for the 1st quarter 2011 s	ampling event in the project area in the Village of Roxana.
DOCUMENTS SUBMITTED (identify all documents	s in submittal, including cover letter; give dates of all documents)
Cover letter, RCRA Corrective Action Certification and	1 Groundwater Sampling Report – 1st Quarter 2011, dated 4-14-//

7.0 CERTIFICATION STATEMENT - (This statement is part of the overall certification being provided by the owner/operator, professional and laboratory in Items 7.1, 7.2 and 7.3 below). The activities described in the subject submittals have been carried out in accordance with procedures approved by Illinois EPA. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

IEPA	RCRA Corrective Action Certification		
	Equilon Enterprises LLC d/b/a Shell Oil Products US		
	of Submission: 4-14-11		
Page 2	2		
7.1	OWNER/OPERATOR CERTIFICATION (Must be complesed forth in 35 IAC 702.126.) All submittals pertaining to the signed by the person designated below (or by a duly authorized.) 1. For a Corporation, by a principal executive office 2. For a Partnership or Sole Proprietorship, by a general 3. For a Governmental Entity, by either a principal A person is a duly authorized representative only if: 1. the authorization is made in writing by a person the written authorization is provided with this sused).	cer of at least the level of vice-president. eneral partner or the proprietor, respective l executive officer or a ranking elected off described above; and	ly. icial.
	Owner Signature:		
		(Date)	
	Title:		
	Operator Signature Aven E New	4/14/11	
	Operator Signature.	(Date)	
	Title: Principal Program Manager		
7.2	PROFESSIONAL CERTIFICATION (if necessary) - Work to other laws governing professional services, such as the Illin Engineering Practice Act of 1989, the Professional Geologist I 1989. No one is relieved from compliance with these laws and within the scope and definitions of these laws must be perform discovered violation of these laws to the appropriate regulating Professional's Signature:	ois Professional Land Surveyor Act of 198 Licensing Act, and the Structural Engineer I the regulations adopted pursuant to these led in compliance with them. The Illinois grauthority.	39, the Professional ing Licensing Act of laws. All work that falls
	Professional Names Balance B. Billione	PROFE Date MAL	
	Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West	Propertional's Seal: ROBERT B. BILLM 196-000646	AN ST
	St. Louis, MO 63110		
	Professional's Phone No.: 314-743-4108	$ \setminus$	
7.3	<u>LABORATORY CERTIFICATION</u> (if necessary) - The sar efforts for which this laboratory was responsible were carried	nple collection, handling, preservation, proput in accordance with procedures approve	eparation and analysised by Illinois EPA
	Name of Laboratory		
		Signature of Laboratory Responsible Officer	Date
	Mailing Address of Laboratory	1000	
		Name and Title of Laboratory Resp	oonsible Officer

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LLC - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): 1191150002
	City: Roxana, IL 62084	Site No. (USEPA): ILD 080 012 305
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
		Glen Carbon, IL 62034
	Contact Name;	Kevin Dyer
	Contact Title:	
	Phone No.:	618-288-7237
4.0	TYPE OF SUBMISSION (check applicable item and p	provide requested information, as applicable)
	RFI Phase I Workplan/Report	IEPA Permit Log No.
	RFI Phase II Workplan/Report CMP Report; Phase	Date of Last IEPA Letter on Project 4/6/11
	Other (describe);	Log No. of Last IEPA
	Groundwater Sampling Report - 1st Quarter 2011	Letter on Project B-43R-CA-9
	Date of Submittal 4-14-11	Does this submittal include groundwater information: X Yes No
5.0	DESCRIPTION OF SUBMITTAL: (briefly describe	what is being submitted and its purpose)
	Groundwater sampling report for the 1st quarter 2011 sa	mpling event in the project area in the Village of Roxana.
6.0	DOCUMENTS SUBMITTED (identify all documents in	in submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification and	Groundwater Sampling Report - 1st Quarter 2011, dated 4-14-11
7.0	carried out in accordance with procedures approved by II attachments were prepared under my direction or supervipersonnel properly gather and evaluate the information system, or those persons directly responsible for gathering	part of the overall certification being provided by the owner/operator, low). The activities described in the subject submittals have been linois EPA. I certify under penalty of law that this document and all sion in accordance with a system designed to assure that qualified ibmitted. Based on my inquiry of the person or persons who manage the gate information, the information submitted is, to the best of my aware that there are significant penalties for submitting false inment for knowing violations.

	of Submission: 4-14-11	
Pag	2	
7.1	For a Corporation, by a principal executive For a Partnership or Sole Proprietorship, by For a Governmental Entity, by either a principal executive only if: the authorization is made in writing by a per	empleted for all submittals. Certification and signature requirements at the corrective action requirements set forth in a RCRA Permit must be orized representative of that person): cofficer of at least the level of vice-president. y a general partner or the proprietor, respectively. icipal executive officer or a ranking elected official. erson described above; and his submittal (a copy of a previously submitted authorization can be
	Owner Signature:	
	Title:	(Date)
	Operator Signature:	(Date)
	Title: Principal Program Manager	
7.2	to other laws governing professional services, such as the Il	fork carried out in this submittal or the regulations may also be subject illinois Professional Land Surveyor Act of 1989, the Professional in Linguist Act, and the Structural Engineering Linguist Engineering L
7,2	to other laws governing professional services, such as the Il Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfediscovered violation of these laws to the appropriate regulations.	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority.
7.2	to other laws governing professional services, such as the Il Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performance.	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority.
7.2	to other laws governing professional services, such as the Il Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfediscovered violation of these laws to the appropriate regulations.	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed violation of these laws to the appropriate regular Professional's Signature:	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regular Professional's Signature: Professional's Name: Robert B. Billman	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regular Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The second street and	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal:
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The second street and	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that fallsormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal: sample collection, handling, preservation, preparation and analysis dout in accordance with procedures approved by Illinois EPA.
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfodiscovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sefforts for which this laboratory was responsible were carried Name of Laboratory	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal: sample collection, handling, preservation, preparation and analysis d out in accordance with procedures approved by Illinois EPA. Signature of Laboratory Date Professional Search Administration and Analysis Date
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfodiscovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sefforts for which this laboratory was responsible were carried Name of Laboratory Accutest Laboratories	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal: sample collection, handling, preservation, preparation and analysis d out in accordance with procedures approved by Illinois EPA. Signature of Laboratory Date Professional Search Administration and Analysis Date
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfodiscovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sefforts for which this laboratory was responsible were carried Name of Laboratory Accutest Laboratories 195 Technology Center West Building One	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal: sample collection, handling, preservation, preparation and analysis d out in accordance with procedures approved by Illinois EPA. Signature of Laboratory Date
7.2	to other laws governing professional services, such as the II Engineering Practice Act of 1989, the Professional Geologi 1989. No one is relieved from compliance with these laws within the scope and definitions of these laws must be perfodiscovered violation of these laws to the appropriate regulated Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sefforts for which this laboratory was responsible were carried Name of Laboratory Accutest Laboratories 495 Technology Center West	llinois Professional Land Surveyor Act of 1989, the Professional ist Licensing Act, and the Structural Engineering Licensing Act of and the regulations adopted pursuant to these laws. All work that falls ormed in compliance with them. The Illinois EPA may refer any ting authority. Date: Professional's Seal: sample collection, handling, preservation, preparation and analysis d out in accordance with procedures approved by Illinois EPA. Signature of Laboratory Responsible Officer La Zu Tan J Laborator Oive C7

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LLC - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): 1191150002
	City: Roxana, IL 62084	Site No. (USEPA): ILD 080 012 305
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
	<u></u>	Glen Carbon, IL 62034
	Contact Name:	Kevin Dyer
	Contact Title:	Principal Program Manager
	Phone No.;	618-288-7237
4.0	TYPE OF SUBMISSION (check applicable item and pr	rovide requested information, as applicable)
	RFI Phase I Workplan/Report	IEPA Permit Log No.
	RFI Phase II Workplan/Report	Date of Last IEPA Letter
	CMP Report; Phase	on Project 4/6/11 Log No. of Last IEPA
	Groundwater Sampling Report – 1st Quarter 2011	Letter on Project B-43R-CA-9
	Date of Submittal 4-14-11	Does this submittal include groundwater information: X Yes No
5.0	DESCRIPTION OF SUBMITTAL : (briefly describe w	what is being submitted and its purpose)
	Groundwater sampling report for the 1st quarter 2011 sam	npling event in the project area in the Village of Roxana.
6.0	<u>DOCUMENTS SUBMITTED</u> (identify all documents in	n submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification and C	Groundwater Sampling Report - 1st Quarter 2011, dated 4-14-11
7.0	professional and laboratory in Items 7.1, 7.2 and 7.3 bel carried out in accordance with procedures approved by Illi attachments were prepared under my direction or supervis personnel properly gather and evaluate the information sul	part of the overall certification being provided by the owner/operator, ow). The activities described in the subject submittals have been inois EPA. I certify under penalty of law that this document and all ion in accordance with a system designed to assure that qualified bmitted. Based on my inquiry of the person or persons who manage the the information, the information submitted is to the best of my

7.0 knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Page	e of Submission: 4-)4-()	
7.1	OWNER/OPERATOR CERTIFICATION (Must be completed set forth in 35 IAC 702.126.) All submittals pertaining to the consigned by the person designated below (or by a duly authorized 1. For a Corporation, by a principal executive office 2. For a Partnership or Sole Proprietorship, by a get 3. For a Governmental Entity, by either a principal A person is a duly authorized representative only if: 1. the authorization is made in writing by a person of the complete set of	er of at least the level of vice-president. neral partner or the proprietor, respectively. executive officer or a ranking elected official.
	Owner Signature:	
	Title:	(Date)
	Operator Signature:	
	Title: Principal Program Manager	(Date)
		arried out in this submittal or the regulations may also be su
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a	s Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any outhority.
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature:	s Professional Land Surveyor Act of 1989, the Professional tensing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date:
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman	s Professional Land Surveyor Act of 1989, the Professional tensing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal:
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature:	s Professional Land Surveyor Act of 1989, the Professional tensing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal:
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman	s Professional Land Surveyor Act of 1989, the Professional tensing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal:
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation	s Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal:
	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West	s Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work this in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal:
a de la companya de l	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110	s Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act are regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal: e collection, handling, preservation, preparation and analysin accordance with procedures approved by Illinois EPA.
<u> </u>	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sample	s Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act are regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal: e collection, handling, preservation, preparation and analysin accordance with procedures approved by Illinois EPA.
(a)	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sample efforts for which this laboratory was responsible were carried out	Professional Land Surveyor Act of 1989, the Professional censing Act, and the Structural Engineering Licensing Act are regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal: e collection, handling, preservation, preparation and analysin accordance with procedures approved by Illinois EPA. Signature of Laboratory Responsible Officer Date
3	Engineering Practice Act of 1989, the Professional Geologist Lic 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed discovered violation of these laws to the appropriate regulating a Professional's Signature: Professional's Name: Robert B. Billman Professional's Address: URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 Professional's Phone No.: 314-743-4108 LABORATORY CERTIFICATION (if necessary) - The sample efforts for which this laboratory was responsible were carried out	Professional Land Surveyor Act of 1989, the Professional tensing Act, and the Structural Engineering Licensing Act on regulations adopted pursuant to these laws. All work the in compliance with them. The Illinois EPA may refer any uthority. Date: Professional's Seal: e collection, handling, preservation, preparation and analysin accordance with procedures approved by Illinois EPA. Signature of Laboratory Date

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LLC - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): 1191150002
	City: Roxana, IL 62084	Site No. (USEPA): ILD 080 012 305
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
	<u> </u>	Glen Carbon, IL 62034
	Contact Name:	Kevin Dyer
	Contact Title:	Principal Program Manager
	Phone No.:	618-288-7237
4.0	TYPE OF SUBMISSION (check applicable item and pr	rovide requested information, as applicable)
	☐ RFI Phase I Workplan/Report ☐ RFI Phase II Workplan/Report ☐ CMP Report; Phase ☑ Other (describe): Groundwater Sampling Report - 1st Quarter 2011 Date of Submittal 4-14-11	IEPA Permit Log No
5.0	DESCRIPTION OF SUBMITTAL : (briefly describe w	hat is being submitted and its purpose)
	Groundwater sampling report for the 1st quarter 2011 sam	npling event in the project area in the Village of Roxana.
6.0	<u>DOCUMENTS SUBMITTED</u> (identify all documents in	a submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification and C	Groundwater Sampling Report - 1st Quarter 2011, dated 4-14-11
7.0	professional and laboratory in Items 7.1, 7.2 and 7.3 bel carried out in accordance with procedures approved by Ill-	part of the overall certification being provided by the owner/operator, ow). The activities described in the subject submittals have been inois EPA. I certify under penalty of law that this document and all ion in accordance with a system designed to assure that qualified bmitted. Based on my inquiry of the person or persons who manage the the information, the information submitted is, to the best of my aware that there are significant penalties for submitting false ment for knowing violations.

		4-14-11							
Pag	e 2								
7.1	1. Fo 2. Fo 3. Fo A person is a duly 1. the 2. the	ATOR CERTIFICATION (Must C 702.126.) All submittals pertain son designated below (or by a duly or a Corporation, by a principal exert a Partnership or Sole Proprietors or a Governmental Entity, by either y authorized representative only if: a authorization is made in writing to written authorization is provided ed).	ecutive officer ship, by a gen- a principal e by a person de	of at least the control of the contr	the level of or the prop icer or a rand	f vice-pres prietor, res inking elec	ident. pectively. sted officia	al.	
	Owner Signature:								
	Title					(D	ate)		
	Thie:				,				
	Operator Signature	e:							
	male, neie	ainal Danasan Managan				(Di	ate)		
	Title: Prin	cipal Program Manager		· - · · · · · · · · · · · · · · · · · ·					
7.2	to other laws gove Engineering Practi 1989. No one is re within the scope as	L CERTIFICATION (if necessar raning professional services, such a fice Act of 1989, the Professional C elieved from compliance with these and definitions of these laws must b on of these laws to the appropriate	s the Illinois Geologist Lice e laws and the e performed	Professional nsing Act, a cregulations n complian	I Land Sur and the Str s adopted p	veyor Act uctural En pursuant to	of 1989, to gineering these law	the Profession Licensing A vs. All work	onal act of that fai
1.2	to other laws gove Engineering Practi 1989. No one is re within the scope at discovered violation Professional's Sign	arning professional services, such a ice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be on of these laws to the appropriate mature:	s the Illinois Geologist Lice e laws and the e performed regulating au	Professional nsing Act, a c regulations in compliand thority.	I Land Sur and the Str s adopted p	veyor Act uctural En pursuant to	of 1989, t gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fai
1.2	to other laws gove Engineering Practi 1989. No one is re within the scope at discovered violation Professional's Sign	rning professional services, such a ice Act of 1989, the Professional C elieved from compliance with these and definitions of these laws must be on of these laws to the appropriate	s the Illinois Geologist Lice e laws and the e performed regulating au	Professional nsing Act, a c regulations in compliand thority.	I Land Sur and the Str s adopted p ce with the	veyor Act uctural En pursuant to em. The Il	of 1989, to gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fai
1.2	to other laws gove Engineering Practi 1989. No one is re within the scope at discovered violation Professional's Sign Professional's Name	arning professional services, such a ice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be on of these laws to the appropriate mature:	s the Illinois Geologist Lice e laws and the performed regulating au	Professional nsing Act, a regulations in compliane thority.	I Land Sur and the Str s adopted p ce with the	veyor Act nectural En pursuant to em. The II	of 1989, to gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fa
1.2	to other laws gove Engineering Practi 1989. No one is re within the scope at discovered violation Professional's Sign Professional's Name	arning professional services, such a ice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be on of these laws to the appropriate mature:	s the Illinois Geologist Lice e laws and the performed regulating au	Professional nsing Act, a regulations in compliance thority.	I Land Sur and the Str s adopted p ce with the	veyor Act uctural En pursuant to em. The Il	of 1989, to gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fai
1.2	to other laws gove Engineering Practi 1989. No one is re within the scope at discovered violation Professional's Sign Professional's Name	arning professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be on of these laws to the appropriate mature: Robert B. Billman	s the Illinois Geologist Lice e laws and the performed regulating au	Professional nsing Act, a regulations n compliand thority.	I Land Sur and the Str s adopted p ce with the	veyor Act uctural En pursuant to em. The Il	of 1989, to gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fai
12	to other laws gove Engineering Practi 1989. No one is re within the scope and discovered violation Professional's Sign Professional's Nam Professional's Add	arning professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: ne: Robert B. Billman lress: URS Corporation 1001 Highlands Plaza Drive	s the Illinois Seologist Lice e laws and the performed regulating au	Professional nsing Act, a regulations n compliand thority.	I Land Sur and the Str s adopted p ce with the	veyor Act uctural En pursuant to em. The Il	of 1989, to gineering these law linois EPA	the Profession Licensing A vs. All work	onal act of that fai
7.3	to other laws gove Engineering Practi 1989. No one is re within the scope and discovered violation Professional's Sign Professional's Nam Professional's Add Professional's Phore LABORATORY C	arning professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: The: Robert B. Billman Tress: URS Corporation 1001 Highlands Plaza Drive St. Louis, MO 63110	s the Illinois Geologist Lice e laws and the performed regulating au West	Professional nsing Act, a regulations n compliance thority.	I Land Sur and the Str s adopted p ce with the Profession	veyor Act uctural En pursuant to em. The II Dat onal's Seal	of 1989, to gineering to these law linois EPA	the Profession Licensing A vs. All work A may refer ation and an Illinois EP	onal act of a that fai any alysis A.
7.3	to other laws gove Engineering Practi 1989. No one is rewithin the scope and discovered violatic Professional's Sign Professional's Nam Professional's Add Professional's Phoressional's P	aming professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: Robert B. Billman	s the Illinois Geologist Lice e laws and the performed regulating au West The sample carried out in	Professional nsing Act, a regulations n compliand thority.	I Land Sur and the Str s adopted p ce with the Profession	veyor Act uctural En pursuant to em. The II Dat onal's Seal	of 1989, to gineering to these law linois EPA	the Profession Licensing A vs. All work A may refer ation and an Illinois EP	onal act of a that fai any alysis A.
7.3	to other laws gove Engineering Practi 1989. No one is rewithin the scope and discovered violation Professional's Sign Professional's Name Professional's Add Professional's Phore LABORATORY Cefforts for which the Name of Laboratory	aming professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: The Robert B. Billman The St. Louis, MO 63110 The No.: 314-743-4108 CERTIFICATION (if necessary) is laboratory was responsible were	s the Illinois Geologist Lice e laws and the performed regulating au West The sample carried out in	Professional nsing Act, a regulations n compliance thority. collection, n accordance	I Land Sur and the Str s adopted p ce with the Profession	preservation appreservation appreser	of 1989, to gineering to these law linois EPA	the Profession Licensing A vs. All work A may refer ation and an Illinois EP Date	alysis
7.3	to other laws gove Engineering Practi 1989. No one is rewithin the scope and discovered violation Professional's Sign Professional's Name Professional's Add Professional's Phore LABORATORY Cefforts for which the Name of Laboratory Accutest Lab	aming professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: The: Robert B. Billman The St. Louis, MO 63110 The No.: 314-743-4108 CERTIFICATION (if necessary) is laboratory was responsible were	s the Illinois Geologist Lice e laws and the performed regulating au West The sample carried out in	Professional nsing Act, a regulations n compliant thority. collection, n accordance Responsi	handling, be with coffice of Laborable Office	preservation appreservation appreser	of 1989, to gineering to these law linois EPA	the Profession Licensing A vs. All work A may refer ation and an Illinois EP Date	alysis
7.3	to other laws gove Engineering Practi 1989. No one is rewithin the scope and discovered violation Professional's Sign Professional's Name Professional's Add Professional's Phore LABORATORY Cefforts for which the Name of Laboratory Accutest Lab	aming professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: me: Robert B. Billman lress: URS Corporation 1001 Highlands Plaza Drive St. Louis, MO 63110 me No.: 314-743-4108 CERTIFICATION (if necessary) is laboratory was responsible were	s the Illinois Geologist Lice e laws and the performed regulating au West The sample carried out in	professional nsing Act, as regulations in compliant thority. collection, a accordance Response	handling, the of Laborable Office	preservation codures appreservation codures a	of 1989, to gineering these law linois EP/	ation and an Illinois EP	onal act of that fai any alysis A.
7.3	to other laws gove Engineering Practi 1989. No one is rewithin the scope and discovered violation Professional's Sign Professional's Name Professional's Add Professional's Phore LABORATORY Cefforts for which the Name of Laboratory Accutest Lab 1995 Technology	aming professional services, such a lice Act of 1989, the Professional Celieved from compliance with these and definitions of these laws must be not of these laws to the appropriate mature: Compared to the compliance with these and definitions of these laws must be not of these laws to the appropriate mature:	s the Illinois Geologist Lice e laws and the performed regulating au West The sample carried out in	professional nsing Act, as regulations in compliant thority. collection, a accordance Response	handling, the of Laborable Office	preservation codures appreservation codures a	of 1989, to gineering these law linois EP/	the Profession Licensing A vs. All work A may refer ation and an Illinois EP Date	alysis

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LLC - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): 1191150002
	City: Roxana, IL 62084	Site No. (USEPA): ILD 080 012 305
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
		Glen Carbon, IL 62034
	Contact Name:	
	Contact Title:	Principal Program Manager
	Phone No.:	
4.0	TYPE OF SUBMISSION (check applicable item and p	provide requested information, as applicable)
	☐ RFI Phase I Workplan/Report ☐ RFI Phase II Workplan/Report ☐ CMP Report; Phase ☐ Other (describe): Groundwater Sampling Report - 1st Quarter 2011 Date of Submittal ☐ ☐ - 14 - 11	IEPA Permit Log No
5.0	<u>DESCRIPTION OF SUBMITTAL</u> : (briefly describe	what is being submitted and its purpose)
	Groundwater sampling report for the 1st quarter 2011 sa	impling event in the project area in the Village of Roxana.
6.0	<u>DOCUMENTS SUBMITTED</u> (identify all documents	in submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification and	Groundwater Sampling Report - 1st Quarter 2011, dated 4-14-11
.0	professional and laboratory in Items 7.1, 7.2 and 7.3 be carried out in accordance with procedures approved by II attachments were prepared under my direction or supervipersonnel properly gather and evaluate the information superview or those persons directly responsible for gatherin	s part of the overall certification being provided by the owner/operator, elow). The activities described in the subject submittals have been liinois EPA. I certify under penalty of law that this document and all ision in accordance with a system designed to assure that qualified ubmitted. Based on my inquiry of the person or persons who manage the g the information, the information submitted is, to the best of my a aware that there are significant penalties for submitting false upment for knowing violations.

7. information, including the possibility of fine and imprisonment for knowing vio

		4-14-11	•					
Page 7.1		ም አጥሰው ሮም የፕሞር ልጣነሰ	N (Must be comple	ted for all cub	mittale Cart	fication and	cionature requi	iramente ar
7.1	1.	PERATOR CERTIFICATIO 5 IAC 702,126.) All submittal person designated below (or be For a Corporation, by a prince	cipal executive offic	er of at least t	he level of vi	ce-president.		mit must be
	2. 3.	For a Partnership or Sole Pro For a Governmental Entity, b						
		duly authorized representative		ONCOUNTY OIL	icci of a rank	ing ciccica of	inciai.	
	1.	the authorization is made in		described abo	ve; and			
	2.	the written authorization is pused).	rovided with this su	bmittal (a cop	y of a previo	usly submitte	ed authorization	n can be
	Owner Signate	ture:				(D.44)		
	Title:					(Date)		
	Operator Sign	nature:		····		(Data)		
	Title:	Principal Program Manager				(Date)		
7.2		ALLE CONTROL OF CATALOG CO.	maaaaaaan Nasala			44		1
,,2	to other laws g Engineering P. 1989. No one within the scop	ponal CERTIFICATION (if if governing professional service Practice Act of 1989, the Profess is relieved from compliance vipe and definitions of these law plation of these laws to the app	s, such as the Illino ssional Geologist Li with these laws and is must be performe	s Professional censing Act, a the regulations d in complian	I Land Survey and the Struct s adopted pur	yor Act of 198 ural Engineer suant to these	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
7.2	to other laws g Engineering P. 1989. No one within the scop discovered vio	governing professional service ractice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law	s, such as the Illino ssional Geologist Li with these laws and is must be performe ropriate regulating	s Professional censing Act, at the regulation of in compliant authority.	I Land Survey and the Struct is adopted pur- ce with them.	yor Act of 199 ural Engineer suant to these The Illinois	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
7.0	to other laws g Engineering P 1989. No one within the sco discovered vio Professional's	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app	s, such as the Illino ssional Geologist Li vith these laws and is must be performe ropriate regulating	s Professional censing Act, a the regulations d in compliant authority.	I Land Surve and the Struct s adopted pur ce with them.	yor Act of 199 ural Engineer suant to these The Illinois Date:	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
,,,	to other laws g Engineering P 1989. No one within the sco discovered vio Professional's	governing professional service Practice Act of 1989, the Profes is relieved from compliance upe and definitions of these law plation of these laws to the app	s, such as the Illino ssional Geologist Li vith these laws and is must be performe ropriate regulating	s Professional censing Act, a the regulations d in compliant authority.	I Land Survey and the Struct is adopted pur- ce with them.	yor Act of 199 ural Engineer suant to these The Illinois Date:	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
,,,	to other laws g Engineering P 1989. No one within the sco discovered vio Professional's	governing professional service Practice Act of 1989, the Professis relieved from compliance was per and definitions of these law plation of these laws to the appoint of the service of the service signature: Name: Robert B. Billman	s, such as the Illino ssional Geologist Li vith these laws and is must be performe ropriate regulating	s Professional censing Act, a the regulations d in compliant authority.	I Land Surve and the Struct s adopted pur ce with them.	yor Act of 199 ural Engineer suant to these The Illinois Date:	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
7.2	to other laws g Engineering P 1989. No one within the sco discovered vio Professional's	governing professional service Practice Act of 1989, the Professis relieved from compliance where and definitions of these laws to the appoint of these laws to the appoint of the profession of these laws to the appoint of the profession of the pr	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating	s Professional censing Act, a the regulations of in compliant authority.	I Land Surve and the Struct s adopted pur ce with them.	yor Act of 199 ural Engineer suant to these The Illinois Date:	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law olation of these laws to the app is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating	s Professional censing Act, a the regulations d in complian authority.	I Land Surve and the Struct s adopted pur ce with them.	yor Act of 199 ural Engineer suant to these The Illinois Date:	89, the Profess ring Licensing e laws. All wo	sional Act of ork that fall
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311	s, such as the Illino ssional Geologist Livith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp	s Professional censing Act, a the regulations d in compliant authority.	l Land Survey and the Struct s adopted pur ce with them. Professional handling, pre-	yor Act of 199 ural Engineer suant to these The Illinois Date: al's Seal:	89, the Profess ring Licensing e laws. All wo EPA may refe	sional Act of ork that fall er any
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's Professional's	governing professional service Practice Act of 1989, the Profes Is relieved from compliance v pe and definitions of these law plation of these laws to the app Is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of in compliant authority.	l Land Survey and the Struct s adopted pur ce with them. Professional handling, pre-	yor Act of 199 ural Engineer suant to these The Illinois Date: al's Seal:	89, the Profess ring Licensing e laws. All wo EPA may refe	sional Act of ork that fall er any
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's Professional's LABORATOI efforts for which	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne ch this laboratory was responsi	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of th	l Land Survey and the Struct s adopted pur ce with them. Professional handling, prese with process of Laborato in the Officer of Laborato.	yor Act of 199 ural Engineer suant to these The Illinois Date: d's Seal:	89, the Profess ring Licensing e laws. All wo EPA may refe eparation and a ed by Illinois E	analysis
7.3	to other laws g Engineering P. 1989. No one within the scop discovered vio Professional's Professional's Professional's Professional's ABORATOM efforts for which Name of Labor	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne ch this laboratory was responsi	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of th	l Land Survey and the Struct s adopted pur ce with them. Professional handling, prese with process of Laborato in the Officer of Laborato.	yor Act of 199 ural Engineer suant to these The Illinois Date: d's Seal:	89, the Profess ring Licensing e laws. All wo EPA may refe eparation and a ed by Illinois E	analysis
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's Professional's ABORATO efforts for which Name of Labor Accutest 1 495 Techn	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne ch this laboratory was responsi- ratory Laboratories nology Center West	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of in compliant authority. The collection, the accordance of the collection o	handling, pree with process of Laborato ible Officer	por Act of 199 ural Engineer suant to these The Illinois Date: al's Seal:	eparation and a	analysis
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's Professional's LABORATOI efforts for which Name of Labor Accutest 1 495 Techn Building C	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne ch this laboratory was responsi- ratory Laboratories nology Center West	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of in compliant authority. The collection, the accordance of the collection o	handling, pree with process of Laborato ible Officer	por Act of 199 ural Engineer suant to these The Illinois Date: al's Seal:	89, the Profess ring Licensing e laws. All wo EPA may refe eparation and a ed by Illinois E	analysis
7.3	to other laws g Engineering P. 1989. No one within the sco discovered vio Professional's Professional's Professional's Professional's ABORATOI efforts for which Name of Labor Accutest 1 495 Techn Building C	governing professional service Practice Act of 1989, the Profes is relieved from compliance v pe and definitions of these law plation of these laws to the app is Signature: Name: Robert B. Billman Address: URS Corporation 1001 Highlands Pla St. Louis, MO 6311 Phone No.: 314-743-4108 RY CERTIFICATION (if ne ch this laboratory was responsi- ratory Laboratories nology Center West One MA 01752	s, such as the Illino ssional Geologist Li vith these laws and rs must be performe ropriate regulating za Drive West 0 cessary) - The samp ible were carried ou	s Professional censing Act, a the regulations of in compliant authority. The collection, the accordance of the collection o	handling, pree with process of Laborato ible Officer	yor Act of 199 ural Engineer suant to these The Illinois Date: al's Seal:	eparation and a	analysis

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

-	ACILITY IDENTIFICATION	
	ame: WRB Refining LLC - Wood River Refinery	
	reet Address: 900 South Central Ave.	
Ci	ity: Roxana, IL 62084	Site No. (USEPA): <u>ILD 080 012 305</u>
<u>o</u>	WNER INFORMATION	3.0 OPERATOR INFORMATION
Na	ame: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	ailing ddress:	17 Junction Drive, PMB #399
	**************************************	Glen Carbon, IL 62034
Co	ontact Name:	
	ontact Title:	
Ph	one No.:	618-288-7237
TY	YPE OF SUBMISSION (check applicable item and pr	rovide requested information, as applicable)
	RFI Phase I Workplan/Report	IEPA Permit Log No.
	RFI Phase II Workplan/Report	Date of Last IEPA Letter
	CMP Report; Phase	on Project 4/6/11
	Other (describe): oundwater Sampling Report – 1st Quarter 2011	Log No. of Last IEPA Letter on Project B-43R-CA-9
Da	te of Submittal 4-14-11	Does this submittal include groundwater information: Yes \(\subseteq \) No
DE	SCRIPTION OF SUBMITTAL: (briefly describe w	hat is being submitted and its purpose)
Gro	oundwater sampling report for the 1st quarter 2011 san	npling event in the project area in the Village of Roxana.
DO	OCUMENTS SUBMITTED (identify all documents in	n submittal, including cover letter; give dates of all documents)
Cov	ver letter, RCRA Corrective Action Certification and (Groundwater Sampling Report - 1st Quarter 2011, dated 4-14-11
atta pers	ried out in accordance with procedures approved by Illi chments were prepared under my direction or supervis sonnel properly gather and evaluate the information su tem, or those persons directly responsible for gathering	part of the overall certification being provided by the owner/operator, low). The activities described in the subject submittals have been inois EPA. I certify under penalty of law that this document and all ion in accordance with a system designed to assure that qualified bmitted. Based on my inquiry of the person or persons who manage the the information, the information submitted is, to the best of my aware that there are significant penalties for submitting false

Fo	A RCRA Corrective Act Equilon Enterprises LL	.C d/b/a Shell Oil Products US					
	te of Submission:	4-14-()					
7.1	OWNER/OPERATO set forth in 35 IAC 70' signed by the person 1. For a 0' 2. For a 1' 3. For a 0' A person is a duly aut 1. the aut	OR CERTIFICATION (Must be co 02.126.) All submittals pertaining to designated below (or by a duly autho Corporation, by a principal executive Partnership or Sole Proprietorship, by Governmental Entity, by either a printhorized representative only if: chorization is made in writing by a petiten authorization is provided with the	e officer of at y a general p acipal execut erson describ	least the le artner or the ive officer of ed above; a	vel of vice-pre e proprietor, re or a ranking ele	esident. espectively ected offic	r. ial.
	Owner Signature:	A CONTRACTOR OF THE CONTRACTOR				,	
	Title:				(1	Date)	
	Operator Signature: _						
	Title: Principa	ıl Program Manager			(I)	Date)	
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A	ERTIFICATION (if necessary) - W g professional services, such as the Il Act of 1989, the Professional Geologi	llinois Profe	out in this si ssional Land Act, and th	d Surveyor Ac le Structural E	t of 1989, ingineering	the Professional Licensing Act of
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of	g professional services, such as the II Act of 1989, the Professional Geologi red from compliance with these laws efinitions of these laws must be perfor f these laws to the appropriate regular	llinois Profe- ist Licensing and the regu- ormed in con- ting authorit	out in this si ssional Land Act, and the lations adopath	d Surveyor Ac le Structural E pted pursuant	t of 1989, ingineering to these la	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of	g professional services, such as the II Act of 1989, the Professional Geologized from compliance with these laws efinitions of these laws must be performed these laws to the appropriate regulators:	llinois Profe ist Licensing and the regu ormed in con ting authorit	out in this si ssional Land Act, and the lations ado appliance with	d Surveyor Ac be Structural E pted pursuant th them. The	t of 1989, ingineering to these la	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name:	g professional services, such as the II Act of 1989, the Professional Geologiced from compliance with these laws efinitions of these laws must be performed these laws to the appropriate regulators: Robert B. Billman	llinois Profe ist Licensing and the regu ormed in con ting authorit	out in this si ssional Land Act, and the lations adop apliance with	d Surveyor Ac be Structural E pted pursuant th them. The	et of 1989, ingineering to these la Illinois EP	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name:	g professional services, such as the II Act of 1989, the Professional Geologized from compliance with these laws efinitions of these laws must be performed these laws to the appropriate regulators:	llinois Profe ist Licensing and the regu ormed in con ting authorit	out in this sissional Land school Act, and the lations adopath and properties with properties with the properties with the properties with the properties of the properties with the prope	d Surveyor Active Structural Expeed pursuant the them. The	et of 1989, ingineering to these la Illinois EP	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name:	g professional services, such as the II Act of 1989, the Professional Geologiced from compliance with these laws efinitions of these laws must be performed these laws to the appropriate regulators: Robert B. Billman URS Corporation	llinois Profe ist Licensing and the regu ormed in con ting authorit	out in this sissional Lane, Act, and the lations adoptions adoptions are with the lations are lations.	d Surveyor Active Structural Expeed pursuant the them. The	et of 1989, ingineering to these la Illinois EP	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name: I Professional's Address	g professional services, such as the II Act of 1989, the Professional Geologiced from compliance with these laws efinitions of these laws must be performed from the services of these laws to the appropriate regulators: Robert B. Billman : URS Corporation 1001 Highlands Plaza Drive West	llinois Profe ist Licensing and the regu ormed in con ting authorit	out in this si ssional Land Act, and the lations adop npliance with y. Pro	d Surveyor Active Structural Expeed pursuant the them. The	et of 1989, ingineering to these la Illinois EP	the Professional Licensing Act of ws. All work that falls
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name: I Professional's Address Professional's Phone N LABORATORY CER	g professional services, such as the II Act of 1989, the Professional Geologiced from compliance with these laws efinitions of these laws must be perfet these laws to the appropriate regulatore: Robert B. Billman URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110	llinois Profe ist Licensing and the regu ormed in con- ting authorit	put in this sissional Land Act, and the lations adoption with the lations adoption with the lations are with the lations are with the lations are with the lations are lations. Proceedings of the lations are lations.	d Surveyor Acte Structural Expeed pursuant the them. The Dafessional's Section, preservating, preservating, preservating.	et of 1989, ingineering to these la Illinois EP	the Professional g Licensing Act of ws. All work that falls A may refer any ation and analysis y Illinois EPA.
7.2	PROFESSIONAL CI to other laws governin Engineering Practice A 1989. No one is reliev within the scope and d discovered violation of Professional's Signatur Professional's Name: I Professional's Address Professional's Phone N LABORATORY CER efforts for which this late	g professional services, such as the II Not of 1989, the Professional Geologiced from compliance with these laws efinitions of these laws must be performed from these laws to the appropriate regulators: Robert B. Billman : URS Corporation 1001 Highlands Plaza Drive West St. Louis, MO 63110 TIFICATION (if necessary) - The second content in the se	llinois Profe ist Licensing and the regu ormed in con- ting authorit	put in this sissional Lane, Act, and the lations adoptions adoptions adoptions are with the lations and the lations are with the lations are lat	d Surveyor Acte Structural Expeed pursuant the them. The Dafessional's Section, preservating, preservating, preservating.	et of 1989, ingineering to these la Hilinois EP	the Professional g Licensing Act of ws. All work that falls A may refer any

GROUNDWATER SAMPLING – 1ST QUARTER 2011

Roxana, Illinois

Prepared for:

Shell Oil Products US 17 Junction Drive PMB#399 Glen Carbon, Illinois 62034

April 2011

URS Corporation 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project 21562593**

Certification RCRA Corrective Action Form										
SECTION 1	INTRODUCTION	1-1								
SECTION 2	GROUNDWATER SAMPLING AND ANALYTICAL PROCEDURES	2-1								
	 2.1 Additional Activities	2-1 2-3 2-4								
SECTION 3	GROUNDWATER SAMPLING RESULTS									
	 3.1 Groundwater Gauging Results 3.2 Data Quality Review Results 3.3 Analytical Results and Discussion 									
SECTION 4	CONCLUSIONS	4-1								
SECTION 5	REFERENCES									
List of Tables										
Table 1 Table 2 Table 3	Cumulative Groundwater Gauging Results Cumulative Summary of Groundwater Field Parameters Cumulative Summary of Groundwater Monitoring Well Analytical and Exeedances	Detections								
List of Figures	S									
Figure 1 Figure 2 Figure 3 Figure 4	Investigation Area Location Map Groundwater Sampling Locations Groundwater Contours First Quarter 2011 1Q11 Groundwater Monitoring Well Analytical Results Summary									
List of Appen	dices									
Appendix A	Groundwater Sampling Data Sheets Data Review Sheets and Laboratory Analytical Reports									

SECTIONONE Introduction

URS Corporation (URS) is submitting this report on behalf of Shell Oil Products US (SOPUS) for the 1st Quarter 2011 (1Q11) gauging and groundwater sampling activities conducted in the Village of Roxana, Illinois (**Figure 1**). Some wells within the WRB Refining LP Wood River Refinery (WRR) were also sampled as part of this event. The area within the Village of Roxana is generally bounded by Illinois Route 111 and the west property boundary (aka west fenceline) of the WRR. Activities within the refinery were conducted in cooperation with ConocoPhillips Company (COP). The combined area is collectively referred to as the "Investigation Area" in this report.

In a letter from the Illinois Environmental Protection Agency (IEPA) to Shell dated August 5, 2010, the Agency requested various site characterization and monitoring activities and initiation of an interim groundwater monitoring program. This program began in the 4th quarter 2010, and the first report was submitted on January 14, 2011. On March 3, 2011, a call was held between representatives of SOPUS, IEPA and URS to discuss the groundwater monitoring program and IEPA's general comments on the 4th quarter 2010 monitoring report. Modifications based on some of these comments have been incorporated into this report. Other comments that require more data evaluation will be incorporated beginning with the 2nd quarter 2011 report.

Groundwater samples were collected and analyzed during the 1st quarter to meet the requirements of the interim groundwater monitoring program. **Figure 2** shows the monitoring wells that are part of the interim monitoring well network.

The monitoring well gauging and sampling activities discussed in this section are part of the interim groundwater monitoring program.

2.1 ADDITIONAL ACTIVITIES

This section describes additions to the monitoring program for the 1st quarter event.

- A loss of groundwater control by the WRR was initially reported to the Agency in a Groundwater Flow Control Notification letter dated February 4, 2011 and subsequently in a 30-Day Report for Groundwater Flow Control dated March 4, 2011. One of the resulting actions included gauging a subset of the refinery and Village monitoring wells on a weekly basis, and this has continued to date, and the data have been reviewed for this report.
- Hydrocarbon light non-aqueous phase liquid (LNAPL) was observed in a small diameter piezometer, ROST-4-PZ (located at the intersection of 3rd and Chaeffer Streets), during the aforementioned gauging events. Prior to 1Q11, product had not been observed since its installation (Summer 2009). The presence of product was reported to the Agency in a Notification of Free Product Observation letter dated February 7, 2011 and an Additional Information Regarding the 2/7/11 Notification of Free Product letter dated March 14, 2011. To date, product measurements have ranged from no product to 0.04 feet.
- Monitoring well P-93D (on the WRR North Property) became unserviceable due to a failure of the sampling pump, which had become stuck in the well. As a result, this well was not sampled during the 1Q11 event. The well was abandoned and a replacement well was installed and developed during March 2011. The replacement well (with the same ID) was installed within 10 feet of the existing monitoring well and was screened to monitor the same zone. The former P-93D was grouted in place and cut-off about 3 feet below grade per Illinois State regulations. The replacement well will be incorporated into the monitoring program starting in the 2nd Quarter 2011.

2.2 GROUNDWATER GAUGING AND SAMPLING

Groundwater Gauging

A comprehensive round of gauging was conducted on January 13 and 14, 2011 to evaluate groundwater flow direction and identify separate phase product in the Investigation Area.

Low Flow Purging and Sampling

Low-flow purging and sampling procedures were followed for most wells during the sampling event. Prior to sampling, the initial water level was measured and recorded on the field sheets.

Monitoring wells MW-1 through MW-13¹ and P-54 were purged and sampled using a stainless steel submersible bladder pump and bonded designated polyethylene tubing.² The submersible bladder pump was powered by the OED Sample Pro controller unit. A new bladder was used at each monitoring well. The submersible bladder pump with the proper length of designated polyethylene tubing was slowly lowered into the monitoring well to be sampled and set with the pump intake near the midpoint of monitoring well screen. The tubing from the pump was connected to a flow-through cell, which discharged into a 5-gallon plastic bucket. Pumping was performed at a low flow rate (< 200 mL/minute) so as to not create drawdown of the water level within the monitoring well. During groundwater purging, water quality parameters (pH, temperature, conductivity, turbidity, dissolved oxygen (DO) and oxidation-reduction (ORP)) were measured and recorded on the field sheets after every flow-through cell volume. Purging continued until a minimum of three flow-through cell volumes of water were removed and the water quality parameters stabilized. Once stabilization was achieved, the groundwater flow was diverted from the flow-through cell and groundwater samples were collected for volatile organic compound (VOC) and semivolatile organic compound (SVOC) analysis. Groundwater sampling data sheets are included in **Appendix A**.

Well Wizard® Purging and Sampling

Monitoring wells P-93A, P-93B, and P-93C in the WRR North Property were purged and sampled using a dedicated stainless steel OED Well Wizard® groundwater sampling pump. These wells are part of the WRR monitoring program, and the sampling procedures for these wells are different than those in Roxana. The Well Wizard® pump and associated tubing is dedicated to each well and remains in place between sampling events. The pump intake is positioned near the midpoint of the well screen and the pump is operated using a QED MicroPurge Engine/Compressor with a QED Control Box. The depth to water measurement at each well is used to calculate well volume of each well. Purging of each of these wells continued until a minimum of three well volumes of water was removed from the well. Water quality parameters (i.e., pH, temperature, conductivity and turbidity) were then measured and

²⁰¹¹ sampling event.

2 "Designated" tubing is used for multiple sampling events, and is stored in a bag designated for the particular well between sampling events.

¹ Well MW-13 was installed at the end of 4th quarter 2010 and was sampled for the first time during this 1st quarter

groundwater samples were collected for VOC and SVOC analysis. Groundwater sampling data sheets are included in **Appendix A**.

2.3 HEALTH & SAFETY, DECONTAMINATION, AND INVESTIGATIVE DERIVED WASTE (IDW)

The quarterly sampling activities were performed in general accordance with the investigation area Health and Safety Plan (HASP).

Prior to beginning site work, and at the start of work each day, a daily safety meeting was held. The purpose of this meeting was to discuss the day's planned activities and to address any potential health and safety concerns.

URS field personnel primarily wore U.S. Environmental Protection Agency (USEPA) modified Level D personal protective equipment (PPE), which included hard hat, boots, safety glasses, etc. In addition, work within the WRR was performed wearing flame retardant clothing (FRCs) per WRR requirements (in areas where required).

A photoionization detector (PID) with a 10.2 electron volt (eV) probe, combustible gas indicator (CGI), and individual Hydrogen Sulfide gas detectors (for locations inside WRR) were used during the field activities to monitor air quality for health and safety purposes. Field instruments were calibrated prior to use each day in accordance with the manufacturer's specifications.

Health and safety related information was primarily recorded in field logbooks.

A low energy work permit was also issued each day by COP operators for groundwater sampling activities within the WRR. COP personnel inspected the work areas and monitored the ambient air, as necessary, prior to the issuance of daily work permits.

Field personnel and equipment underwent decontamination procedures to ensure the health and safety of those present, to maintain sample integrity, and to minimize cross contamination. Non-disposable (reusable) sampling equipment (e.g., groundwater pump) was decontaminated prior to the collection of each analytical sample, between sample locations, and prior to leaving the investigation site by washing with LiquiNox and a distilled water rinse. Personnel and small equipment decontamination was performed at the sample locations.

Investigative derived waste (IDW), such as purge water and decontamination water, generated during monitoring well sampling activities was collected, stored and disposed properly. Expendable materials (e.g., disposable sampling equipment such as gloves and tubing) having a low probability of impact were collected in trash bags and disposed as municipal waste.

Decontamination fluids and purge water from wells at the Public Works facility (i.e., MW-7, MW-8) were collected in 55-gallon steel drums staged at the Public Works Yard. This material is managed has hazardous waste based on prior characterization and is being disposed at the Heritage Environmental Disposal Facility in East Liverpool, Ohio.

Decontamination fluids and purge water from wells in the other areas of the Village of Roxana were collected in a 6,900-gallon double-walled polyethylene tank staged at the Public Works Yard. This material is managed as non-hazardous waste based on prior characterization and will be managed as such.

Decontamination fluids and purge water related to or generated from work within the WRR were collected and disposed, per a COP issued permit, through the WRR's National Pollutant Discharge Elimination System (NPDES) permitted Wastewater Treatment Plant (WWTP).

2.4 SAMPLE HANDLING AND LABORATORY TESTING

Samples were collected in laboratory-supplied containers, labeled in the field and information was recorded on the chain of custody (COC) forms at the time of sampling. The sample ID format used, starting with 1st quarter 2011, is "well ID-ROX-date". The COCs can be found with the analytical reports in **Appendix B**. After collection, the samples were placed on ice, packaged to prevent damage during shipment, and cooled to approximately 4°C. The samples were then delivered, under the proper COC documentation, to the laboratory for analysis. Samples were analyzed by Accutest Laboratories in Marlborough, Massachusetts for VOCs, via USEPA Method 8260B, and SVOCs, via USEPA Method 8270C.

A total of 28 groundwater samples (20 investigative samples, 3 field duplicates, 3 equipment blanks, and 2 MS/MSD) were prepared and analyzed for VOCs and SVOCs. A trip blank (each consisting of one 40-mL vial) was included in every cooler which contained samples for VOC analysis. A total of 5 trip blanks were analyzed for VOCs for the groundwater sampling event.

2.5 DATA QUALITY REVIEW AND DATA MANAGEMENT

Laboratory data were provided in electronic form, and were independently reviewed and qualified by URS through a Level III validation. Evaluation of the data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008). The laboratory assigned data qualifiers on the basis of their quality control or to indicate sample analysis information (e.g., dilutions). Data qualifiers

were also added by URS, as appropriate, and are included on the data table and the laboratory result pages (**Appendix B**). The results of the data review are discussed in Section 3.2.

Field data and documentation collected as part of this scope of work became part of the project file. URS maintains the files for the site, and the database management system.

The following documentation was completed and supplements the COC records:

- Field logbooks
- Field sample collection sheets
- Safety documentation

This section presents the results of the 1st quarter 2011 groundwater sampling event.

3.1 GROUNDWATER GAUGING AND SAMPLING RESULTS

Table 1 presents cumulative information from the gauging events for the subject monitoring wells and piezometers. Water levels were above the top of the screens in many of the wells gauged for this event, consistent with the past several quarters. **Figure 3** illustrates the potentiometric surface observed during this gauging. **Table 2** presents cumulative information on groundwater field parameters obtained during sampling.

3.2 DATA QUALITY REVIEW RESULTS

Twenty investigative groundwater samples, three pairs of field duplicates, two matrix spike/matrix spike duplicates (MS/MSDs), five trip blanks, and three equipment blanks were collected in the first quarter of 2011. Trip blanks, equipment blanks and laboratory method blanks were analyzed to evaluate for the existence and magnitude of any contamination resulting from field and laboratory activities. Compounds detected in blanks are specified in the data reviews (**Appendix B**). The following were qualified due to blank contamination: the SVOC compound, diethyl phthalate was qualified non-detect (**U**) in 17 samples; and the VOC compounds acetone, methyl tert-butyl ether, and benzene were qualified (**U**) in 6 samples. Based on the above-mentioned criteria, the groundwater results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for these sample delivery groups (SDGs) to meet the project objectives.

3.3 ANALYTICAL RESULTS AND DISCUSSION

The laboratory analytical detections for the groundwater samples collected during this event are presented in **Table 3^3.**

The following petroleum hydrocarbons were reported at concentrations above the laboratory reporting limit in groundwater samples during the 1st Quarter 2011 sampling event.

³ The P-93 nested wells are required to be sampled as part of both the WRR and the Roxana/Route 111 groundwater monitoring programs. These programs currently require different laboratory analyses and therefore two different samples were collected. These samples are collected at the same time and using the same protocols. The analytical results between the two groundwater monitoring programs may vary slightly.

	Methyl tert-Butyl Ether	
Benzene	(MTBE)	
n-Butylbenzene	n-Propylbenzene	2,4-Dimethylphenol
sec-Butylbenzene	Toluene	bis(2-Ethylhexyl)phthalate
tert-Butylbenzene	1,1,2-Trichloroethane	2-Methylnaphthalene
Chloroethane	1,2,4-Trimethylbenzene	2-Methylphenol (o-Cresol)
Ethylbenzene	1,3,5-Trimethylbenzene	3 & 4-Methylphenol (m & p-Cresol)
Isopropylbenzene	m,p-Xylene	Naphthalene
	o-Xylenes	Phenol
	Diethyl phthalate	

Fourteen of these 23 constituents were also detected during the 4th quarter 2010 groundwater sampling event. The newly detected constituents, indicated in italics in the list above, were present at low part per billion (ppb) levels. At least in some cases, these detections may be due to laboratory reporting limit differences, as Accutest Laboratories is now used for the testing. The analytical detections were compared with the TACO Class 1 Groundwater Quality Standards (GQS'), and the results of this comparison are presented in **Table 3**. Screening values were not available for the following analytes that were detected at concentrations above the reporting limits: sec-butylbenzene, tert-butylbenzene, chloroethane, and 1,2,4-trimethylbenzene.

The analytical results for benzene, ethylbenzene, MTBE, toluene, 1,3,5-trimethylbenzene, bis(2-ethylhexyl)phthalate, and phenol exceeded the respective groundwater screening criteria in one or more samples. The analytical results from these groundwater samples are shown on **Figure 4**.

These analytical results and extent of the dissolved phase plume are generally consistent with the results observed in the 4th quarter 2010. One exception to this was observed in the MW-6 well cluster. Benzene concentrations exceeded the screening criterion in wells MW-6A, -B, -C and – D. Benzene was not detected in samples from these wells in the 4th quarter 2010 (the first time these wells were sampled). This may be related to the loss of groundwater control at the WRR, however additional sampling events would be needed to establish a trend. As indicated by the contours on **Figure 3**, groundwater beneath the investigation area continues to be within the capture zone for WRR pumping.

)

SECTIONFOUR Conclusions

URS conducted the interim groundwater monitoring, as required, for the 1st quarter 2011. The following conclusions are based on the data and information collected as part of this program.

- Groundwater analytical results and the areal extent of the dissolved-phase plume were generally consistent with the results of prior sampling events.
- COP continues to pump groundwater production wells near the west fenceline at the highest rates feasible. As a result, groundwater beneath the subject investigation area is within the capture zone of these production wells.
- LNAPL was observed in the ROST-4-PZ piezometer this quarter. A plan was submitted to IEPA on March 14, 2011 and implementation of this plan began at the end of 1st quarter 2011.

The monitoring wells sampled during the 1st quarter will continue to be gauged and sampled quarterly. The 2nd quarter report will also include additional items requested by the Agency (e.g., isoconcentration maps, etc).

SECTIONFIVE References

Illinois Environmental Protection Agency (IEPA), 2010; (IEPA 2010); *Letter providing approval with comments the SOPUS 2010 Delineation Report*. Issued to Shell Oil Products US (SOPUS), dated August 5, 2010.

- URS Corporation (URS), 2011 (URS, 2011a); *Groundwater Flow Control Notification letter*. Issued to IEPA, dated February 4, 2011.
- URS Corporation (URS), 2011 (URS, 2011b); *Notification of Free Product Observation letter*. Issued to IEPA, dated February 7, 2011.
- URS Corporation (URS), 2011 (URS, 2011c); 30-Day Report for Groundwater Flow Control; dated March 4, 2011.
- URS Corporation (URS), 2011 (URS, 2011d); *Additional Information regarding the 2/7/11 Notification of Free Product letter*. Issued to IEPA, dated March 14, 2011.
- URS Corporation (URS), 2010 (URS, 2010a); Route 111/Rand Avenue Vicinity Investigation Health and Safety Plan Roxana, Illinois; dated August 2010.
- URS Corporation (URS), 2010 (URS, 2010b); ConocoPhillips Environmental and Geotechnical Work 2010 Health and Safety Plan WRB Refining LLC Wood River Refinery; dated March 2010.
- US Environmental Protection Agency (USEPA), 2008; Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review

TABLE 1
CUMULATIVE GROUNDWATER GAUGING RESULTS

WELL ID /	TOP OF	DATE	DEPTH TO	DEPTH TO	WATER- PRODUCT	PRODUCT	PRODUCT	CORRECTED W.L.	
OUARTER	CASING	GAUGED	PRODUCT	WATER	INTERFACE	ELEV.	THICKNESS	ELEVATION	COMMENTS
QUINTER	(ft MSL)		(ft)	(Static)	(ft MSL)	(ft MSL)	(ft)	(ft MSL)	
MW-1	(It MISE)		(11)	(Statie)	(It IVISE)	: 399.45 - 384.45			
4010	442.86	11/12/2010	NE	36.91	NA	NA	NA	405.95	*
1Q11	442.86	1/13/2011	NE	37.58	NA	NA	NA	405.28	*
MW-2							Screened	l Interval Elevation:	396.74 - 381.74
4Q10	443.93	11/12/2010	NE	38.12	NA	NA	NA	405.81	*
1Q11	443.93	1/13/2011	NE	38.67	NA	NA	NA	405.26	*
MW-3							Screened	d Interval Elevation:	: 399.38 - 384.38
4Q10	430.36	11/12/2010	NE	24.05	NA	NA	NA	406.31	*
1Q11	430.36	1/13/2011	NE	24.92	NA	NA	NA	405.44	*
MW-4								d Interval Elevation:	
4Q10	441.58	11/12/2010	NE	35.38	NA	NA	NA	406.20	*
1Q11	441.58	1/13/2011	NE	36.04	NA	NA	NA	405.54	*
MW-5								l Interval Elevation:	
4Q10	429.73	11/12/2010	NE	23.32	NA	NA	NA	406.41	*
1Q11	429.73	1/13/2011	NE	24.15	NA	NA	NA	405.58	*
MW-6A								d Interval Elevation:	
4Q10		11/12/2010	NE	25.62	NA	NA	NA	406.80	*
1Q11	432.42	1/13/2011	NE	26.36	NA	NA	NA	406.06	*
MW-6B								l Interval Elevation:	368.24 - 363.24
4Q10		11/12/2010	NE	25.47	NA	NA	NA	406.82	*
1Q11	432.29	1/13/2011	NE	26.21	NA	NA	NA	406.08	*
MW-6C								d Interval Elevation:	
4Q10	432.11	11/12/2010	NE	25.25	NA	NA	NA	406.86	*
1Q11	432.11	1/13/2011	NE	25.97	NA	NA	NA	406.14	*
MW-6D								l Interval Elevation:	
4Q10	431.99	11/12/2010	NE	25.13	NA	NA	NA	406.86	*
1Q11	431.99	1/13/2011	NE	25.87	NA	NA	NA	406.12	·
MW-7								l Interval Elevation:	
4Q10	443.10	11/12/2010	NE	36.93	NA	NA	NA	406.17	*
1Q11	443.10	1/13/2011	NE	37.52	NA	NA	NA	405.58	*
MW-8	10/11	14440000		25.0				d Interval Elevation:	
4Q10	434.11	11/12/2010	NE	27.84	NA	NA	NA	406.27	*
1Q11	434.11	1/13/2011	NE	28.59	NA	NA	NA	405.52	*
MW-9	115.00	144400000	N. 17	20.00				d Interval Elevation:	: 398.75 - 388.75 T *
4Q10		11/12/2010	NE	39.00	NA	NA	NA	406.2 405.58	*
1Q11	445.20	1/13/2011	NE	39.62	NA	NA	NA		·
MW-10	445.00	11/10/2012		20.07	N	37.		d Interval Elevation:	: 400.60 - 390.60 T *
4Q10	445.03	11/12/2010	NE	38.97	NA	NA	NA	406.06 405.63	*
1Q11	445.03	1/13/2011	NE	39.40	NA	NA	NA		·
MW-11	112.22	11/12/2012	NE NE	26.20	27.4	37.4		d Interval Elevation:	: 400.67 - 390.67 T *
4Q10	442.33	1/12/2010	NE NE	36.39	NA NA	NA	NA NA	405.94 405.18	*
1Q11	442.33	1/13/2011	NE	37.15	NA	NA	NA		
MW-12	112.60	11/12/2012	NE NE	26.62	27.4	37.4		d Interval Elevation:	: 400.08 - 390.68 T *
4Q10	442.60	11/12/2010	NE NE	36.63	NA NA	NA	NA NA	405.97 405.18	*
1Q11	442.60	1/13/2011	NE	37.42	NA	NA	NA	405.18	· ·

TABLE 1
CUMULATIVE GROUNDWATER GAUGING RESULTS

WELL ID / QUARTER	TOP OF CASING (ft MSL)	DATE GAUGED	DEPTH TO PRODUCT	DEPTH TO WATER (Static)	WATER- PRODUCT INTERFACE (ft MSL)	PRODUCT ELEV. (ft MSL)	PRODUCT THICKNESS (ft)	CORRECTED W.L. ELEVATION (ft MSL)	COMMENTS				
MW-13	(10112022)	ı	(20)	(State)	(141122)	(14 111522)	` '	l Interval Elevation:	405.22 - 395.22				
4010	NI	11/12/2010	NI	NI	NI	NI NI NI Well not installed during gauging event.							
1/011	430.27	1/13/2011	NE	24.28	NA	NA	NA	405.99	*				
P-54							Screened	l Interval Elevation:	404.18 - 397.18				
4Q10	442.18	11/12/2010	NE	36.43	NA	NA	NA	405.75	*				
1Q11	442.18	1/13/2011	NE	37.24	NA	NA	NA	404.94	*				
P-60								l Interval Elevation:					
4Q10	446.57	11/11/2010	41.40	41.44	405.13	405.17	0.04	405.16	*				
1Q11	446.57	1/14/2011	41.68	41.72	404.85	404.89	0.04	404.88	*				
P-60-11		T		10.01				l Interval Elevation:	413.53 - 383.53				
4Q10	446.18	11/11/2010	NE	40.91	NA	NA	NA	405.27					
1Q11	446.18	1/14/2011	NE	41.14	NA	NA	NA	405.04	200 41 202 41				
P-93A	116 50	11/11/2010	NIE	40.75	NT A	NIA		Interval Elevation:	398.41 - 383.41				
4Q10 1Q11	446.58 446.58	11/11/2010 1/14/2011	NE NE	40.75 40.97	NA NA	NA NA	NA NA	405.83 405.61	*				
P-93B	440.36	1/14/2011	NE	40.97	IVA	IVA		d Interval Elevation:	372 11 - 370 11				
4Q10	446.46	11/11/2010	NE	40.73	NA	NA	NA	405.73	*				
1Q11	446.46	1/14/2011	NE NE	41.03	NA	NA	NA	405.43	*				
P-93C	1.0	1/1 1/2011	1,2	11.00	1,12	1,112		l Interval Elevation:	352.26 - 350.26				
4Q10	446.51	11/11/2010	NE	40.69	NA	NA	NA	405.82	*				
1Q11	446.51	1/14/2011	NE	40.91	NA	NA	NA	405.60	*				
P-93D							Screened	l Interval Elevation:	320.92 - 318.92				
4Q10	446.36	11/11/2010	NE	40.59	NA	NA	NA	405.77	*				
1Q11	446.36	1/14/2011	NE	40.81	NA	NA	NA	405.55	*				
GP-9-PZ							Screened	l Interval Elevation:	404.81 - 394.81				
4Q10	442.41	11/11/2010	NE	37.38	NA	NA	NA	405.03	*				
1Q11	442.41	1/14/2011	NE	37.53	NA	NA	NA	404.88	*				
P-60-12S								l Interval Elevation:	429.49 - 419.49				
4Q10	443.33	11/11/2010	NE	23.36	NA	NA	NA	419.97					
1Q11	443.33	1/14/2011	NE	NE	NA	NA	NA	NA	202.21 272.21				
P-60-12	442.21	11/11/2010	NIE	20.10	NT A	NIA		l Interval Elevation:	383.31 - 373.31				
4Q10 1O11	443.31 443.31	11/11/2010 1/14/2011	NE NE	38.19 38.51	NA NA	NA NA	NA NA	405.12 404.80	*				
P-60-13S	443.31	1/14/2011	NE	36.31	INA	INA		l Interval Elevation:	·				
4Q10	442.39	11/11/2010	NE	13.36	NA	NA	NA	429.03	+34.37 - +44.37				
1011	442.39	1/14/2011	NE NE	NE	NA NA	NA NA	NA NA	429.03 NA					
P-60-13	TT2.37	1/17/2011	145	145	1121	1 1/2 1		d Interval Elevation:	402.43 - 382.43				
4010	442.43	11/11/2010	37.50	37.87	404.56	404.93	0.37	404.83	*				
1Q11	442.43	1/14/2011	37.73	37.74	404.69	404.70	0.01	404.70	*				
ROST-3-PZ							Screened	l Interval Elevation:	402.29 - 392.29				
4Q10	442.29	11/12/2010	NE	36.60	NA	NA	NA	405.69	*				
1Q11	442.29	1/13/2011	NE	37.29	NA	NA	NA	405.00	*				
ROST-4-PZ							Screened	l Interval Elevation:	404.27 - 394.27				
4Q10	442.27	11/12/2010	NE	36.48	NA	NA	NA	405.79	*				
1Q11	442.27	1/13/2011	NE	36.97	NA	NA	NA	405.30	*				

TABLE 1
CUMULATIVE GROUNDWATER GAUGING RESULTS

WELL ID / QUARTER	TOP OF CASING	DATE GAUGED	DEPTH TO PRODUCT	DEPTH TO WATER	WATER- PRODUCT INTERFACE	PRODUCT ELEV.	PRODUCT THICKNESS	CORRECTED W.L. ELEVATION	COMMENTS		
	(ft MSL)		(ft)	(Static)	(ft MSL)	(ft MSL)	(ft)	(ft MSL)			
ROST-5-PZ							Screened	l Interval Elevation:	429.02 - 419.02		
4Q10	442.22	11/12/2010	NE	NE	NA	NA	NA	NA			
1Q11	442.22	1/13/2011	NE	NE	NA	NA	NA	NA			
ROST-7-PZ			Screened Interval Elevation: 422.19 - 412.19								
4Q10	442.19	11/12/2010	NE	22.93	NA	NA	NA	419.26			
1Q11	442.19	1/13/2011	NE	23.74	NA	NA	NA	418.45			
ROST-10-PZ							Screened	l Interval Elevation:	434.51 - 424.51		
4Q10	444.51	11/12/2010	NE	NE	NA	NA	NA	NA			
1Q11	444.51	1/13/2011	NE	NE	NA	NA	NA	NA			
ROST-21-PZ							Screened	l Interval Elevation:	433.72 - 423.72		
4Q10	443.72	11/12/2010	NE	19.30	NA	NA	NA	424.42			
1Q11	443.72	1/13/2011	NE	19.59	NA	NA	NA	424.13			

NOTES:

¹⁾ The Corrected W.L. Elevations presented in this table were corrected by a specific gravity of 0.74 for the wells in which product was identified.

²⁾ Elevations presented in this table are relative to the 1988 USGS datum.

³⁾ **NA** = Not Applicable; **NE** = Not Encountered; **NM** = Not Measured; **NI** = Not Installed

^{4) *} Indicates that the product and/or water level is above the top of the screened zone of the well.

TABLE 2
SUMMARY OF CUMULATIVE GROUNDWATER FIELD PARAMETERS

Well ID	Depth to Water (ft btoc)	рН	Temp (C)	Specific Cond (mS/cm)	Turbidity (NTUs)	DO (mg/L)	ORP (Mv)	General Notes
	(It bloc)			(III3/CIII)	(14103)			
MW-1	1 1				T	1 1	1	
4Q10		8.04	20.53	1.449	3.9	8.99	93	
1Q11	37.35	6.76	5.93	1.189	1.0	0.08	102	
MW-2						1		
4Q10		7.24	18.38	1.066	41.0	8.90	-113	
1Q11	38.26	6.72	15.19	2.048	8.0	0.97	-69	
MW-3					1			
4Q10		6.88	21.59	1.157	6.5	0.32	-146.0	
1Q11	24.77	6.88	731.00	2.349	2.0	0.26	-89.0	
MW-4					1	1		
4Q10		6.76	19.51	0.854	7.7	4.88	-59.0	
1Q11	38.89	6.83	10.24	2.352	9.6	0.86	-51.0	
MW-5	1		1		T	1 - 1		
4Q10		6.77	19.39	0.801	2.9	0.17	-112.0	
1Q11	24.06	6.82	9.51	2.051	2.8	0.95	-66	
MW-6A								
4Q10		6.74	21.87	1.535	5.4	0.01	-127.0	
1Q11	26.40	6.80	10.99	2.274	7.4	0.34	-75.0	
MW-6B								
4Q10		6.80	17.14	1.113	17.5	0.14	-77.0	
1Q11	26.23	6.73	15.90	2.138	1.4	0.22	-46.0	
MW-6C								
4Q10		6.86	17.87	1.132	5.5	0.16	-104.0	
1Q11	26.07	6.87	13.90	0.981	4.2	0.13	-66.0	
MW-6D								
4Q10		6.94	17.42	1.342	5.90	0.05	-112	
1Q11	26.01	7.05	13.66	1.330	1.30	0.14	-74	
MW-7								
4Q10		6.48	17.80	1.097	59.9	0.05	-32	
1Q11	37.58	6.53	14.40	1.869	3.2	0.74	-6	
MW-8								
4Q10	28.04	6.41	17.17	1.133	61.5	0.04	-54	
1Q11	28.70	6.37	16.21	2.065	18.0	0.80	-14	
MW-9								
4Q10		6.72	16.98	0.919	48.3	1.72	-45	
1Q11	39.65	6.73	12.97	1.524	17.2	0.03	-34	
MW-10								
4Q10		6.72	18.75	1.284	35.0	0.64	-78	
1Q11	39.38	6.72	13.08	1.344	4.3	0.35	-48	
MW-11								
4Q10		6.59	15.28	1.023	25.5	0.01	-76.0	
1Q11	37.24	6.59	14.34	1.276	8.8	0.05	-59.0	
MW-12								
4Q10		6.72	14.87	1.328	62.4	0.45	212.0	
1Q11	37.49	6.66	14.98	1.196	9.2	0.16	159.0	
MW-13								
4Q10		NI	NI	NI	NI	NI	NI	Well not installed during sampling event.
1Q11	24.55	6.52	17.78	1.379	19.2	0.10	-82.0	

TABLE 2
SUMMARY OF CUMULATIVE GROUNDWATER FIELD PARAMETERS

Well ID	Depth to Water (ft btoc)	рН	Temp (C) Specific Con (mS/cm)		Turbidity (NTUs)	DO (mg/L)	ORP (Mv)	General Notes
P-54								
4Q10	36.66	6.71	14.70	0.870	68.6	1.74	140.0	
1Q11	37.32	6.69	14.47	0.970	25.4	1.29	56.0	
P-93A								
4Q10	40.48	6.81	17.70	1.259	23.0	NM	NM	
1Q11	41.22	6.68	16.16	2.517	12.8	NM	NM	
P-93B								
4Q10	40.53	7.10	18.10	1.150	0.0	NM	NM	
1Q11	41.27	6.69	16.44	1.377	1.2	NM	NM	
P-93C								
4Q10	40.42	7.28	17.50	1.057	0.0	NM	NM	
1Q11	41.16	7.14	16.51	1.832	0.5	NM	NM	
P-93D								
4Q10	40.34	7.13	18.50	1.211	0.0	NM	NM	
1Q11	41.07	NM	NM	NM	NM	NM	NM	

NOTES:

¹⁾ Field parameters were collected using the Troll 9500 except at P-93(A-D) where the Oakton pH/Con10 and LaMotte Turbidimeter were used.

²⁾ NM = Not Measured; NI = Not Installed

TABLE 3
SUMMARY OF GROUNDWATER MONITORING WELL ANALYTICAL DETECTIONS AND EXCEEDANCES

											VC	OCs						
							zene	nzene	zene	tetrachloride	96			ne		obutadiene	nzene	oluene
					Acetone	Benzene	۱- Butylbenze	sec-Butylben	ert-Butylben	Carbon tetra	Chlorobenzei	Chloroethane	Chloroform	Chloromethane	Ethylbenzene	Hexachlorob	sopropylben	o-IsopropyItoluene
			Screening '	Values (mg/L)	6.3	0.005	0.35 *	, ,		0.005	0.1		0.0002		0.7	0.007 *	0.7 *	
Location	Sample ID	Sample Date	Depth to Water (ft btoc)	Product Thickness (ft)	ANALYTICAL	RESULTS (r	mg/L)											
	MW-1-111110	11/11/2010	36.91	NE	<0.1	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.01	< 0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005
MW-01	MW-1-111110-Dup	11/11/2010	36.91	INE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
	MW1-ROX-011711	1/17/2011	37.58	NE	<0.039 U	<0.0005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
MW-02	MW-2-111010	11/11/2010	38.12	NE	<0.5	0.401	<0.025	<0.025	<0.025	<0.025	<0.025	<0.05	<0.025	<0.05	0.641	<0.025	0.0236 J	<0.025
14144 02	MW2-ROX-011711	1/17/2011	38.67	NE	<0.005	0.294	0.0078	0.0047 J	<0.005	<0.001	<0.001	0.0077	<0.001	0.0019 J	0.74	<0.005	0.0617	0.0032 J
MW-03	MW-3-111210	11/12/2010	24.05	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	0.0016 J	<0.005
	MW3-ROX-011811	1/18/2011	24.92	NE	<0.005	0.00056	<0.005	<0.005	<0.005	<0.001	<0.001	0.00077 J	<0.001	0.00082 J	0.00082 J	<0.005	<0.005	<0.005
MW-04	MW-4-111210	11/12/2010	35.38	NE	<0.1	0.0752	<0.005	0.001 J	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	0.00271 J	<0.005
	MW4-ROX-011811	1/18/2011	36.04	NE	<0.005	0.0567	0.0006 J	0.00063 J	0.00069 J	<0.001	<0.001	0.00096 J	<0.001	<0.002	<0.001	<0.005	0.002 J	<0.005
MW-05	MW-5-111210	11/12/2010	23.32	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
	MW5-ROX-011811 MW-6A-110910	1/18/2011 11/9/2010	24.15 25.62	NE NE	<0.0344 U	0.0048 <0.005	<0.005 <0.005	<0.005 <0.005	0.0014 J <0.005	<0.001 <0.005	<0.001 <0.005	<0.002 <0.01	<0.001 <0.005	<0.002 <0.01	<0.001 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
MW-06A	MW6A-ROX-011911	1/19/2010	26.36	NE NE	<0.1 <0.0135 U	0.0113	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001 <0.002 UJ	<0.005	<0.002	<0.005	<0.005	<0.005	<0.005
	MW-6B-111610	11/16/2010	25.47	NE NE	<0.0135 0	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002 03	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
MW-06B	MW6B-ROX-011911	1/19/2011	25.47	INL	<0.005	0.0082	<0.005	<0.005	<0.005	<0.003	<0.003	<0.002	<0.003	<0.002	<0.003	<0.005	<0.005	<0.005
WWW OOD	MW6B-ROX-011911-DUP	1/19/2011	26.21	NE	<0.005	0.0082	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	0.0014 J	<0.005	<0.005
	MW-6C-111610	11/16/2010	25.25	NE	<0.1	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005
MW-06C	MW6C-ROX-012111	1/21/2011	25.97	NE	<0.005	0.0085	<0.005	< 0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	< 0.005	<0.005	<0.005
	MW-6D-111610	11/16/2010	25.13	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005
MW-06D	MW6D-ROX-012111	1/21/2011	25.87	NE	<0.005	0.0104	<0.005	< 0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	< 0.005	<0.005	<0.005
	MW-7-111710	11/17/2010		NE	<25	928 D	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<2.5	<1.25	<1.25	<1.25	<1.25
MW-07	MW-7-111710-Dup	11/17/2010	36.93	NE	<25	876 D	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<2.5	<1.25	<1.25	<1.25	<1.25
	MW7-ROX-012511	1/25/2011	37.52	NE	<0.005 UJ	1150 J	0.0015 J J	0.0011 J J	0.0012 J J	<0.001 UJ	<0.001 UJ	<0.002 UJ	<0.001 UJ	<0.002 UJ	0.0325 J	<0.005 UJ	0.004 J J	<0.005 UJ
	MW-8-111710	11/17/2010	27.84	NE	<25	965 D	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<2.5	<1.25	<1.25	<1.25	<1.25
MW-08	MW8-ROX-012511	1/25/2011	28.59	NE	<0.0469 U	986	0.0021 J J	0.0014 J J	<0.005 UJ	<0.001 UJ	<0.001 UJ	<0.002 UJ	<0.001 UJ	<0.002 UJ	0.234 J	<0.005 UJ	0.0104 J	0.0012 J J
	MW8-ROX-012511-DUP	1/25/2011	20.55	INL	<0.0403 U	1030	0.002 J J	0.0014 J J	0.0011 J J	<0.001 UJ	<0.001 UJ	<0.002 UJ	<0.001 UJ	<0.002 UJ	0.237 J	<0.005 UJ	0.0105 J	0.001 J J
MW-09	MW-9-111510	11/15/2010	39.00	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
	MW9-ROX-012111	1/21/2011	39.62	NE	<0.005	0.0037	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
	MW-10-111010	11/10/2010	38.97	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
MW-10	MW10-ROX-012411	1/24/2011	39.40	NE	<0.0122 U	<0.0005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
	MW10-ROX-012411-DUP	1/24/2011	20.20	NE	<0.005	<0.0005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
MW-11	MW-11-111710 MW11-ROX-012411	11/17/2010 1/24/2011	36.39 37.15	NE NE	<0.1 <0.005	<0.005 <0.0005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.001	<0.005 <0.001	<0.01 <0.002	<0.005 <0.001	<0.01 <0.002	<0.005 <0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
	MW-12-111510	11/15/2010	36.63	NE NE	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	0.00161 J	<0.002	<0.001	<0.005	<0.005	<0.005
MW-12	MW12-ROX-012411	1/24/2011	37.42	NE NE	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.001	<0.002	<0.005	<0.005	<0.005	<0.005
	NI	4Q10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
MW-13	MW13-ROX-012511	1/25/2011	24.28	NE	<0.005	<0.0005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	< 0.005	<0.005	<0.005
_	P-54-111710	11/17/2010	36.43	NE	<0.1	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
P-54	P54-ROX-012411	1/24/2011	37.24	NE	<0.0048 U	<0.00039 U	<0.005	<0.005	<0.005	<0.001	<0.001	<0.002	<0.001	<0.002	<0.001	<0.005	<0.005	<0.005
D.co.	P93A-102610	10/26/2010	40.75	NE	<25	422 D	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<2.5	0.32 J	<1.25	<1.25	<1.25
P-93A	P93A-ROX_012611	1/26/2011	40.97	NE	<0.005	491	0.0059	0.0096	0.0213	0.00081 J	0.00061 J	<0.002	<0.001	<0.002	0.373	0.0016 J	0.0225	0.0047 J
D 00D	P93B-102610	10/26/2010	40.73	NE	<10	189 D	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<0.5
P-93B	P93B-ROX_012611	1/26/2011	41.03	NE	<0.005	105	<0.005	<0.005	0.00058 J	<0.001	<0.001	0.00077 J	<0.001	0.0014 J	0.0104	<0.005	0.0108	<0.005
D 02C	P93C-102610	10/26/2010	40.69	NE	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.01	<0.005	<0.005	<0.005	< 0.005
P-93C	P93C-ROX_012611	1/26/2011	40.91	NE	<0.005	86.5	<0.005	<0.005	0.00056 J	<0.001	<0.001	<0.002	<0.001	<0.002	0.0175	<0.005	0.0019 J	<0.005
P-93D	P93D-102610	10/26/2010	40.59	NE	<0.1	0.0429	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005
P-93D	NS	1Q11	40.81	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
_		_					_											

TABLE 3
SUMMARY OF GROUNDWATER MONITORING WELL ANALYTICAL DETECTIONS AND EXCEEDANCES

			VOC												SVOCs					
							I VC	JC							300	JUS	ı			
			Methyl tert-Butyl Ether (MTBE)	n-Propylbenzene	Toluene	1,2,3- Trichlorobenzene	1,2,4- Trichlorobenzene	1,1,2- Trichloroethane	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	m,p-Xylene	o-Xylenes	Benzoic Acid	Diethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	2,4-Dimethylphenol	bis(2- Ethylhexyl)phthalate		
			0.07	0.7 *	1	0.0056 *	0.07	0.005		0.07 *	1	0	28	5.6		0.14	0.14	0.006		
Location	Sample ID	Sample Date	ANALYTICAL	L RESULTS (m	ng/L)															
	MW-1-111110	11/11/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.01		
MW-01	MW-1-111110-Dup	11/11/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.049	<0.01	<0.01	<0.01	<0.01	<0.01		
	MW1-ROX-011711	1/17/2011	0.0032	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	0.0013	<0.013	<0.0063	<0.0063	<0.0063	<0.013	<0.0025		
MW-02	MW-2-111010	11/11/2010	<0.025	0.0354	1.22 D	<0.025	<0.025	<0.025	0.273	0.0618	1.14	0.318	<0.048	<0.01	<0.01	<0.01	<0.01	<0.003 U		
	MW2-ROX-011711	1/17/2011	<0.001	0.0652	0.737	<0.005	<0.005	<0.001	0.279	0.0744	0.892	0.191	0.0082 J	<0.0048	<0.0048	<0.0048	0.0022 J	0.25		
MW-03	MW-3-111210 MW3-ROX-011811	11/12/2010 1/18/2011	<0.005 0.0021	0.00622 <0.005	0.00257 J <0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.001	<0.005 0.00085 J	<0.005	0.00653 J 0.0012	<0.005 0.0014	<0.048	<0.01	<0.01 <0.0053	<0.01 <0.0053	<0.01 <0.011	<0.01 0.00062 J		
	MW-4-111210	11/12/2010	0.0021	<0.005 0.00395 J	0.0157	<0.005	<0.005	<0.001	<0.005	<0.005	0.0012 0.00699 J	0.0014 0.00139 J	<0.011	<0.0053	<0.0053	<0.0053	<0.009	<0.009		
MW-04	MW4-ROX-011811	1/18/2011	0.00508	0.00395 J 0.0022 J	0.0157	<0.005	<0.005	<0.005	<0.005	<0.005	0.006993	0.001393	<0.047	<0.009	<0.009	<0.009	<0.009	<0.009		
	MW-5-111210	11/12/2010	0.007	<0.005	<0.007	<0.005	<0.005	<0.001	<0.005	<0.005	0.0062 0.00277 J	<0.005	<0.01	<0.0032	<0.0032	<0.0032	<0.01	<0.0021		
MW-05	MW5-ROX-011811	1/18/2011	0.0066	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	0.00277 J	0.0014	<0.011	0.0009 J	<0.0053	<0.0053	<0.011	<0.0021		
	MW-6A-110910	11/9/2010	0.0203	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.01		
MW-06A	MW6A-ROX-011911	1/19/2011	0.0181	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	0.0044 J J	<0.0019 U	0.00081 J	<0.005	<0.01	<0.002		
	MW-6B-111610	11/16/2010	0.00204 J	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01		
MW-06B	MW6B-ROX-011911	1/19/2011	0.0016	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01 UJ	<0.00087 U	<0.005	<0.005	<0.01	<0.002		
	MW6B-ROX-011911-DUP	1/19/2011	0.0016	<0.005	<0.001	0.0016 J	0.0011 J	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01 UJ	<0.001 U	<0.0051	<0.0051	<0.01	<0.002		
	MW-6C-111610	11/16/2010	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.01	<0.005	< 0.05	<0.01	<0.01	<0.01	<0.01	<0.01		
MW-06C	MW6C-ROX-012111	1/21/2011	0.0021	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.011 UJ	<0.00084 U	<0.0053	<0.0053	<0.011	<0.0021		
MW-06D	MW-6D-111610	11/16/2010	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	<0.005	<0.051	<0.01	<0.01	<0.01	<0.01	<0.01		
עסט-יייייי	MW6D-ROX-012111	1/21/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.011 UJ	<0.001 U	0.00071 J	<0.0053	<0.011	<0.0021		
	MW-7-111710	11/17/2010	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<0.048	<0.01	<0.01	<0.01	<0.01	<0.005 U		
MW-07	MW-7-111710-Dup	11/17/2010	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<0.05	<0.01	<0.01	<0.01	<0.01	<0.007 U		
	MW7-ROX-012511	1/25/2011	<0.0057 U	0.0058 J	0.0907 J	<0.005 UJ	<0.005 UJ	<0.001 UJ	0.0552 J	0.0133 J	0.0694 J	0.0235 J	<0.011	<0.003 U	<0.0053	<0.0053	<0.011	<0.0021		
	MW-8-111710	11/17/2010	<1.25	<1.25	0.328 J	<1.25	<1.25	<1.25	<1.25	<1.25	<2.5	<1.25	<0.048	<0.01	<0.01	<0.01	0.018	<0.006 U		
MW-08	MW8-ROX-012511	1/25/2011	0.21 J	0.0173 J	1.2 E J	<0.005 UJ	<0.005 UJ	<0.001 UJ	0.109 J	0.0332 J	0.499 J	0.188 J	<0.01	<0.0025 U	<0.005	0.0004 J	0.0233	0.00086 J		
	MW8-ROX-012511-DUP	1/25/2011	0.205 J	0.017 J	1.12 E J	<0.005 UJ	<0.005 UJ	<0.001 UJ	0.11 J	0.0336 J	0.518 J	0.191 J	<0.011	0.0125	<0.0057	<0.0057	0.0299	0.0012 J		
MW-09	MW-9-111510	11/15/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.001 U		
	MW9-ROX-012111 MW-10-111010	1/21/2011	<0.001	<0.005	<0.001 <0.005	<0.005	<0.005 <0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.011 UJ	<0.001 U	0.00064 J	<0.0053	<0.011	<0.0021		
MW-10	MW10-ROX-012411	11/10/2010 1/24/2011	<0.005 <0.001	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.001	<0.005 <0.005	<0.005 <0.005	<0.01 <0.001	<0.005 <0.001	<0.048	<0.01 <0.001 U	<0.01 <0.0051	<0.01 <0.0051	<0.01 <0.01	<0.01 0.00068 J		
10100-10	MW10-ROX-012411-DUP	1/24/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01	<0.001 U	<0.0051	<0.0051	<0.01	0.00066 J		
	MW-11-111710	11/17/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.00	<0.00	<0.01	<0.003 U		
MW-11	MW11-ROX-012411	1/24/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01	<0.001 U	<0.0052	<0.0052	<0.01	0.00073 J		
	MW-12-111510	11/15/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.003 U		
MW-12	MW12-ROX-012411	1/24/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01	<0.00077 U	<0.005	<0.005	<0.01	<0.002		
	NI	4Q10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI		
MW-13	MW13-ROX-012511	1/25/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01	<0.0027 U	<0.0052	<0.0052	<0.01	<0.0021		
D 54	P-54-111710	11/17/2010	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.003 U		
P-54	P54-ROX-012411	1/24/2011	<0.001	<0.005	<0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.001	<0.001	<0.01	<0.002 U	<0.005	<0.005	<0.01	<0.002		
P-93A	P93A-102610	10/26/2010	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	0.543 J	<1.25	<0.047	<0.009	<0.009	<0.009	<0.009	<0.009		
P-93A	P93A-ROX_012611	1/26/2011	0.124	0.0254	0.0654	0.0026 J	0.0015 J	0.0017	0.21	0.045	0.622	0.0705	<0.0098 UJ	<0.0014 U	<0.0049	<0.0049	<0.0098	<0.002		
P-93B	P93B-102610	10/26/2010	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.047	<0.009	<0.009	<0.009	<0.009	<0.009		
1 -930	P93B-ROX_012611	1/26/2011	0.0088	0.011	0.0321	<0.005	<0.005	<0.001	0.0052	0.0016 J	0.0555	0.0092	<0.011 UJ	<0.00086 U	< 0.0053	< 0.0053	<0.011	<0.0021		
P-93C	P93C-102610	10/26/2010	0.00136 J	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.047	<0.009	<0.009	<0.009	<0.009	<0.001 U		
1 300	P93C-ROX_012611	1/26/2011	0.0014	0.0013 J	0.0067	<0.005	<0.005	<0.001	0.0025 J	<0.005	0.0051	0.0035	<0.01 UJ	<0.00097 U	<0.0051	<0.0051	<0.01	<0.002		
P-93D	P93D-102610	10/26/2010	0.0122	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.048	<0.01	<0.01	<0.01	<0.01	<0.01		
. 550	NS	1Q11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		

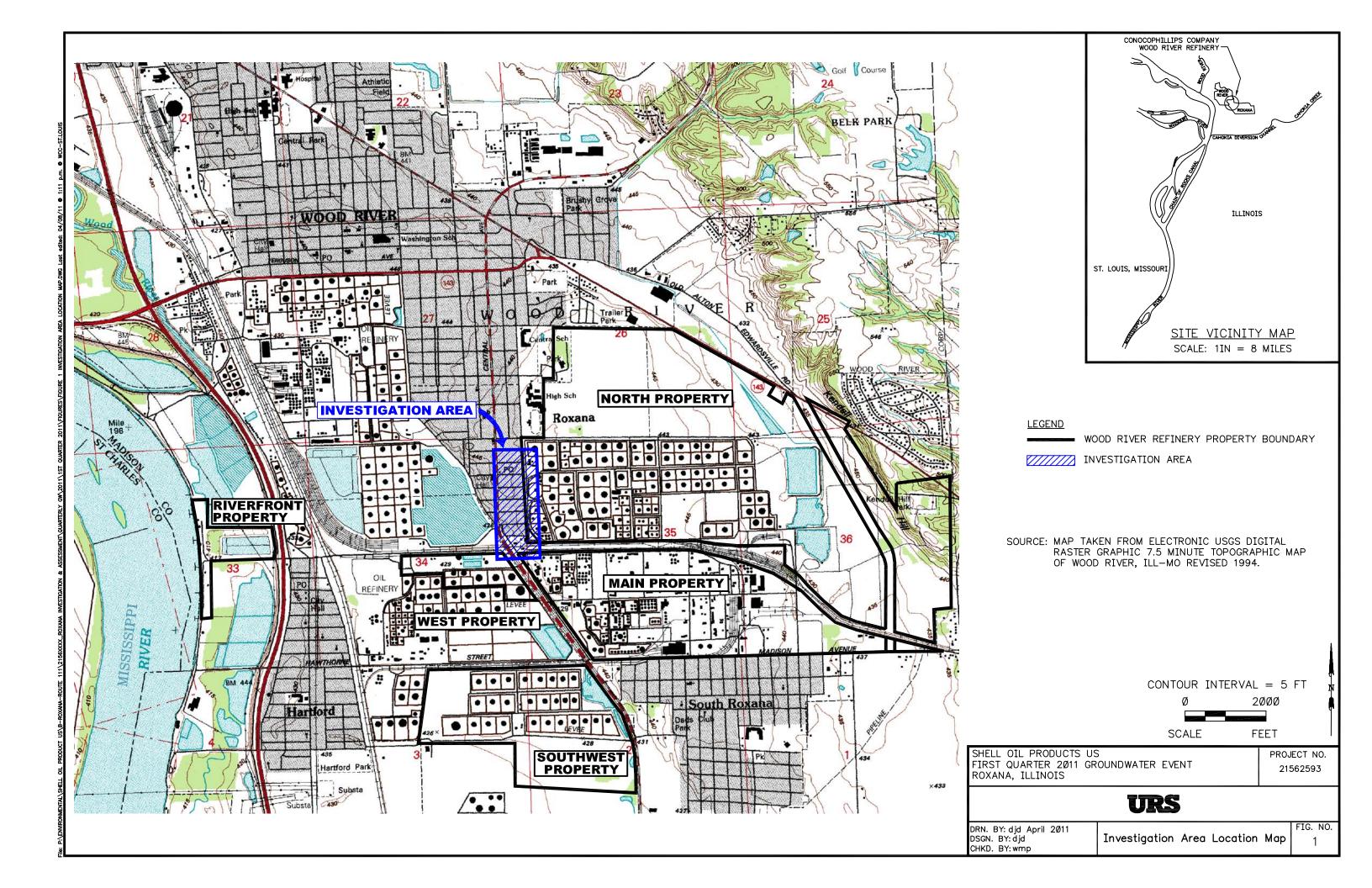
TABLE 3 SUMMARY OF GROUNDWATER MONITORING WELL ANALYTICAL DETECTIONS AND EXCEEDANCES

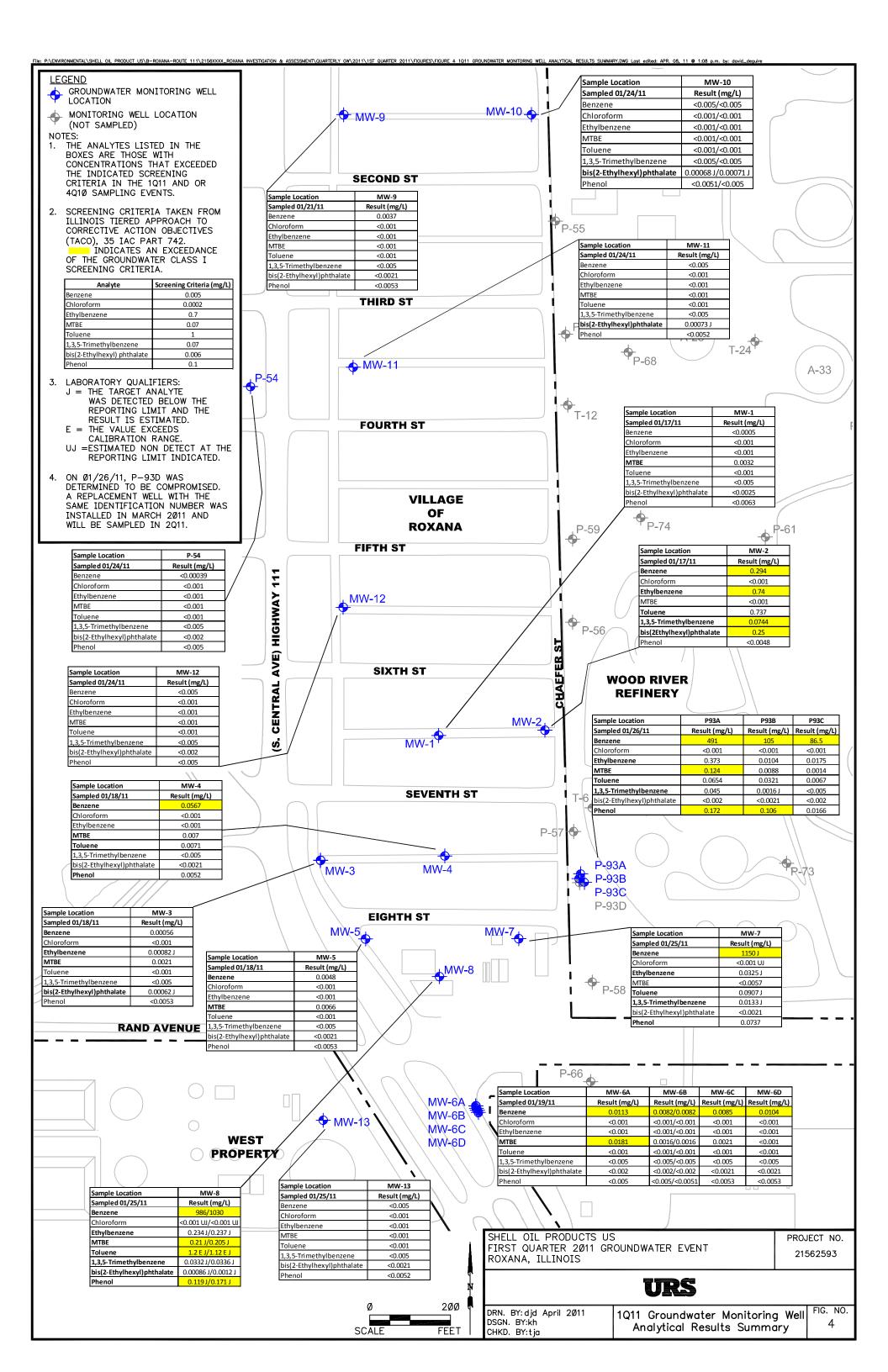
							6//00				
				l	l		SVOC			I	l
			Fluorene	2-Methylnaphthalene	2-Methylphenol (o-Cresol)	3 & 4-Methylphenol (m & p-Cresol)	Naphthalene	3-Nitroaniline	Phenanthrene	Phenol	Pyrene
			0.28	0.028 *	0.35	0.35&0.7 *	0.14		0.21 *	0.1	0.21
Location	Sample ID	Sample Date	ANALYTICAL	RESULTS (n	ng/L)						
	MW-1-111110	11/11/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
MW-01	MW-1-111110-Dup	11/11/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
	MW1-ROX-011711	1/17/2011	<0.0063	<0.0063	<0.013	<0.013	<0.0063	<0.013	<0.0063	<0.0063	<0.0063
MW-02	MW-2-111010	11/11/2010	<0.01	0.014	<0.01	0.007 J	0.077	<0.019	<0.01	0.006 J	<0.01
	MW2-ROX-011711	1/17/2011	<0.0048	0.0065	0.0028 J	0.0035 J	0.0312	<0.0095	<0.0048	<0.0048	<0.0048
MW-03	MW-3-111210	11/12/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
	MW3-ROX-011811 MW-4-111210	1/18/2011 11/12/2010	<0.0053 <0.009	<0.0053 <0.009	<0.011 <0.009	<0.011 <0.009	<0.0053 <0.009	<0.011 <0.019	<0.0053 <0.009	<0.0053 <0.009	<0.0053 <0.009
MW-04	MW-4-111210 MW4-ROX-011811	1/18/2010	<0.009	<0.009	<0.009	<0.009	<0.009	<0.019	<0.009	<0.009	<0.009
	MW-5-111210	11/12/2010	<0.01	<0.01	<0.01	<0.01	<0.0032	<0.019	<0.01	<0.01	<0.01
MW-05	MW5-ROX-011811	1/18/2011	<0.0053	<0.0053	<0.011	<0.011	<0.0053	<0.013	<0.0053	<0.0053	<0.0053
	MW-6A-110910	11/9/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
MW-06A	MW6A-ROX-011911	1/19/2011	<0.005	<0.005	<0.01	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005
	MW-6B-111610	11/16/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
MW-06B	MW6B-ROX-011911	1/19/2011	<0.005	<0.005	<0.01	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005
	MW6B-ROX-011911-DUP	1/19/2011	<0.0051	<0.0051	<0.01	<0.01	<0.0051	<0.01	<0.0051	<0.0051	<0.0051
MW-06C	MW-6C-111610	11/16/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
IVIVV-U6C	MW6C-ROX-012111	1/21/2011	< 0.0053	<0.0053	<0.011	<0.011	<0.0053	<0.011	< 0.0053	< 0.0053	< 0.0053
MW-06D	MW-6D-111610	11/16/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
WIVE GOD	MW6D-ROX-012111	1/21/2011	< 0.0053	< 0.0053	<0.011	<0.011	< 0.0053	<0.011	<0.0053	< 0.0053	< 0.0053
	MW-7-111710	11/17/2010	<0.01	<0.01	<0.01	<0.01	0.004 J	<0.019	<0.01	0.034	<0.01
MW-07	MW-7-111710-Dup	11/17/2010	<0.01	<0.01	<0.01	<0.01	0.005 J	<0.02	<0.01	0.032	<0.01
	MW7-ROX-012511	1/25/2011	<0.0053	0.0023 J	<0.011	0.00099 J	0.0058	<0.011	<0.0053	0.0737	<0.0053
	MW-8-111710	11/17/2010	<0.01	0.005 J	<0.01	0.023	0.023	<0.019	<0.01	0.053	<0.01
MW-08	MW8-ROX-012511	1/25/2011	<0.005	0.0069	0.0195	0.0502	0.026	<0.01	<0.005	0.119 J	<0.005
	MW8-ROX-012511-DUP	1/25/2011 11/15/2010	<0.0057 <0.01	0.0075 <0.01	0.0228 <0.01	0.0587 <0.01	0.0288 <0.01	<0.011 <0.019	<0.0057 <0.01	0.171 J <0.01	<0.0057 <0.01
MW-09	MW-9-111510 MW9-ROX-012111	1/21/2011	<0.0053	<0.0053	<0.01	<0.01	<0.0053	<0.019	<0.0053	<0.0053	<0.0053
	MW-10-111010	11/10/2010	<0.0053	<0.0053	<0.011	<0.011	<0.0053	<0.011	<0.0053	<0.0053	<0.0053
MW-10	MW10-ROX-012411	1/24/2011	<0.0051	<0.0051	<0.01	<0.01	<0.0051	<0.019	<0.0051	<0.0051	<0.0051
ļ	MW10-ROX-012411-DUP	1/24/2011	<0.005	<0.005	<0.01	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005
	MW-11-111710	11/17/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
MW-11	MW11-ROX-012411	1/24/2011	<0.0052	<0.0052	<0.01	<0.01	<0.0052	<0.01	<0.0052	<0.0052	<0.0052
MM 42	MW-12-111510	11/15/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
MW-12	MW12-ROX-012411	1/24/2011	<0.005	<0.005	<0.01	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005
MW-13	NI	4Q10	NI	NI	NI	NI	NI	NI	NI	NI	NI
10104-12	MW13-ROX-012511	1/25/2011	0.00044 J	0.0021 J	<0.01	<0.01	<0.0052	<0.01	0.0012 J	< 0.0052	0.00032 J
P-54	P-54-111710	11/17/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
1 34	P54-ROX-012411	1/24/2011	<0.005	<0.005	<0.01	<0.01	<0.005	<0.01	<0.005	<0.005	<0.005
P-93A	P93A-102610	10/26/2010	<0.009	0.023	<0.009	<0.009	0.095 D	<0.019	<0.009	0.31 D J	<0.009
	P93A-ROX_012611	1/26/2011	0.00032 J	0.0254	<0.0098	0.064	0.0803	<0.0098 UJ	0.0004 J	0.172	<0.0049
P-93B	P93B-102610	10/26/2010	<0.009	<0.009	<0.009	<0.009	<0.009	<0.019	<0.009	0.094	<0.009
	P93B-ROX_012611	1/26/2011	<0.0053	<0.0053	<0.011	<0.011	0.0011 J	0.00069 J J	<0.0053	0.106	<0.0053
P-93C	P93C-102610	10/26/2010	<0.009	<0.009	<0.009	<0.009	<0.009	<0.019	<0.009	<0.009	<0.009
	P93C-ROX_012611	1/26/2011	<0.0051	<0.0051	<0.01	<0.01	<0.0051	<0.01 UJ	<0.0051	0.0166	<0.0051
P-93D	P93D-102610	10/26/2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.019	<0.01	<0.01	<0.01
	NS	1Q11	NS	NS	NS	NS	NS	NS	NS	NS	NS

NOTES:

- Analytical results screened to the Illinois Tiered Approach to Corrective Action Objectives (TACO), 35 IAC Part 742, and Groundwater Remediation Objectives for Chemicals not listed in TACO (*).
- "< ##" denotes that the analytical constituent was not detected at the indicated reporting limit.
- 3) NE = Not Encountered; NI = Not Installed; NS = Not Sampled
- 4) Xenco Laboratories was used during 4Q10. Accutest was used starting in 1Q11.

Exceedances of the screening criteria are highlighted in yellow above.


LABORATORY QUALIFIERS:


- D = The result is from a diluted sample
- J = The analyte was detected below the reporting limit. Result is estimated.

URS QUALIFIERS:

- J = The results is estimated
- UJ = Estimated nondetect
- U = Result is non-detect.

PROJECT NAME:	Roxana 1Q11 GW		PR	OJECT NUMBER:	21562593.00003	FIELD P	ERSONNEL:	K Hurst / A	. Satom	
DATE: 117)]	WEATHER:	N40 F	, dum	щ	t				
MONITORING WE	LL ID: MW-1				SAMPLE ID:	MWI	41711	MWI-ROX-	011711	
INITIAL DATA Well Dlameter): Total Well Depth (b Depth to Water (bto Depth to LNAPL/DN Depth to Top of Sc Screen Length): PURGE DATA	ic): 37.35 ft	Place Pump at: 1 If Depth to Top of Place Pump at: 1	otal Well Depth – 0. If Screen is < Depth Total Well Depth – (0 and/or water colum	a LNAPL or DNAPL):_ to Water AND Screen is (Screen Length + DN to Water AND Water C .5 X Water Column He n height is < 4 ft, Place	IAPL Column Height) Column Height and Sc ight + DNAPL Column	reen Length are ≥ 4	ft btoc A	olume of Flow Through Inimum Purge Volume = mblent PID/FID Reading ellbore PID/FID Reading	(3 x Flow Cell Volu	me): 240 mi ppi pp
Purge Volume		Depth to			79.2	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH 6-83	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
goo	1115	(6.1)	Clean	Now	6.43	5.14	1-386	1.3	0.09	114
1600	1147				6.78	5.73	1, 179	1.0	0.08	105
2400	1203				6-77	5-99	1.185	1.0	0. 08	104
3200	1219	*	*	*	6.76	5.90	M895	1.0	0.08	102
				(
				×						
Start Time: 1	15		Flan	sed Time (min):	64 min		Water Over	lity Meter ID: TROLL 95	00	
	269			age Purge Rate (mL/m		nynin	_ Date Calib	1/12		
SAMPLING DAT Sample Date: Sample Method: VOA Vials, No Head		ow KH		ple Time: ple Flow Rate (mL/mli	1225 n): 50~1	min	Lab Analys QA/QCSan			
COMMENTS:	No draw		Measu	DTW	at the	end of so	aupling		- 37 · 3]	,
· ·								Total Fully	o totalite.	11112

PROJECT NAME:	Roxana 1Q11 GW		PI	ROJECT NUMBER:	21562593.00003	FIELD PE	ERSONNEL:	· Hursil	N. Satam	
DATE:	17/11	WEATHER:	Cloudy	, 46°F						
MONITORING WE					SAMPLE ID:	MWZ-	Rov - 011.	111		
INITIAL DATA Well Diameter): Total Well Depth (b' Depth to Water (bto Depth to LNAPL/DN Depth to Top of Sci Screen Length): PURGE DATA	c): 38 26 ft APL (btoc):	If Depth to Top of Place Pump at: 1 If Depth to Top of Place Pump at: 1 If Screen Length	of Screen is > Depth Total Well Depth — (of Screen is < Depth Total Well Depth — (and/or water colur	de LNAPL or DNAPL):_ 1 to Water AND Screen 1.5 (Screen Length + DN 1 to Water AND Water (10.5 X Water Column He 1 mn height is < 4 ft, Place	Length is ≥4 feet, IAPL Column Height) <u>=</u> Column Height and Scr ight + DNAPL Column	= 54.69 reen Length are ≥ 4f Height) =	ft btoc Amb	me of Flow Through num Purge Volume : lent PID/FID Reading oore PID/FID Reading	= (3 x Flow Cell Volu	800 ml. Ime): 200 ml ppi pp
Purge Volume	Pump Type:	SS Bladder Pump Depth to				Temp	Cond.	Total Latin	00	000
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	Turbidity (NTUs)	DO (mg/L)	ORP (mV)
D	1545	MM	Clean	his discart or	6.72	8.68	·C. 7-2	12.7	2.01	-41
800	1553		1000	()	6.69	11.62	1.463	13-9	1.38	-46
1600	1601		1		6.47	13.69	1.467	11.7	0.75	-55
RAND	1409				6.66	14.50	1.746	10.8	0.56	-62
7000	1617		, .		6.60	14.97	1.746	12.6	0,68	-69
	1625				6-69	13.00	1.972	13.6	08.0	70
4800	1633				4.70	15.14	2.052	10.3	0.93	-71
5 4 60	1641				6.71	15-16	2.124	80	0.99	-71
3400	1049	4		4	6.12	15:19	2.048	80	Drg7	-69
Start Time:Stop Time:	/545 1449			psed Time (min):erage Purge Rate (mL/m	Le 4 par		The second of the second of	Meter ID: TROLL 99		
				rago i orgo rato (mish	mr)		- Date Galibrati			
SAMPLING DAT Sample Date: Sample Method: VOA Vials, No Head	Bladder Pump / Low Fix Ispace (注 Initials:	KH	Sar	nple Time:	1655 n): 1001m	1 garie	Lab Analysis: QA/QCSampl		, . , .	
Nost BT	W - 38.26H	No Dr	an done	· -						
campling								Total Dura	ge Volume: 646	- ml
								TOTAL PULL	te volunie. Get	o mL

PROJECT NAME:	Roxana 1Q11 GW		PI	ROJECT NUMBER:	21562593.00003	FIELD PER	RSONNEL:	K. Hust	W. sate	am
DATE:	18/11	WEATHER	N 3	5°f, ove	reast					
MONITORING WE	ELL ID: MW-3				SAMPLE ID:	MW3-	ROX - 01	18/1		
INITIAL DATA Well Diameter): Total Well Depth (to Depth to Water (bto Depth to LNAPL/DN Depth to Top of So Screen Length): PURGE DATA	oc): 24.77 ft	If Depth to Top of Place Pump at: If Depth to Top of Place Pump at:	of Screen is > Depti Total Well Depth — (of Screen is < Dept Total Well Depth — (n and/or water colur	de LNAPL or DNAPL):	ength is ≥4 feet, APL Column Height) olumn Height and So ght + DNAPL Column	creen Length are ≥ 4ft,	ft btoc Min	lume of Flow Through himum Purge Volume iblent PID/FID Reading illbore PID/FID Reading	= (3 x Flow Cell Volume	800 ml ime): 2900 ml ppi pp
Purge Volume		Depth to		-		Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
0	0920	NW	Clean	hydrocaribas	6.94	8.10	6.94	2	0.25	
1600	6926	-			6.89	R.55	1.86	14.6	0.30	-41
2400	09 712			+ + + + + +	6.87	8.57	2.070	9.9	0.32	-61
3200	0430	1/			6.86	8-52	2.167	4.0	0.30	-70
4000	3958				6-27	8.47	2.204	4.5	0.29	-82
1800	1006	4	V	-	6.89	286.15	2,260	A-3	0.70	-83
万600	1012			1	6.89	6.64	2.294	4.7	0.56	-83
6 ADO 0	1020				6.88	6.92	2.307	4.0	0.47	-83 -86
9200	1038			1	6.88	7.30	2.230	204	0.33	-86
200	1086				6.88		2.330	2.1	0.29	1: -87
0088	1044	- V	V		6.88	7.31	2.349	2.0.	0.26	-89
	 							4		
			,	1						
						1,0-				
Start Time:	0920		Ela	psed Time (min):	84 m.	N	Water Ouali	ty Meter ID: TROLL 95	500	P
							veator quan	1		_
Stop Time:	1044		Ave	erage Purge Rate (mL/mi	n): 100m	<u></u>	Date Calibra	rted: 1 18	3/11	
Sample Date: Sample Method:										
COMMENTS:	begins to	6Now	level A	eading.	24:834-			Total Dur	ne Volume: 880	- OC
·								Total Puro	e volume.	mL oo

DATE: 1/18/11	WEATHER:	N 40° F							
		70 1	· Overce	x+					
MONITORING WELL ID: MW-4				SAMPLE ID:	MW4-RO	0×-011811			
INITIAL DATA Well Diameter): 1 in Total Well Depth (btoc): 57.63 ft Depth to Water (btoc): 38.89 ft Depth to LNAPL/DNAPL (btoc):	If Depth to Top of S Place Pump at: Tot If Depth to Top of S Place Pump at: Tot	Screen is > Depth t tal Well Depth - 0.5 Screen is < Depth tal Well Depth - (0.	LNAPL or DNAPL): to Water AND Screen Le 5 (Screen Length + DNA to Water AND Water Co 5 X Water Column Heig n height is < 4 ft, Place I	ngth Is ≥4 feet, PL Column Height) : lumn Height and Sc ht + DNAPL Column	reen Length are ≥ 4ft, Helght)=	ft btoc A	olume of Flow Through finimum Purge Volume = Imblent PID/FID Reading Vellbore PID/FID Reading	(3 x Flow Cell Volum	
Purge Volume	Depth to	Color	Odor	-11	Temp	Cond.	Turbidity	DO	ORP
(mL) Time	Water (ft)	Color	hydrocalor	pH	(°C)	(mS/cm) 2.055	(NTUs)	(mg/L)	(mV)
800 1863	1	Clean	where	6.99	9.43	2.133	12.1	9.09	-15
1600 1201				6.86	10.07	3:37	7.7	1.53	-22
2400 1309				6.84	10.3	7.32	0.6	100	-71
3200 - 1317 4000 1325		_		6.83	10.28	2.348		0.95	-45
4800 1333		4	4	6.83	10.24	2.352	9.6	0.86	-51
Start Time: 14 45		Floor	sed Time (min):	50 min		707			
		Elapi	sed Time (min):		1	Water Qua	ality Meter ID: TROLL 95		-
Stop Time: 1335		Aver	age Purge Rate (mL/mir):	mc min	Date Calib	orated:1	18/1/	
SAMPLING DATA Sample Date: Sample Method: Bladder Pump / Low F VOA Vials, No Headspace Maintials:	low K L		ple Time:	1335	ml mi	Lab Analy QA/QCSa	S	_	
Depth to walu	post Sav	upling -	- 38.90				Total Purg	le Volume: 480	OO mL

PROJECT NAME:	Roxana 1Q11 G	N	PF	ROJECT NUMBER:	21562593.00003	FIELD P	ERSONNEL:	N. satar	1 /k Hu	ust_
DATE: 1 18	5/11	WEATHER	R:	30°F. 01	vercast					
MONITORING WE	LL ID: MW-5				SAMPLE ID:	MW5- RO	× - 011811			
INITIAL DATA Well Dlameter): Total Well Depth (br Depth to Water (bto) Depth to LNAPL/DN Depth to LNAPL/DN Depth to Top of Sci Screen Length): PURGE DATA	c): 24.06 1	t If Depth to Top t Place Pump at: If Depth to Top t Place Pump at:	of Screen is > Depth Total Well Depth – 0 of Screen is < Depth Total Well Depth – (th and/or water colur	de LNAPL or DNAPL): to Water AND Screen L 5.5 (Screen Length + DN, to Water AND Water Co 0.5 X Water Column Hele nn height is < 4 ft, Place	ength is ≥4 feet, APL Column Height) olumn Height and So ght + DNAPL Columi	creen Length are ≥ 4 n Height)=	ft btoc Am	ume of Flow Through Imum Purge Volume blent PID/FID Readin Ilbore PID/FID Readin	= (3 x Flow Cell Volu	me): <u>Se po</u> ml ppi pp
Purge Volume		Depth to			200	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
0	1452	241199	Cleur	Hydrocaber	7.02	6.06	1.845	12.1	3.43	-38
800	1500		1	1	6.92	6.83	1.950	8.5	2.42	-41
1600	1508			-	6.87	7.92	2.012	5.2	1.55	-48
3200	1524					8.41	2.034	3.9	1.20	-54
4000	18 32				6.83	9.41	2 045	3.6	1.03	~43
4800	1540				6.83	9.31	2.091	2.5	0,93	-44
5400	15 पुर्व	Ą		<i>y</i>	6.82	9.51	2.051	2.8	0.15	-44
Start Time:	1452		Ela	psed Time (min):	56 min		Water Qualit	ty Meter ID: TROLL 9	500	_
Stop Time:	1548		Ave	erage Purge Rate (mL/mi	n): 100 m	سمااه	Date Calibra	ted: 1/18 1	1	
SAMPLING DAT Sample Date: Sample Method: VOA Vials, No Head	Bladder Pump / Low	Flow		mple Time: mple Flow Rate (mL/min	1555	llañ	Lab Analysi QA/QCSamp		4	
								Total Purg	ge Volume: S (00 mL

PROJECT NAME:	Roxana 1Q11 G	WW	PR:	OJECT NUMBER:	21562593.00003	FIELD PI	ERSONNEL: K	· Hurst,	N-5al	anon	
DATE:	19/11	WEATHER:	N	20' F , 01	veilast						
MONITORING WE	LL ID: MW-6A				SAMPLE ID:	" MW6P	1 - Rox - 011	191)			
		ft If Depth to Top of ft Place Pump at: 1 ft If Depth to Top of ft Place Pump at: 1	of Screen is > Depth of otal Well Depth - 0. of Screen is < Depth otal Well Depth - (0 and/or water colum	to Water AND Water .5 X Water Column He		reen Length are ≥ 4 Height)=	ft btoc Amb	ime of Flow Through mum Purge Volume Ilent PID/FID Readin bore PID/FID Readin	= (3 x Flow Cell Volu	ррі	
Purge Volume	rump Type.	Depth to				Temp	Cond.	Turbidity	DO	ORP	
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)	
0	1042	dispecto.	Clear	Now	(4.83	8.64	2.009	26.5	0.15	- 8	
800	1050				6.84	9.14	2.073	21.4	0.19	- 39	
16 00	1058				6.84	7.42	2.195	17.7	0.55	-57	
3200	1106				6.86	5.82	2.284	19.0	62.0	-60	
4600	1114				6.82	8.03	2.234	18.2	0.53	-63	
4300	130				4.80	9.70	2.270	9.4	0.38	- 68	
5400	11 38				6.80	10.99	2. 274	7.4	0.34	-72	
Start Time:	1042		Elap	sed Time (mln):	56 m	~	Water Quality	/ Meter ID: TROLL 9	500		
Stop Time:	1138		Aver	rage Purge Rate (mL/r	min):[00 a	-1 min	Date Calibrat				
SAMPLING DATA Sample Date: 11911 Sample Time: 1195 Lab Analysis: VOC, SVOC Sample Method: Bladder Pump / Low Flow Sample Flow Rate (mL/min): 10001000 QA/QCSamples: MWGA - ROX - C11911EB											
COMMENTS:	samphi	1 sw cha	level -	drunatically 26.40 +	- 1	so dias	v down	Total Dur	ge Volume: 5 4	/56 ml	
								i Otal Pul	ge voluine. S L	GO mL	

PROJECT NAME	: Roxana 1Q11 G	W	P	ROJECT NUMBER:	21562593.00003	FIELD PE	RSONNEL: K	Hurst / h). Sctum	
DATE:	9/11	WEATHER	: Partly	Cloudy, 2	4°F					
MONITORING WI	ELL ID: MW-6B		,		SAMPLE ID:	MAN HARAGE	Museum Mu	ub- Rox.o	11911	
INITIAL DATA Well Diameter): Total Well Depth (i) Depth to Water (bt) Depth to LNAPL/D Depth to Top of Si Screen Length): PURGE DATA	2 in btoc): 69.38 oc): 76.33 NAPL (btoc): - creen (btoc): 64.05 ft Pump Type:	ft if Depth to Top ft Place Pump at: ft if Depth to Top ft Place Pump at:	of Screen is > Depti Total Well Depth — of Screen is < Dept Total Well Depth — h and/or water colu	de LNAPL or DNAPL): h to Water AND Screen 0.5 (Screen Length + D th to Water AND Water (0.5 X Water Column H mn height is < 4 ft, Plan	Length is ≥4 feet, NAPL Column Height Column Height and S eight + DNAPL Colum	creen Length are ≥ 4f	ft btoc Am Wei	ume of Flow Through Imum Purge Volume blent PID/FID Readin Ibore PID/FID Readin	= (3 x Flow Cell Volume	
Purge Volume	T1	Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
800	1354	au-30	Clew	JU ONE	7.10	15.76	1.930	13.9	1.16	31
1000	1358		1	1	6.95	16.18	2.043	4.7	0.44	- 10
2400	1402				6.93	14.05	2.114	2.5	0.30	-23
3200	1406				18.93	14.07	2.128	10	0.25	-32
4000	1410	V	1	1	6.93	15.90	2.133	1.4	0.7.7	-39
			1							
Start Time:	1350		Ela	psed Time (min):	20 min	3	Water Qualit	y Meter ID: TROLL 9	500	
	1410			A A Account				Total Control of the		_
Stop Time:	17(10		Av	erage Purge Rate (mL/	min): doo ml	State .	Date Calibra	ted: 1 19/11		
SAMPLING DA Sample Date: Sample Method: VOA Vials, No Hea COMMENTS:	NTA I ((4) (() Bladder Pump / Lov adspace ☑ Initials:	v Flow K U		mple Time:mple Flow Rate (mL/m		Munia .	Lab Analysi QA/QCSamp		B-10x-01	1911 Dup
								Total Pur	ge Volume: 닉ㅇ	OU mL

PROJECT NAME: Roxana 1Q11 GW				PROJECT NUMBER:	21562593.00003	FIELD P	ERSONNEL: _	N. Satan	n k He	us 9
DATE: 1/2	uly	WEATHER:	N	GF overces	+					
MONITORING WE	LL ID: MW-6C				SAMPLE ID:	MW,6C-	012111			
	2 in toc): 99.28 ft c): 26.01 ft APL (btoc): 61 ft pump Type:	Place Pump at: To If Depth to Top of Place Pump at: To	otal Well Depth Screen Is < Dotal Well Depth Otal Well Depth	clude LNAPL or DNAPL):_ spth to Water AND Screen - 0.5 (Screen Length + DN lepth to Water AND Water 1 - (0.5 X Water Column He olumn height is < 4 ft, Plac	Length is ≥4 feet, NAPL Column Height Column Height and S eight + DNAPL Colum	= 82.45 creen Length are ≥ 4 n Height)=	ft btoc	Volume of Flow Through Minimum Purge Volume Amblent PID/FID Readin Wellbore PID/FID Readin	= (3 x Flow Cell Vo	800 ml olume): 200 ml ppi pp
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	09 50	Water (ft)	Color	Odor (author	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
800	0954	1	gran	VOLUMO (207)	6.91	13.73	0.98	16:70	-0.17	-18
1600	09 58	20.07		V	6.83	13.86	0.936	9.5	1-0.12	-50
2400	10 02	26.02	_		6.83	13.72	0.979	5.3	-0.13	-53 -63
3300	1006	26.02	4	4	6.94	13.40	0.981	4.2	-0.13	-66
Start Time:	1010			Elapsed Time (min):	30		Water O	nality Meter ID: TROLL S	9500	
SECURIO SECUENCIA	1010			Control Management Control of Con		malar				
Stop Time:				Average Purge Rate (mL/n	nin):	, 40- 10-	_ Date Call	brated: \ 21	1	
SAMPLING DAT Sample Date:	1/21/11			Sample Time:	1010		Lab Anal	ysis: VOC, SVOC		
Sample Method:	Bladder Pump / Low I	Flow		Sample Flow Rate (mL/mi	in):	oul ho	QA/QCS	amples: Mat/C-	Rox - 0 201	EB
VOA Vials, No Head	dspace 🗹 Initials:	Al S						PIWOC	100 - 0 201	160
COMMENTS:										
								Total Pur	ge Volume:	3200 mL
7										

PROJECT NAME:	Roxana 1Q11 G	W	PI	ROJECT NUMBER:	21562593.00003	FIELD P	ERSONNEL:	K. Hurst	IN. S.	tem
DATE: (/2	ılıı.	WEATHER:	Swan	1,10°F						
MONITORING WE	LL ID: MW-6D			,	SAMPLE ID:	MWGI	POX - C	21211		
Screen Length):	c):	ft if Depth to Top o ft Place Pump at: T ft if Depth to Top o ft Place Pump at: T if Screen Length	f Screen is > Depti otal Well Depth — (f Screen is < Depti otal Well Depth — (and/or water colur	h to Water AND Water 0.5 X Water Column H		reen Length are ≥ 4 Height) =	Min ft btoc Am	ume of Flow Through imum Purge Volume blent PID/FID Readin libore PID/FID Readin	= (3 x Flow Cell Vol g: O-D	ume): 2 Clau mi
PURGE DATA	Pump Type:	SS Bladder Pump							4	
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pH	Temp (°C)	Cond. (mS/cm)	Turbidity	DO	ORP
D	1052	24.01	CLEW	Name	7.16	10.62	1. 245	(NTUs)	(mg/L) マ・ウシ	(mV)
80D	1056	1		1	7.11	11.87	1. 291	5.9	1.14	-50
1600	16 80				7.07	12. 99	1.304	4,5	0.55	- 59
2400	1104				7.05	13.54	1.316	2.7	0.31	-65
3200 4000	1108			1	7.09	13.77	1.312	1.4	0.21	- 70
1000					1.00	73.66	1-330	1.3	0.14	
Start Time:	1052		Ela	psed Time (min):	20 min		Water Qualit	y Meter ID: TROLL 9	500	
Stop Time:	1112		Ave	erage Purge Rate (mL/ı	min): 200 m)	Land		ted: 1/24		
SAMPLING DAT Sample Date: Sample Method: VOA Vials, No Head	Bladder Pump / Low		Sar	mple Time: mple Flow Rate (mL/m	1/20 nin): 200 c	أمنعرا ال	Lab Analysis QA/QCSamp		N 15	
								Total Pur	ge Volume: "	mL

PROJECT NAME: Roxana 1Q11 0	SW .	PROJECT NUMBER:	21562593.00003	FIELD PERS	SONNEL:	N. satas	m / K. Her	urt.
DATE: / 12111	WEATHER:	1 30 F , DU	ercast					
MONITORING WELL ID: MW-7			SAMPLE ID:	-FWM	Rox - 0125	1).		
INITIAL DATA Well Diameter): 2 in Total Well Depth (btoc): 52.92 Depth to Water (btoc): 37-58 Depth to LNAPL/DNAPL (btoc): Depth to Top of Screen (btoc): 42.92 Screen Length): 10 ft PURGE DATA Pump Type:	fit If Depth to Top of Screen is fit Place Pump at: Total Well D fit If Depth to Top of Screen is fit Place Pump at: Total Well D	of include LNAPL or DNAPL): Depth to Water AND Screer apth - 0.5 (Screen Length + D Depth to Water AND Water apth - (0.5 X Water Column H ar column height is < 4 ft, Pla	n Length is ≥4 feet, NAPL Column Height) Column Height and Sc eight + DNAPL Column	reen Length are ≥ 4ft, Height) =	ft btoc Ambi	ne of Flow Through num Purge Volume : ent PID/FID Reading oore PID/FID Reading	(3 x Flow Cell Volu	
Purge Volume	Depth to			Temp	Cond.	Turbidity	DO	ORP
(mL) Time	Water (ft) Cold		pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
800 1418	.37.52 (lea	1 hydrento	6.54	1349	1.946	9.7	6.64	27
			6-53	14.48	. 927	.5.2	0.68	19 9 4 -2
2400 1426			6.53	14.48	10896	4.5	0.66	4
3200 120011130			6.53	14.38	1.869	3.6	0.70	-2
4000 504 154 4500 668	1	- 1/	6.55	14.40	1.869	3.2	0.3-4	- 6
Start Time: 1 A 1 B		Elapsed Time (min):	25		Water Quality	Meter ID: TROLL 95		
Stop Time: 1 435		Average Purge Rate (mL/	min):	200 ml/m	Date Calibrate	id: 1 25	11)	
SAMPLING DATA Sample Date: \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Sample Time: Sample Flow Rate (mL/n	1 4 35 nin): 200		Lab Analysis: QA/QCSample		_	
VOA Vials, No Headspace Initials: COMMENTS:	KN	_						
						Total Purg	ge Volume: A	600 mL

PROJECT NAME:	Roxana 1Q11 GW	e."	Р	ROJECT NUMBER:	21562593.00003	FIELD PER	RSONNEL:	N. Sa	Jane K.	Huest
DATE: 1/2	15/11	WEATHER	R:N3	of Sunny						
MONITORING WE	ELL ID: MW-8				SAMPLE ID:	MW8- KOX	-01251]		- 27	
INITIAL DATA Well Diameter): Total Well Depth (b Depth to Water (bto Depth to LNAPL/DM Depth to Top of Sc Screen Length): PURGE DATA		If Depth to Top Place Pump at: If Depth to Top Place Pump at:	of Screen is > Dept Total Well Depth of Screen is < Dep Total Well Depth h and/or water colu	ide LNAPL or DNAPL):_ th to Water AND Screen 0.5 (Screen Length + Di th to Water AND Water (0.5 X Water Column He mn height is < 4 ft, Plac	Length is ≥4 feet, NAPL Column Height) Column Height and So eight + DNAPL Column	creen Length are ≥ 4ft,	ft btocft btocft btocft btoc	Volume of Flow Through Minimum Purge Volume Ambient PID/FID Reading Wellbore PID/FID Reading	= (3 x Flow Cell Vo	. D pp
Purge Volume	rump type.	Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
0	1300	28.68	Cloudy	Prigracorpos.	6.61	13.8	2.155	74·0	0.86	37
800 160	1304	28.68	, 1	1	6.40	15.35	2-165	39.0	0.53	11
1600	130%	1			6.39	15.56	2-134	31	0.61	3
बेम्बर	1312				6.38	15.89	2.094	25.5	8 7 7	-5
3200	1316				6.33	16.02	2.082	22.0	072	-9
A600	1320	28 68	4	-	6.33	16.17	2.068	20-0	0.77	-14
				V		16.21	7.007	18.0	5.80	
Start Time:	300		Ela	apsed Time (min):	25		Water 0	Quality Meter ID: TROLL 9	500	
Stop Time:	1325		Av	erage Purge Rate (mL/n	nin): 2.00)	Date Ca	alibrated: 125		
SAMPLING DATES	TA 1/25/11		Sa	imple Time:	1325		Lab An	alysis: VOC, SVOC		
Sample Method:	Bladder Pump / Low F	low	Sa	mple Flow Rate (mL/ml	in): 20 to	sat in	QA/QC	Samples: Mw 8-	ROX - 01 25	II DUP
VOA Vials, No Head	dspace 🗗 Initials:	200								
COMMENTS:										
								Total Puro	ie Volume: 41	1.06 mL

PROJECT NAME:	Roxana 1Q11 GV	1	PR0	DJECT NUMBER:	21562593.00003	FIELD PER	RSONNEL:	N. Sata	u / & Keres	t
DATE: 1 21	11	WEATHER:	N CF	Suny						
MONITORING WE	LL ID: MW-9				SAMPLE ID:	MW9 - Ro	X-012111			
	2 In toc): 56.78 ft c): 39.65 ft APL (btoc): → fr reen (btoc): 46.45 ft 10 ft Pump Type:	If Depth to Top of Place Pump at: 1 If Depth to Top of Place Pump at: 1	f Screen is > Depth t fotal Well Depth - 0.5 f Screen is < Depth fotal Well Depth - (0. and/or water column	to Water AND Water 0 5 X Water Column He	Q - ge Length is ≥4 feet, NAPL Column Height) <u>=</u> Column Height and Scr olight + DNAPL Column e Pump at: Total Well I	een Length are ≥ 4ft,	ft btoc A	olume of Flow Throug inimum Purge Volum mbient PID/FID Readi ellbore PID/FID Readi	e = (3 x Flow Cell Vol	lume): 2400 ml
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
0	1305	39.68	Cleanly	hydro carbon	6.83	12.49	1.433	44	0.26	_25
800 [800	1309	1	1	1	6.76	12-96	1.483	37	6.08	-23
4,400	1217				6.74	13.00	1.504	37	0.05	-28
3200	1317		4	1	C.74'	3.09	1.512	25.1	6.00	-32
A 000			Chear		6.74	17-97	1.519	18.6	-0.04	- 33
4500	1234				6-74	12.44	1.523	18.0	_0.04	-33
5100	2395 2324	19 68			6.33	13.00	1.522	18.4	-0.03	-34
6400	1977	39.02	V		6.73	12:17	1.524	17.2_	-0.03	-34
Start Time:	1305 130	25	Elaps	ed Time (min):	30		Water Qua	lity Meter ID: TROLL	9500	_
Stop Time:	1333		Avera	age Purge Rate (mL/m	nin):	U m	Date Calib	rated: 1\3	njn	
SAMPLING DAT Sample Date: Sample Method: VOA Vials, No Head	I 2111	Flow N S		ole Time:	340 in): 200	nd m	Lab Analy QA/QCSar		Pox - 0/21	H MS V
								Total Pu	rge Volume: 6	400 mL

PROJECT NAME:	Roxana 1Q11 G	W		PROJECT NUMBER:	21562593.00003	FIELD P	ERSONNEL:	. Hursi	1 N. 5,4	-m
DATE: 1/2	4/11	WEATHER	1: Sway	, 3501=						
	LL ID: MW-16				SAMPLE ID:	MW10-	nox- 0	12411		
Depth to Water (bto Depth to LNAPL/DN	2 in 54.7 toc): 51.99 54.7 April 24.66 ft Pump Type:	If Depth to Top Place Pump at: If Depth to Top If Place Pump at:	of Screen is > Dep Total Well Depth - of Screen is < Dep Total Well Depth - h and/or water coll	ude LNAPL or DNAPL):_ th to Water AND Screen 0.5 (Screen Length + Di th to Water AND Water 0.5 X Water Column He umn height is < 4 ft, Plac	Length is ≥4 feet, NAPL Column Height Column Height and S sight + DNAPL Colun	t) = 49.76 Screen Length are ≥ 4	ft btoc An	lume of Flow Througi nimum Purge Volume abient PID/FID Readin illbore PID/FID Readin	g: O O	me): <u>2400</u> ml ppi
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
600	12110	39.38	clear	Hydrocuba.	6.81	10.12	1.554	18.7	0.79	-10
1400	1220		-		6.77	11.39	1. 532	12.7	0.56	-25
2400	1224				6.74	12.45	14487	9.5	0.44	-32
3200	12 28				6.73	12.89	1.4.4 6	84	0.37	31
4000	1232				6-72	13.15	1, 388	7.6	0.34	-41
4800	1236					13.05	1.364	5.7	0.34	- 44
5600	1240	1/	1	- 1/	4.72	/3.08	1344	4.3	0.34	-47
Start Time:	1214		EI	apsed Time (min):	ain 86		Water Quali	ity Meter ID: TROLL S	9500	
Stop Time:	1244		A	verage Purge Rate (mL/n	nin): 200 ~	1 Jonin	Date Calibra	11		
SAMPLING DATES Sample Date: Sample Method: VOA Vials, No Head	TA ↓ 2 4 ((Bladder Pump / Lov dspace-{() Initials:	K. H		ample Time:ample Flow Rate (mL/m	1250 in): 300	ml]min	Lab Analys QA/QCSam		o-Rox-01	2411 Duf
								Total Pur	ge Volume: 50	₂ ○O mL

PROJECT NAME:	Roxana 1Q11 G	N	PI	ROJECT NUMBER:	21562593.00003	FIELD PE	RSONNEL: _R	. Huese /	N. Soton	
DATE:	24/11	WEATHER	N3	BO'E Se	Long					
MONITORING WE	LL ID: MW-40- [1			SAMPLE ID:	MM11 - RO	x - 0124	11		
Depth to Water (bto Depth to LNAPL/DN	toc): 54.76 (c): 33 - 24 (d) APL (btoc):	To Place Pump at: If Depth to Top of It If Depth to Top of It All LRIace Pump at:	of Screen is > Depth Fotal Well Depth — (of Screen is < Depth Fotal Well Depth — (and/or water colur	te LNAPL or DNAPL):_ to Water AND Screen I to Screen Length + DN to Water AND Water C 0.5 X Water Column Hei nn height is < 4 ft, Place	.ength is ≥4 feet, APL Column Height) : column Height and Sc ight + DNAPL Column	reen Length are ≥ 4ft Height) = —	ft btoc Amb	me of Flow Through num Purge Volume ient PID/FID Reading oore PID/FID Reading	(3 x Flow Cell Volum	me); 2450 ml ppi
Purge Volume		Depth to	720			Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
D	1104	37.24	Cloudy	hydrocalem	6.83	12-22	0.783	29-3	1.09	1.06
806	1108		-		6.63	13.88	1-249	25.6	0.320	-28 -42
2400	1114				6.62		1.316	20.4	0.110	-42
3200	1120				6.40	14:25	1.309	12.4	-0.01	-48
1000	1124				6.60	14.36	1.295		-0.03	- 56
4600	132		V	1	6.59	14.34	1.295	10.7 8.8	10.05	-59
	1132	2								
G1 . T1	1104			1=1	24					
Start Time:	1104		Ela	psed Time (min):			Water Quality	Meter ID: TROLL 95	500	_
Stop Time:	1120		Ave	erage Purge Rate (mL/m	in):200 1	ml mi	Date Calibrate	ed:1	-4/11	
SAMPLING DATES	1/24	Ŋ	Sar	mple Time:	1135		Lab Analysis:	voc, svoc		
Sample Method:	Bladder Pump / Low	Flow	Sar	mple Flow Rate (mL/mir	1):	me mis	QA/QCSample	85: Nau	e	
VOA Vials, No Head	dspace 🔼 Initials:	KH				AND WATER				
COMMENTS:	(-									
								Total Purg	e Volume: 4B	OU mL

PROJECT NAME:	Roxana 1Q11 GW		PROJECT NUMBER:	21562593.00003	FIELD PER	RSONNEL:	Hwst	N Scato	m
DATE:	24/11	WEATHER:	N30°+,	Overcast					
MONITORING WE	LL ID: MW-12			SAMPLE ID:	M	w12-01241	- MWH	2-Rox-01	241
INITIAL DATA Well Diameter): Total Well Depth (bt Depth to Water (btot Depth to LNAPL/DN. Depth to Top of Scr Screen Length): PURGE DATA	c): 57.49 ft	Water Column Height (do no if Depth to Top of Screen is a Place Pump at: Total Well De if Depth to Top of Screen is a Place Pump at: Total Well De if Screen Length and/or water	Depth to Water AND Screen opth – 0.5 (Screen Length + D Depth to Water AND Water opth – (0.5 X Water Column H	Length is ≥4 feet, NAPL Column Height) = Column Height and Scr eight + DNAPL Column	= 36.92— reen Length are ≥ 4ft,	ft btoc Ambi	ne of Flow Through C num Purge Volume = ent PID/FID Reading: ore PID/FID Reading:	(3 x Flow Cell Volum	
Purge Volume	rump type:	SS Bladder Pump Depth to			Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft) Colo		pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
800	0920	37.47 Cloud	y hydrorarbon		14.32	1-732	62	-0.16	152
1600	00/28	37.47 Clear	1 1	6.69	14-60	1.488	16.0	-0.16	153
2300	0928	37 77		6.66	14-95	1.434	1202	-0.16	156
34000	0935 6940 8144			6.66	4.90	1.365	11.4	-0.16	156
3600	STAD			6.66	14.95	1.197	10.2	-0.16	1580
6400	0948			6.66	15-02	1.088	9.6	- D.16	(28)
7000	0423	+ +	1	6.66	14,95	1.197	9,5	-0-17	138
9,000	6954	- 4	4	6.66	19.98	1.196	9.2	-0.16	159
Start Time:	0920		Florand Time (min):	40					
Start I line:			Elapsed Time (min):			Water Quality	Meter ID: TROLL 950		-
Stop Time:	1000		Average Purge Rate (mL/r	min):200	mllin	Date Calibrate	d: 1/25	11	
SAMPLING DAT Sample Date:	A 1/24/11 Bladder Pump / Low Flo	ow	Sample Time: Sample Flow Rate (mL/m	1000 in): 200	nt min	Lab Analysis:	VOC, SVOC	2 - Rox - 0'	2411.45
VOA Vials, No Head	space Initials:	No	-				MWIZ	L - RUX -C	12411ms
COMMENTS:	399 0 	-	_				KIL PILOT		1 (-5)
							Total Duran	Volume: 800	01
-	*		LOW FLOW GROU	INDWATER SAMPL	ING DATA SHEET		Total Purge	volume: 000	O mL

PROJECT NAME:	Roxana 1Q11 GV	/	PR	OJECT NUMBER:	21562593.00003	FIELD PER	RSONNEL:	Nisitem	1K Kinst	
DATE:	illi	WEATHER	R:	20° L.	oversian					
MONITORING WE	LL ID: MW-13				SAMPLE ID:	MW13-6	tox - 012	511		
INITIAL DATA Well Diameter): Total Well Depth (br Depth to Water (btor Depth to LNAPL/DN Depth to Top of Scr Screen Length): PURGE DATA	c): 24-55 ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	Total Well Depth – 0.1 of Screen is < Depth Total Well Depth – (0.1 h and/or water column	to Water AND Screen L 5 (Screen Length + DN	ength is ≥4 feet, APL Column Height) olumn Height and So ght + DNAPL Column	= 30.32 reen Length are ≥ 4ft,	ft btoc Vo	lume of Flow Through nlmum Purge Volume : nblent PID/FID Reading lilbore PID/FID Reading	= (3 x Flow Cell Volume	ml me): <u>∠4_0 C</u> ml ppi pp
Purge Volume		Depth to			ematr .	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	(NTUs)	(mg/L)	(mV)
20	1004	24.55	Cloudy	hydroiausor	6-55	16.01	1.147	197.2	0.02	49
1600	1012	24.55	1	1	6.44	13.18	1.564	280	0.00	-212
a 4 00	1016					13.30	1.675	280	0.05	-45
3200	1010				6.74	12.66	1.678	250	-0.00	-49 -69
4000	1824				6:40	13029	1. 6.59	229	-0.03	-8k
A000	10 40				6.47	17.38	1.631	155	_0.06	- 6X
3600	1032	4			648	17.77	1.60	128	-0.07	- 70
6400	1990	24.55			649	17.68	1. 550	29	-0.07	- 74
7000					6.50	17.74	1.533	Gal	-0.08	-14
4000	18 A				6,60	13.82	1.493	52	-0.09	-to
450 0	10/19				6:51	17.57	1.448	34		-+6
9600	1054		10		1.31	12 58	10398	32	-0.00	-38
10200	100%		Cleaning			7.58	1.372	24	-0.09	-80
11000	1058	1	1/1	1/1	6.52	12:32	1.367	20.2	-00/0	-82
Start Time:	1004	^	Flance	sed Time (min):	62 min	73.30	' '	ity Meter ID: TROLL 95		-0-
ourt rinter	1.15.1	1101		sou rano (mm)		- 11	veater quan	-		
Stop Time:	Hash	1104	Aver	age Purge Rate (mL/ml	In):	onlin	Date Callbra	ated: 1 25	5[1]	
SAMPLING DAT Sample Date:	1/25/11			ple Time:	1110		Lab Analys			
Sample Method:	Bladder Pump / Low	A	Sam	ple Flow Rate (mL/min	1): 200	MI MIN	QA/QCSam	ples: M (1)	13 - ROY	-DIZSLIEB
VOA Vials, No Head	space 🔀 Initials:	Colo				ion here		(ICIL)	1) - 100x -	- 01 - 011 - 01
COMMENTS:										
								Total Purc	ie Volume: 11ti	ROO mL

PROJECT NAME: ROXANA

PROJECT NUMBER: 21562693 FIELD PERSONNEL: N. Salam KHick

DATE: 1/25/4

MONITORING WELL ID: MW13 - ROX -01251

WATER QUALITY METER: Trall 9 500

Purge Volume (mL)	Time 1006	Depth to Water (ft)	Color	Odor hyduoudd	pH 6 · 52	Temp (°C) (7・7:3	Cond. (m\$/cm))- 3 79	Turbidity (NTUs)	DO (mg/L) ② .) ①	ORF (mV
11800	1006	24.55	Clean	hydroubs	6.52	17.78	1.379	19.2	0.10	-82
										1
			-	-						-
			-							-
	-		1							
	L									
				-						
			1	+						-
	-		-	-						
-					9					
	-	-								
										1
		_	1				7			-
					-					+

LOW FLOW GRO	DUNDWATER SAM	IPLING DATA S	HEET							
PROJECT NAME:	Roxana 1Q11 GV	V	P	ROJECT NUMBER:	21562593.00003	FIELD PE	RSONNEL: 14	(Hurst	N. Sastan	·
DATE: 1/24	Į ii	WEATHE	R: Swry,	33°F						
MONITORING WEI	LL ID: P-54	E A SECTION RES			SAMPLE ID:	P54-R0x-	012411			
Screen Length):	s): 37.32 ft APL (btoc): — ft een (btoc): 38.00 ft	if Depth to Top Hace Pump at If Depth to Top Place Pump at if Screen Leng	of Screen is > Dept : Total Well Depth - of Screen is < Dep : Total Well Depth - th and/or water colu	de LNAPL or DNAPL):_ h to Water AND Screen 0.5 (Screen Length + D) th to Water AND Water (0.5 X Water Column He mn height is < 4 ft, Plac	Length is ≥4 feet, IAPL Column Height Column Height and S ight + DNAPL Colum	t) = 50.50 Screen Length are ≥ 4ft nn Height) =	ft btoc Amt	ume of Flow Through imum Purge Volume blent PID/FID Readin Ibore PID/FID Readin	= (3 x Flow Cell Volu	
PURGE DATA Purge Volume	Pump Type:	SS Bladder Pur Depth to	np T			Temp	Cond.	Turkidik	DO	ODD
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(mS/cm)	Turbidity (NTUs)	(mg/L)	ORP (mV)
0	1427	37.32	1.1800	None	12.74	13.73	1.333	11.9	1.54	43
800	1428	i		1	4.74	14.02	1.244	14.2	7.43	45
1600	1432				672	14.31	1.1104	20.1	1.32	48
2400	1434				4.70	14.44	100	27.8	1,29	50
3200	1440				6.70	14.45	0 9631	28.2	1.28	53
4000	1444				1.69	14.45	0.9659	27.9	1,28	5 Z
4800	148	1	1	1	6.69	14.47	0.9694	25,4	1, 29	56
Start Time:	1424		Ela	apsed Time (min):	24 ~	~:~	Water Qualify	y Meter ID: TROLL 9	500	
52 CO	1448						acor square			_
Stop Time:	110		Av	erage Purge Rate (mL/n	nin): 200 ml	MIN	Date Calibrat	ted: 1/24/1		
SAMPLING DAT Sample Date: Sample Method:	1/24/(I Bladder Pump / Low	Flow KH		imple Time:	1455 n): 2000	- Umin	Lab Analysis QA/QCSamp		e	

Total Purge Volume:

4800

mL

COMMENTS:

ROXANA 1Q11 SAMPLING

Well	Date	Well Dlam. (inches)	DTB (ft btoc)	DTW (ft btoc)	Packer Depth (ft btoc)	Ht of H2O	Well Volume (gal) ²	Target Purge Volume (gal) ³	Actual Purge Volume (gal)	Sample Time	pН	Temp (C)	Cond (mS/cm)	Turbidity (Ntu)	QA/QC or NOTES
NORTH PE	ROPERTY		A SHIP TO A SHIP									E/BEAT L		THE RESERVE	
P-93A	1/26	2	63.17	41.22	N/A	21.95	3.58	10.73	2012	159	المابط	Herites	2517	128	ALL SO KIL
P-93B	1124	2	76.03	41.27	N/A	34.74	5.47	14.99	20	1055	4,49	16.44	1.377	1.2	MSIMSD
P-93C	1/26	2	96.26	41.16	80.30	8.75.36	26.92.88.90	26.9-8	27	1120		14.51	1.832	0.5	
P-93D	1/24	2	127.44	41.07	119.25	-8-90	14:07	42.23	NS	NS	NS	NS	NS	NS	Well Compromised

NOTES:

1) Ht of H2O = DTB - DTW
2) Well Volume [for 2" wells] = Ht of H2O (0.163 gal/ft)
3) Purge Volume = 3 x Well Volume

Page 1 of 1

Roxana Groundwater Quarterly – 1st Quarter 2011

Laboratory SDG: M97264

Data Reviewer: Wendy Buchman

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 2/21/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
MW1-ROX-011711	MW2-ROX-011711
MW3-ROX-011811	MW4-ROX-011811
MW5-ROX-011811	TB-ROX-011711

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated SVOC LCS recovery was outside evaluation criteria for 4-chloroaniline. Although not indicated in the laboratory case narrative, methylene chloride was detected in the trip blank. Sample MW2-ROX-011711 was analyzed at dilution due to ethyl benzene and bis(2-ethylhexyl phthalate) having exceeded the calibration range of the instrument. The compounds ethyl benzene and bis(2-ethylhexyl phthalate were reported from the second run; all other compounds were reported from the original analysis. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated that samples were received by the laboratory at 1.1° C which was outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore, no qualification of data was required. The cooler receipt form erroneously indicated N/A for the quality control/preservation questions, trip blank present in cooler and trip blank listed on the COC. A trip blank was included in the cooler and was listed on the COC; URS instructed the laboratory to analyze the trip blank for VOCs.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration/Amount
TB-ROX-011711	VOCs	Methylene chloride	0.86 μg/L

Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	LCS Criteria
OP23913-BS	SVOCs	4-Chloroaniline	29	40-130

Analytical data that required qualification based on LCS data are included in the table below.

Field ID	Parameter	Analyte	Qualification
MW1-ROX-011711	SVOCs	4-Chloroaniline	UJ
MW2-ROX-011711	SVOCs	4-Chloroaniline	UJ
MW3-ROX-011711	SVOCs	4-Chloroaniline	UJ
MW4-ROX-011711	SVOCs	4-Chloroaniline	UJ
MW5-ROX-011711	SVOCs	4-Chloroaniline	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?

No

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

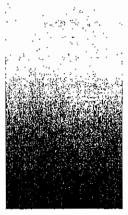
11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied?

Yes, professional judgment was used to qualify the common laboratory contaminant acetone reported at concentrations greater than two times (2X) the reporting limit (RL), since acetone is not representative of site conditions.


Sample ID	Analyte	New RL	Qualification	Comment
MW1-ROX- 011711	Acetone	39.0	U	Professional Judgment
MW5-ROX- 011811	Acetone	34.4	U	Professional Judgment

Reviewed 2121/2011

Lab Director

02/18/11

Technical Report for

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

SAP#340061

Accutest Job Number: M97264

Sampling Dates: 01/17/11 - 01/18/11

Report to:

URS Corporation

Elizabeth_Kunkel@URSCorp.com

ATTN: Elizabeth Kunkel

Total number of pages in report: 58

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New England • 495 Tech Center West • Building 1 • Marlborough, MA 01752 • tel: 508-481-6200 • fax: 508-481-7753 • http://www.accutest.com

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	5
3.1: M97264-1: MW1-ROX-011711	6
3.2: M97264-2: MW2-ROX-011711	10
3.3: M97264-3: MW3-ROX-011811	14
3.4: M97264-4: MW4-ROX-011811	18
3.5: M97264-5: MW5-ROX-011811	22
3.6: M97264-6: TB-ROX-011711	26
Section 4: Misc. Forms	28
4.1: Chain of Custody	29
4.2: Sample Tracking Chronicle	31
4.3: Internal Chain of Custody	32
Section 5: GC/MS Volatiles - QC Data Summaries	34
5.1: Method Blank Summary	35
5.2: Blank Spike/Blank Spike Duplicate Summary	38
5.3: Matrix Spike/Matrix Spike Duplicate Summary	41
5.4: Internal Standard Area Summaries	44
5.5: Surrogate Recovery Summaries	46
Section 6: GC/MS Semi-volatiles - QC Data Summaries	47
6.1: Method Blank Summary	48
6.2: Blank Spike Summary	50
6.3: Matrix Spike/Matrix Spike Duplicate Summary	53
6.4: Internal Standard Area Summaries	56
6.5: Surrogate Recovery Summaries	58

Sample Summary

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Job No: M	9726	4
-----------	------	---

Sample Number		Time By	Received		Туре	Client Sample ID
M97264-1	01/17/11	12:25 NSKH	01/19/11	AQ	Ground Water	MW1-ROX-011711 ✓
M97264-2	01/17/11	/ 16:55 NSKH	01/19/11	AQ	Ground Water	MW2-ROX-011711
M97264-3	01/18/11	10:50 NSKH	01/19/11	AQ	Ground Water	MW3-ROX-011811
M97264-4	01/18/11	13:35 NSKH	01/19/11	AQ	Ground Water	MW4-ROX-011811
M97264-5	01/18/11	15:55 NSKH	01/19/11	AQ	Ground Water	MW5-ROX-011811
M97264-6	01/17/1	, 00:00 NSKH	01/19/11	AQ	Trip Blank Water	TB-ROX-011711

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Shell Oil Job No M97264

Site: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Report Date 2/4/2011 2:24:26 PM

5 Sample(s), 1 Trip Blank were collected on between 01/17/2011 and 01/18/2011 and were received at Accutest on 01/19/2011 properly preserved, at 1.8 Deg. C and intact. These Samples received an Accutest job number of M97264. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix AQ Batch ID: MSE2163

- All samples were analyzed within the recommended method holding time.
- Sample(s) M97291-1MS, M97291-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- MS/MSD Recovery(s) for Methyl Tert Butyl Ether are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- Matrix Spike Duplicate Recovery(s) for Isopropylbenzene are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- M97291-1MS for Dichlorodifluoromethane: Outside control limits due to possible matrix interference. Refer to Blank Spike.

Matrix AQ Batch ID: MSE2165

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97309-5MS, M97309-5MSD were used as the QC samples indicated.
- MS/MSD Recovery(s) for m,p-Xylene, Toluene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Extractables by GCMS By Method SW846 8270C

Matrix AQ Batch ID: OP23913

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97236-1MS, M97236-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for 4-Chloroaniline are outside control limits. Blank Spike meets program technical requirements.
- OP23913-MS/MSD for 4-Chloroaniline: Outside control limits. Blank Spike meets program technical requirements.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(M97264).

Sample Results		
Report of Analysis		

Report of Analysis

Client Sample ID: MW1-ROX-011711

Lab Sample ID:

M97264-1

AQ - Ground Water

Date Sampled: Date Received: 01/19/11

01/17/11

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID Run #1 E51217.D DF Analyzed 01/24/11 1

Ву TD Prep Date n/a

Prep Batch n/a

Analytical Batch MSE2163

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	39:0 T. ON	D5.039.	ბ _{4.6}	ug/l	"W"
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/I	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/I	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW1-ROX-011711

Lab Sample ID:M97264-1Date Sampled:01/17/11Matrix:AQ - Ground WaterDate Received:01/19/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	3.2	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	1.3	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	112%		70-13		
2037-26-5	Toluene-D8	114%		70-13		
460-00-4	4-Bromofluorobenzene	109%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW1-ROX-011711

 Lab Sample ID:
 M97264-1
 Date Sampled:
 01/17/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/19/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I70137.D 1 01/29/11 PR 01/20/11 OP23913 MSI2468

Run #2

Initial Volume Final Volume

Run #1 800 ml 1.0 ml

Run #2

ABN PPL List

CAS No. Compound Result RL MDL Units Q							
95-57-8 2-Chlorophenol ND 6.3 0.85 ug/l 59-50-7 4-Chloro-3-methyl phenol ND 13 0.72 ug/l 120-83-2 2,4-Dichlorophenol ND 13 0.87 ug/l 105-67-9 2,4-Dimethylphenol ND 13 2.7 ug/l 51-28-5 2,4-Dinitrophenol ND 13 6.3 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 13 0.60 ug/l 3&4-Methylphenol ND 13 0.60 ug/l 3&4-Methylphenol ND 13 0.82 ug/l 100-02-7 4-Nitrophenol ND 13 0.82 ug/l 108-95-2 Phenol ND 13 4.1 ug/l 108-95-2 Phenol ND 13 0.50 ug/l 88-06-2 2,4,5-Trichlorophenol ND 13 0.47 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 88-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.34 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 120-24-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(b)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.38 ug/l 191-58-7 2-Chloroenhoxy)methane ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethyy)ether ND 6.3 0.28 ug/l 111-44-4 bis(2-Chloroethyy)ether ND 6.3 0.29 ug/l	CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8 2-Chlorophenol ND 6.3 0.85 ug/l 59-50-7 4-Chloro-3-methyl phenol ND 13 0.72 ug/l 120-83-2 2,4-Dichlorophenol ND 13 0.87 ug/l 105-67-9 2,4-Dimethylphenol ND 13 0.87 ug/l 51-28-5 2,4-Dinitrophenol ND 13 6.3 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 13 6.3 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 13 0.60 ug/l 3&4-Methylphenol ND 13 0.60 ug/l 3&4-Methylphenol ND 13 0.82 ug/l 100-02-7 4-Nitrophenol ND 13 0.82 ug/l 108-95-2 Phenol ND 13 4.1 ug/l 108-95-2 Phenol ND 6.3 2.6 ug/l 95-95-4 2,4,5-Trichlorophenol ND 13 0.50 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 88-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.34 ug/l 208-96-8 Acenaphthylene ND 6.3 0.34 ug/l 205-99-2 Benzo(a)anthracene ND 6.3 0.34 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.34 ug/l 191-24-2 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.29 ug/l 111-91-1 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	65-85-0	Benzoic Acid	ND	13	0.96	ug/l	
Sp-50-7	95-57-8	2-Chlorophenol	ND	6.3	0.85		
120-83-2 2,4-Dichlorophenol ND 13 0.87 ug/l 105-67-9 2,4-Dimethylphenol ND 13 2.7 ug/l 51-28-5 2,4-Dinitrophenol ND 25 3.1 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 13 6.3 ug/l 95-48-7 2-Methylphenol ND 13 0.60 ug/l 3&4-Methylphenol ND 13 0.79 ug/l 88-75-5 2-Nitrophenol ND 13 0.82 ug/l 100-02-7 4-Nitrophenol ND 25 6.3 ug/l 87-86-5 Pentachlorophenol ND 13 4.1 ug/l 108-95-2 Phenol ND 6.3 2.6 ug/l 95-95-4 2,4,5-Trichlorophenol ND 13 0.50 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthylene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 0.34 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)aptrene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.37 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.38 ug/l 106-47-8 4-Chloroanhthalene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	59-50-7		ND ·	13	0.72		
105-67-9 2,4-Dimethylphenol ND 13 2.7 ug/l	120-83-2		ND	13	0.87		
S1-28-5 2,4-Dinitrophenol ND 25 3.1 ug/l	105-67-9		ND	13	2.7		
S34-52-1	51-28-5	2,4-Dinitrophenol	ND	25	3.1	_	
95-48-7 2-Methylphenol ND 13 0.60 ug/l	534-52-1	4,6-Dinitro-o-cresol	ND	13	6.3	_	
3&4-Methylphenol ND 13 0.79 ug/l 100-02-7 4-Nitrophenol ND 13 0.82 ug/l 87-86-5 Pentachlorophenol ND 13 4.1 ug/l 108-95-2 Phenol ND 6.3 2.6 ug/l 95-95-4 2,4,5-Trichlorophenol ND 13 0.50 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(b)fluoranthene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(k)fluoranthene ND 6.3	95-48-7	2-Methylphenol	ND	13	0.60		
88-75-5 2-Nitrophenol ND 13 0.82 ug/l 100-02-7 4-Nitrophenol ND 25 6.3 ug/l 87-86-5 Pentachlorophenol ND 13 4.1 ug/l 108-95-2 Phenol ND 6.3 2.6 ug/l 95-95-4 2,4,5-Trichlorophenol ND 13 0.47 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 6.3 0.34 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.28 ug/l 191-24-2 Benzo(k)fluoranthene ND 6.3 <td></td> <td></td> <td>ND</td> <td>13</td> <td>0.79</td> <td></td> <td></td>			ND	13	0.79		
100-02-7 4-Nitrophenol ND 25 6.3 ug/l	88-75-5		ND	13	0.82		
87-86-5 Pentachlorophenol ND 13 4.1 ug/l 108-95-2 Phenol ND 6.3 2.6 ug/l 95-95-4 2,4,5-Trichlorophenol ND 13 0.50 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)pyrene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 207-08-9 Benzo(k)fluoranthene ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate	100-02-7		ND	25	6.3	ug/I	
108-95-2	87-86-5	Pentachlorophenol	ND	13	4.1	ug/l	
95-95-4 2,4,5-Trichlorophenol ND 13 0.50 ug/l 88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)pyrene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.77 ug/l 207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.49 ug/l	108-95-2	Phenol	ND	6.3	2.6		
88-06-2 2,4,6-Trichlorophenol ND 13 0.47 ug/l 83-32-9 Acenaphthene ND 6.3 0.42 ug/l 208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)pyrene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.77 ug/l 207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloroaphthalene ND 6.3 0.28 ug/l 11-91-1 bis(2-Chloro	95-95-4	2,4,5-Trichlorophenol	ND	13	0.50		
208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)pyrene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.77 ug/l 207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)meth	88-06-2	2,4,6-Trichlorophenol	ND	13	0.47		
208-96-8 Acenaphthylene ND 6.3 1.6 ug/l 62-53-3 Aniline ND 13 0.57 ug/l 120-12-7 Anthracene ND 6.3 0.34 ug/l 56-55-3 Benzo(a)anthracene ND 6.3 0.34 ug/l 50-32-8 Benzo(a)pyrene ND 6.3 0.28 ug/l 205-99-2 Benzo(b)fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i)perylene ND 6.3 0.77 ug/l 207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)meth	83-32-9	Acenaphthene	ND	6.3	0.42		
120-12-7	208-96-8	Acenaphthylene	ND	6.3	1.6		
Section Sect	62-53-3	Aniline	ND	13	0.57	ug/l	
Section Sect	120-12-7	Anthracene	ND	6.3	0.34	ug/l	
205-99-2 Benzo(b) fluoranthene ND 6.3 0.34 ug/l 191-24-2 Benzo(g,h,i) perylene ND 6.3 0.77 ug/l 207-08-9 Benzo(k) fluoranthene ND 6.3 0.37 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 13 0.72 ug/l 218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy) methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl) ether ND 6.3 0.29 ug/l	56-55-3	Benzo(a)anthracene	ND	6.3	0.34		
191-24-2 Benzo(g,h,i)perylene ND 6.3 0.77 ug/l	50-32-8	Benzo(a)pyrene	ND	6.3	0.28	ug/l	
207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l	205-99-2	Benzo(b)fluoranthene	ND	6.3	0.34	ug/l	
207-08-9 Benzo(k)fluoranthene ND 6.3 0.37 ug/l	191-24-2	Benzo(g,h,i)perylene				ug/l	
101-55-3 4-Bromophenyl phenyl ether ND 6.3 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 13 0.72 ug/l 218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	207-08-9	Benzo(k)fluoranthene	ND	6.3	0.37		
85-68-7 Butyl benzyl phthalate ND 6.3 0.51 ug/l 91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 13 0.72 ug/l 218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	101-55-3	4-Bromophenyl phenyl ether	ND	6.3	0.40		
91-58-7 2-Chloronaphthalene ND 6.3 0.38 ug/l 106-47-8 4-Chloroaniline ND 13 0.72 ug/l 218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	85-68-7	Butyl benzyl phthalate	ND	6.3	0.51		
106-47-8 4-Chloroaniline NS ND 13 0.72 ug/l US " 218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	91-58-7	2-Chloronaphthalene	ND	6.3	0.38):
218-01-9 Chrysene ND 6.3 0.28 ug/l 111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	106-47-8	4-Chloroaniline	ND	13	0.72		uj "
111-91-1 bis(2-Chloroethoxy)methane ND 6.3 0.44 ug/l 111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	218-01-9		ND	6.3	0.28	ug/l	
111-44-4 bis(2-Chloroethyl)ether ND 6.3 0.29 ug/l	111-91-1	bis(2-Chloroethoxy)methane	ND	6.3	0.44		
	111-44-4	bis(2-Chloroethyl)ether	ND	6.3	0.29		
	108-60-1	bis(2-Chloroisopropyl)ether	ND	6.3	0.26		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW1-ROX-011711

Date Sampled: 01/17/11 Lab Sample ID: M97264-1 AQ - Ground Water Date Received: 01/19/11 Matrix: SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	6.3	0.77	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	13	1.6	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	13	0.42	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	6.3	3.1	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	6.3	0.31	ug/l	
132-64-9	Dibenzofuran	ND	6.3	0.39	ug/l	
84-74-2	Di-n-butyl phthalate	ND	· 6.3	0.42	ug/I	
117-84-0	Di-n-octyl phthalate	ND	6.3	0.42	ug/l	
84-66-2	Diethyl phthalate	ND	6.3	0.77	ug/l	
131-11-3	Dimethyl phthalate	ND	6.3	1.6	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.5	0.61	ug/l	
206-44-0	Fluoranthene	ND	6.3	0.27	ug/l	
86-73-7	Fluorene	ND	6.3	0.36	ug/l	
118-74-1	Hexachlorobenzene	ND	6.3	0.20	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	13	3.1	ug/I	
67-72-1	Hexachloroethane	ND	6.3	0.54	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	6.3	0.36	ug/l	
78-59-1	Isophorone	ND	6.3	0.59	ug/I	
91-57-6	2-Methylnaphthalene	ND	6.3	0.38	ug/l	
88-74-4	2-Nitroaniline	ND	13	0.42	ug/l	
99-09-2	3-Nitroaniline	ND	13	0.40	ug/l	
100-01-6	4-Nitroaniline	ND	13	0.42	ug/l	
91-20-3	Naphthalene	ND	6.3	0.41	ug/I	
98-95-3	Nitrobenzene	ND	6.3	0.38	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	6.3	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.3	0.77	ug/l	
85-01-8	Phenanthrene	ND	6.3	0.32	ug/l	
129-00-0	Pyrene	ND	6.3	0.31	ug/I	
110-86-1	Pyridine	ND	13	0.63	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	48%		15-11		
4165-62-2	Phenol-d5	32%		15-11	10%	
118-79-6	2,4,6-Tribromophenol	69%		15-11		
4165-60-0	Nitrobenzene-d5	75 %		30-13		
321-60-8	2-Fluorobiphenyl	74%		30-13		
1718-51-0	Terphenyl-d14	82%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW2-ROX-011711

Lab Sample ID: M97264-2 Date Sampled: 01/17/11

Matrix: AQ - Ground Water Date Received: 01/19/11

Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	E51218.D	1	01/24/11	TD	n/a	n/a	MSE2163
Run #2	E51268.D	5	01/25/11	TD	n/a	n/a	MSE2165

Purge Volume
Run #1 5.0 ml
Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND .	5.0	4.6	ug/l	
71-43-2	Benzene	294	0.50	0.35	ug/I	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	7.8	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	4.7	5.0	0.37	ug/l	J
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/I	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	7.7	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	1.9	2.0	0.81	ug/I	J
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/I	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW2-ROX-011711

Lab Sample ID: M97264-2
Matrix: AQ - Ground Water
Method: SW846 8260B

Date Sampled: 01/17/11
Date Received: 01/19/11
Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	740 a	5.0	3.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	61.7	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	3.2	5.0	0.45	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	65.2	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5. 0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/I	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	737 a	5.0	3.7	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	279	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	74.4	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	892 a	5.0	3.1	ug/l	
95-47-6	o-Xylene	191	1.0	0.56	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	107%	105%	70-13	30%	
2037-26-5	Toluene-D8	111%	112%	70-13	30%	
460-00-4	4-Bromofluorobenzene	111%	109%	70-13	30%	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID: MW2-ROX-011711

Lab Sample ID: M97264-2 Date Sampled: 01/17/11
Matrix: AQ - Ground Water Date Received: 01/19/11
Method: SW846 8270C SW846 3510C Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	I70138.D	1	01/29/11	PR	01/20/11	OP23913	MSI2468
Run #2	I70189.D	5	02/01/11	PR	01/20/11	OP23913	MSI2471

Initial Volume Final Volume
Run #I 1050 ml 1.0 ml
Run #2 1050 ml 1.0 ml

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	8.2	9.5	0.73	ug/l	J
95-57-8	2-Chlorophenol	ND	4.8	0.65	ug/l	-
59-50-7	4-Chloro-3-methyl phenol	ND	9.5	0.54	ug/l	
120-83-2	2,4-Dichlorophenol	ND	9.5	0.66	ug/l	
105-67-9	2,4-Dimethylphenol	2.2	9.5	2.0	ug/l	J
51-28-5	2,4-Dinitrophenol	ND	19	2.4	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	9.5	4.8	ug/l	
95-48-7	2-Methylphenol	2.8	9.5	0.46	ug/l	J
	3&4-Methylphenol	3.5	9.5	0.60	ug/l	J J
88-75-5	2-Nitrophenol	ND	9.5	0.63	ug/l	
100-02-7	4-Nitrophenol	ND	19	4.8	ug/l	
87-86-5	Pentachlorophenol	ND	9.5	3.2	ug/l	
108-95-2	Phenol	ND	4.8	2.0	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	9.5	0.38	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	9.5	0.36	ug/l	
83-32-9	Acenaphthene	ND	4.8	0.32	ug/l	
208-96-8	Аселарhthylene	ND	4.8	1.2	ug/l	
62-53-3	Aniline	ND	9.5	0.43	ug/l	
120-12-7	Anthracene	ND	4.8	0.26	ug/l	
56-55-3	Benzo(a)anthracene	ND	4.8	0.26	ug/l	
50-32-8	Benzo(a)pyrene	ND	4.8	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	4.8	0.26	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	4.8	0.58	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	4.8	0.28	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	4.8	0.30	ug/I	
85-68-7	Butyl benzyl phthalate	ND	4.8	0.39	ug/l	
91-58-7	2-Chloronaphthalene	ND	4.8	0.29	ug/l	
106-47-8	4-Chloroaniline	ND	9.5	0.55	ug/l ՝՝ [KS "
218-01-9	Chrysene	ND	4.8	0.21	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	4.8	0.33	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	4.8	0.22	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	4.8	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW2-ROX-011711

Date Sampled: 01/17/11 Lab Sample ID: M97264-2 Date Received: 01/19/11 Matrix: AQ - Ground Water Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	4.8	0.58	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	9.5	1.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	9.5	0.32	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	4.8	2.4	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	4.8	0.24	ug/l	
132-64-9	Dibenzofuran	ND	4.8	0.30	ug/l	
84-74-2	Di-n-butyl phthalate	ND	4.8	0.32	ug/l	
117-84-0	Di-n-octyl phthalate	ND	4.8	0.32	ug/l	
84-66-2	Diethyl phthalate	ND	4.8	0.58	ug/l	
131-11-3	Dimethyl phthalate	ND	4.8	1.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	250 a	9.5	2.3	ug/l	
206-44-0	Fluoranthene	ND	4.8	0.21	ug/l	
86-73-7	Fluorene	ND	4.8	0.28	ug/l	
118-74-1	Hexachlorobenzene	ND	4.8	0.15	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	9.5	2.4	ug/l	
67-72-1	Hexachloroethane	ND	4.8	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.8	0.27	ug/l	
78-59-1	Isophorone	ND	4.8	0.45	ug/I	
91-57-6	2-Methylnaphthalene	6.5	4.8	0.29	ug/I	
88-74-4	2-Nitroaniline	ND	9.5	0.32	ug/l	
99-09-2	3-Nitroaniline	ND	9.5	0.31	ug/l	
100-01-6	4-Nitroaniline	ND	9.5	0.32	ug/l	
91-20-3	Naphthalene	31.2	4.8	0.31	ug/l	
98-95-3	Nitrobenzene	ND	4.8	0.29	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND ·	4.8	0.39	ug/I	
86-30-6	N-Nitrosodiphenylamine	ND	4.8	0.58	ug/l	
85-01-8	Phenanthrene	ND	4.8	0.24	ug/I	
129-00-0	Pyrene	ND	4.8	0.24	ug/l	
110-86-1	Pyridine	ND	9.5	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
367-12-4	2-Fluorophenol	33%	33%	15-11	0%	
4165-62-2	Phenol-d5	20%	23%	15-11	0%	
118-79-6	2,4,6-Tribromophenol	59%	72%	15-11		
4165-60-0	Nitrobenzene-d5	58%	67%	30-13	0%	
321-60-8	2-Fluorobiphenyl	60%	68%	30-13	0%	
1718-51-0	Terphenyi-d14	60%	70%	30-13	0%	

(a) Result is from Run# 2

RL = Reporting Limit

ND = Not detected MDL - Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW3-ROX-011811

Lab Sample ID:M97264-3Date Sampled:01/18/11Matrix:AQ - Ground WaterDate Received:01/19/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 E51219.D 1 01/24/11 TD n/a n/a MSE2163

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5. 0	4.6	ug/l	
71-43-2	Benzene	0.56	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/i	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND ·	2.0	0.95	ug/I	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	п-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	0.77	2.0	0.76	ug/l	J
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	0.82	2.0	0.81	ug/l	J
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l ·	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND T	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

C.

Page 2 of 2

Report of Analysis

Client Sample ID: MW3-ROX-011811

Lab Sample ID: M97264-3 Date Sampled: 01/18/11 Date Received: 01/19/11 Matrix: AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	0.82	1.0	0.61	ug/l	J
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	2.1	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/i	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.85	5.0	0.62	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	1.2	1.0	0.62	ug/l	
95-47-6	o-Xylene	1.4	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	110%		70-13	0%	
2037-26-5	Toluene-D8	111%		70-13	0%	
460-00-4	4-Bromofluorobenzene	112%		70-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW3-ROX-011811

Lab Sample ID:

M97264-3

AQ - Ground Water

Date Sampled: 01/18/11

SW846 8270C SW846 3510C

Date Received: 01/19/11 Percent Solids: n/a

Method: Project:

Matrix:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	I70139.D	1	01/29/11	PR	01/20/11	OP23913	MSI2468

Run #2

Initial Volume Final Volume

Run #1 940 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	11	0.82	ug/l
95-57-8	2-Chlorophenol	ND	5.3	0.73	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.61	ug/l
120-83-2	2,4-Dichlorophenol	ND	11	0.74	ug/l
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l
51-28-5	2,4-Dinitrophenol	ND .	21	2.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l
95-48-7	2-Methylphenol	ND	11	0.51	ug/l
	3&4-Methylphenol	ND	11	0.67	ug/l
88-75-5	2-Nitrophenol	ND	11	0.70	ug/l
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l
87-86-5	Pentachlorophenol	ND	11	3.5	ug/l
108-95-2	Phenol	ND	5.3	2.2	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	11	0.43	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l
83-32 - 9	Acenaphthene	ND ·	5.3	0.36	ug/l
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l
62-53-3	Aniline	ND	11	0.48	ug/l
120-12-7	Anthracene	ND	5.3	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l
50-32-8	Benzo(a)pyrene	ND	5.3	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.65	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l _{(\tau_1})}
106-47-8	4-Chloroaniline いち	ND	11	0.61	ug/l UJ
218-01-9	Chrysene	ND	5.3	0.24	ug/l
111 - 91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.22	ug/I

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: MW3-ROX-011811

Lab Sample ID: M97264-3 Date Sampled: 01/18/11 Date Received: 01/19/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

7005-72-3 4-Chlorophenyl phenyl ether ND 5.3 0.65 ug/l 121-14-2 2,4-Dinitrotoluene ND 11 1.3 ug/l 606-20-2 2,6-Dinitrotoluene ND 11 0.36 ug/l 91-94-1 3,3'-Dichlorobenzidine ND 5.3 2.7 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.26 ug/l 132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l 131-11-3 Dimethyl phthalate ND 5.3 1.3 ug/l
121-14-2 2,4-Dinitrotoluene ND 11 1.3 ug/l 606-20-2 2,6-Dinitrotoluene ND 11 0.36 ug/l 91-94-1 3,3'-Dichlorobenzidine ND 5.3 2.7 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.26 ug/l 132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
606-20-2 2,6-Dinitrotoluene ND 11 0.36 ug/l 91-94-1 3,3'-Dichlorobenzidine ND 5.3 2.7 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.26 ug/l 132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
91-94-1 3,3'-Dichlorobenzidine ND 5.3 2.7 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.26 ug/l 132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
53-70-3 Dibenzo(a,h)anthracene ND 5.3 0.26 ug/l 132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
132-64-9 Dibenzofuran ND 5.3 0.34 ug/l 84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
84-74-2 Di-n-butyl phthalate ND 5.3 0.36 ug/l 117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
117-84-0 Di-n-octyl phthalate ND 5.3 0.36 ug/l 84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
84-66-2 Diethyl phthalate ND 5.3 0.65 ug/l
131-11-3 Dimethyl phthalate ND 5.3 1.3 ug/l
117-81-7 bis(2-Ethylhexyl)phthalate 0.62 2.1 0.52 ug/l J
206-44-0 Fluoranthene ND 5.3 0.23 ug/l
86-73-7 Fluorene ND 5.3 0.31 ug/l
118-74-1 Hexachlorobenzene ND 5.3 0.17 ug/l
77-47-4 Hexachlorocyclopentadiene ND 11 2.7 ug/l
67-72-1 Hexachloroethane ND 5.3 0.46 ug/l
193-39-5 Indeno(1,2,3-cd)pyrene ND 5.3 0.31 ug/l
78-59-1 Isophorone ND 5.3 0.50 ug/l
91-57-6 2-Methylnaphthalene ND 5.3 0.33 ug/l
88-74-4 2-Nitroaniline ND 11 0.36 ug/l
99-09-2 3-Nitroaniline ND 11 0.34 ug/l
100-01-6 4-Nitroaniline ND 11 0.36 ug/l
91-20-3 Naphthalene ND 5.3 0.35 ug/l
98-95-3 Nitrobenzene ND 5.3 0.32 ug/l
621-64-7 N-Nitroso-di-n-propylamine ND 5.3 0.43 ug/l
86-30-6 N-Nitrosodiphenylamine ND 5.3 0.65 ug/l
85-01-8 Phenanthrene ND 5.3 0.27 ug/l
129-00-0 Pyrene ND 5.3 0.26 ug/l
110-86-1 Pyridine ND 11 0.53 ug/l
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits
367-12-4 2-Fluorophenol 42% 15-110%
4165-62-2 Phenol-d5 27% 15-110%
118-79-6 2,4,6-Tribromophenol 62% 15-110%
4165-60-0 Nitrobenzene-d5 67% 30-130%
321-60-8 2-Fluorobiphenyl 67% 30-130%
1718-51-0 Terphenyl-d14 76% 30-130%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW4-ROX-011811

Lab Sample ID:M97264-4Date Sampled:01/18/11Matrix:AQ - Ground WaterDate Received:01/19/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 E51220.D 1 01/24/11 TD n/a n/a MSE2163

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	56.7	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	0.60	5.0	0.49	ug/I	J
135-98-8	sec-Butylbenzene	0.63	5.0	0.37	ug/l	J J
98-06-6	tert-Butylbenzene	0.69	5.0	0.53	ug/I	J
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	0.96	2.0	0.76	ug/l	J
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/I	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/I	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW4-ROX-011811

Lab Sample ID: M97264-4 Date Sampled: 01/18/11 Date Received: 01/19/11 Matrix: AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadieле	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	2.0	5.0	0.51	ug/l	J
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	7.0	1.0	0.54	ug/I	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	2.2	5.0	0.43	ug/l	J
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	7.1	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	6.2	1.0	0.62	ug/l	
95-47-6	o-Xylene	2.1	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	108%		70-13	80%	
2037-26-5	Toluene-D8	111%		70-13	0%	
460-00-4	4-Bromofluorobenzene	115%		70-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW4-ROX-011811

Lab Sample ID: M97264-4 Date Sampled: 01/18/11 Date Received: 01/19/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Percent Solids: n/a Method:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Final Volume

File ID DF Analyzed Prep Date Prep Batch Analytical Batch Ву I70140.D 01/29/11 PR 01/20/11 OP23913 MSI2468 Run #1 1

Run #2

970 ml 1.0 ml

Initial Volume

Run #1

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.79	ug/l
95-57-8	2-Chlorophenol	ND	5.2	0.70	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.59	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.71	ug/I
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.2	ug/l
95-48-7	2-Methylphenol	ND	10	0.49	ug/l
	3&4-Methylphenol	ND	10	0.65	ug/l
88-75-5	2-Nitrophenol	ND	10	0.68	ug/l
100-02-7	4-Nitrophenol	ND	21	5.2	ug/l
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l
108-95-2	Phenol	ND	5.2	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.39	ug/l
83-32-9	Acenaphthene	ND	5.2	0.35	ug/l
208-96-8	Acenaphthylene	ND	5.2	1.3	ug/l
62-53-3	Aniline	ND	10	0.47	ug/l
120-12-7	Anthracene	ND	5.2	0.28	ug/l
56-55-3	Benzo(a)anthracene	ND	5.2	0.28	ug/l
50-32-8	Benzo(a)pyrene	ND	5.2	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.2	0.28	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.2	0.63	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.2	0.30	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	0.33	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.2	0.42	ug/l
91-58-7	2-Chloronaphthalene	ND	5.2	0.31	ug/l 🔀
106-47-8	4-Chloroaniline W	ND	10	0.59	ug/l & NJ
218-01-9	Chrysene	ND	5.2	0.23	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	0.36	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	0.24	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	0.22	ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW4-ROX-011811

Lab Sample ID: M97264-4 Date Sampled: 01/18/11
Matrix: AQ - Ground Water Date Received: 01/19/11
Method: SW846 8270C SW846 3510C Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	0.63	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.35	ug/I	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	2.6	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	0.35	ug/I	
117-84-0	Di-n-octyl phthalate	ND	5.2	0.35	ug/l	
84-66-2	Diethyl phthalate	ND	5.2	0.63	ug/l	
131-11-3	Dimethyl phthalate	ND	5.2	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.50	ug/l	
206-44-0	Fluoranthene	ND	5.2	0.22	ug/I	
86-73-7	Fluorene	ND	5.2	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	5.2	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.2	0.44	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	0.30	ug/l	
78-59-1	Isophorone	ND	5.2	0.49	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.2	0.32	ug/I	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.2	0.34	ug/l	
98-95-3	Nitrobenzene	ND	5.2	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	0.42	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.63	ug/I	
85-01-8	Phenanthrene	ND	5.2	0.26	ug/l	
129-00-0	Pyrene	ND	5.2	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.52	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	46%		15-1	10%	
4165-62-2	Phenol-d5	29%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	73%		15-1	10%	
4165-60-0	Nitrobenzene-d5	74%		30-1		
321-60-8	2-Fluorobiphenyl	73%		30-1	30%	
1718-51-0	Terphenyl-d14	88%		30-1	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: MW5-ROX-011811

Lab Sample ID:

M97264-5

AQ - Ground Water

DF

1

Date Sampled: 01/18/11 Date Received: 01/19/11

Percent Solids: n/a

Method: Project:

Matrix:

SW846 8260B URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

n/a

Prep Batch Analytical Batch

File ID

E51221.D

Analyzed 01/24/11

Ву TD Prep Date n/a

MSE2163

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Асетопе	.34.40-0 N	Day 1. 4	4.6	ug/l	Sun
71-43-2	Benzene	4.8	0.50	0.35	ug/I	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	1.4	5.0	0.53	ug/l	j
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/I	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/I	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW5-ROX-011811

Lab Sample ID: M97264-5 Date Sampled: 01/18/11 Matrix: AQ - Ground Water Date Received: 01/19/11 Method: SW846 8260B Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND .	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	NĐ	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	6.6	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5. 0	1.0	ug/I	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/I	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	0.87	1.0	0.62	ug/l	J
95-47-6	o-Xylene	1.4	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	114%		70-13	30%	
2037-26-5	Toluene-D8	109%		70-13	30%	
460-00-4	4-Bromofluorobenzene	111%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW5-ROX-011811

Lab Sample ID: M97264-5 Date Sampled: 01/18/11 Matrix: AQ - Ground Water Date Received: 01/19/11 SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By PR 01/20/11 OP23913 MSI2468 Run #1 I70141.D 1 01/29/11

Report of Analysis

Run #2

Initial Volume Final Volume

Run #1 940 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	11	0.82	ug/l	
95-57-8	2-Chlorophenol	ND	5.3	0.73	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.61	ug/l	
120-83-2	2,4-Dichlorophenol	ND	11	0.74	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l	
95-48-7	2-Methylphenol	ND	11	0.51	ug/l	
	3&4-Methylphenol	ND	11	0.67	ug/l	
88-75-5	2-Nitrophenol	ND	11	0.70	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86-5	Pentachlorophenol	ND	11	3.5	ug/l	
108-95-2	Phenol	ND	5.3	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.43	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	
62-53-3	Aniline	ND	11	0.48	ug/l	
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND ·	5.3	0.65	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l	
101-55 - 3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l	111
106-47-8	4-Chloroaniline 🕠	ND	11	0.61	ug/l	IJĴ
218-01-9	Chrysene	ND	5.3	0.24	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW5-ROX-011811

Date Sampled: 01/18/11 Lab Sample ID: M97264-5 Matrix: AQ - Ground Water Date Received: 01/19/11 Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.65	ug/i	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.36	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.7	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.34	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.3	0.36	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.3	0.36	ug/l	
84-66-2	Diethyl phthalate	0.90	5.3	0.65	ug/l	J
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.52	ug/l	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.7	ug/l	
67-72-1	Hexachloroethane	ND	5.3	0.46	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.31	ug/l	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.33	ug/l	
88-74-4	2-Nitroaniline	NĐ	11	0.36	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.34	ug/I	
100-01-6	4-Nitroaniline	ND	11	0.36	ug/l	
91-20-3	Naphthalene	ND	5.3	0.35	ug/l	
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30 - 6	N-Nitrosodiphenylamine	ND	5.3	0.65	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	47%		15-1	10%	
4165-62-2	Phenol-d5	29%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	67%		15-1	10%	
4165-60-0	Nitrobenzene-d5	74%		30-1	30%	
321-60-8	2-Fluorobiphenyl	73%		30-1		
1718-51-0	Terphenyl-d14	76%		30-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-ROX-011711

Lab Sample ID: M97264-6 Date Sampled: 01/17/11
Matrix: AQ - Trip Blank Water Date Received: 01/19/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 E51216.D 1 01/24/11 TD n/a n/a MSE2163

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND ·	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/I	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/I	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-ROX-011711

Lab Sample ID: M97264-6 Date Sampled: 01/17/11 Matrix: Date Received: 01/19/11 AQ - Trip Blank Water Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/I	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	0.86	2.0	0.75	ug/l	J
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5. 0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	112%		70-1	30%	
2037-26-5	Toluene-D8	115%		70-1	30%	
460-00-4	4-Bromofluorobenzene	110%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms	-

Custody Documents and Other Forms

Includes the following where applicable:

- · Certification Exceptions
- Certification Exceptions (IL)
- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

(ſ															1
LAB (LOCATION)			(c)	73	She	II C)il l	Pro	odu	cts	Cł	air	10	f C	ust	od	v R	lec	ore	ł				
D to (co	Pie	nse Check	Aborot	viate Bo						Conta			_	_		_	•				RVIC	ES) Ic	Tarrex IF I	O DICCOUNT & AFFIXES
CALSCHERGE CADE: 495 THEISTONING CITY	UN SERVICES		OTTVA BETA] Settle ko	ML	` ` ` ' '									$\overline{}$	7	$\overline{}$	-	\neg	\neg	I a		113/11
LA UTHER (Mortbocough, MA 31752 (508-461-6300)	ACTIVA STACE	100	PRINTARI		Livea	亏	⊢		—	MENO	PO 1		CN			+-			SAP		1 4		_	
Lab Vendor #	SHELL PEPELDIE		PEA.			=	H			$\overline{}$		- -	$\overline{}$	-"I -	7	\vdash	ГΠ				т-	T-	PAGE _	
C30 antipot n								AZED/SL	11: He	4 100 10	<u> </u>	L. I				3	4	씍	0	6	ч.	- -		
URS CORPORATION							170 E	EAST	RANE	AVEN	1 E	HART	FORD		n eo	<u>. </u>		1						To more City
1001 HIGHLANDS PLAZA DRIVE Y/EST - SUITE 300;	ST LOUIS, MOGI	110					- ا	-1-X-	- H-Era	- 1.49		·· K		ľ	11 62			ſ	1				l"	Rozana Quarterly?
WENDY PENNINGTON						~	1242	SE ISO		N		Ť	w-	- }	ĸ.	- J.	:00	- -L				1410	IESE CHILY	21507553.09003
3(4-743-4)(66 or 341-452-692) 3(4-423-046)							1			13.	- 51	ייי		/	•	,,,,	3 K.3	• •					M97	264
THE WATER OF THE CONTRACT DAYS			_	Clema	TS INTERED	_	┢			_						EQUE			4170				1117	α υ [
SELVEDWIT (14 DAL) 2 DALE 3 DALE	□3 m/2	[]21HO	æ	04	WEIDED		L,		_	_	_		_	_	- н	EQUE	:21E	ט אמ	AL 19					
U.S. PANOCES ASSESSED FORSILET U.S. I ANGUROTE							1											\						IEI,D NOTES;
ORENEDVORUS: IEACT IEACT ITAKE 2		arian Sac		00									-				ΙÌ	l	l	l			TEUPE	RATURE ON RECEIPT C
TEENSHADERS CHRECORT CO. COME AT	Corte #7		Consten #3)	lΙ		-			\				l			
SPECIAL INSTRUCTIONS OR NOTES :		13 succi	CONTRACT	EATE NATUE	5		Ш		1			Ш					Ш							
		□ (60 m	CT UTFORD	HENT BATE			П			1		Ш					Ш		ı				-	
QUOXI, # PEK13/2018-14		[] Identi	OF FORD DE	SK SK	SHP		ا ۾ ا	9270C				Ш					Ш		- 1					nialnor PED Recallings
GOVAL, IN ENTINEERING	SAMPLING		,	PECTANALA.			8260B	8				Ш			1		Ш		- 1				١ '	Libraring Holes
Field Sample klentification	DATE ATUNE	44757	┝┰╌	11-	T	CONT.	8	SVOC	.			Ш					Ш		- 1			PIO		
nary			F	100000			M	-	-+	+	╁	├ ┯┽	+	+-	╁	╫	Н	-	┪	╬	+	[ըքւռ]	_	
LI MHI - XON - LIMM	17.10-1	<u>Vater</u>	3	²		5	-	긔			-∤	┝	····-{-	-¦ ·		- -			🕂	-		 -		
-3 MW2-ROX-011711	փոխ 🕦		3	- 2		5_	닏	싀	-	╬	 	-	-4.		┰	∔-				-				
-3 MW3-ROX-011811	liniii je 5 <u>4</u>	T	<u> 13 </u> _	1		<u>5</u> _	$ \mathbf{z} $	-	[_		4-	\sqcup				.			-	-	4.			
4 MW4-ROX-011811V	11.04.1335		[3] _	2	<u>- </u>	<u>s</u> _	ļ۷	1.4				<u> </u>	_ _	_ļ_	_ _	_	Ш							
-5 MW 5-ROX-01 1811Y	1110 1535	_ \ \	0	2	┕┖┈┸	5	2	ابر	L		1_	Ш		_ _			L.I							
	theils	1	2	1 1		2.	ارآا	7		T	Τ	Π	T.	7		Т	Ш		- 1					
IB Me VII III	-112m		ऻ ≔ऻ─	┟╌╌├╼			╁╼┤	~	- †		†-			- -	+-	+-			-†	十	+			
			┷	╀╌┤╴	- -				╌┼			┟─┤				╌			╌┼	-				_~·
			Ш.				Ш	Ш			1				_L			L	.	_ _	٠		<u> </u>	·
			1				П	П					T	-					ŀ				15	C4,17A
			╁┷┼╾	†-†"			-	┝┪	一	十	╈	† †		-	╌	1	11	H	7	"†`	- -			
Riving Charles	<u> </u>	Cartest of 15		1		-	L	Ш	_L	Т	ـــ		_1	Ц.		L	Н	Dice.	L		Т.		_	
Lateur	_			Fed	Gx														٥١	li8	lu		173	-
Fed 5 x		Section of the	<u> </u>	2	Zan													n.=	L	9/1	1		<u>-</u> //	:10-
Kolonya (sani by Coycam)		Banders of Fa	4	·· Op-		-	_	_								_		Det	11	I.J.L	_	—		
					•																			1-4,1.80
		-				_	_	-										_			_		Py-200	l (Dryly's)

M97264: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: M9726		RS	immediate Client Serv	ices Action Required:	No
Date / Time Received: 1/19/2		Delivery Method:	Client Service Action	on Required at Login:	No
Project: 170 EAST RAND AVE		No. Coolers:	1 Airbill #s: N/A		
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: Cuality Control Preservatio 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	2r N		Sample Integrity - Documentation 1. Sample labels present on bottles; 2. Container labeling complete; 3. Sample container label / COC agree; Sample Integrity - Condition 1. Sample recyd within HT; 2. All containers accounted for; 3. Condition of sample; Sample Integrity - Instructions 1. Analysis requested is clear; 2. Bottles received for unspecified tests 3. Sufficient volume recyd for analysis; 4. Compositing instructions clear;	Y or N Y or N Intact Y or N Intact Y or N Intact O O	
Comments			5. Filtering instructions clear:		
Accutest Laboratories V;508,481,5200		49S Technology Cent F; 508,48			oorough, MA v/accutest.com

M97264: Chain of Custody

Page 2 of 2

Internal Sample Tracking Chronicle

Shell Oil

M97264 Job No:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
M97264-1 MW1-ROX	Collected: 17-JAN-11 -011711	12:25 By: NSKH	Recei	ved: 19-JAN-1	l 1 By	:JB
	SW846 8260B SW846 8270C	24-JAN-11 12:55 29-JAN-11 15:58		20-JAN-11	CA	V8260STD AB8270PPL
	Collected: 17-JAN-11 -011711					
M97264-2	SW846 8260B SW846 8260B SW846 8270C SW846 8270C	24-JAN-11 13:24 25-JAN-11 14:14 29-JAN-11 16:29 01-FEB-11 17:58	TD TD PR PR	20-JAN-11 20-JAN-11		
M97264-3 MW3-ROX	Collected: 18-JAN-11 -011811	10:50 By: NSKH	Recei	ved: 19-JAN-1	1. By	: JB
	SW846 8260B SW846 8270C	24-JAN-11 13:53 29-JAN-11 17:01		20-JAN-11	CA	V8260STD AB8270PPL
M97264-4 MW4-ROX	Collected: 18-JAN-11 -011811	13:35 By: NSKH	Recei	ved: 19-JAN-1	1 By	: JB
	SW846 8260B SW846 8270C	24-JAN-11 14:22 29-JAN-11 17:32	TD PR	20-JAN-11	CA	V8260STD AB8270PPL
M97264-5 MW5-ROX	Collected: 18-JAN-11 -011811	15:55 By: NSKH	Recei	ved: 19-JAN-1	1 By:	: JB
	SW846 8260B SW846 8270C	24-JAN-11 14:44 29-JAN-11 18:03	TD PR	20-JAN-11	CA	V8260STD AB8270PPL
M97264-6 TB-ROX-0	Collected: 17-JAN-11 (00:00 By: NSKH	Receiv	ved: 19-JAN-1	1 By:	: JB · · · · · · ·
M97264-6	SW846 8260B	24-JAN-11 12:27	TD			V8260STD

Accutest Internal Chain of Custody Job Number: M97264

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received: 01/19/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
	2 1 1 0 1 1 1			
M97264-1.1	Walk In Ref #22	Bijan Jafari		Retrieve from Storage
M97264-1.1	Bijan Jafari		01/22/11 05:56	Depleted
M97264-1.4	VOC Ref #5	Tamis Dudo		Retrieve from Storage
M97264-1.4	Tamis Dudo	GCMSE		Load on Instrument
M97264-1.4	GCMSE	Tamis Dudo		Unload from Instrument
M97264-1.4	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage
M97264-2.2	Walk In Ref #22	Bijan Jafari	01/20/11 10:02	Retrieve from Storage
M97264-2.2	Bijan Jafari	•	01/22/11 05:56	Depleted
M97264-2.3	VOC Ref #5	Tamis Dudo	01/24/11 11:38	Retrieve from Storage
M97264-2.3	Tamis Dudo	GCMSE		Load on Instrument
M97264-2.3	GCMSE	Tamis Dudo	01/25/11 09:42	Unload from Instrument
M97264-2.3	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage
M97264-2.4	VOC Ref #5	Tamis Dudo	01/25/11 12:31	Retrieve from Storage
M97264-2.4	Tamis Dudo	GCMSE		Load on Instrument
M97264-2.4	GCMSE	Tamis Dudo	01/26/11 08:53	Unload from Instrument
M97264-2.4	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage
M97264-3.2	Walk In Ref #22	Bijan Jafari	01/20/11 10:02	Retrieve from Storage
M97264-3.2	Bijan Jafari	J	01/22/11 05:56	
M97264-3.5	VOC Ref #5	Tamis Dudo	01/24/11 11:38	Retrieve from Storage
M97264-3.5	Tamis Dudo	GCMSE		Load on Instrument
M97264-3.5	GCMSE	Tamis Dudo	01/25/11 09:42	Unload from Instrument
M97264-3.5	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage
M97264-4.2	Walk In Ref #22	Bijan Jafari	01/20/11 10:02	Retrieve from Storage
M97264-4.2	Bijan Jafari		01/22/11 05:56	
M97264-4.5	VOC Ref #5	Tamis Dudo	01/24/11 11:38	Retrieve from Storage
M97264-4.5	Tamis Dudo	GCMSE		Load on Instrument
M97264-4.5	GCMSE	Tamis Dudo	01/25/11 09:42	Unload from Instrument
M97264-4.5	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage
M97264-5.2	Walk In Ref #22	Bijan Jafari	01/20/11 10:02	Retrieve from Storage
M97264-5.2	Bijan Jafari	 .	01/22/11 05:56	
M97264-5.3	VOC Ref #5	Tamis Dudo	01/24/11 11:38	Retrieve from Storage
M97264-5.3	Tamis Dudo	GCMSE		Load on Instrument
M97264-5.3	GCMSE	Tamis Dudo		Unload from Instrument
M97264-5.3	Tamis Dudo	VOC Ref #5	01/27/11 15:18	Return to Storage

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received:

01/19/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97264-6.2 M97264-6.2 M97264-6.2 M97264-6.2	VOC Ref #5 Tamis Dudo GCMSE Tamis Dudo	Tamis Dudo GCMSE Tamis Dudo VOC Ref #5	01/24/11 11:39 01/25/11 09:42	Retrieve from Storage Load on Instrument Unload from Instrument Return to Storage

GC.	/MS	Vol	atiles
UU	TATO	Y UJ	amo

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2163-MB	E51215.D	1	01/24/11	TD	n/a	n/a	MSE2163

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/I
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/I
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87- 5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-5 8- 6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/I
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Method: SW846 8260B

Method Blank Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2163-MB	E51215.D	1	01/24/11	TD	n/a	n/a	MSE2163

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l
98-82-8	Isopropylbenzene	ND .	5.0	0.51	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/I
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/I
100-42-5	Styrene	ND	5.0	0.68	ug/I
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/I
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/I
108-88-3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND	1.0	0.56	ug/l
CAS No.	Surrogate Recoveries		Limits		
1868-53-7	Dibromofluoromethane	117%	70-130		
2037-26-5	Toluene-D8	113%	70-130		
460-00-4	4-Bromofluorobenzene	106%	70-130	%	

Method Blank Summary Job Number: M97264 Account: SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2165-MB	E51265.D	1	01/25/11	TD	n/a	n/a	MSE2165
				•			

The QC reported here applies to the following samples:

Method: SW846 8260B

M97264-2

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4 108-88-3	Ethylbenzene Toluene m,p-Xylene	ND ND ND	1.0 1.0 1.0	0.61 0.74 0.62	ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 119% 110%	70-130 70-130 70-130	%	

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2163-BS	E51212.D	1	01/24/11	TD	n/a	n/a	MSE2163
MSE2163-BSD	E51213.D	1	01/24/11	TD	n/a	n/a	MSE2163

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

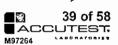
Q.4.Q.3.Y		Spike	BSP	BSP	BSD	BSD	חחח	Limits Rec/RPD
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	50	49.0	98	45.9	92	7	70-130/25
71-43-2	Benzene	50	56.3	113	55.3	111	2	70-130/25
108-86-1	Bromobenzene	50	51.8	104	50.4	101	3	70-130/25
74-97-5	Bromochloromethane	50	52.6	105	51.7	103	2	70-130/25
75-27-4	Bromodichloromethane	50	53.1	106	51.9	104	2	70-130/25
75-25-2	Bromoform	50	45.7	91	43.7	87	4	70-130/25
74-83-9	Bromomethane	50	54.5	109	52.6	105	4	70-130/25
78-93-3	2-Butanone (MEK)	50	47.8	96	41.3	83	15	70-130/25
104-51-8	n-Butylbenzene	50	57.8	116	55.7	111	4	70-130/25
135-98-8	sec-Butylbenzene	50	55.6	111	53.9	108	3	70-130/25
98-06-6	tert-Butylbenzene	50	56.5	113	55.5	111	2	70-130/25
75-15-0	Carbon disulfide	50	53.6	107	47.3	95	12	70-130/25
56-23-5	Carbon tetrachloride	50	55.0	110	54.1	108	2	70-130/25
108-90-7	Chlorobenzene	50	53.5	107	52.3	105	2	70-130/25
75-00-3	Chloroethane	50	55.1	110	54.8	110	1	70-130/25
67-66-3	Chloroform	50	55.2	110	53.3	107	4	70-130/25
74-87-3	Chloromethane	50	60.5	121	61.0	122	1	70-130/25
95-49-8	o-Chlorotoluene	50	55.2	110	52.6	105	5	70-130/25
106-43-4	p-Chlorotoluene	50	55.8	112	53.4	107	4	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	46.3	93	43.1	86	7	70-130/25
124-48-1	Dibromochloromethane	50	49.4	99	47.0	94	5	70-130/25
95-50-1	1,2-Dichlorobenzene	50	53.0	106	51.0	102	4	70-130/25
541-73-1	1,3-Dichlorobenzene	50	54.7	109	52.8	106	4	70-130/25
106-46-7	1,4-Dichlorobenzene	50	54.7	109	52.7	105	4	70-130/25
75-71-8	Dichlorodifluoromethane	50	62.7	125	61.9	124	1	70-130/25
75-34-3	1,1-Dichloroethane	50	56.0	112	54.5	109	3	70-130/25
107-06-2	1,2-Dichloroethane	50	50.1	100	49.6	99	1	70-130/25
75-35-4	1,1-Dichloroethene	50	55.1	110	55.0	110	0	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	50.3	101	48.5	97	4	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	54.3	109	53.1	106	2	70-130/25
78-87-5	1,2-Dichloropropane	50	52.6	105	52.5	105	0	70-130/25
142-28-9	1,3-Dichloropropane	50	49.1	98	48.1	96	2	70-130/25
594-20-7	2,2-Dichloropropane	50	62.3	125	59.6	119	4	70-130/25
563-58-6	1,1-Dichloropropene	50	55.2	110	55.1	110	0	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	54.8	110	52.7	105	4	70-130/25
10061-02-6	trans-1,3-Dichloropropene	50	57.1	114	55.0	110	4	70-130/25

Page 2 of 2

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:


URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample File ID MSE2163-BS E51212 MSE2163-BSD E51213		Analyzed 01/24/11 01/24/11	By TD TD	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch MSE2163 MSE2163
---	--	----------------------------------	----------------	-------------------------	--------------------------	--

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	50	55.0	110	53.9	108	2	70-130/25
87-68-3	Hexachlorobutadiene	50	59.5	119	59.6	119	. 0	70-130/25
98-82-8	Isopropylbenzene	50	62.3	125	60.8	122	. 2	70-130/25
99-87-6	p-Isopropyltoluene	50	57.9	116	56.0	112	3	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	45.5	91	44.0	88	3	70-130/25
74-95-3	Methylene bromide	50	52.5	105	51.3	103	2	70-130/25
75-09-2	Methylene chloride	50	53.7	107	51.9	104	3	70-130/25
103-65-1	n-Propylbenzene	50	54.0	108	52.9	106	2	70-130/25
100-42-5	Styrene	50	50.3	101	49.7	99	1	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	53.6	107	51.9	104	3	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	48.6	97	47.1	94	3	70-130/25
127-18-4	Tetrachloroethene	50	49.4	99	49.2	98	0	70-130/25
108-88-3	Toluene	50	52.0	104	51.6	103	1	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	48.3	97	48.2	96	0	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	51.9	104	50.1	100	4	70-130/25
71-55-6	1,1,1-Trichloroethane	50	55.8	112	54.1	108	3	70-130/25
79-00-5	1,1,2-Trichloroethane	50	53.0	106	52.0	104	2	70-130/25
79-01-6	Trichloroethene	50	53.0	106	56.5	113	6	70-130/25
75-69-4	Trichlorofluoromethane	50	57.0	114	55.3	111	3	70-130/25
96-18-4	1,2,3-Trichloropropane	50	46.4	93	43.4	87	7	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	54.2	108	52.1	104	4	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	54.2	108	52.4	105	3	70-130/25
108-05-4	Vinyl Acetate	50	36.8	74	35.9	72	2	70-130/25
75-01-4	Vinyl chloride	50	59.8	120	60.4	121	1	70-130/25
	m,p-Xylene	100	109	109	107	107	2	70-130/25
95-47-6	o-Xylene	50	50.8	102	49.3	99	3	70-130/25
	,							
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7	Dibromofluoromethane	110%	107	7%	70-130	%		
2037-26-5	Toluene-D8	113%	117	2%	70-130	%		
460-00-4	4-Bromofluorobenzene	109%	106	6%	70-130	%		

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

MSE2165-BSD E51263.D 01/25/11 1D 10/a 11/a MSE2165	Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	MSE2165-BS	E51262.D	1	01/25/11	TD	n/a	n/a	MSE2165
	MSE2165-BSD	E51263.D	1	01/25/11	TD	n/a	n/a	MSE2165

The QC reported here applies to the following samples:

M97264-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
100-41-4 108-88-3	Ethylbenzene Toluene m,p-Xylene	50 50 100	56.5 51.3 112	113 103 112	55.9 53.0 110	112 106 110	1 3 2	70-130/25 70-130/25 70-130/25
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 114% 113%	11	101% 115% 113%		% % %		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

The QC reported here applies to the following samples:

Method: SW846 8260B

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

CAS No.	Compound	M9 7 291 ug/l	-1 Q	Spike ug/l	MS ug/I	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	14.6		250	294	112	281	107	5	70-130/30
71-43-2	Benzene	1.5		250	291	116	290	115	0	70-130/30
108-86-1	Bromobenzene	ND		250	268	107	274	110	2	70-130/30
74-97-5	Bromochloromethane	ND		250	274	110	275	110	0	70-130/30
75-27-4	Bromodichloromethane	ND		250	253	101	249	100	2	70-130/30
75-25-2	Bromoform	ND		250	183	73	176	70	4	70-130/30
74-83-9	Bromomethane	ND		250	280	112	262	105	7	70-130/30
78-93-3	2-Butanone (MEK)	ND		250	253	101	305	122	19	70-130/30
104-51-8	n-Butylbeлzene	0.67		250	295	118	296	118	0	70-130/30
135-98-8	sec-Butylbenzene	0.99		250	288	115	292	116	1	70-130/30
98-06-6	tert-Butylbenzene	ND		250	291	116	293	117	1	70-130/30
75-15-0	Carbon disulfide	ND		250	254	102	263	105	3	70-130/30
56-23-5	Carbon tetrachloride	ND		250	281	112	279	112	1	70-130/30
108-90-7	Chlorobenzene	ND		250	282	113	272	109	4	70-130/30
75-00-3	Chloroethane	0.88		250	292	116	282	112	3	70-130/30
67-66-3	Chloroform	ND		250	290	116	287	115	1	70-130/30
74-87-3	Chloromethane	ND		250	294	118	291	116	1	70-130/30
95-49-8	o-Chlorotoluene	ND		250	282	113	284	114	1	70-130/30
106-43-4	p-Chlorotoluene	ND		250	283	113	288	115	2	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		250	213	85	222	89	4	70-130/30
124-48-1	Dibromochloromethane	ND		250	217	87	207	83	5	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		250	265	106	265	106	0	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		250	276	110	275	110	0	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		250	276	110	275	110	0	70-130/30
75-71-8	Dichlorodifluoromethane	ND		250	327	131* a	315	126	4	70-130/30
75-34-3	1,1-Dichloroethane	1.2		250	298	119	297	118	0	70-130/30
107-06-2	1,2-Dichloroethane	ND		250	255	102	255	102	0	70-130/30
75-35-4	1,1-Dichloroethene	ND		250	290	116	293	117	1	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		250	257	103	258	103	0	7 0-130/30
156-60-5	trans-1,2-Dichloroethene	ND		250	279	112	280	112	0	70-130/30
78-87-5	1,2-Dichloropropane	ND		250	270	108	271	108	0	70-130/30
142-28-9	1,3-Dichloropropane	ND		250	254	102	248	99	2	70-130/30
594-20-7	2,2-Dichloropropane	ND		250	322	129	299	120	7	70-130/30
563-58-6	1,1-Dichloropropene	ND		250	289	116	290	116	0	70-130/30
10061-01-5	cis-1,3-Dichloropropene	ND		250	267	107	266	106	0	70-130/30
10061-02-6	trans-1,3-Dichloropropene	ND		250	273	109	277	111	1	70-130/30

Page 2 of 2

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
M97291-1MS	E51223.D	5	01/24/11	TD	n/a	n/a	MSE2163
M97291-1MSD	E51224.D	5	01/24/11	TD	n/a	n/a	MSE2163
M97291-1	E51222.D	1	01/24/11	TD	n/a	n/a	MSE2163

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5, M97264-6

CAS No.	Compound	M97291 ug/l	-1 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	0.76		250	284	113	281	112	1	70-130/30
87-68-3	Hexachlorobutadiene	ND		250	306	122	313	125	2	70-130/30
98-82-8	Isopropylbenzene	0.86		250	326	130	335	134* a	3 .	70-130/30
99-87-6	p-Isopropyltoluene	ND		250	296	118	298	119	1	70-130/30
1634-04-4	Methyl Tert Butyl Ether	738	E	250	893	62* b	868	52* b	3	70-130/30
74-95-3	Methylene bromide	ND		250	271	108	265	106	2	70-130/30
75-09-2	Methylene chloride	ND		250	273	109	272	109	0	70-130/30
103-65-1	n-Propylbenzene	1.4		250	282	112	286	114	1	70-130/30
100-42-5	Styrene	ND		250	247	99	241	96	2	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND		250	276	110	269	108	3	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		250	249	100	248	99	0	70-130/30
127-18-4	Tetrachloroethene	ND		250	266	106	262	105	2	70-130/30
108-88-3	Toluene	ND		250	271	108	266	106	2	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		250	241	96	246	98	2	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND		250	260	104	263	105	1	70-130/30
71-55-6	1,1,1-Trichloroethane	ND		250	296	118	284	114	4	70-130/30
79-00-5	1,1,2-Trichloroethane	ND		250	267	107	257	103	4	70-130/30
79-01-6	Trichloroethene	ND		250	290	116	284	114	2	70-130/30
75-69-4	Trichlorofluoromethane	ND		250	302	121	288	115	5	70-130/30
96-18-4	1,2,3-Trichloropropane	ND		250	220	88	229	92	4	70-130/30
95-63-6	1,2,4-Trimethylbenzene	1.2		250	275	110	275	110	0	70-130/30
108-67-8	1,3,5-Trimethylbenzene	0.56		250	276	110	280	112	1	70-130/30
108-05-4	Vinyl Acetate	ND		250	183	73	186	74	2	70-130/30
75-01-4	Vinyl chloride	ND		250	307	123	302	121	2	70-130/30
	m,p-Xylene	0.74		500	570	114	566	113	1	70-130/30
95-47-6	o-Xylene	1.5		250	259	103	254	101	2	70-130/30
CAS No.	Surrogate Recoveries	MS		MSD	M	7291-1	Limits			
1868-53-7	Dibromofluoromethane	111%		109%	112		70-1309			
2037-26-5	Toluene-D8	114%		112%	112		70-1309			
460-00-4	4-Bromofluorobenzene	110%		113%	110)%	70-1309	6		

⁽a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

⁽b) Outside control limits due to high level in sample relative to spike amount.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97264

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

|--|

The QC reported here applies to the following samples:

Method: SW846 8260B

M97264-2

CAS No.	Compound	M97309 ug/l)-5 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	1860	•	250	2060	80	2080	88	1	70-130/30
108-88-3	Toluene	8480	E	250	8450	-12* a	8610	52* a	2	70-130/30
	m,p-Xylene	6130	E	500	6380	50* a	6440	62* a	1	70-130/30
CAS No.	Surrogate Recoveries	MS		MSD	М9	7309-5	Limits			
1868-53-7	Dibromofluoromethane	106%		107%	106	6%	70-1309	6		
2037-26-5	Toluene-D8	109%		109%	110)%	70-1309	6		
460-00-4	4-Bromoffuorobenzene	115%		116%	112	%	70-1309	6		

⁽a) Outside control limits due to high level in sample relative to spike amount.

Volatile Internal Standard Area Summary

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std:	MSE2163-CC2152	Injection Date:	01/24/11
Lab File ID:	E51211.D	Injection Time:	10:12
Instrument ID:	GCMSE	Method:	SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Charl Std	225792	0.10	200427	0.00	168859	13.24	166904	15.81	43603	6.61
Check Std	225782	9.10 9.60	380437 760874	9.98 10.48	337718	13.74		16.31		7.11
Upper Limit ^a Lower Limit ^b	451564 112891	8.60	190219	9.48	84430	12.74		15.31		6.11
Lower Limit	112031	0.00	130213	3.40	04430	12.77	00402	13.31	21002	0.11
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MCESIES DC	220745	9.10	365537	9.97	165700	19 25	162322	15 ON	42763	6.61
MSE2163-BS MSE2163-BSD	230955	9.10	379300	9.98	172677		171667	15.80	45148	6.61
•	208341	9.10	350079	9.98	153284		154427	15.80	44331	6.61
MSE2163-MB	213103	9.10	351279	9.98	153440		146871	15.80	36959	6.62
M97264-6			340794	9.98	146921		146367	15.81	38668	6.62
M97264-1	205624	9.10							50542	6.61
M97264-2	221921	9.10	370241	9.98	160212		159509	15.80	50342 51394	6.61
M97264-3	225074	9.10	375243	9.98	161949		156719	15.81		
M97264-4	224320	9.11	370899	9.98	163914	13.25		15.81	46508	6.62
M97264-5	217359	9.10	362141	9.98	159015		154049	15.81		6.62
M97291-1	216404	9.11	363777	9.98	157149			15.81	55077	6.62
M97291-1MS	219464	9.10	366052	9.98	162832	13.24		15.81	41480	6.61
M97291-1MSD	227995	9.10	382522	9.98	171731	13.25	162189	15.80		6.61
ZZZZZZ	220955	9.10	374065	9.98	159995	13.25	158899	15.80	41567	6.61
ZZZZZZ	222262	9.10	365586	9.98	160923		159593	15.80	41546	6.61
ZZZZZZ	215057	9.10	356935	9.98	153645	13.25	151425	15.80	44569	6.62
ZZZZZZ	223619	9.10	369372	9.98	160757	13.25	162484	15.80	40994	6.61
ZZZZZZ	215511	9.10	352998	9.98	154265	13.25	148078	15.81	45201	6.61
ZZZZZZ	209042	9.10	346056	9.98	151586	13.25	148535	15.80	44153	6.61
ZZZZZZ	212116	9.10	347590	9.98	149582	13.25	149413	15.81	41412	6.61
ZZZZZZ	226597	9.10	376724	9.98	162520	13.24	156555	15.81	41308	6.61
ZZZZZZ	233463	9.10	376347	9.98	167957	13.25	159866	15.80	38629	6.61

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

⁽a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

⁽b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSE2165-CC2152 Injection Date: 01/25/11 Lab File ID: E51261.D Injection Time: 11:02

Instrument ID: GCMSE Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	226638	9.12	351039	10.00	163350	13.27	155593	15.82	39445	6.63
Upper Limit a	453276	9.62	702078	10.50	326700	13.77	311186	16.32		7.13
Lower Limit b	113319	8.62	175520	9.50	81675	12.77	77797		19723	6.13
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSE2165-BS	215421	9.12	350600	9.99	157418	13.27	151935	15.82	41770	6.63
MSE2165-BSD	220082	9.12	347893	9.99	159743	13.27	152158	15.82	43802	6.63
MSE2165-MB	219621	9.12	340955	10.00	155797	13.26	154593	15.82	42539	6.63
ZZZZZZ	223551	9.12	355793	10.00	155591	13.26	155282	15.82	36505	6.64
ZZZZZZ	218082	9.12	358708	9.99	157610	13.27	154013	15.82	41208	6.63
M97264-2	223042	9.13	357437	10.00	157087	13.27	155885	15.82	40840	6.63
ZZZZZZ	227340	9.12	366904	10.00	160660	13.26	159673	15.82	39209	6.64
ZZZZZZ	219586	9.12	358220	10.00	159977	13.27	160585	15.82	40530	6.64
ZZZZZZ	219445	9.12	359447	9.99	167776	13.27	160474	15.82	42427	6.64
M97309-5	231489	9.12	378732	10.00	159330	13.26	158031	15.82	49567	6.63
M97309-5MS	231560	9.12	392127	10.00	169224	13.26	160322	15.82	50477	6.63
M97309-5MSD	223154	9.12	381521	9.99	166566	13.27	152853	15.82	49793	6.63
ZZZZZZ	208343	9.12	340841	10.00	154110	13.26	152398	15.82	43045	6.63
ZZZZZZ	212646	9.12	352026	9.99	157476	13.26	155981	15.82	44106	6.64
ZZZZZZ	219069	9.12	359650	10.00	158106	13.26	157193	15.82	42622	6.63
ZZZZZZ	219499	9.12	368964	10.00	162923	13.26	164816	15.82	46493	6.63
ZZZZZZ	210187	9.12	345804	9.99	158106	13.27	155517	15.82	39050	6.63
ZZZZZZ	212774	9.12	352461	9.99	158988	13.26	157515	15.82	38790	6.63
ZZZZZZ	216262	9.12	357350	10.00	158806	13.26	157170	15.82	42176	6.63
ZZZZZZ	220194	9.12	361227	9.99	157742	13.26	161248	15.82	43994	6.63

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	SI	S2	S3
M97264-1	E51217.D	112.0	114.0	109.0
M97264-2	E51268.D	105.0	112.0	109.0
M97264-2	E51218.D	107.0	111.0	111.0
M97264-3	E51219.D	110.0	111.0	112.0
M97264-4	E51220.D	108.0	111.0	115.0
M97264-5	E51221.D	114.0	109.0	111.0
M97264-6	E51216.D	112.0	115.0	110.0
M97291-1MS	E51223.D	111.0	114.0	110.0
M97291-1MSD	E51224.D	109.0	112.0	113.0
M97309-5MS	E51274.D	106.0	109.0	115.0
M97309-5MSD	E51275.D	107.0	109.0	116.0
MSE2163-BS	E51212.D	110.0	113.0	109.0
MSE2163-BSD	E51213.D	107.0	- 112.0	106.0
MSE2163-MB	E51215.D	117.0	113.0	106.0
MSE2165-BS	E51262.D	105.0	114.0	113.0
MSE2165-BSD	E51263.D	101.0	115.0	113.0
MSE2165-MB	E51265.D	105.0	119.0	110.0

Surrogate Recovery Compounds Limits

S1 = Dibromofluoromethane70-130% S2 = Toluene-D870-130% S3 = 4-Bromofluorobenzene 70-130%

$\alpha \alpha$	A 40	C	• 1	4 • 1	
1 -1 -7	N/I >	Sem	1_37A	เวโป	AC
	TATE		1— Y U.	uu	

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- · Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- · Surrogate Recovery Summaries

Method Blank Summary Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23913-MB	170132.D	1	01/29/11	PR	01/20/11	OP23913	MSI2468

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/i
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/I
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/I
87-86-5	Pentachlorophenol	ND	10	3.3	ug/I
108-95-2	Phenol	ND	5.0	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo (a) anthracene	ND	5.0	0.27	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08 -9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/I
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l

Method Blank Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23913-MB	170132.D	1	01/29/11	PR	01/20/11	OP23913	MSI2468

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l
132-64-9	Dibenzofuran	ND	5. 0	0.32	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l
84-66-2	Diethyl phthalate	ND	5.0	0.61	ug/l
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l
86-73-7	Fluorene	ND	5.0	0.29	ug/I
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/I
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5. 0	0.29	ug/l
78-59-1	Isophorone	ND	5.0	0.47	ug/l
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l
91-20-3	Naphthalene	ND	5.0	0.33	ug/l
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l
129-00-0	Ругепе	ND	5.0	0.25	ug/l
110-86-1	Pyridine	ND	10	0.50	ug/l
CAS No.	Surrogate Recoveries		Limits		
367-12-4	2-Fluorophenol	44%	15-110	%	
4165-62-2	Phenol-d5	28%	15-110		
118-79-6	2,4,6-Tribromophenol	60%	15-110		
4165-60-0	Nitrobenzene-d5	69%	30-130	1%	
321-60-8	2-Fluorobiphenyl	68%	30-130	1%	
1718-51-0	Terphenyl-d14	84%	30-130	1%	

Blank Spike Summary Job Number: M97264

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

- 1	Sample OP23913-BS	File ID I70133.D	DF 1	Analyzed 01/29/11	By PR	Prep Date 01/20/11	Prep Batch OP23913	Analytical Batch MSI2468	
- 1									

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
65-85-0	Benzoic Acid	100	39.1	39	30-130
95-57-8	2-Chlorophenol	100	78.4	78	30-130
59-50-7	4-Chloro-3-methyl phenol	100	84.2	.84	30-130
120-83-2	2,4-Dichlorophenol	100	84.1	84	30-130
105-67-9	2,4-Dimethylphenol	100	69.3	69	30-130
51-28-5	2,4-Dinitrophenol	100	80.1	80	30-130
534-52-1	4,6-Dinitro-o-cresol	100	82.6	83	30-130
95-48-7	2-Methylphenol	100	74.0	74	30-130
	3&4-Methylphenol	200	139	70	30-130
88-75-5	2-Nitrophenol	100	84.6	85	30-130
100-02-7	4-Nitrophenol	100	47.9	48	30-130
87-86-5	Pentachlorophenol	100	86.7	87	30-130
108-95-2	Phenol	100	38.5	39	30-130
95-95-4	2,4,5-Trichlorophenol	100	82.9	83	30-130
88-06-2	2,4,6-Trichlorophenol	100	84.9	85	30-130
83-32-9	Acenaphthene	50	42.0	84	40-140
208-96-8	Acenaphthylene	50	34.7	69	40-140
62-53-3	Aniline	50	22.6	45	40-140
120-12-7	Anthracene	50	39.7	79	40-140
56-55-3	Benzo(a)anthracene	50	46.2	92	40-140
50-32-8	Benzo(a)pyrene	50	38.4	77	40-140
205-99-2	Benzo(b)fluoranthene	50	43.2	86	40-140
191-24-2	Benzo(g,h,i)perylene	50	40.7	81	40-140
207-08-9	Benzo(k)fluoranthene	50	48.2	96	40-140
101-55-3	4-Bromophenyl phenyl ether	50	41.7	83	40-140
85-68-7	Butyl benzyl phthalate	50	46.9	94	40-140
91-58-7	2-Chloronaphthalene	50	41.5	83	40-140
106-47-8	4-Chloroaniline	50	14.3	29* a	40-140
218-01-9	Chrysene	50	49.4	99	40-140
111-91-1	bis(2-Chloroethoxy)methane	50	41.6	83	40-140
111-44-4	bis(2-Chloroethyl)ether	50	43.3	87	40-140
108-60-1	bis(2-Chloroisopropyl)ether	50	45.7	91	40-140
7005-72-3	4-Chlorophenyl phenyl ether	50	42.0	84	40-140
121-14-2	2,4-Dinitrotoluene	50	41.9	84	40-140
606-20-2	2,6-Dinitrotoluene	50	41.5	83	40-140
91-94-1	3,3'-Dichlorobenzidine	50	20.9	42	40-140

Blank Spike Summary Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

|--|

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
53-70-3	Dibenzo(a,h)anthracene	50	40.3	81	40-140
132-64-9	Dibenzofuran	50	40.9	82	40-140
84-74-2	Di-п-butyl phthalate	50	44.7	89	40-140
117-84-0	Di-n-octyl phthalate	50	51.1	102	40-140
84-66-2	Diethyl phthalate	50	43.8	88	40-140
131-11-3	Dimethyl phthalate	50	43.1	86	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	50	45.6	91	40-140
206-44-0	Fluoranthene	50	43.1	86	40-140
86-73-7	Fluorene	50	42.4	85	40-140
118-74-1	Hexachlorobenzene	50	43.3	87	40-140
77-47-4	Hexachlorocyclopentadiene	50	24.1	48	40-140
67-72-1	Hexachloroethane	50	38.0	76	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	50	41.2	82	40-140
78-59-1	Isophorone	50	41.1	82	40-140
91-57-6	2-Methylnaphthalene	50	38.2	76	40-140
88-74-4	2-Nitroaniline	50	42.8	86	40-140
99-09-2	3-Nitroaniline	50	22.3	45	40-140
100-01-6	4-Nitroaniline	50	37.3	75	40-140
91-20-3	Naphthalene	50	41.6	83	40-140
98-95-3	Nitrobenzene	50	41.1	82	40-140
621-64-7	N-Nitroso-di-n-propylamine	50	45.6	91	40-140
86-30-6	N-Nitrosodiphenylamine	50	42.2	84	40-140
85-01-8	Phenanthrene	50	41.2	82	40-140
129-00-0	Ругеле	50	46.0	92	40-140
110-86-1	Pyridine	50	26.7	53	40-140
	•				
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
367-12-4	2-Fluorophenol	54%,		110%	
4165-62-2	Phenol-d5	36%		110%	
118-79-6	2,4,6-Tribromophenol	76%	15-	110%	
4165-60-0	Nitrobenzene-d5	82%	30-	130%	
321-60-8	2-Fluorobiphenyl	82%	30-	130%	
1718-51-0	Terphenyl-d14	91%	30-	130%	

Page 3 of 3

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23913-BS	I70133.D	1	01/29/11	PR	01/20/11	OP23913	MSI2468

The QC reported here applies to the following samples:

Method: SW846 8270C

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5

(a) Outside control limits. Blank Spike meets program technical requirements.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample OP23913-MS OP23913-MSD M97236-1	File ID 170134.D 170135.D 170136.D	DF 1 1	Analyzed 01/29/11 01/29/11 01/29/11	By PR PR PR	Prep Date 01/20/11 01/20/11 01/20/11	Prep Batch OP23913 OP23913 OP23913	Analytical Batch MSI2468 MSI2468 MSI2468
---	---	--------------	--	----------------------	--------------------------------------	---	---

The QC reported here applies to the following samples:

Method: SW846 8270C

		M9723	6-1	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
									_	
65-85-0	Benzoic Acid	ND		100	42.0	42	39.0	39	7	30-130/20
95-57-8	2-Chlorophenol	ND		100	81.0	81	77.1	77	5	30-130/20
59-50-7	4-Chloro-3-methyl phenol	ND		100	86.4	86	80.9	81	7	30-130/20
120-83-2	2,4-Dichlorophenol	ND		100	86.2	86	82.7	83	4	30-130/20
105-67-9	2,4-Dimethylphenol	ND		100	67.4	67	60.3	60	11	30-130/20
51-28-5	2,4-Dinitrophenol	ND		100	83.3	83	83.1	83	0	30-130/20
534-52-1	4,6-Dinitro-o-cresol	ND		100	86.3	- 86	84.5	85	2	30-130/20
95-48-7	2-Methylphenol	ND		100	76.4	76	70.7	71	8	30-130/20
	3&4-Methylphenol	ND		200	144	72	131	66	9	30-130/20
88-75-5	2-Nitrophenol	ND		100	86.5	87	84.2	84	3	30-130/20
100-02-7	4-Nitrophenol	ND		100	48.9	49	48.7	49	0	30-130/20
87-86-5	Pentachlorophenol	ND		100	90.3	90	88.2	88	2	30-130/20
108-95-2	Phenol	ND		100	39.7	40	36.7	37	8	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND		100	83.7	84	84.3	84	1	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND		100	84.9	85	84.9	85	0	30-130/20
83-32-9	Acenaphthene	ND		50	43.0	86	42.4	85	1	40-140/20
208-96-8	Acenaphthylene	ND		50	35.2	70	34.8	70	1	40-140/20
62-53-3	Aniline	ND		50	24.3	49	23.9	48	2	40-140/20
120-12-7	Anthracene	ND		50	41.1	82	40.7	81	1	40-140/20
56-55-3	Benzo(a)anthracene	ND		50	48.3	97	46.8	94	3	40-140/20
50-32-8	Benzo(a) pyrene	ND		50	39.8	80	38.8	78	3	40-140/20
205-99-2	Benzo(b)fluoranthene	ND		50	44.7	89	43.4	87	3	40-140/20
191-24-2	Benzo(g,h,i)perylene	ND		50	43.1	86	44.8	90	4	40-140/20
207-08-9	Benzo(k)fluoranthene	ND		50	50.0	100	48.0	96	4	40-140/20
101-55-3	4-Bromophenyl phenyl ether	ND		50	43.2	86	42.2	84	2	40-140/20
85-68-7	Butyl benzyl phthalate	ND		50	49.6	99	45.5	91	9	40-140/20
91-58-7	2-Chloronaphthalene	ND		50	42.4	85	42.8	86	1	40-140/20
106-47-8	4-Chloroaniline	ND		50	15.9	32* a	14.9	30* a	6	40-140/20
218-01-9	Chrysene	ND		50	50.9	102	49.8	100	2	40-140/20
111-91-1	bis(2-Chloroethoxy)methane	ND		50	43.4	87	41.4	83	5	40-140/20
111-44-4	bis(2-Chloroethyl)ether	ND		50	45.5	91	43.0	86	6	40-140/20
108-60-1	bis(2-Chloroisopropyl)ether	ND		50	46.8	94	44.9	90	4	40-140/20
7005-72-3	4-Chlorophenyl phenyl ether	ND		50	42.9	86	42.2	84	2	40-140/20
121-14-2	2,4-Dinitrotoluene	ND		50	44.9	90	42.6	85	5	40-140/20
606-20-2	2,6-Dinitrotoluene	ND		50	43.3	87	41.7	83	4	40-140/20
91-94-1	3,3'-Dichlorobenzidine	ND		50	22.6	45	23.7	47	5	40-140/20
31-34-1	2,5 -Dicinoronenzionie	עוו		30	20.0	40	20.1	71	J	10 110/20

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97264

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	M97236 ug/l	F1 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
53-70-3	Dibenzo(a,h)anthracene	ND		50	42.6	85	43.5	87	2	40-140/20
132-64-9	Dibenzofuran	ND		50	41.0	82	40.9	82	0	40-140/20
84-74-2	Di-n-butyl phthalate	ND		50	46.5	93	44.7	89 .	4	40-140/20
117-84-0	Di-n-octyl phthalate	ND		50	52.1	104	50.8	102	3	40-140/20
84-66-2	Diethyl phthalate	ND		50	44.9	90	43.5	87	3	40-140/20
131-11-3	Dimethyl phthalate	ND		50	43.7	87	42.6	85	3	40-140/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		50	47.4	95	47.2	94	0	40-140/20
206-44-0	Fluoranthene	ND		50	44.7	89	43.3	87	3	40-140/20
86-73-7	Fluorene	ND		50	43.3	87	42.4	85	2	40-140/20
118-74-1	Hexachlorobenzene	ND		50	43.4	87	43.1	86	1	40-140/20
77-47-4	Hexachlorocyclopentadiene	ND		50	25.7	51	26.1	52	2	40-140/20
67-72-1	Hexachloroethane	ND		50	39.4	79	38.2	76	3	40-140/20
193-39-5	Indeno(1,2,3-cd)pyrene	ND		50	43.7	87	44.5	89	2	40-140/20
78-59-1	Isophorone	ND		50	42.7	85	40.4	81	6	40-140/20
91-57-6	2-Methylnaphthalene	ND		50	39.9	80	37.8	76	5	40-140/20
88-74-4	2-Nitroaniline	ND		50	44.7	89	43.4	87	3	40-140/20
99-09-2	3-Nitroaniline	ND		50	24.7	49	23.5	47	5	40-140/20
100-01-6	4-Nitroaniline	ND		50	37.7	7 5	36.9	74	2	40-140/20
91-20-3	Naphthalene	ND		50	43.5	87	41.5	83	5	40-140/20
98-95-3	Nitrobenzene	ND		50	42.7	85	41.5	83	3	40-140/20
621-64-7	N-Nitroso-di-n-propylamine	ND		50	47.6	95	43.9	88	8	40-140/20
86-30-6	N-Nitrosodiphenylamine	ND		50	43.9	88	43.0	86	2	40-140/20
85-01-8	Phenanthrene	ND		50	42.8	86	42.4	85	1	40-140/20
129-00-0	Ругеле	ND		50	49.1	98	45.1	90	8	40-140/20
110-86-1	Pyridine	ND		50	25.0	50	27.8	56	11	40-140/20
CAS No.	Surrogate Recoveries	MS		MSD	MS	7236-1	Limits			
367-12-4	2-Fluorophenol	55%		52%	409	%	15-1109	%		
4165-62-2	Phenol-d5	37%		34%	259	%	15-1109	%		
118-79-6	2,4,6-Tribromophenol	79%		78%	559	%	15-1109	%		
4165-60-0	Nitrobenzene-d5	83%		81%	639	%	30-1309	%		
321-60-8	2-Fluorobiphenyl	82%		83%	629	%	30-1309	%		
1718-51-0	Terphenyl-d14	97%		88%	739	%	30-1309			
	•									

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID OP23913-MS 170134.3 OP23913-MSD 170135.3 M97236-1 170136.3	0 1	Analyzed 01/29/11 01/29/11 01/29/11	By PR PR PR	Prep Date 01/20/11 01/20/11 01/20/11	Prep Batch OP23913 OP23913 OP23913	Analytical Batch MSI2468 MSI2468 MSI2468
---	-----	--	----------------------	---	---	---

The QC reported here applies to the following samples:

M97264-1, M97264-2, M97264-3, M97264-4, M97264-5

(a) Outside control limits. Blank Spike meets program technical requirements.

3.1

Page 3 of 3

Method: SW846 8270C

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std:	MSI2468-CC2467	Injection Date:	01/29/11
Lab File ID:	I70130.D	Injection Time:	12:11

Instrument ID: GCMSI Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a	250509 501018	5.88 6.38	911140 1822280		444076 888152	9.72 10.22	710595 1421190		580512 1161024		1106018	
Lower Limit b	125255	5.38	455570	6.72	222038	9.22	355298	11.77	290256	16.76	276505	19.29
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
OP23913-MB	188393	5.87	683863	7.22	329104	9.72	544095	12 26	441153	17 24	365090	19.78
OP23913-MD	208546	5.87	797383	7.22	392407	9.72	630887		494377	17.25		19.79
OP23913-MS	219132	5.87	838690	7.22	423297	9.72	670977		501242	17.25		19.78
OP23913-MSD	224878	5.87	830977	7.22	390825	9.72	607712		485637	17.25		19.79
M97236-1	202041	5.87	761431	7.22	367284	9.71	600448	12.26	485206		404867	19.78
M97264-1	205105	5.87	755007	7.21	369982	9.71	584380	12.26	459658		395732	19.78
M97264-2	204434	5.87	707640	7.22	329303	9.71	549845	12.26	469484		401055	19.78
M97264-3	177976	5.87	651785	7.21	325724	9.71	558148		476988		400616	19.78
M97264-4	211246	5.87	759289	7.22	375522	9.71	628548		484059		416646	19.78
M97264-5	192103	5.87	685348	7.21	329038	9.71	580591		496354		416274	19.78
7.7.7.7.7.	216057	5.87	789492	7.22	380880	9.71	591230		461599		403269	19.78
ZZZZZZ	208282	5.88	708869	7.25	388970	9.72	620640		513599		606351	19.79
7.7.7.7.7.Z	169566	5.87	607632	7.22	289811	9.71	505497		488636		412374	19.78
ZZZZZZ	212020	5.87	770665	7.22	377585	9.71	643223		491351		415406	19.78
ZZZZZZ	216962	5.87	814065	7.21	401890	9.71	656196		498609		432748	19.78
ZZZZZZ	253698	5.87	955726	7.22	451166	9.71	675001		460851	17.25	597288	19.80
ZZZZZZ	257153	5.87	938540	7.22	458065	9.71	701340	12.26	502315		418566	19.78
ZZZZZZ	268066	5.87	1001041		495519	9.71	771632		492206		458520	19.79
7.7.7.7.7.	251215	5.87	914159	7.22	436169	9.71	662471	12.26	483567		395888	19.78
ZZZZZZ	269243	5.87	977222	7.22	467118	9.71	720609		514731		411239	19.78
			-		-							

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8

IS 3 = Acenaphthene-D10

IS 4 = Phenanthrene-d10

IS 5 = Chrysene-d12

IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Internal Standard Area Summary

Job Number: M97264

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSI2471-CC2467 Injection Date: 02/01/11 Lab File ID: I70188.D Injection Time: 17:27

Instrument ID: GCMSI Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	232445 464890 116223	5.84 6.34 5.34	875450 1750900 437725	7.19 7.69 6.69	431896 863792 215948	9.68 10.18 9.18	705637 1411274 352819	12.23 12.73 11.73	618619 1237238 309310	17.21 17.71 16.71	515211 1030422 257606	19.75 20.25 19.25
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
M97264-2	289924	5.83	1052573	7.18	523974	9.68	828893	12.23	650821	17.20	558275	19.75
ZZZZZZ	206639	5.83	759602	7.18	373560	9.68	609909	12.22	518656	17.20	457822	19.75
ZZZZZZ	205997	5.83	767716	7.18	380967	9.68	604068	12.22	532213	17.20	455079	19.75
ZZZZZZ	224785	5.84	845025	7.18	417837	9.68	670899	12.23	566036	17.20	473874	19.75
ZZZZZZ	224558	5.84	830641	7.18	404287	9.68	651871	12.22	557207	17.20	495886	19.75
ZZZZZZ	241570	5.84	898779	7.18	436417	9.68	693689	12.22	566849	17.20	476041	19.74
ZZZZZZ	225977	5.84	835529	7.18	408458	9.68	661746	12.22	537770	17.20	450817	19.74
ZZZZZZ	262238	5.84	983256	7.18	477919	9.68	770093	12.22	647189	17.20	541188	19.75
ZZZZZZ	210212	5.83	777406	7.18	386531	9.68	622246	12.22	517756	17.20	445738	19.75
ZZZZZZ	239389	5.84	880319	7.18	434114	9.68	691265	12.22	574293	17.20	466048	19.75
ZZZZZZ	231106	5.84	867040	7.18	425450	9.68	682385	12.22	567682	17.20	472670	19.74
ZZZZZZ	230499	5.83	847116	7.18	418046	9.68	666460	12.22	550425	17.20	453942	19.74
ZZZZZZ	247518	5.84	919688	7.18	449636	9.68	704842	12.22	565366	17.20	468049	19.75
ZZZZZZ	197995	5.83	730122	7.18	358411	9.68	590038	12.22	514317	17.20	426381	19.74
OP23929-MB	325567	5.83	1200767	7.18	587470	9.68	940383	12.23	789118	17.20	699158	19.75
OP23929-BS	274906	5.83	1028031	7.19	495267	9.68	797267	12.23	683250	17.21	570037	19.75
OP23929-MS	278890	5.83	1028947	7.18	502732	9.68	843706	12.23	714682	17.21	597026	19.75
OP23929-MSD	303471	5.84	1132139	7.19	567068	9.68	932722	12.23	753365	17.22	683154	19.75
M97323-5	292398	5.83	1099863	7.18	556388	9.68	893840	12.23	807470	17.20	715810	19.75
ZZZZZZ	216067	5.83	803542	7.18	402219	9.68	654208	12.23	562806	17.20	494116	19.75
ZZZZZZ	201778	5.83	741364	7.19	365556	9.68	588482	12.23	523789	17.20	462557	19.75
ZZZZZZ	213581	5.83	785084	7.18	395972	9.68	652894	12.22	586676	17.20	508825	19.75

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary Job Number: M97264 Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Method: SW846 8270C Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	S2	S3	S4	S5	S6
•							
M97264-1	I70137.D	48.0	32.0	69.0	75.0	74.0	82.0
M97264-2	I70189.D	33.0	23.0	72.0	67.0	68.0	70.0
M97264-2	I70138.D	33.0	20.0	59.0	58.0	60.0	60.0
M97264-3	I70139.D	42.0	27.0	62.0	67.0	67.0	76.0
M97264-4	I70140.D	46.0	29.0	73.0	74.0	73.0	88.0
M97264-5	I70141.D	47.0	29.0	67.0	74.0	73.0	76.0
OP23913-BS	I70133.D	54.0	36.0	76.0	82.0	82.0	91.0
OP23913-MB	I70132.D	44.0	28.0	60.0	69.0	68.0	84.0
OP23913-MS	I70134.D	55.0	37.0	79.0	83.0	82.0	97.0
OP23913-MS	D I70135.D	52.0	34.0	78.0	81.0	83.0	88.0

Surrogate	Recovery
Compounds	Limits

S1 = 2-Fluorophenol	15-110%
S2 = Phenol-d5	15-110%
S3 = 2,4,6-Tribromophenol	15-110%
S4 = Nitrobenzene-d5	30-130%
S5 = 2-Fluorobiphenyl	30-130%
S6 = Terphenyl-d14	30-130%

Roxana Groundwater Quarterly – 1st Quarter 2011

Laboratory SDG: M97346

Data Reviewer: Wendy Buchman

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 2/23/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
MW6C-ROX-012111	MW6D-ROX-012111
MW9-ROX-012111	TB-ROX-012111

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated SVOC LCS/LCSD recoveries were outside evaluation criteria. Additionally, diethyl phthalate was detected in the method blank. Although not indicated in the laboratory case narrative, methylene chloride was detected in the trip blank. Several samples were diluted due to high levels of target analyte. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated samples were received by the laboratory at 0.9° C which was outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore, no qualification of data was required. COC designated samples MW6C-ROX-012111 and MW6D-ROX-012111 were incorrectly transcribed by the laboratory as MWGC-ROX-012111 and MWGD-ROX-012111. Results were reported using the correct sample IDs. Additionally, the cooler receipt form erroneously indicated N/A for the quality control/preservation questions, trip blank present in cooler and trip blank listed on the COC. A trip blank was included in the cooler and it was listed on the COC.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration/Amount
TB-ROX-012111	VOCs	Methylene chloride	1.8 μg/L

Blank ID	Parameter	Analyte	Concentration/Amount
OP23942-MB	SVOCs	Diethyl phthalate	1.8 μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
MW6C-ROX-012111	SVOCs	Diethyl phthalate	-	U
MW6D-ROX-012111	SVOCs	Diethyl phthalate	-	U
MW9-ROX-012111	SVOCs	Diethyl phthalate	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/ LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
MSE2170- BS/BSD	VOCs	Dichlorodifluoromethane	129/ 131	2	70-130/25
MSE2170- BS/BSD	VOCs	Isopropylbenzene	126/ 131	4	70-130/25
MSE2170- BS/BSD	VOCs	Vinyl acetate	65/69	5	70-130/25
OP23942- BS	SVOCs	Benzoic Acid	18	NA	30-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
MW6C-ROX-012111	VOCs	Vinyl acetate	UJ
MW6C-ROX-012111	SVOCs	Benzoic Acid	UJ
MW6D-ROX-012111	VOCs	Vinyl acetate	UJ
MW6D-ROX-012111	SVOCs	Benzoic Acid	UJ
MW9-ROX-012111	VOCs	Vinyl acetate	UJ
MW9-ROX-012111	SVOCs	Benzoic Acid	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria? Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; samples analyzed did not require a dilution.

12.0 Additional Qualifications

Were additional qualifications applied?

No

03/08/11

Technical Report for

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

SAP#340061

Accutest Job Number: M97346

Sampling Date: 01/21/11

Report to:

URS Corporation

Elizabeth_Kunkel@URSCorp.com

ATTN: Elizabeth Kunkel

Total number of pages in report: 45

Reviewed

Lab Director

•n 3/8/2011

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Sample Results	
3.1: M97346-1: MWGC-ROX-012111	
3.2: M97346-2: MWGD-ROX-012111	
3.3: M97346-3: MW9-ROX-012111	
3.4: M97346-4: TB-ROX-012111	
Section 4: Misc. Forms	
4.1: Chain of Custody	21
4.2: Sample Tracking Chronicle	
4.3: Internal Chain of Custody	
Section 5: GC/MS Volatiles - QC Data Summaries	25
5.1: Method Blank Summary	
5.2: Blank Spike/Blank Spike Duplicate Summary	28
5.3: Matrix Spike/Matrix Spike Duplicate Summary	30
5.4: Internal Standard Area Summaries	32
5.5: Surrogate Recovery Summaries	33
Section 6: GC/MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	35
6.2: Blank Spike Summary	37
6.3: Matrix Spike/Matrix Spike Duplicate Summary	40
6.4: Internal Standard Area Summaries	
6.5: Surrogate Recovery Summaries	45

Sample Summary

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Job No:	M97346
---------	--------

Sample Number	Collected Date Tin	ne By Received	Matr Code		Client Sample ID
M97346-1	01/21/11 10:	10 01/22/11	AQ	Ground Water	MW.C.ROX-012111
M97346-2	01/21/11 11:	20 01/22/11	AQ	Ground Water	MW&D-ROX-012111
M97346-3	01/21/11 13:	40 01/22/11	AQ	Ground Water	MW9-ROX-012111
M97346-4	01/21/11 00:	00 01/22/11	AQ	Trip Blank Water	TB-ROX-012111

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Shell Oil Job No M97346

Site: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Report Date 2/7/2011 9:46:09 AM

3 Sample(s), 1 Trip Blank were collected on 01/21/2011 and were received at Accutest on 01/22/2011 properly preserved, at 0.9 Deg. C and intact. These Samples received an Accutest job number of M97346. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to OC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix	AO	Batch ID:	MSE2170
2110417121			

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97347-3MS, M97347-3MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for Dichlorodifluoromethane, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Dichlorodifluoromethane, Hexachlorobutadiene, Isopropylbenzene, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- SSD Recovery(s) for Dichlorodiffuoromethane, Isopropylbenzene, Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.

Extractables by GCMS By Method SW846 8270C

	-	
Matrix AQ	Batch ID:	OP23942

- All samples were extracted within the recommended method holding time.
- * All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- 22 Sample(s) M97378-1MS, M97378-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Benzoic Acid are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for 4-Chloroaniline, Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Sample(s) M97346-1, M97346-2, M97346-3 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97346).

Report	of Analysis	
ксрог	J	

Page 1 of 2

Client Sample ID: MW&C-ROX-012111

Lab Sample ID: M9/346-1 Date Sampled: 01/21/11
Matrix: AQ - Ground Water Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 E51405.D 1 01/31/11 TD n/a n/a MSE2170

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	8.5	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND ·	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/i	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

Client Sample ID: MWCC-ROX-012111

Lab Sample ID: M97346-1 Date Sampled: 01/21/11 AQ - Ground Water Date Received: 01/22/11 Matrix: SW846 8260B Method: Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	2.1	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/I	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND.	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	a = 4
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	$^{\alpha}$ U U $^{\alpha}$
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/I	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	106%		70-1		
2037-26-5	Toluene-D8	111%		70-1	30%	
460-00-4	4-Bromofluorobenzene	108%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

MW&C-ROX-012111 Client Sample ID:

Lab Sample ID:

M97346-1

AQ - Ground Water

Date Sampled: 01/21/11

Date Received: 01/22/11

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	S21218.D	1	02/02/11	PR	01/25/11	OP23942	MSS888

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	(
65-85-0	Benzoic Acid	ND	11	0.81	ug/I	
95-57-8	2-Chlorophenol	ND	5.3	0.72	ug/I	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	11	0.73	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l	
95-48-7	2-Methylphenol	ND	11	0.50	ug/l	
	3&4-Methylphenol	ND	11	0.66	ug/l	
88-75-5	2-Nitrophenol	ND	11	0.69	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86-5	Pentachlorophenol	ND	11	3.5	ug/I	
108-95-2	Phenol	ND	5.3	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	
62-53-3	Aniline	ND	11	0.48	ug/l	
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Велго(а) рутепе	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	11	0.61	ug/l	
218-01-9	Сһгуѕеле	ND	5.3	0.24	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MWCC-ROX-012111

 Lab Sample ID:
 M97346-1
 Date Sampled:
 01/21/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/l	
132-64-9	Dibenzofuran	ʻND	5.3	0.33	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.3	0.35	ug/l	
117-84-0	Di-n-octyl phthalate	ND .	5.3	0.36	ug/l	.5 11
84-66-2	Diethyl phthalate	0.84 0.0 ND	5.3	0.64	ug/l	JB ~ u"
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/l	
117-81-7	bis (2-Ethylhexyl) phthalate	ND	2.1	0.51	ug/l	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.3	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.30	ug/I	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	11	0.35	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.34	ug/I	
100-01-6	4-Nitroaniline	ND	11	0.35	ug/I	
91-20-3	Naphthalene	ND	5.3	0.34	ug/I	
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.64	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	39%		15-11	10%	
4165-62-2	Phenol-d5	24%		15-11	10%	
118-79-6	2,4,6-Tribromophenol	88%		15-11	10%	
4165-60-0	Nitrobenzene-d5	71%		30-13	30%	
321-60-8	2-Fluorobiphenyl	73%		30-13	30%	
1718-51-0	Terphenyl-d14	76%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

 \underline{J} = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

× 6"

Report of Analysis

Page 1 of 2

Client Sample ID: MWGD-ROX-012111

Lab Sample ID:M97346-2Date Sampled:01/21/11Matrix:AQ - Ground WaterDate Received:01/22/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 E51406.D 1 01/31/11 TD n/a n/a MSE2170

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	10.4	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/I	
135-98-8	sec-ButyIbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/I	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73 - 1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/I	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

" G"

MWGD-ROX-012111 Client Sample ID:

Lab Sample ID: M97346-2 Date Sampled: 01/21/11 AQ - Ground Water Date Received: 01/22/11 Matrix: SW846 8260B Percent Solids: n/a Method:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluen e	ND	1.0	0.74	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01 - 6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND.	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	۱۱ سر ی
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	" Zu"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	112%		70-1		
2037-26-5	Toluene-D8	113%		70-1	30%	
460-00-4	4-Bromofluorobenzene	110%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

·'6'

Client Sample ID: MW/D-ROX-012111

 Lab Sample ID:
 M97346-2
 Date Sampled:
 01/21/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21219.D 1 02/02/11 PR 01/25/11 OP23942 MSS888

Run #2

Initial Volume Final Volume

Run #1 950 ml 1.0 ml

Run #2

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	11	0.81	ug/l	'uJ"
95-57-8	2-Chlorophenol	ND	5.3	0.72	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	11	0.73	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/I	
95-48-7	2-Methylphenol	ND	11	0.50	ug/l	
	3&4-Methylphenol	ND	11	0.66	ug/I	
88-75-5	2-Nitrophenol	ND	11	0.69	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86-5	Pentachlorophenol	ND	11	3.5	ug/l	
108-95-2	Phenol	ND	5.3	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	
62-53-3	Aniline	ND	11	0.48	ug/l	
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Вепzо(а) рутепе	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	11	0.61	ug/l	
218-01-9	Chrysene	ND	5.3	0.24	ug/l	
111-91-1	bis (2-Chloroethoxy) methane	ND	5.3	0.37	ug/l	
111-44-4	bis (2-Chloroethyl) ether	ND	5.3	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

Detection Limit J = Indic

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

-6"

Report of Analysis

Client Sample ID: MWGD-ROX-012111

 Lab Sample ID:
 M97346-2
 Date Sampled:
 01/21/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.33	ug/l	
84-74-2	Di-n-butyl phthalate	0.71	5.3	0.35	ug/l	J
117-84-0	Di-n-octyl phthalate	ND	5.3	0.36	ug/I	.s., 9
84-66-2	Diethyl phthalate	TO O'OND	5.3	0.64	ug/l	TB ~ M"
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/I	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.51	ug/l	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.3	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.30	ug/l	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	11	0.35	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.34	ug/l	
100-01-6	4-Nitroaniline	ND	11	0.35	ug/i	
91-20-3	Naphthalene	ND	5.3	0.34	ug/l	
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.64	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	38%		15-1	10%	
4165-62-2	Phenol-d5	24%		15-11	10%	
118-79-6	2,4,6-Tribromophenol	90%		15-13	10%	
4165-60-0	Nitrobenzene-d5	73%		30-13	30%	
321-60-8	2-Fluorobiphenyl	74%		30-13	30%	
1718-51-0	Terphenyl-d14	78%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

01/21/11

Report of Analysis

Client Sample ID: MW9-ROX-012111

Lab Sample ID: M97346-3 Date Sampled: Date Received: 01/22/11 Matrix: AQ - Ground Water Percent Solids: n/a Method: SW846 8260B

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Prep Date Prep Batch Analytical Batch File ID DF Analyzed By 01/31/11 TD MSE2170 Run #1 E51407.D 1 n√a n/a Run #2

Purge Volume 5.0 ml Run #1

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	3.7	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/I	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW9-ROX-012111

Lab Sample ID: M97346-3 Date Sampled: 01/21/11 Matrix: AQ - Ground Water Date Received: 01/22/11 Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/I	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	•
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachiorobutadiene	ND	5.0	0.56	ug/I	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/I	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67 - 8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	M
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	"Tu"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	110%		70-13		
2037-26-5	Toluene-D8	107%		70-13		
460-00-4	4-Bromofluorobenzene	106%		70-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW9-ROX-012111

Lab Sample ID: M97346-3 Date Sampled: 01/21/11 Date Received: 01/22/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Percent Solids: n/a Method:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

DF Analyzed Ву Prep Date Prep Batch Analytical Batch File ID 02/02/11 PR 01/25/11 OP23942 MSS888 Run #1 S21220.D 1 Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
05.05.0	D 1 4 11	NID	4.1	0.01		" UJ"
65-85-0	Benzoic Acid	ND	11	0.81	ug/l	~ ~
95-57-8	2-Chlorophenol	ND	5.3	0.72	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	11	0.73	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l	
95-48-7	2-Methylphenol	ND	11	0.50	ug/l	
	3&4-Methylphenol	ND	11	0.66	ug/l	
88-75-5	2-Nitrophenol	ND	11	0.69	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86 -5	Pentachlorophenol	ND	11	3.5	ug/l	
108-95-2	Phenol	ND	5.3	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/I	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	
62-53-3	Aniline	ND	11	0.48	ug/l	
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND .	5.3	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	11	0.61	ug/l	
218-01-9	Chrysene	ND	5.3	0.24	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW9-ROX-012111

 Lab Sample ID:
 M97346-3
 Date Sampled:
 01/21/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.33	ug/l	
84-74-2	Di-n-butyl phthalate	0.64	5.3	0.35	ug/l	J
117-84-0	Di-n-octyl phthalate	ND	5.3	0.36	ug/l	
84-66-2	Diethyl phthalate	1.0 0.0ND	5.3	0.64	ug/l	-⁄B' '`' ''
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.51	ug/I	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/I	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.3	0.45	ug/l	
193-39 - 5	Indeno(1,2,3-cd)pyrene	:ND	5.3	0.30	ug/l	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	11	0.35	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.34	ug/l	
100-01-6	4-Nitroaniline	ND	11	0.35	ug/l	
91-20-3	Naphthalene	ND	5.3	0.34	ug/l	
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.64	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	39%		15-1	10%	
4165-62-2	Phenol-d5	24%		15-13	10%	
118-79-6	2,4,6-Tribromophenol	82%		15-13	10%	•
4165-60-0	Nitrobenzene-d5	75%		30-13	30%	
321-60-8	2-Fluorobiphenyl	75%		30-13	30%	
1718-51-0	Terphenyl-d14	73%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B \,=\, \text{Indicates analyte found in associated method blank}$

Client Sample ID: TB-ROX-012111

Lab Sample ID: M97346-4
Matrix: AQ - Trip Blank Water
Method: SW846 8260B

Date Sampled: 01/21/11
Date Received: 01/22/11
Percent Solids: 7/0

Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 E51400.D 1 01/31/11 TD n/a n/a MSE2170

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/I	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5. 0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	
67-66-3	Chloroform	ND	1.0	0.72	ug/I	
74-87-3	Chloromethane	ND	2.0	0.81	ug/I	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND,	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/I	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

Client Sample ID: TB-ROX-012111

Lab Sample ID: M97346-4 Date Sampled: 01/21/11 Date Received: 01/22/11 AQ - Trip Blank Water Matrix: SW846 8260B Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/I	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND ·	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	1.8	2.0	0.75	ug/I	J
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/I	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63 - 6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/I	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	110%	70-130%			
2037-26-5	Toluene-D8	114%	70-130%			
460-00-4	4-Bromofluorobenzene	110%	70-130%			

ND = Not detected

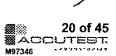
MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range


7.

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- · Certification Exceptions (IL)
- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

LAS (LOCATION) 7.100 (THY, SCAVICES	i j	CTWAR	ETAR	Box:	She				a To	Cont	S CI	IMA: NRIGT		Cu			2 ENT	_	V SER	MG VICE5		
Lab Vendor#	☐ Sept Laboral		HEL _	==	_				L.		I	\perp		.	\prod	\Box	3 4	٥	٥	8 1	L. L.		*
RS CORPORATION										RAN		NUE -	HART	ORD		_[_						
2017 201 HIGHLANIOS PLAZA DRIVE WEST - SUITE 300, 8 SOUTHOUS TRANSPORTANT	IT, LOUIS, MO E	1110						30 03	N. Park	41	- Cun	-6-			- CT	•			1-4				Rozana Quarterly /
TENDY PENMINOTON								E-41	[Z~F	1-4/ 1-4							_				<u>. i</u>	AD USE O	21547593.00003
4743-4168 or 341-452-8929 314-429-0462	- 1- 1- C u								Has use ones.														
CALANDARO (14 DAY) S DAYS S AND	∰3 D/e2	□ню	Æ		CTARE SWHO	PERSONAL PERSONAL			-							REQ	UESTE	O AN	ALYSI	15			
LA - RANGE REPORT HOWART			_			_		\Box		П	Τ		ГΤ	T	ТТ	Т	Т	\Box	Т	Т			FIELD NOTES:
SWOWERS DIEVEL STEVEL ? DIEVEL)		OTHER LINES				=		ļ												1		Ţ	EMPERATURE ON RECORT
EPECIAI, PASTRUCTIONS OR NOTES:	Contact (f)		Comeré		_			H					$ \ $		$ \cdot $								
Brech, Maj Rucilons On Hojes:		A SHELL	CONTROL MINOU	CT PAREA RESENTED	PIUES NATE AND	ens.										- [}	
		F11002	מונט וכ מונט וכ	ED KATERI 4				[_	S]										
OUCTC 8179X12/2016-14	SAMPLING		- 1200	MESON	/ATM	-т	_	82808	SVOC 8270C											1			Container PED Readings or Laboratory Heres
Field Sample Identification	ATE THE	***		1	T		0. GF	Ϋ́	Š					1			1		- (, FT		
	i laik Joi k	NUN	3	NG3 PCS0	2	on en		H	3	\vdash	+	+-	┰		╁	╅	+-	╁		+	(PP	m)	
2 MINGD - ROX - OIALIN		. 11/	3	_	2	-+	_	7	-	\dashv	+	+-	┝╾┼	-	┿	-†-	- -	╆┪	+	+			
	bill 13	17	3	+	2	十	_	ü	7	\dashv	+	十	\vdash	+	╁╌┟	\top	-	1-1	十	 		-	
7 I6 ROX - 012111	11	17	2	-	2	_	_	J	٠.	-	T	†-	\Box	- -		_	\top	М	\top	†~	<u></u>	_	
	-			7	1=1			_			7		П		17		_	T !		_			
			П	$\neg \neg$				П	_	\neg	7	1	П	T	\top	7	\top	T	T	T			
· ·	· ·		\Box	$\neg \vdash$	T	十		H	٦	\top	7	\top	\vdash	7	†=†	\dashv	_	H	十	十	\vdash		
:			1-1	+	1-1	-+	_	H	Н	-	+	+-	┝	+	╁	+	十	⇈	╅	┿	Η-	\dashv	
·			H	+-	┼╌┼	-+	-	⊦			+	- -	┝┼	+	╁┼	-+-	+	╁┼	+	┿	 ,	<u>ا</u> اعو	100 1/5
			\vdash	┰	┝┤	+	-1	H	\vdash	\dashv	+	-∱~	Н	╬	┥╾┼	+	+	╁┤	+	+-		٠, اعتر	5G2,16F-
- i - i - i - i - i - i - i - i - i - i		يكار جا معينسار	-		L			Ц		Ш	Д	上	$\Box \bot$		Ш			Ner-		丄			
minister						,	_											1	ı)a	ilii			1430
Canal Company		Property (b)			71	7	フ	_				_			_	_		Date:		- -	-	Town	
FED_			By	1/1	ds													1	- 2	2-	<u>//</u>	_	1020
- Participant		Printered by the	-															-				-	
····							_																0.9"

M97346: Chain of Custody Page 1 of 2

Accutest Laboratories Sample Receipt Summary

(A 2) ((3) A Y :	:4:46							
Accutest Job Number: MS	97346	CII	ient: URS		Immediate Client Serv	No_		
Date / Time Received: 1/2	22/2011		Delive	ry Method:	Client Service Action	on Required	at Login:	No
Project:			No. Co	olers:	1 Airbiii #'s:			
1. Custody Seals Present 2. Custody Seals Intact Cooler Temperature 1. Temp criteria achieved; 2. Cooler temp verification;		4. Smp	OC Present I Dales/Time OK	Y or N	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT;	∑	or N	
Cooler media: Quality Control Preservati		(bag)	N/A		All containers accounted for: Condition of sample:	☑ In	rbact	
1. Trip Blank present / cooler. 2. Trip Blank listed on COC; 3. Samples preserved proper 4. VOCs headspace free;		0	N N N N N N N N N N N N N N N N N N N		Sample Integrity - Instructions 1. Analysis requested is clear. 2. Bottles received for unspecified tests 3. Sufficient volume recyd for analysis; 4. Compositing instructions clear:		D D	
Comments					5. Filtering Instructions clear:			Ø
Accutes Laboratories V:508.461.6200					nter West, Bldg One 181,7753			boreugh, MA //acculesi.com

M97346: Chain of Custody

Internal Sample Tracking Chronicle

Shell Oil

M97346 Job No:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
M97346-1 MWGC-R0	Collected: 21-JAN-11 0X-012111	10:10 By:	Recei	ved: 22-JAN-	11 By	r: BC
M97346-1 M97346-1	SW846 8260B SW846 8270C	31-JAN-11 17:09 02-FEB-11 15:09	TD PR	25-JAN-11	вј	V8260STD AB8270PPL
M97346-2 MWGD-R0	Collected: 21-JAN=11 0X-012111	11:20 By:	Recei	ved: 22-JAN-	11 By	r: BC
	SW846 8260B SW846 8270C	31-JAN-11 17:38 02-FEB-11 15:37	TD PR	25-JAN-11	ВЈ	V8260STD AB8270PPL
M97346-3 MW9-ROX	Collected: 21-JAN-11 -012111	13:40 By:	Recei	ved: 22-JAN-	11 By). BC
	SW846 8260B SW846 8270C	31-JAN-11 18:07 02-FEB-11 16:04	TD PR	25-JAN-11	вј	V8260STD AB8270PPL
M97346-4 TB-ROX-0	Collected: 21-JAN-11 [2111	00:00 By:	Recei	ved: 22-JAN-	11 By	r: BC
M97346-4	SW846 8260B	31-JAN-11 14:50	TD			V8260STD

Accutest Internal Chain of Custody Job Number: M97346

01/22/11

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received:

Sample.Bottle	Transfer	Transfer		
Number	FROM	TO	Date/Time	Reason
M97346-1.3	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97346-1.3	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97346-1.3	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97346-1.3	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97346-1.5	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97346-1.5	Michael Widuta		01/25/11 14:02	Depleted
M97346-2.2	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97346-2.2	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97346-2.2	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97346-2.2	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97346-2.5	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97346-2.5	Michael Widuta		01/25/11 14:02	Depleted
M97346-3.3	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97346-3.3	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97346-3.3	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97346-3.3	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97346-3.4	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97346-3.4	Michael Widuta		01/25/11 14:02	
M97346-4.2	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97346-4.2	Tamis Dudo	GCMSE		Load on Instrument
M97346-4.2	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97346-4.2	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage

Page 1 of 1

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- · Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- · Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary Job Number: M97346

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2170-MB	E51394.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/i
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	.ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND ·	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l
	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Method Blank Summary Job Number: M97346

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2170-MB	E51394.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/I
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/I
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l
100-42-5	Styrene	ND	5.0	0.68	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l
108-88-3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/I
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND	1.0	0.56	ug/I
	-				_
CAS No.	Surrogate Recoveries		Limit	s	
1868-53-7	Dibromofluoromethane	112%	70-13		
2037-26-5	Toluene-D8	116%	70-13		
460-00-4	4-Bromofluorobenzene	110%	70-13	0%	

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2170-BS	E51391.D	I	01/31/11	TD	n/a	n/a	MSE2170
MSE2170-BSD	E51392.D	I	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67.64.1	•	CO	CO T	125		115	0	70 120/25
67-64-1	Асетопе	50 50	62.5	125	57.6	115	8 2	70-130/25
71-43-2	Benzene	50 50	54.7	109 105	55.9	112	2 4	70-130/25
108-86-1	Bromobenzene	50	52.4		54.8	110		70-130/25
74-97-5	Bromochloromethane	50	50.5	101	51.3	103	2	70-130/25
75-27-4	Bromodichloromethane	50 50	53.3	107	53.7	107	1	70-130/25
75-25-2	Bromoform	50 50	46.8	94	46.5	93	1	70-130/25
74-83-9	Bromomethane	50	49.1	98	48.8	98	1	70-130/25
78-93-3	2-Butanone (MEK)	50	51.3	103	49.4	99	4	70-130/25
104-51-8	n-Butylbenzene	50	58.3	117	60.0	120	3	70-130/25
135-98-8	sec-Butylbenzene	50	56.6	113	57.9	116	2	70-130/25
98-06-6	tert-Butylbenzene	50	57.9	116	59.8	120	3	70-130/25
75-15-0	Carbon disulfide	50	57.1	114	58.5	117	2	70-130/25
56-23-5	Carbon tetrachloride	50	55.6	111	56.5	113	2	70-130/25
108-90-7	Chlorobenzene	50	52.2	104	54.5	109	4	70-130/25
75-00-3	Chloroethane	50	51.0	102	52.5	105	3	70-130/25
67-66-3	Chloroform	50	52.9	106	54.3	109	3	70-130/25
74-87-3	Chloromethane	50	49.8	100	51.4	103	3	70-130/25
95-49-8	o-Chlorotoluene	50	55.5	111	57.8	116	4	70-130/25
106-43-4	p-Chlorotoluene	50	56.2	112	57.6	115	2	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	42.8	86	42.5	85	1	70-130/25
124-48-1	Dibromochloromethane	50	49.2	98	50.9	102	3	70-130/25
95-50-1	1,2-Dichlorobenzene	50	51.7	103	53.6	107	4	70-130/25
541-73-1	1,3-Dichlorobenzene	50	50.5	101	52.2	104	3	70-130/25
106-46-7	1,4-Dichlorobenzene	50	55.3	111	56.6	113	2	70-130/25
75-71-8	Dichlorodifluoromethane	50	64.5	129	65.5	131* a	2	70-130/25
75-34-3	1,1-Dichloroethane	50	53.2	106	55.3	111	4	70-130/25
107-06-2	1,2-Dichloroethane	50	49.5	99	50.4	101	2	70-130/25
75-35-4	1,1-Dichloroethene	50	52.7	105	54.0	108	2	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	47.5	95	47.9	96	1	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	50.5	101	52.3	105	4	70-130/25
78-87-5	1,2-Dichloropropane	50	51.2	102	51.6	103	1	70-130/25
142-28-9	1,3-Dichloropropane	50	47.3	95	47.6	95	1	70-130/25
594-20-7	2,2-Dichloropropane	50	58.3	117	59.6	119	2	70-130/25
563-58-6	1,1-Dichloropropene	50	53.8	108	55.3	111	3	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	53.8	108	55.2	110	3	70-130/25
	trans-1,3-Dichloropropene	50	55.5	111	58.2	116	5	70-130/25
	• •							

Page 2 of 2

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: M97346

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

1.022110	Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	MSE2170-BS	E51391.D	1	01/31/11	TD	n/a	n/a	MSE2170
	MSE2170-BSD	E51392.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	50	53.5	107	55.3	111	3	70-130/25
87-68-3	Hexachlorobutadiene	50	60.8	122	63.7	127	5	70-130/25
98-82-8	Isopropylbenzene	50	62.9	126	65.7	131* a	4	70-130/25
99-87-6	p-Isopropyltoluene	50	58.3	117	59.7	119	2	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	41.1	82	42.0	84	2	70-130/25
74-95-3	Methylene bromide	50	50.1	100	50.6	101	1	70-130/25
75-09-2	Methylene chloride	50	50.4	101	51.9	104	3	70-130/25
103-65-1	n-Propylbenzene	50	54.7	109	56.5	113	3	70-130/25
100-42-5	Styrene	50	49.1	98	50.3	101	2	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	53.5	107	53.9	108	1	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	47.2	94	48.5	97	3	70-130/25
127-18-4	Tetrachloroethene	50	50.2	100	51.2	102	2	70-130/25
108-88-3	Toluene	50	50.6	101	51.7	103	2	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	43.3	87	46.2	92	6	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	49.1	98	51.7	103	5	70-130/25
71-55-6	1,1,1-Trichloroethane	50	52.8	106	53.6	107	2	70-130/25
79-00-5	1,1,2-Trichloroethane	50	48.9	98	50.9	102	4	70-130/25
79-01-6	Trichloroethene	50	54.3	109	55.2	110	2	70-130/25
75-69-4	Trichlorofluoromethane	50	55.2	110	55.6	111	1	70-130/25
96-18-4	1,2,3-Trichloropropane	50	44.3	89	46.2	92	4	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	54.6	109	56.6	113	4	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	55.0	110	56.4	113	3	70-130/25
108-05-4	Vinyl Acetate	50	32.6	65* a	34.4	69* a	5	70-130/25
75-01-4	Vinyl chloride	50	51.2	102	53.1	106	4	70-130/25
	m,p-Xylene	100	107	107	111	111	4	70-130/25
95-47-6	o-Xylene	50	48.8	98	49.4	99	1	70-130/25
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7	Dibromofluoromethane	109%	111	1%	70-1309	6		
2037-26-5	Toluene-D8	115%	116	6%	70-1309			
460-00-4	4-Bromofluorobenzene	112%	114		70-1309			

⁽a) Outside control limits. Blank Spike meets program technical requirements.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97346 Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
M97347-3MS	E51402.D	5	01/31/11	TD	n/a	n/a	MSE2170
M97347-3MSD	E51403.D	5	01/31/11	TD	n/a	n/a	MSE2170
M97347-3	E51401.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

CAS No.	Compound	M97347 ug/l	/-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		250	229	92	232	93	1	70-130/30
71-43-2	Benzene	8.2		250	282	110	288	112	2	70-130/30
108-86-1	Bromobenzene	ND		250	261	104	274	110	5	70-130/30
74-97-5	Bromochloromethane	ND		250	254	102	260	104	2	70-130/30
75-27-4	Bromodichloromethane	ND		250	243	97	252	101	4	70-130/30
75-25-2	Bromoform	ND		250	178	71	179	72	1	70-130/30
74-83-9	Bromomethane	ND		250	260	104	263	105	1	70-130/30
78-93-3	2-Butanone (MEK)	ND		250	244	98	200	80	20	70-130/30
104-51-8	n-Butylbenzene	ND		250	290	116	308	123	6	70-130/30
135-98-8	sec-Butylbenzene	ND		250	283	113	300	120	6	70-130/30
98-06-6	tert-Butylbenzene	ND		250	282	113	301	120	7	70-130/30
75-15-0	Carbon disulfide	ND		250	236	94	240	96	2	70-130/30
56-23-5	Carbon tetrachloride	ND		250	280	112	289	116	3	70-130/30
108-90-7	Chlorobenzene	ND		250	269	108	273	109	1	70-130/30
75-00-3	Chloroethane	ND		250	267	107	276	110	3	70-130/30
67-66-3	Chloroform	ND		250	274	110	276	110	1	70-130/30
74-87-3	Chloromethane	ND		250	278	111	284	114	2	70-130/30
95-49-8	o-Chlorotoluene	ND		250	275	110	291	116	6	70-130/30
106-43-4	p-Chlorotoluene	ND		250	279	112	293	117	5	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		250	195	78	204	82	5	70-130/30
124-48-1	Dibromochloromethane	ND		250	211	84	217	87	3	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		250	255	102	265	106	4	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		250	252	101	258	103	2	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		250	273	109	280	112	3	70-130/30
75-71-8	Dichlorodifluoromethane	ND		250	348	139* a	350	140* a	1	70-130/30
75-34-3	1,1-Dichloroethane	ND		250	278	111	287	115	3	70-130/30
107-06-2	1,2-Dichloroethane	ND		250	237	95	244	98	3	70-130/30
75-35-4	1,1-Dichloroethene	ND		250	273	109	282	113	3	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		250	240	96	248	99	3	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		250	260	104	268	107	3	70-130/30
78-87- 5	1,2-Dichloropropane	ND		250	254	102	266	106	5	70-130/30
142-28-9	1,3-Dichloropropane	ND		250	230	92	242	97	5	70-130/30
594-20-7	2,2-Dichloropropane	ND		250	303	121	305	122	1	70-130/30
563-58-6	1,1-Dichloropropene	ND		250	277	111	282	113	2	70-130/30
	cis-1,3-Dichloropropene	ND		250	244	98	252	101	3	70-130/30
10061-02-6	trans-1,3-Dichloropropene	ND		250	247	99	256	102	4	70-130/30

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97346

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID DF M97347-3MS E51402.D 5 M97347-3MSD E51403.D 5 M97347-3 E51401.D 1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	01/31/11	TD	n/a	n/a	MSE2170
	01/31/11	TD	n/a	n/a	MSE2170
	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	M97347- ug/l	3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	ND		250	270	108	282	113	4	70-130/30
87-68-3	Hexachlorobutadiene	ND		250	311	124	334	134* a	7	70-130/30
98-82-8	Isopropylbenzene	ND		250	315	126	336	134* a	6	70-130/30
99-87-6	p-Isopropyltoluene	ND		250	290	116	307	123	6	70-130/30
1634-04-4	Methyl Tert Butyl Ether	1.6		250	200	79	209	83	4	70-130/30
74-95-3	Methylene bromide	ND		250	250	100	249	100	0	70-130/30
75-09-2	Methylene chloride	ND		250	256	102	265	106	3	70-130/30
103-65-1	n-Propylbenzene	ND		250	275	110	290	116	5	70-130/30
100-42-5	Styrene	ND		250	209	84	215	86	3	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND		250	269	108	277	111	3	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		250	232	93	236	94	2	70-130/30
127-18-4	Tetrachloroethene	ND		250	256	102	264	106	3	70-130/30
108-88-3	Toluene	ND		250	251	100	254	102	1	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		250	216	86	232	93	7	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND		250	238	95	260	104	9	70-130/30
71-55-6	1,1,1-Trichloroethane	ND		250	279	112	282	113	1	70-130/30
79-00-5	1,1,2-Trichloroethane	ND		250	248	99	243	97	2	70-130/30
79-01-6	Trichloroethene	ND		250	270	108	275	110	2	70-130/30
75-69-4	Trichlorofluoromethane	ND		250	293	117	304	122	4	70-130/30
96-18-4	1,2,3-Trichloropropane	ND		250	204	82	218	87	7	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND		250	254	102	272	109	7	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND		250	261	104	279	112	7	70-130/30
108-05-4	Vinyl Acetate	ND		250	149	60* a	160	64* a	7	70-130/30
75-01-4	Vinyl chloride	ND		250	276	110	284	114	3	70-130/30
	m,p-Xylene	ND		500	538	108	556	111	3	70-130/30
95- 47- 6	o-Xylene	ND		250	243	97	250	100	3	70-130/30
CAS No.	Surrogate Recoveries	MS		MSD	M	97347-3	Limits			
1868-53-7	Dibromofluoromethane	108%		110%	11	4%	70-1309	6		
2037-26-5	Toluene-D8	112%		113%	11	8%	70-1309	6		
460-00-4	4-Bromofluorobenzene	108%		115%	11	2%	70-1309	6		

⁽a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Volatile Internal Standard Area Summary

M97346 Job Number:

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Injection Date: 01/31/11 Check Std: MSE2170-CC2152 Lab File ID: E51390.D Injection Time: 10:10

Instrument ID: GCMSE Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	258610	9.10	421768	9.98	186730	13.24	181279	15.80	45421	6.61
Upper Limit ^a	517220	9.60	843536	10.48	373460	13.74		16.30	90842	7.11
Lower Limit ^b	129305	8.60	210884	9.48	93365	12.74	90640	15.30	22711	6.11
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSE2170-BS	260644	9.10	422955	9.97	189126	13.24	176962	15.80	43862	6.61
MSE2170-BSD	255699	9.10	415613	9.97	185442	13.24	172080	15.80	44740	6.60
MSE2170-MB	242359	9.09	389164	9.97	166698	13.24	158217	15.80	39770	6.61
ZZZZZZ	236819	9.10	380812	9.97	162514	13.25	153840	15.80	37004	6.61
ZZZZZZ	250666	9.10	399919	9.98	168270	13.24	160247	15.81	40885	6.61
ZZZZZZ	246889	9.10	397174	9.98	165727	13.24	161053	15.80	42108	6.60
ZZZZZZ	236949	9.10	380012	9.98	162471	13.24	151386	15.81	33128	6.61
ZZZZZZ	238982	9.10	383811	9.97	163262	13.24	156243	15.80	40223	6.61
M97346-4	237548	9.10	376532	9.97	161884	13.25	151687	15.80	35730	6.62
M97347-3	233433	9.09	374476	9.98	157549	13.24	149198	15.80	37233	6.60
M97347-3MS	242688	9.10	398125	9.97	176314	13.24	170130	15.80	37199	6.61
M97347-3MSD	244229	9.09	400072	9.98	174295	13.24	163410	15.80	36875	6.60
ZZZZZZ	237201	9.09	378277	9.97	157690	13.24	153787	15.80	36247	6.60
M97346-1	241972	9.10	382213	9.98	164786	13.24	151740	15.80	36929	6.61
M97346-2	233061	9.10	376272	9.97	158030	13.24	147882	15.80	35185	6.61
M97346-3	237457	9.10	381939	9.97	162081	13.24	154036	15.80	34352	6.60
ZZZZZZ	225056	9.09	367319	9.97	153964	13.24	145320	15.80	34019	6.61
ZZZZZZ	220505	9.09	361291	9.98	153410	13.24	142387	15.80	35261	6.60
ZZZZZZ	222436	9.10	354027	9.97	150787	13.24	146005	15.80	31157	6.61
ZZZZZZ	223741	9.09	352296	9.98	156478	13.24	144588	15.80	36835	6.60
ZZZZZZ	220666	9.10	355602	9.98	151629	13.24	144221	15.80	35853	6.61
ZZZZZZ	223768	9.09	361745	9.97	153859	13.24	143640	15.80	32181	6.60
ZZZZZZ	215077	9.10	356557	9.97	153432	13.24	142576	15.80	32321	6.60

IS 1 = Pentafluorobenzene = 1,4-Difluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
M97346-1	E51405.D	106.0	111.0	108.0
M97346-2	E51406.D	112.0	113.0	110.0
M97346-3	E51407.D	110.0	107.0	106.0
M97346-4	E51400.D	110.0	114.0	110.0
M97347-3MS	E51402.D	108.0	112.0	108.0
M97347-3MSD	E51403.D	110.0	113.0	115.0
MSE2170-BS	E51391.D	109.0	115.0	112.0
MSE2170-BSD	E51392.D	111.0	116.0	114.0
MSE2170-MB	E51394.D	112.0	116.0	110.0

Surrogate Recovery Compounds Limits

S1 = Dibromofluoromethane70-130% S2 = Toluene-D870-130% S3 = 4-Bromofluorobenzene 70-130%

GC/MS Semi-volatiles

...

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- · Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-MB	I70221.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/I
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/I
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/I
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/l
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l
108-95-2	Phenol	ND	5.0	2.1	ug/I
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l

Method Blank Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-MB	I70221.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units	Q
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	1.8	5.0	0.61	ug/l	J
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l	•
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/I	
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND.	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/I	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries		Limit	S		
267 12 A	2-Fluorophenol	43%	15 116	no/		
367-12-4 4165-62-2	Phenol-d5	45% 26%	15-110 15-110			
118-79-6	2,4,6-Tribromophenol	65%	15-116			
4165-60-0	Nitrobenzene-d5	74%	30-13			
321-60-8	2-Fluorobiphenyl	73%	30-130			
1718-51-0	Terphenyl-d14	82%	30-130			
1110-31-0	rei buciiài-ara	04/0	20-120	J 70		

Blank Spike Summary Job Number: M97346

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-BS	170222.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
65-85-0	Benzoic Acid	100	18.3	18* a	30-130
95-57-8	2-Chlorophenol	100	78.4	78	30-130
59-50-7	4-Chloro-3-methyl phenol	100	84.5	85	30-130
120-83-2	2,4-Dichlorophenol	100	85.8	86	30-130
105-67-9	2,4-Dimethylphenol	100	76.4	76	30-130
51-28-5	2,4-Dinitrophenol	100	86.5	87	30-130
534-52-1	4,6-Dinitro-o-cresol	100	85.1	85	30-130
95-48-7	2-Methylphenol	100	72.7	73	30-130
	3&4-Methylphenol	200	133	67	30-130
88-75-5	2-Nitrophenol	100	85.5	86	30-130
100-02-7	4-Nitrophenol	100	46.5	47	30-130
87-86-5	Pentachlorophenol	100	78.1	78	30-130
108-95-2	Phenol	100	34.1	34	30-130
95-95-4	2,4,5-Trichlorophenol	100	85.1	85	30-130
88-06-2	2,4,6-Trichlorophenol	100	85.2	85	30-130
83-32-9	Acenaphthene	50	43.2	86	40-140
208-96-8	Acenaphthylene	50	35.3	71	40-140
62-53-3	Aniline	50	32.3	65	40-140
120-12-7	Anthracene	50	41.9	84	40-140
56-55-3	Benzo(a)anthracene	50	47.4	95	40-140
50-32-8	Вепzо(а)ругепе	50	39.3	79	40-140
205-99-2	Benzo(b)fluoranthene	50	44.9	90	40-140
191-24-2	Benzo(g,h,i)perylene	50	35.4	71	40-140
207-08-9	Benzo(k)fluoranthene	50	45.6	91	40-140
101-55-3	4-Bromophenyl phenyl ether	50	42.3	85	40-140
85-68-7	Butyl benzyl phthalate	50	46.2	92	40-140
91-58-7	2-Chloronaphthalene	50	42.1	84	40-140
106-47-8	4-Chloroaniline	50	34.8	70	40-140
218-01-9	Chrysene	50	50.1	100	40-140
111-91-1	bis(2-Chloroethoxy)methane	50	41.7	83	40-140
111-44-4	bis(2-Chloroethyl)ether	50	43.3	87	40-140
108-60- 1	bis(2-Chloroisopropyl)ether	50	45.3	91	40-140
7005-72-3	4-Chlorophenyl phenyl ether	50	43.9	88	40-140
121-14-2	2,4-Dinitrotoluene	50	44.9	90	40-140
606-20-2	2,6-Dinitrotoluene	50	43.6	87	40-140
91-94-1	3,3'-Dichlorobenzidine	50	38.2	76	40-140

Method: SW846 8270C

Blank Spike Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-BS	170222.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
53-70-3	Dibenzo(a,h)anthracene	50	37.7	75	40-140
132-64-9	Dibenzo(a,n)anun acene Dibenzofuran	50 50	41.9	84	40-140
84-74-2	Di-n-butyl phthalate	50 50	45.7	91	40-140
117-84-0	Di-n-octyl phthalate	50 50	51.7	103	40-140
84-66-2	Diethyl phthalate	50 50	46.7	93	40-140
131-11-3	Dimethyl phthalate	50 50	44.7	89	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	50 50	48.1	96	40-140
206-44-0	Fluoranthene	50 50	46.0	92	40-140
86-73-7	Fluorene	50 50	44.3	89	40-140
118-74-1	Hexachlorobenzene	50 50	42.6	85	40-140
77-47-4	Hexachlorocyclopentadiene	50 50	30.2	60	40-140
67-72-1	Hexachloroethane	50	38.6	77	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	50 50	37.7	75	40-140
78-59-1	Isophorone	50 50	41.5	83	40-140
91-57-6	2-Methylnaphthalene	50 50	39.4	79	40-140
88-74-4	2-Nitroaniline	50 50	44.6	89	40-140
99-09-2	3-Nitroaniline	50 50	34.9	70	40-140
100-01-6	4-Nitroaniline	50 50	42.0	84	40-140
91-20-3	Naphthalene	50 50	42.4	85	40-140
98-95-3	Nitrobenzene	50 50	41.4	83	40-140
		50 50	46.3	93	40-140
621-64-7 86-30-6	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	50 50	40.3 43.0	93 86	40-140
85-01-8	Phenanthrene	50 50	43.1	86	40-140
129-00-0		50 50	43.1	88	40-140
110-86-1	Pyrene Pyridine	50 50	26.1	52	40-140
110-00-1	rynume	30	20.1	JZ	40-140
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
367-12-4	2-Fluorophenol	50%	15-	110%	
4165-62-2	Phenol-d5	32%	15-	110%	
118-79-6	2,4,6-Tribromophenol	78%	15-	110%	
4165-60-0	Nitrobenzene-d5	83%	30-	130%	
321-60-8	2-Fluorobiphenyl	81%		130%	
1718-51-0	Terphenyl-d14	85%	30-	130%	

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date 01/25/11	Prep Batch	Analytical Batch
OP23942-BS	I70222.D	1	02/02/11	AA		OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

M97346-1, M97346-2, M97346-3

(a) Outside control limits. Blank Spike meets program technical requirements.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

The QC reported here applies to the following samples:

Method: SW846 8270C

		M97378	_	Spike	MS	MS	MSD	MSD	222	Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
65-85-0	Benzoic Acid	ND		100	20.3	20* a	22.4	22* a	10	30-130/20
95-57-8	2-Chlorophenol	ND		100	79.9	80	76.7	77	4	30-130/20
59-50-7	4-Chloro-3-methyl phenol	ND		100	88.6	89	84.6	85	5	30-130/20
120-83-2	2,4-Dichlorophenol	ND		100	87.5	88	84.5	85	3	30-130/20
105-67-9	2,4-Dimethylphenol	ND		100	69.4	69	68.8	69	1	30-130/20
51-28-5	2,4-Dinitrophenol	ND		100	88.8	89	89.1	89	0	30-130/20
534-52-1	4,6-Dinitro-o-cresol	ND		100	87.3	87	88.7	89	2	30-130/20
95-48-7	2-Methylphenol	ND		100	71.7	72	70.4	70	2	30-130/20
	3&4-Methylphenol	ND		200	134	67	129	65	4	30-130/20
88-75-5	2-Nitrophenol	ND		100	87.8	88	85.1	85	3	30-130/20
100-02-7	4-Nitrophenol	ND		100	45.4	45	45.2	45	0	30-130/20
87-86-5	Pentachlorophenol	ND		100	83.9	84	80.8	81	4	30-130/20
108-95-2	Phenol	ND		100	34.0	34	33.4	33	2	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND		100	87.0	87	82.6	83	5	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND		100	87.2	87	84.2	84	4	30-130/20
83-32-9	Acenaphthene	ND		50	43.5	87	41.1	82	6 ·	40-140/20
208-96-8	Acenaphthylene	ND		50	36.2	72	34.9	70	4	40-140/20
62-53-3	Aniline	ND		50	24.7	49	27.8	56	12	40-140/20
120-12-7	Anthracene	ND		50	41.6	83	40.6	81	2	40-140/20
56-55-3	Benzo(a)anthracene	ND		50	48.5	97	46.8	94	4	40-140/20
50-32-8	Benzo(a)pyrene	ND		50	40.5	81	39.0	78	4	40-140/20
205-99-2	Benzo(b)fluoranthene	ND		50	46.3	93	43.9	88	5	40-140/20
191-24-2	Benzo(g,h,i)perylene	ND		50	35.8	72	33.5	67	7	40-140/20
207-08-9	Benzo(k)fluoranthene	ND		50	47.3	95	47.0	94	1	40-140/20
101-55-3	4-Bromophenyl phenyl ether	ND		50	43.4	87	41.8	84	4	40-140/20
85-68-7	Butyl benzyl phthalate	ND		50	46.9	94	45.6	91	3	40-140/20
91-58-7	2-Chloronaphthalene	ND		50	43.0	86	41.3	83	4	40-140/20
106-47-8	4-Chloroaniline	ND		50	18.3	37* a	21.2	42	15	40-140/20
218-01-9	Chrysene	ND		50	51.4	103	48.5	97	6	40-140/20
111-91-1	bis(2-Chloroethoxy)methane	ND		50	43.1	86	41.6	83	4	40-140/20
111-44-4	bis(2-Chloroethyl)ether	ND		50	44.8	90	41.7	83	7	40-140/20
108-60-1	bis(2-Chloroisopropyl)ether	ND		50	46.0	92	41.6	83	10	40-140/20
7005-72-3	4-Chlorophenyl phenyl ether	ND		50	43.7	87	41.1	82	6	40-140/20
121-14-2	2,4-Dinitrotoluene	ND		50	44.9	90	43.9	88	2	40-140/20
606-20-2	2,6-Dinitrotoluene	ND		50	44.3	89	43.3	87	2	40-140/20
91-94-1	3,3'-Dichlorobenzidine	ND		50	29.1	58	28.9	58	1	40-140/20

Page 2 of 3

Method: SW846 8270C

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97346

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

OP23942-MS 170223.D 1 02/02/11 AA 01/25/11 OP23942 MSI2472 OP23942-MSD 170224.D 1 02/02/11 AA 01/25/11 OP23942 MSI2472 M97378-1 170225.D 1 02/02/11 AA 01/25/11 OP23942 MSI2472	OP23942-MSD	D I70224.D 1	02/02/11 02/02/11	AA	01/25/11	OP23942	MSI2472
---	-------------	--------------	----------------------	----	----------	---------	---------

The QC reported here applies to the following samples:

		M97378-1		Spike	MS MS		MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
									_	10 110/00
53-70-3	Dibenzo(a,h)anthracene	ND		50	38.2	76	36.1	72	6	40-140/20
132-64-9	Dibenzofuran	ND		50	42.2	84	40.3	81	5	40-140/20
84-74-2	Di-n-butyl phthalate	ND		50	45.8	92	44.8	90	.2	40-140/20
117-84-0	Di-n-octyl phthalate	ND		50	53.7	107	52.7	105	2	40-140/20
84-66-2	Diethyl phthalate	1.6		50	46.8	90	45.2	87	3	40-140/20
131-11-3	Dimethyl phthalate	ND		50	44.7	89	43.7	87	2 .	40-140/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		50	49.1	98	47.7	95	3	40-140/20
206-44-0	Fluoranthene	ND		50	46.1	92	44.1	88	4	40-140/20
86-73 - 7	Fluorene	ND		50	44.4	89	42.1	84	5	40-140/20
118-74-1	Hexachlorobenzene	ND		50	43.7	87	41.6	83	5	40-140/20
77-47-4	Hexachlorocyclopentadiene	ND		50	31.4	63	30.8	62	2	40-140/20
67-72-1	Hexachloroethane	ND		50	39.5	79	37.4	75	5	40-140/20
193-39-5	Indeno(1,2,3-cd)pyrene	ND		50	38.4	77	36.6	73	5	40-140/20
78-59-1	Isophorone	ND		50	43.0	86	41.3	83	4	40-140/20
91-57-6	2-Methylnaphthalene	ND		50	41.0	82	38.3	77	7	40-140/20
88-74-4	2-Nitroaniline	ND		50	45.3	91	44.0	88	3	40-140/20
99-09-2	3-Nitroaniline	ND		50	21.9	44	24.6	49	12	40-140/20
100-01-6	4-Nitroaniline	ND		50	38.6	77	38.8	78	1	40-140/20
91-20-3	Naphthalene	ND		50	43.8	88	41.9	84	4	40-140/20
98-95-3	Nitrobenzene	ND		50	42.0	84	40.8	82	3	40-140/20
621-64-7	N-Nitroso-di-n-propylamine	ND		50	48.1	96	44.5	89 ·	8	40-140/20
86-30-6	N-Nitrosodiphenylamine	ND		50	44.3	89	42.5	85	4	40-140/20
85-01-8	Phenanthrene	ND		50	43.6	87	42.4	85	3	40-140/20
129-00-0	Pyrene	ND		50	44.4	89	43.0	86	3	40-140/20
110-86-1	Pyridine	ND		50	24.9	50	28.2	56	12	40-140/20
	,									
CAS No.	Surrogate Recoveries	MS		MSD	M9	7378-1	Limits			
367-12-4	2-Fluorophenol	49%		49%	359		15-1109			
4165-62-2	Phenol-d5	31%		31%	219		15-1109			
118-79-6	2,4,6-Tribromophenol 78%			76%	599		15-1109			
4165-60-0	Nitrobenzene-d5	84%		80%	649		30-130%			
321-60-8	2-Fluorobiphenyl 82			78 %	659		30-1309			
1718-51-0	Terphenyl-d14	86%		85%	739	%	30-1309	%		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97346

Page 3 of 3

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

	Sample OP23942-MS OP23942-MSD M97378-1	File ID I70223.D I70224.D I70225.D	DF 1 1	Analyzed 02/02/11 02/02/11 02/02/11	By AA AA AA	Prep Date 01/25/11 01/25/11 01/25/11	Prep Batch OP23942 OP23942 OP23942	Analytical Batch MSI2472 MSI2472 MSI2472
--	---	---	---------------------	--	----------------------	---	---	---

The QC reported here applies to the following samples:

Method: SW846 8270C

M97346-1, M97346-2, M97346-3

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Semivolatile Internal Standard Area Summary

Job Number: M97346

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSI2472-CC2467 Injection Date: 02/02/11 Lab File ID: 170217.D Injection Time: 12:31

Instrument ID: GCMSI Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std	292933	5.83	1097131	7.18	550055	9.67	902740	12.22	810859	17.20	707204	19.75
Upper Limit a	585866	6.33	2194262	7.68	1100110	10.17	1805480	12.72	1621718	17.70	1414408	20.25
Lower Limit b	146467	5.33	548566	6.68	275028	9.17	451370	11.72	405430	16.70	353602	19.25
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	283222	5.83	1084662	7.17	544971	9.67	894222	12.21	748949	17.19	641120	19.74
ZZZZZZ	304905	5.83	1164586	7.17	591102	9.67	965005	12.22	818052	17.20	700266	19.74
OP23942-MB	273706	5.83	1040413	7.17	527168	9.67	860523	12.22	743118	17.19	658728	19.74
OP23942-BS	252157	5.83	957662	7.17	473238	9.67	775808	12.22	689687	17.20	627759	19.74
OP23942-MS	260122	5.83	989310	7.17	500497	9.67	814896	12.22	722322	17.20	642526	19.74
OP23942-MSD	299395	5.83	1118022	7.17	551394	9.67	881335	12.22	765990	17.20	661545	19.74
M97378-1	262832	5.83	990445	7.17	495978	9.67	810599	12.21	701280	17.19	633202	19.74
ZZZZZZ	251252	5.83	947311	7.17	482552	9.67	783972	12.21	682158	17.19	607960	19.74
ZZZZZZ	258382	5.83	996174	7.17	494269	9.67	807884	12.21	701949	17.19	628283	19.74
ZZZZZZ	266583	5.83	1043941	7.18	531365	9.68	888782	12.23	788659	17.21	731119	19.75
ZZZZZZ	247082	5.83	917076	7.17	465023	9.67	767257	12.21	675145	17.19	631847	19.74
ZZZZZZ	264943	5.83	981407	7.17	487666	9.67	809096	12.21	702523	17.19	632100	19.74
ZZZZZZ	258274	5.83	965175	7.17	484318	9.67	791603	12.21	687327	17.19	622567	19.74
ZZZZZZ	232860	5.83	873207	7.17	447155	9.67	747819	12.21	653918	17.19	601004	19.74
ZZZZZZ	244343	5.83		7.17	460954	9.67	758191	12.22	660731	17.19	579604	19.74
ZZZZZZ	246163	5.83	926909	7.17	462415	9.67	763454	12.21	656129	17.19	588324	19.74
ZZZZZZ	234573	5.83	891727	7.17	455255	9.67	745866	12.21	669674	17.19	596765	19.74

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8

IS 3 = Acenaphthene-D10

IS 4 = Phenanthrene-d10

IS 5 = Chrysene-d12 IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Internal Standard Area Summary

Job Number: M97346

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

 Check Std:
 MSS888-CC884
 Injection Date:
 02/02/11

 Lab File ID:
 S21213.D
 Injection Time:
 12:54

Instrument ID: GCMSS Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std	163195	5.72	636245	7.07	303706	9.25	456723		428438	15.79		18.02
Upper Limit ^a	326390	6.22	1272490		607412	9.75	913446	11.94	856876	16.29	829518	18.52
Lower Limit b	81598	5.22	318123	6.57	151853	8.75	228362	10.94	214219	15.29	207380	17.52
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	153876	5.72	644200	7.07	311817	9.25	478355	11.43	432471	15.78	430786	18.02
ZZZZZZ	188231	5.72	756203	7.07	372070	9.25	547151	11.43	468631	15.79	448103	18.02
ZZZZZZ	180844	5.72	744597	7.07	363502	9.25	554158	11.43	492731	15.79	481183	18.02
ZZZZZZ	133383	5.72	556129	7.07	267158	9.25	412175	11.43	367456	15.78	359904	18.02
M97346-1	196045	5.72	805982	7.07	391757	9.25	581409	11.43	491353	15.79	471756	18.02
M97346-2	187772	5.72	778262	7.07	373597	9.25	562799	11.43	507506	15.79	488668	18.02
M97346-3	197713	5.72	822333	7.07	397650	9.25	609042	11.43	538695	15.79	522884	18.02
ZZZZZZ	186149	5.72	752311	7.07	368481	9.25	561793	11.43	508037	15.79	496618	18.02
ZZZZZZ	194109	5.72	798381	7.07	394050	9.25	590743	11.43	529269	15.78	507312	18.02
OP23982-MS	173864	5.72	665027	7.07	319891	9.25	478058	11.44	428244	15.79	429183	18.02
OP23982-MSD	174057	5.72	677142	7.07	323062	9.25	487152	11.43	441664	15.79	437928	18.02
ZZZZZZ	172579	5.72	702657	7.07	341221	9.25	531801	11.43	462993	15.78	468300	18.02
M97427-2	171997	5.72	701838	7.07	343974	9.25	521496	11.43	464968	15.78	458609	18.02
ZZZZZZ	178896	5.72	714774	7.07	351291	9.25	547595	11.43	461989	15.78	464311	18.02
ZZZZZZ	181307	5.72	744551	7.07	356081	9.25	547214	11.43	487837	15.78	480694	18.02
ZZZZZZ	185150	5.72	769476	7.06	368321	9.25	552772	11.43	509251	15.78	488099	18.01
OP23963-MB	223635	5.72	904117	7.06	444024	9.25	667369	11.43	570705	15.78	517933	18.01
OP23963-BS	186914	5.72	726279	7.07	342642	9.25	512609	11.43	449976	15.78	399841	18.02
OP23963-MS	183005	5.72	707658	7.06	332292	9.25	481805	11.43	405146	15.78	365992	18.01
OP23963-MSD	207483	5.72	810349	7.07	400003	9.25	602490	11.43	496412	15.78	458168	18.02
M97350-10	202524	5.72	844111	7.06	400402	9.25	594470	11.43	502754	15.78	475366	18.01

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary Job Number: M97346

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	S2	S3	S4	S5	S6
M97346-1	S21218.D	39.0	24.0	88.0	71.0	73.0	76.0
M97346-2	S21219.D	38.0	24.0	90.0	73.0	74.0	78.0
M97346-3	S21220.D	39.0	24.0	82.0	75.0	75.0	73.0
OP23942-BS	I70222.D	50.0	32.0	78.0	83.0	81.0	85.0
OP23942-MB	I70221.D	43.0	26.0	65.0	74.0	73.0	82.0
OP23942-MS	I70223.D	49.0	31.0	78.0	84.0	82.0	86.0
OP23942-MSD	I70224.D	49.0	31.0	76.0	80.0	78.0	85.0

30-130%

Surrogate	Recovery
Compounds	Limits
-	
S1 = 2-Fluorophenol	15-110%
S2 = Phenol-d5	15-110%
S3 = 2,4,6-Tribromophenol	15-110%
S4 = Nitrobenzene-d5	30-130%
S5 = 2-Fluorobiphenyl	30-130%

S6 = Terphenyl-d14

Roxana Groundwater Quarterly – 1st Quarter 2011

Laboratory SDG: M97347

Data Reviewer: Wendy Buchman

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 2/23/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
TB-ROX-011911	MW6A-ROX-011911
MW6B-ROX-011911	MW6B-ROX-011911DUP
MW6A-ROX-011911EB	MW6C-ROX-012011EB

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated VOC MS/MSD recoveries were outside evaluation criteria. VOC LCS/LCSD recoveries were outside evaluation criteria. SVOC LCS/LCSD recoveries and LCS/LCSD RPDs were outside evaluation criteria. Additionally, diethyl phthalate was detected in the method blank. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated samples were received by the laboratory at 1.1° C which was outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore, no qualification of data was required. Additionally, the cooler receipt form erroneously indicated N/A for the quality control/preservation questions, trip blank present in cooler and trip blank listed on the COC. A trip blank was included in the cooler and it was listed on the COC.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks? Yes

Blank ID	Parameter	Analyte	Concentration/Amount
OP23942-MB	SVOCs	Diethyl phthalate	1.8 μg/L
MW6A-ROX-011911EB	SVOCs	Diethyl phthalate	0.67 μg/L
MW6C-ROX-012011EB	SVOCs	Diethyl phthalate	0.99 μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Sample ID	Param eter	Analyte	New Reporting Limit (RL)	Qualification
MW6A-ROX-011911	SVOCs	Diethyl phthalate	-	U
MW6B-ROX-011911	SVOCs	Diethyl phthalate	-	U
MW6B-ROX-011911DUP	SVOCs	Diethyl phthalate	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/ LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
MSN1853-BS/BSD	VOCs	Acetone	91/ 58	44	70-130/25
MSN1853-BS/BSD	VOCs	2-Butanone	106/ 35	35	70-130/25
MSN1853-BS/BSD	VOCs	Chloroethane	68/62	9	70-130/25
MSN1853-BS/BSD	VOCs	Tetrachloroethene	135 /130	4	70-130/25
MSN1853-BS/BSD	VOCs	Vinyl acetate	48/48	1	70-130/25
MSE2170-BS/BSD	VOCs	Dichlorodifluoromethane	129/ 131	2	70-130/25
MSE2170-BS/BSD	VOCs	Isopropylbenzene	126/ 131	4	70-130/25
MSE2170-BS/BSD	VOCs	Vinyl Acetate	65/69	5	70-130/25
OP239420BS	SVOCs	Benzoic Acid	18	NA	30-130

Analytical data that required qualification based on LCS data are included in the table below. Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
MW6A-ROX-011911	VOCs	Chloroethane	UJ
MW6A-ROX-011911	VOCs	Vinyl Acetate	UJ
MW6A-ROX-011911	SVOCs	Benzoic Acid	J

Field ID	Parameter	Analyte	Qualification
MW6B-ROX-011911	VOCs	Vinyl Acetate	UJ
MW6B-ROX-011911	SVOCs	Benzoic Acid	UJ
MW6B-ROX-011911DUP	VOCs	Vinyl Acetate	UJ
MW6B-ROX-011911DUP	SVOCs	Benzoic Acid	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?

Yes. Sample MW6B-ROX-011911 was spiked and analyzed for VOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
MW6B-ROX- 011911	VOCs	Dichlorodifluoromethane	139/140	1	70-130/30
MW6B-ROX- 011911	VOCs	Hexachlorobutadiene	124/ 134	7	70-130/30
MW6B-ROX- 011911	VOCs	Isopropylbenzene	126/ 134	6	70-130/30
MW6B-ROX- 011911	VOCs	Vinyl Acetate	60/64	7	70-130/30

Analytical results reported as non-detect and associated with MS/MSD recoveries above evaluation criteria, indicating a high bias, did not require qualification. USEPA National Functional Guidelines for Organic Data Review indicates that organic data does not require qualification based on MS/MSD data alone and dichlorodifluoromethane, isopropylbenzene, and vinyl acetate were previously qualified due to LCS recoveries outside evaluation criteria. No further qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria? Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
MW6B-ROX-011911	MW6B-ROX-011911DUP

Were field duplicates within evaluation criteria?

Yes

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; samples analyzed did not require a dilution.

12.0 Additional Qualifications

Were additional qualifications applied?

Yes, professional judgment was used to qualify the common laboratory contaminant acetone reported at concentrations greater than two times (2X) the reporting limit (RL), since acetone is not representative of site conditions.

Sample ID	Analyte	New RL	Qualification	Comment
MW6A-ROX-	Acetone	13.5	U	Professional
011911				Judgment

03/08/11

Technical Report for

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

SAP#340061

Accutest Job Number: M97347

Sampling Dates: 01/19/11 - 01/20/11

Report to:

URS Corporation

Elizabeth_Kunkel@URSCorp.com

ATTN: Elizabeth Kunkel

Total number of pages in report: 62

Reviewed

on

3/8/2011

m A

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Lab Director

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New England • 495 Tech Center West • Building 1 • Marlborough, MA 01752 • tel: 508-481-6200 • fax: 508-481-7753 • http://www.accutest.com

Sections:

Table of Contents

-1-

Section 1: Sample Summary 3	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	
3.1: M97347-1: TB-ROX-011911	7
3.2: M97347-2: MW6A-ROX-011911	9
3.3: M97347-3: MW6B-ROX-011911	13
3.4: M97347-4: MW6B-ROX-011911DUP	17
3.5: M97347-5: MW6A-ROX-011911EB	21
3.6: M97347-6: MW6C-ROX-012011EB	25
Section 4: Misc. Forms 2	29
4.1: Chain of Custody	
4.2: Sample Tracking Chronicle	
4.3: Internal Chain of Custody	
Section 5: GC/MS Volatiles - QC Data Summaries 3	35
5.1: Method Blank Summary	
5.2: Blank Spike/Blank Spike Duplicate Summary	40
5.3: Matrix Spike/Matrix Spike Duplicate Summary	
5.4: Internal Standard Area Summaries	
5.5: Surrogate Recovery Summaries	
Section 6: GC/MS Semi-volatiles - QC Data Summaries 5	
6.1: Method Blank Summary 5	
6.2: Blank Spike Summary 5	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	
6.4: Internal Standard Area Summaries	
6.5: Surrogate Recovery Summaries	62

Sample Summary

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Job No: M9

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M97347-1	01/19/11	00:00	01/22/11	AQ	Trip Blank Water	TB-ROX-011911
M97347-2	01/19/11	11:45	01/22/11	AQ	Ground Water	MW6A-ROX-011911
M97347-3	01/19/11	14:15	01/22/11	AQ	Ground Water	MW6B-ROX-011911
M97347-4	01/19/11	14:15	01/22/11	AQ	Ground Water	MW6B-ROX-011911DUP
M97347-5	01/19/11	08:05	01/22/11	AQ	Equipment Blank	MW6A-ROX-011911EB
M97347-6	01/20/11	09:00	01/22/11	AQ	Equipment Blank	MW6C-ROX-012011EB

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Shell Oil Job No M97347

Site: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Report Date 2/7/2011 10:56:22 AM

5 Sample(s), 1 Trip Blank were collected on between 01/19/2011 and 01/20/2011 and were received at Accutest on 01/22/2011 properly preserved, at 1.1 Deg. C and intact. These Samples received an Accutest job number of M97347. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix AQ Batch ID: MSE2170

- 22 All samples were analyzed within the recommended method holding time.
- × Sample(s) M97347-3MS, M97347-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for Dichlorodifluoromethane, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Dichlorodiffuoromethane, Hexachlorobutadiene, Isopropylbenzene, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- BSD Recovery(s) for Dichlorodiffuoromethane, Isopropylbenzene, Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.

Matrix AQ Batch ID: MSN1853

- All samples were analyzed within the recommended method holding time.
- Sample(s) M97323-5MS, M97323-5MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for Chloroethane, Tetrachloroethene, Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.
- MS/MSD Recovery(s) for Ethylbenzene is outside control limits. Outside control limits due to high level in sample relative to spike arround.
- Matrix Spike Duplicate Recovery(s) for 2-Butanone (MEK), Acetone, Chloroethane, Styrene, Tetrachloroethene, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- * RPD of MSN1853-BSD for 2-Butanone (MEK): Outside control limits. Individual spike recoveries within acceptance limits.
- Matrix Spike Recovery(s) for 2-Butanone (MEK), Acetone, Styrene, Tetrachloroethene, Vinyl Acetate are outside control limits.

 Outside control limits due to possible matrix interference. Refer to Blank Spike.
- RPD of MSN1853-BSD for Acetone is outside control limits. Blank Spike meets program technical requirements.
- BSD Recovery(s) for Acetone, Chloroethane, Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.

N

Extractables by GCMS By Method SW846 8270C

Matrix AO

Batch ID: OP23942

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97378-1MS, M97378-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Benzoic Acid are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for 4-Chloroaniline, Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Sample(s) M97347-2 through M97347-6 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97347).

Extractables by GCMS By Method SW846 8270C

Matrix AQ

Batch ID: OP23942

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97378-1MS, M97378-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Benzoic Acid are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for 4-Chloroaniline, Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Benzoic Acid are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Sample(s) M97347-2 through M97347-6 have compound(s) reported with a "B" qualifier, indicating analyte is found in the
 associated method blank.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97347).

Sample	Results	arianiya's arianiya's	MA ALL	cillo Feb x - x x - x	4.25 2	
Report o	f Analysis	S				

Client Sample ID: TB-ROX-011911

Lab Sample ID:M97347-1Date Sampled:01/19/11Matrix:AQ - Trip Blank WaterDate Received:01/22/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Ву File ID DF Analyzed Prep Date Prep Batch Analytical Batch 01/27/11 JP N49101.D 1 n/a n/a MSN1853 Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/I	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1.	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73 - 1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

cuon Limit j =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-ROX-011911

Lab Sample ID: M97347-1 Date Sampled: 01/19/11
Matrix: AQ - Trip Blank Water Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/I	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	91%		70-1		
2037-26-5	Toluene-D8	102%		70-1		
460-00-4	4-Bromofluorobenzene	93%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: MW6A-ROX-011911

SW846 8260B

Lab Sample ID: M97347-2 AQ - Ground Water Matrix:

Date Sampled: 01/19/11 Date Received: 01/22/11 Percent Solids: n/a

Method: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Prep Batch Analytical Batch File ID DF Analyzed Ву N49102.D 01/27/11 JP n/a n/a MSN1853 Run #1 1

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL_	MDL	Units	Q
67-64-1	Acetone	13:5 CON	13.3 25:0	4.6	ug/l	~u"
71-43-2	Benzene	11.3	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	∘ 111 n
67-66-3	Chloroform	ND	1.0	0.72	ug/I	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: MW6A-ROX-011911

Lab Sample ID: M97347-2 Date Sampled: 01/19/11
Matrix: AQ - Ground Water Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/I	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	18.1	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/I	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	1/
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	"uJ"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/i	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	88%		70-1	30%	
2037-26-5	Toluene-D8	101%		70-1		
460-00-4	4-Bromofluorobenzene	95%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

MDC - Mellod Delection C

 $\begin{aligned} RL &= Reporting \ Limit \\ E &= Indicates \ value \ exceeds \ calibration \ range \end{aligned}$

 $J \,=\, Indicates \; an \; estimated \; value$

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

Client Sample ID: MW6A-ROX-011911

Lab Sample ID: M97347-2 Date Sampled: 01/19/11 Date Received: 01/22/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Analytical Batch File ID DF Analyzed Ву Prep Batch OP23942 170233.D 02/02/11 AA01/25/11 MSI2472 Run #1 1

Run #2

Final Volume Initial Volume

Run #1 1000 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	4.4	10	0.77	ug/l ``J `'
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/I
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/I
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l
108-95-2	Phenol	ND	5.0	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/I
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
1 91 -2 4-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/I
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: MW6A-ROX-011911

Lab Sample ID: M97347-2 Date Sampled: 01/19/11 Date Received: 01/22/11 Matrix: AQ - Ground Water Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/I	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	0.81	5.0	0.34	ug/l	J
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	1.90.CND	5.0	0.61	ug/l	₩"u"
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND ,	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	37%		15-11	10%	
4165-62-2	Phenol-d5	23%		15-17	l 0 %	
118-79-6	2,4,6-Tribromophenol	69%		15-11	l 0%	
4165-60-0	Nitrobenzene-d5	68%		30-13		
321-60-8	2-Fluorobiphenyl	70%		30-13		
1718-51-0	Terphenyl-d14	75%		30-13	80%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW6B-ROX-011911

Date Sampled: 01/19/11 Lab Sample ID: M97347-3 Date Received: 01/22/11 Matrix: AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

File ID Prep Date Prep Batch Analytical Batch DF Analyzed Ву TD n/a E51401.D 01/31/11 n/a MSE2170 Run #1 1 Run #2

Report of Analysis

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	8.2	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/I	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135 - 98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	18.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12 -8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541 - 73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW6B-ROX-011911

Lab Sample ID: M97347-3 Date Sampled: 01/19/11
Matrix: AQ - Ground Water Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-IsopropyItoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.6	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/I	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5. 0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/Ì	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	1)
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	~ α2,,
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	114%		70-13		
2037-26-5	Toluene-D8	118%		70-13		
460-00-4	4-Bromofluorobenzene	112%		70-13	30%	

ND = Not detected RL = Reporting Limit MDL - Method Detection Limit

Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW6B-ROX-011911

Lab Sample ID: M97347-3 Date Sampled: 01/19/11 Matrix: AQ - Ground Water Date Received: 01/22/11 SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date **Analytical Batch** File ID DF Analyzed Prep Batch Ву OP23942 MSI2472 Run #1 I70234.D 1 02/02/11 AA01/25/11

Run #2

Final Volume **Initial Volume** 1000 ml 1.0 ml Run #1

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l	~ Աፔ"
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l	
95-48-7	2-Methylphenol	ND	10	0.48	ug/l	
	3&4-Methylphenol	ND	10	0.63	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l	
108-95-2	Phenol	ND	5.0	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/I	
62-53-3	Aniline	ND	10	0.46	ug/l	
120-12-7	Anthracene	ND	5.0	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.0	0.23	ug/l	
205-99-2	Benzo(b) fluoranthene	ND	5.0	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.58	ug/I	
218-01-9	Chrysene	ND	5.0	0.22	ug/l	
111 - 91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW6B-ROX-011911

 Lab Sample ID:
 M97347-3
 Date Sampled:
 01/19/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

T005-72-3 4-Chlorophenyl phenyl ether ND 5.0 0.61 ug/l
Continue
91-94-1 3,3'-Dichlorobenzidine ND 5.0 2.5 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 5.0 0.25 ug/l 132-64-9 Dibenzofuran ND 5.0 0.32 ug/l 84-74-2 Di-n-butyl phthalate ND 5.0 0.34 ug/l 117-84-0 Di-n-octyl phthalate ND 5.0 0.34 ug/l 84-66-2 Diethyl phthalate ND 5.0 0.61 ug/l 131-1-3 Dimethyl phthalate ND 5.0 0.49 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 5.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.22 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.33 ug/l 99-1-20-3 Naphthalene ND 5.0 0.31 ug/l 98-95-3 Nitrobenzene ND 5.0 0.41 ug/l 88-30-6 N-Nitrosodiphenylamine ND 5.0 0.41 ug/l 88-30-8 Phenanthrene ND 5.0 0.41 ug/l 88-50-1-8
53-70-3 Dibenzo(a,h)anthracene ND 5.0 0.25 ug/l 132-64-9 Dibenzofuran ND 5.0 0.32 ug/l 84-74-2 Di-n-butyl phthalate ND 5.0 0.34 ug/l 117-84-0 Di-n-octyl phthalate ND 5.0 0.34 ug/l 84-66-2 Diethyl phthalate ND 5.0 0.61 ug/l 131-11-3 Dimethyl phthalate ND 5.0 0.61 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 5.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.22 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 17-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.43 ug/l 193-39-5 Isophorone ND 5.0 0.47 ug/l 191-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 199-09-2 3-Nitroaniline ND 10 0.33 ug/l 190-01-6 4-Nitroaniline ND 10 0.33 ug/l 191-20-3 Naphthalene ND 5.0 0.31 ug/l 198-95-3 Nitrobenzene ND 5.0 0.31 ug/l 198-95-3 Nitrobenzene ND 5.0 0.41 ug/l 196-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 198-01-8 Phenanthrene ND 5.0 0.61 ug/l
132-64-9 Dibenzofuran ND 5.0 0.32 ug/l
84-74-2 Di-n-butyl phthalate ND 5.0 0.34 ug/l 117-84-0 Di-n-octyl phthalate ND 5.0 0.34 ug/l 84-66-2 Diethyl phthalate 0:870-0ND 5.0 0.61 ug/l 131-11-3 Dimethyl phthalate ND 5.0 0.49 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachlorocethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.41 ug/l 88-74-4 2-
117-84-0 Di-n-octyl phthalate ND 5.0 0.34 ug/l 84-66-2 Diethyl phthalate 0:870.0ND 5.0 0.61 ug/l 131-11-3 Dimethyl phthalate ND 5.0 0.49 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.47 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-N
84-66-2 Diethyl phthalate 0.870-0ND 5.0 0.61 ug/l JB 131-11-3 Dimethyl phthalate ND 5.0 1.3 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachlorocyclopentadiene ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.32 ug/l 100-01-6
131-11-3 Dimethyl phthalate ND 5.0 1.3 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachloroethane ND 10 2.5 ug/l 67-72-1 Hexachloroethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND
131-11-3 Dimethyl phthalate ND 5.0 1.3 ug/l 117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachloroethane ND 10 2.5 ug/l 67-72-1 Hexachloroethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND
117-81-7 bis(2-Ethylhexyl)phthalate ND 2.0 0.49 ug/l 206-44-0 Fluoranthene ND 5.0 0.22 ug/l 86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachlorocthane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.33 ug/l 99-2-3 Naphthalene ND 5.0 0.31 ug/l 98-95-3 Nitrobenzene ND
86-73-7 Fluorene ND 5.0 0.29 ug/l 118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachlorocyclopentadiene ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine
118-74-1 Hexachlorobenzene ND 5.0 0.16 ug/l 77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachloroethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 98-95-3 Naphthalene ND 5.0 0.31 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND
77-47-4 Hexachlorocyclopentadiene ND 10 2.5 ug/l 67-72-1 Hexachloroethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 98-95-3 Naphthalene ND 5.0 0.31 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitrosodiphenylamine ND 5.0 0.41 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
67-72-1 Hexachloroethane ND 5.0 0.43 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 98-95-3 Naphthalene ND 5.0 0.31 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
193-39-5 Indeno(1,2,3-cd)pyrene ND 5.0 0.29 ug/l 78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
78-59-1 Isophorone ND 5.0 0.47 ug/l 91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
91-57-6 2-Methylnaphthalene ND 5.0 0.31 ug/l 88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
88-74-4 2-Nitroaniline ND 10 0.33 ug/l 99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
99-09-2 3-Nitroaniline ND 10 0.32 ug/l 100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
100-01-6 4-Nitroaniline ND 10 0.33 ug/l 91-20-3 Naphthalene ND 5.0 0.33 ug/l 98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
98-95-3 Nitrobenzene ND 5.0 0.31 ug/l 621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
621-64-7 N-Nitroso-di-n-propylamine ND 5.0 0.41 ug/l 86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
86-30-6 N-Nitrosodiphenylamine ND 5.0 0.61 ug/l 85-01-8 Phenanthrene ND 5.0 0.26 ug/l
85-01-8 Phenanthrene ND 5.0 0.26 ug/l
129-00-0 Pyrene ND 5.0 0.25 ug/l
110-86-1 Pyridine ND 10 0.50 ug/l
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits
367-12-4 2-Fluorophenol 40% 15-110%
4165-62-2 Phenol-d5 24% 15-110%
118-79-6 2,4,6-Tribromophenol 73% 15-110%
4165-60-0 Nitrobenzene-d5 72% 30-130%
321-60-8 2-Fluorobiphenyl 75% 30-130%
1718-51-0 Terphenyl-d14 85% 30-130%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

ange

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

 $N \, = \, Indicates \, presumptive \, evidence \, of \, a \, compound \,$

Client Sample ID: MW6B-ROX-011911DUP

Lab Sample ID: M97347-4 Date Sampled: 01/19/11
Matrix: AQ - Ground Water Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Analytical Batch File ID DF Analyzed Ву Prep Date Prep Batch 01/31/11 TD n/a MSE2170 Run #1 E51404.D 1 n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	8.2	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	,	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/I	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

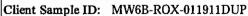
ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value


B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Lab Sample ID:M97347-4Date Sampled:01/19/11Matrix:AQ - Ground WaterDate Received:01/22/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1.1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	1.4	5.0	0.56	ug/l	J
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/I	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/I	
1634-04-4	Methyl Tert Butyl Ether	1.6	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/I	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	1.6	5.0	1.0	ug/l	J
120-82-1	1,2,4-Trichlorobenzene	1.1	5.0	0.57	ug/l	J J
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/I	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	<u> 1)</u>
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	" تىت ^ب
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	111%		70-1		
2037-26-5	Toluene-D8	115%		70-1		
460-00-4	4-Bromofluorobenzene	110%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

 $E = \hbox{Indicates value exceeds calibration range} \\$

4 (5)

Client Sample ID: MW6B-ROX-011911DUP

 Lab Sample ID:
 M97347-4
 Date Sampled:
 01/19/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21215.D 1 02/02/11 PR 01/25/11 OP23942 MSS888

Run #2

Initial Volume Final Volume

Run #1 980 ml 1.0 ml

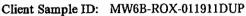
Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.79	ug/l	«uJ»
95-57-8	2-Chlorophenol	ND	5.1	0.70	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.58	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.71	ug/l	
105-67-9	2.4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.1	ug/l	
95-48-7	2-Methylphenol	ND	10	0.49	ug/l	
	3&4-Methylphenol	ND	10	0.64	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.67	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.1	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	ND	5.1	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.1	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.1	1.3	ug/I	
62-53-3	Aniline	ND	10	0.46	ug/l	
120-12-7	Anthracene	ND	5.1	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.28	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.62	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.1	0.30	ug/l	
101-55-3	4-Bromopheлyl phenyl ether	ND	5.1	0.33	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.1	0.42	ug/l	
91-58 -7	2-Chloronaphthalene	ND	5.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.59	ug/l	
218-01-9	Chrysene	ND	5.1	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	0.36	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.1	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.1	0.21	ug/i	

ND = Not detected

MDL - Method Detection Limit


J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

 Lab Sample ID:
 M97347-4
 Date Sampled:
 01/19/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	0.62	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.1	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.1	0.34	ug/l	.c. D
84-66-2	Diethyl phthalate	4:00-0ND	5.1	0.62	ug/l	Æ «u"
131-11-3	Dimethyl phthalate	ND	5.1	1.3	ug/I	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.50	ug/l	
206-44-0	Fluoranthene	ND	5.1	0.22	ug/l	
86-73-7	Fluorene	ND	5.1	0.30	ug/I	
118-74-1	Hexachlorobenzene	ND	5.1	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.1	0.44	ug/l	
193-39-5	Indeno(1,2,3-cd)ругеле	ND	5.1	0.29	ug/l	
78-59-1	Isophorone	ND	5.1	0.48	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/I	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.1	0.33	ug/I	
98-95-3	Nitrobenzene	ND	5.1	0.31	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.62	ug/l	
85-01-8	Phenanthrene	ND	5.1	0.26	ug/l	
129-00-0	Ругепе	ND	5.1	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	38%		15-11	10%	
4165-62-2	Phenol-d5	23%		15-11	l 0 %	
118-79-6	2,4,6-Tribromophenol	87%		15-11	10%	
4165-60-0	Nitrobenzene-d5	72%		30-13	30%	
321-60-8	2-Fluorobiphenyl	74%		30-13	30%	
1718-51-0	Terphenyl-d14	77%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW6A-ROX-011911EB

Date Sampled: 01/19/11 Lab Sample ID: M97347-5 Date Received: 01/22/11 AQ - Equipment Blank Matrix: Percent Solids: n/a SW846 8260B Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Batch Analytical Batch File ID DF Analyzed Ву Prep Date TD MSE2170 Run #1 E51398.D 1 01/31/11 n/a n/a

Run #2

Purge Volume

Run #1 5.0 mI

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-8 3-9	Bromomethane	NĐ	2.0	0.95	ug/I	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	NĐ	1.0	0.77	ug/I	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/i	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:M97347-5Date Sampled:01/19/11Matrix:AQ - Equipment BlankDate Received:01/22/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/I	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND ·	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	113%		70-13		
2037-26-5	Toluene-D8	116%		70-13	30%	
460-00-4	4-Bromofluorobenzene	111%		70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.5

Client Sample ID: MW6A-ROX-011911EB

Date Sampled: 01/19/11 Lab Sample ID: M97347-5 Matrix: AQ - Equipment Blank SW846 8270C SW846 3510C Method:

Date Received: 01/22/11 Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Prep Batch Analytical Batch File ID DF Analyzed Ву 01/25/11 OP23942 MSS888 02/02/11 PR Run #1 S21216.D 1 Run #2

Initial Volume Final Volume 1.0 ml Run #1 990 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.78	ug/l	
95-57-8	2-Chlorophenol	ND	5.1	0.69	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.58	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.70	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.1	ug/l	
95-48-7	2-Methylphenol	ND	10	0.48	ug/l	
	3&4-Methylphenol	ND	10	0.64	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.1	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l	
108-95-2	Phenol	ND	5.1	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.1	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.1	1.3	ug/l	
62-53-3	Aniline	ND	10	0.46	ug/l	
120-12-7	Anthracene	ND	5.1	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.27	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.62	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.1	0.30	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.1	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.1	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l	
218-01-9	Chrysene	ND	5.1	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	0.35	ug/l	
111-44-4	bis (2-Chloroethyl) ether	ND	5.1	0.24	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.1	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: MW6A-ROX-011911EB

 Lab Sample ID:
 M97347-5
 Date Sampled:
 01/19/11

 Matrix:
 AQ - Equipment Blank
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	0.62	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.1	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.1	0.34	ug/I	
84-66-2	Diethyl phthalate	0.67	5.1	0.62	ug/l	JB
131-11-3	Dimethyl phthalate	ND	5.1	1.3	ug/l	-
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.1	0.22	ug/l	
86-73-7	Fluorene	ND	5.1	0.29	ug/I	
118-74-1	Hexachlorobenzene	ND	5.1	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.1	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.1	0.29	ug/l	
78-59-1	Isophorone	ND	5.1	0.48	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/I	
91-20-3	Naphthalene	ND	5.1	0.33	ug/I	
98-95-3	Nitrobenzene	ND	5.1	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.62	ug/l	
85-01-8	Phenanthrene	ND	5.1	0.26	ug/l	
129-00-0	Pyrene	ND	5.1	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%		15-1		
4165-62-2	Phenol-d5	23%		15-1		
118-79-6	2,4,6-Tribromophenol	87%		15-1	10%	
4165-60-0	Nitrobenzene-d5	78%		30-13	30%	
321-60-8	2-Fluorobiphenyl	78%		30-13	30%	
1718-51-0	Terphenyl-d14	85%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

.5

Report of Analysis

Client Sample ID: MW6C-ROX-012011EB

Lab Sample ID:

M97347-6

Date Sampled: 01/20/11 Date Received: 01/22/11

MSE2170

п/a

Matrix: Method: AQ - Equipment Blank SW846 8260B

1

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

01/31/11

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch

TD

n/a

Run #1 Run #2

Purge Volume

E51399.D

Run #1 $5.0 \, ml$

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/I	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/I	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/I	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: M97347-6 Date Sampled: 01/20/11
Matrix: AQ - Equipment Blank Date Received: 01/22/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/I	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/I	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	110%		70-1		
2037-26-5	Toluene-D8	116%		70-1	30%	
460-00-4	4-Bromofluorobenzene	109%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: MW6C-ROX-012011EB

Lab Sample ID: M97347-6 Date Sampled: 01/20/11 Date Received: 01/22/11 Matrix: AQ - Equipment Blank SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Prep Batch Analytical Batch File ID DF Analyzed By MSS888 S21217.D 1 02/02/11 PR 01/25/11 OP23942 Run #1 Run #2

Initial Volume Final Volume Run #1 990 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units (2
65-85-0	Benzoic Acid	ND	10	0.78	ug/l	
95-57-8	2-Chlorophenol	ND	5.1	0.69	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.58	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.70	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.1	ug/l	
95-48-7	2-Methylphenol	ND	10	0.48	ug/l	
	3&4-Methylphenol	ND	10	0.64	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.1	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l	
108-95-2	Phenol	ND	5.1	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.1	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.1	1.3	ug/l	
62-53-3	Aniline	ND	10	0.46	ug/l	
120-12-7	Anthracene	ND	5.1	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.27	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.1	0.23	ug/l	
205-99-2	Benzo(b) fluoranthene	ND	5.1	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.62	ug/l	
207-08-9	Benzo(k) fluoranthene	ND	5.1	0.30	ug/l	
101-55 -3	4-Bromophenyl phenyl ether	ND	5.1	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.1	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l	
218-01-9	Chrysene	ND	5.1	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	0.35	ug/l	
111-44-4	bis (2-Chloroethyl) ether	ND	5.1	0.24	ug/I	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.1	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

છ

Client Sample ID: MW6C-ROX-012011EB

 Lab Sample ID:
 M97347-6
 Date Sampled:
 01/20/11

 Matrix:
 AQ - Equipment Blank
 Date Received:
 01/22/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL.

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	0.62	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.1	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.1	0.34	ug/l	
84-66-2	Diethyl phthalate	0.99	5.1	0.62	ug/l	JΒ
131-11-3	Dimethyl phthalate	ND	5.1	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.1	0.22	ug/l	
86-73-7	Fluorene	ND	5.1	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.1	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.1	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)ругеле	ND	5.1	0.29	ug/l	
78-59-1	Isophorone	ND	5.1	0.48	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.1	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.1	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.62	ug/l	
85-01-8	Phenanthrene	ND	5.1	0.26	ug/l	
129-00-0	Pyrene	ND	5.1	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%		15-1	10%	
4165-62-2	Phenol-d5	22%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	84%		15-1	10%	
4165-60-0	Nitrobenzene-d5	75%		30-13	30%	
321-60-8	2-Fluorobiphenyl	77%		30-13	30%	
1718-51-0	Terphenyl-d14	84%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range

Misc. Forms	
Custody Documents and Other Forms	

- Certification Exceptions
- Certification Exceptions (IL)

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking ChronicleInternal Chain of Custody

(((
LAB (LOCATION)			(M)	She	H C)il l	Pr	odu	cts	Ch	ain	Of	Cust	toc	ly R	eco	rd	M	973	347
() () () () () () () () () ()	· Ple	se Check	Appropriate		,			lii To (3) 🖂	APPLES
CALSCITUTE (ACCIDENT TRIDE, 195 Technology CV W Of Other Like/bornunh, MA 01252 (See-491-490)	S FIN. SERVICES		TIVA SETALL	□ Start to	TAIL			,	VEND	Y PENN	NOTO	4		Ţ,	7	2 1	٠		9 0	MTE 1/25/10
S OTHE LIKEUDOUGH, MA 01252(500-001-6300)	HOLLAY ROTCH		NEUTAYT		ᆜ	,				PO A	'					SA	Pø.		┚╸	AGE al
Lab Vendor #	SHILL PARTOR							Ш	Ι.					3	4	0 0		1		
45 CORPORATION			urita -					RANK		•	40750	øn.			•		M. Can			
D) HIGHLANDS PLAZA DRIVE WEST - SUITE 300,	ST. LOUIS, NO 63	110			_	77.	Udra	d (u	- Chris	CP-1st	<u></u>		1-31 KJ			<u> </u>				Rosspa Charterly I
FINDY PERMINISTON						200	Z11.,	dino.								Щ.			LAB USA	21562593,80003
14-743-4160 or 341-452-8/29/314-429-0402	5-116-6																	ŀ		low.
THE POINT THE CALENDAN DATES				TTATALE METULD	_	\vdash				_				EOU	ESTER	ANAL	7823			
A STANDARD (AFTONT HORSELT CO. LIST ACCITION.	TIS STATE	<u>□</u> NHOU		OH WEEKD O		\vdash		Т	_		$\overline{}$		т.	T		7		_		FIELD NOTES:
DANNER DIME! BUNE!	Dime 3	OTHER ISPECT	mE00																	
SEPERATURE ON RECEIPT 6" CHEW #1			Cortor #3																	TEMPERATURE ON RECEIPT C'
SPECIAL DISTRUCTIONS OR HOTES :		(d satur	OTTEMET RATE	APRILS .																
		E INTE	UTABUESEALTT TATEOUT	KALE APPLIES				П	1		- {		1							
QUOTE # PEX12/2010-14		D I STOATS	T VERTACATION	REQUESTED		اوا	50													Cordelnus PED Residings
	FAMPUNO	_	MONA	NATE OF THE PARTY	ne.or	B260B	SVOC 8270C											1		or Laboratory Motoc
Field Sample Identification	DATE THE	SMATTERE		7-7-	COST,	Š	Š												PID ppm}	
TB-Rox-Elifu	diale	hiri Taa	7	1 2 1 2 2 2 2 3 3	 Z	Ħ	۳	\vdash	+-	$\forall \exists$	+	1	\vdash	+	+	+	\forall	+-"	- Junt	
THE KA - ROX - OIN IL	145 1145	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	12/1	5	X	:/	\vdash		$\dagger \dagger$	+	1-1	+	+-	††	`	1-			
	1 19	_	3	2	5		7	\sqcap	+	††			- -	\dagger	$\dagger \dagger$	-†-	\sqcap	_		
MINGB- ROX-DIFILDIN	10011414		3	2	<u>.</u>	ŭ	-	\vdash	十	$\forall \exists$		1		十	11	+	11	_		
5 MW 6A - ROX - 011911 EB	SEC.		3		5	ť			+	††	+	1		+	$\dagger \dagger$		\Box		•	
6 MN 60 - NOX-012CHER	1		× -	2	<u>~</u>	Ĭ	7	\vdash	+	††	┪-	Τí		╁	\forall		Ħ	+		
SO THE SECTION OF STREET	AMOUNTAL	***	3 -	 -		Н	-	╁┼	+-	╂┥	+	╁	-	十	+	+-	-			
- 4	├ ── <i>├</i>			┼╼┾╾┼			_	⊢⊦		4-1			-	╁	╂╾┼	- -	₩-	┰		
				 	_		_	Ц.	٠.	\sqcup		-	_ _	╀	┦	+	\sqcup	╀		1 1 1
			$\bot\bot$				_	Ц		Ш		Ш		┸	Ш		Ш			Loc: 174,
4																				563
A Fun	·	ماروا :آد مهججه					_									Carl.	1 2	olu	La	1522
Litar		- Manual Inc.					_										110	.1.,	_ _	1000
FED		Reciped of Cap		Q				1								- -	22	_//	,,,	1020
1 - 1)		Decided the Light		BEL	4	z/	_							_		Optor;			- Tabl	
					•	_														
	L			_		_	_		_											BARI Re-THA
							•													1.1.
																				. ,

M97347: Chain of Custody Page 1 of 2

ACCUTEST: Accutest Laboratories Sample Receipt Summary

Accutest Job Number: M973	47	Client: URS		Immediate Client Servi	ices Action Required:	No
Date / Time Received: 1/22/2	2011	Delive	ry Method:	Client Service Action	on Required at LogIn:	No
Project:		No. Co	oolers:	1 Airbill #s:		
1. Custody Seals Present 2. Custody Seals Intact 2. Custody Seals Intact 2. Cooler Tem perature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: Quality Control Preservatio 1. Trip Blank present / cooler.	Y or N Infared gui	n N/A ☑	Y % N	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recyd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions	Y or N Y or N Y or N Intact Y or N	N/A
Trip Blank listed on COC: Samples preserved property: VOCs headspace free:		Ø		1. Analysis requested is clear. 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear. 5. Filtering instructions clear.		N
Comments .						
Accules 1 Laboratories V:508,481,6200			der Wesl, Blog One 91,7753		orough, MA Vaccules(.com	

M97347: Chain of Custody Page 2 of 2

Internal Sample Tracking Chronicle

Shell Oil

M97347 Job No:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
M97347-1 TB-ROX-0	Collected: 19-JAN-11 11911	00:00 By:	Recei	ved: 22-JAN-	11 By	BC
M97347-1	SW846 8260B	27-JAN-11 19:12	JP			V8260STD
M97347-2 MW6A-RC	Collected: 19-JAN-11 X-011911	11:45 By:	Recei	ved: 22-JAN	11 By	BC
M97347-2 M97347-2	SW846 8260B SW846 8270C	27-JAN-11 19:40 02-FEB-11 21:29	JP AA	25-JAN-11	вј	V8260STD AB8270PPL
M97347-3 MW6B-RO	Collected: 19-JAN-11 X-011911	14:15 By:	Recei	ved: 22-JAN-	11 By	BC
	SW846 8260B SW846 8270C			25-JAN-11	ВЈ	V8260STD AB8270PPL
M97347-4 MW6B-RO	Collected: 19-JAN-11 X-011911DUP	14:15 By:		ved: 22-JAN-	11 By	BC No
	SW846 8260B SW846 8270C	_			ВЈ	V8260STD AB8270PPL
	Collected: 19-JAN-11 X-011911EB	08:05 By: - ^{7,4}	Recei	ved: 22-JAN-	11 By	BC
	SW846 8260B SW846 8270C	31-JAN-11 13:52 02-FEB-11 14:15			ВЈ	V8260STD AB8270PPL
	Collected: 20-JAN-11 X-012011EB	09:00 By:	Recei	ved: 22-JAN-	11 By:	: BC
	SW846 8260B SW846 8270C	31-JAN-11 14:21 02-FEB-11 14:42		25-JAN-11	вј	V8260STD AB8270PPL

Accutest Internal Chain of Custody Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received: 01/22/11

M97347-1.1	Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Dancer
M97347-1.1 Jugal Patel GCMSN Jugal Patel O1/28/11 10:23 Unload from Instrument M97347-1.1 Jugal Patel VOC Ref #5 O1/28/11 10:23 Return to Storage M97347-2.1 Jugal Patel GCMSN O1/28/11 10:23 Return to Storage M97347-2.1 Jugal Patel GCMSN O1/27/11 14:35 Return to Storage M97347-2.1 Jugal Patel GCMSN O1/27/11 14:35 Load on Instrument M97347-2.1 Jugal Patel GCMSN Jugal Patel O1/28/11 10:23 Unload from Instrument M97347-2.1 Jugal Patel VOC Ref #5 O1/28/11 10:23 Return to Storage M97347-2.5 Walk In Ref #22 Michael Widuta O1/25/11 07:34 Retrieve from Storage M97347-3.2 WoC Ref #5 Tamis Dudo O1/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo GCMSE O1/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo GCMSE O1/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo VOC Ref #5 O2/02/11 15:51 Return to Storage M97347-3.3 VOC Ref #5 Tamis Dudo O1/31/11 12:45 Retrieve from Storage M97347-3.3 CMSE Tamis Dudo O1/31/11 12:45 Load on Instrument M97347-3.3 GCMSE Tamis Dudo O1/31/11 12:45 Load on Instrument M97347-3.3 GCMSE O1/31/11 12:45 Load on Instrument M97347-3.3 CMSE O1/31/11 12:45 Load on Instrument M97347-3.3 CMSE O1/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo O2/02/11 10:30 Unload from Instrum M97347-3.3 Tamis Dudo O2/02/11 10:30 O2/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo O2/02/11 10:30 Unload from Instrument O2/02/11 10:30 Unload M97347-3.5 Michael Widuta O1/25/11 07:34 Retrieve from Storage M97347-4.3 Tamis Dudo O2/02/11 10:30 Unload from Instrument M97347-4.4 Walk In Ref #22 Michael Widuta O1/25/11 07:34 Retrieve from Storage M97347-4.4 Walk In Ref #22 Michael Widuta O1/25/11 07:34 Retrieve from Storage M97347-5.1 VOC Ref #5 Tamis Dudo O2/02/11 15:51 Return to Storage O2/02/11 15:51 Return to Storage O2/02/11 15:51 Return to Storage	Number	FROM	10	Date I inte	Reason
M97347-1.1 GČMSN Jugal Patel Jugal Patel 01/28/11 10:23 Orload from Instrum M97347-1.1 Jugal Patel VOC Ref #5 01/28/11 10:23 Orload from Instrum N97347-2.1 VOC Ref #5 Jugal Patel 01/27/11 14:35 Orload from Instrum N97347-2.1 Jugal Patel 01/27/11 14:35 Orload from Instrum N97347-2.1 Jugal Patel 01/27/11 14:35 Orload from Instrum N97347-2.1 Jugal Patel 01/28/11 10:23 Orload from Instrum N97347-2.1 Jugal Patel VOC Ref #5 01/28/11 10:23 Orload from Instrum N97347-2.1 Jugal Patel VOC Ref #5 01/28/11 10:23 Orload from Instrum N97347-2.5 Mak In Ref #22 Michael Widuta Michael Widuta 01/25/11 07:34 Orload from Instrum N97347-3.2 Mak In Ref #22 Michael Widuta Michael Widuta 01/31/11 12:45 Orload From Storage M97347-3.2 CoCMSE 01/31/11 12:45 Orload Instrument M97347-3.2 CoCMSE 01/31/11 12:45 Orload Instrument M97347-3.2 VOC Ref #5 Tamis Dudo 02/01/11 09:30 Unload from Instrum N97347-3.3 Tamis Dudo OCREf #5 OZ/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo 02/01/11 09:30 Unload from Instrum N97347-3.3 Tamis Dudo 02/01/11 09:30 Unload from Instrum N97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage	M97347-1.1		Jugal Patel	01/27/11 14:35	Retrieve from Storage
M97347-1.1 Jugal Patel VÕC Ref #5 01/28/11 10:23 Return to Storage M97347-2.1 VOC Ref #5 Jugal Patel 01/27/11 14:35 Retrieve from Stora, M97347-2.1 Jugal Patel 01/28/11 10:23 Unload from Instrument M97347-2.1 Jugal Patel 01/28/11 10:23 Unload from Instrument M97347-2.1 Jugal Patel VOC Ref #5 01/28/11 10:23 Return to Storage M97347-2.5 Mik In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Stora, Return to Storage M97347-3.2 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Stora, Return to Storage M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Retrieve from Stora, GCMSE M97347-3.2 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Return to Storage M97347-3.3 GCMSE Tamis Dudo 02/02/11	M97347-1.1	Jugal Patel		01/27/11 14:35	Load on Instrument
M97347-2.1 VOC Ref #5 Jugal Patel 01/27/11 14:35 Retrieve from Stora, more stora, m	M97347-1.1	GCMSN	Jugal Patel	01/28/11 10:23	Unload from Instrument
M97347-2.1 Jugal Patel GČMSN 01/27/11 14:35 Load on Instrument 09/24/12 10:23 Load on Instrument 09/24/11 10:23 Load on Instrument 09/25/11 07:34 Retrieve from Storage 01/25/11 14:02 Depleted M97347-2.5 Walk In Ref #22 Michael Widuta 01/25/11 14:02 Depleted M97347-3.2 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument 09/24/11 19:30 Unload from Instrument 09/24/11 19:30 M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage 09/20/21 15:51 Return to Storage 09/20/21 15:51 Retrieve from S	M97347-1.1	Jugal Patel	VOC Ref #5	01/28/11 10:23	Return to Storage
M97347-2.1 GCMSN Jugal Patel Jugal Patel 01/28/11 10:23 Unload from Instrum M97347-2.1 Jugal Patel VOC Ref #5 01/28/11 10:23 Return to Storage M97347-2.5 Walk In Ref #22 Michael Widuta Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.2 Michael Widuta 01/25/11 14:02 Depleted M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo O2/01/11 09:30 Unload from Instrument M97347-3.2 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.2 Tamis Dudo O2/02/11 15:51 Return to Storage M97347-3.2 Tamis Dudo OCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo O2/02/11 109:30 Unload from Instrum M97347-3.3 GCMSE Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo OCMSE 01/31/11 12:45	M97347-2.1	VOC Ref #5	Jugal Patel	01/27/11 14:35	Retrieve from Storage
M97347-2.1 Jugal Patel VÕC Ref #5 01/28/11 10:23 Return to Storage M97347-2.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.2 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.2 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.2 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage	M97347-2.1	Jugal Patel	GCMSN	01/27/11 14:35	Load on Instrument
M97347-2.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage of Michael Widuta M97347-2.5 Michael Widuta 01/25/11 14:02 Depleted M97347-2.5 Michael Widuta 01/25/11 14:02 Depleted M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.2 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/31/11 12:45 Retrieve	M97347-2.1	GCMSN	Jugal Patel	01/28/11 10:23	Unload from Instrument
M97347-2.5 Michael Widuta 01/25/11 14:02 Depleted M97347-3.2 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.2 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 VOC Ref #5 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo 02/01/11 09:30 Unload from Instrument M	M97347-2.1	Jugal Patel	VOC Ref #5	01/28/11 10:23	Return to Storage
M97347-3.2 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Retrieve from St	M97347-2.5	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97347-3.2 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.2 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-3.2 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Return to Storage M97347-3.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/02/11 109:30 Unload from Instrument M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve fr	M97347-2.5	Michael Widuta		01/25/11 14:02	Depleted
M97347-3.2 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-3.2 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-3.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve f	M97347-3.2	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97347-3.2 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 GCMSE Tamis Dudo 02/02/11 15:51 Return to Storage M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument M97347-4.3 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Retrieve from Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument	M97347-3.2	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97347-3.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Michael Widuta 01/25/11 14:02 Depleted M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo OCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo OCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo OCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 Tamis Dudo OCMSE 01/31/11 12:45 Retrieve from Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-3.2	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97347-3.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-3.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Michael Widuta 01/25/11 14:02 Depleted M97347-3.5 WoC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Walk In Ref #22 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument	M97347-3.2	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97347-3.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Michael Widuta 01/25/11 14:02 Depleted M97347-3.5 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.3 Tamis Dudo VOC Ref #5 01/25/11 07:34 Retrieve from Storage M97347-4.3 Walk In Ref #22 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo OC/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo OC/02/11 15:51 <td< td=""><td>M97347-3.3</td><td>VOC Ref #5</td><td>Tamis Dudo</td><td></td><td></td></td<>	M97347-3.3	VOC Ref #5	Tamis Dudo		
M97347-3.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-3.5 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Retrieve from Storage M97347-4.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-5.1 Tamis Dudo 02/02/11 15:51 Return to Storage M97347-5.1 Tamis Dudo 01/25/11 07:34 Retrieve from Storage M97347-5.5 Walk In Ref #22	M97347-3.3	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97347-3.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Petrieve from Storage 01/25/11 14:02 Retrieve from Storage 01/25/11 14:02 M97347-3.5 Wichael Widuta 01/25/11 07:34 Petrieve from Storage 01/31/11 12:45 Retrieve from Storage 01/31/11 12:45 M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument 1.00 Petrieve from Storage 02/01/11 09:30 Unload from Instrument 1.00 Petrieve from Storage 02/02/11 15:51 M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Retrieve from Storage 01/25/11 07:34 Retrieve from Storage 01/25/11 14:02 M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 12:45 Retrieve from Storage 01/31/11 12:45 M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage 02/01/11 09:30 M97347-5.1 Tamis Dudo 02/01/11 09:30 Unload from Instrument 02/01/11 09:30 M97347-5.1 Tamis Dudo 02/01/11 09:30 Unload from Instrument 02/01/11 15:51 M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage 02/02/11 15:51 M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 14:02 Depleted 01/25/11 14:02	M97347-3.3	GCMSE	-	02/01/11 09:30	Unload from Instrument
M97347-3.5 Michael Widuta 01/25/11 14:02 Depleted M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-3.3	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97347-4.3 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.3 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-3.5	•	Michael Widuta		
M97347-4.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrument M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-3.5	Michael Widuta		01/25/11 14:02	Depleted
M97347-4.3 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum Policy M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.3	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97347-4.3 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-4.4 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.3	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97347-4.4 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage 01/25/11 14:02 M97347-4.4 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage from Storage 01/31/11 12:45 M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument 02/01/11 09:30 M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.3	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97347-4.4 Michael Widuta 01/25/11 14:02 Depleted M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.3	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
M97347-5.1 VOC Ref #5 Tamis Dudo 01/31/11 12:45 Retrieve from Storage M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.4	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97347-5.1 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-4.4	Michael Widuta		01/25/11 14:02	Depleted
M97347-5.1 GCMSE Tamis Dudo 02/01/11 09:30 Unload from Instrum M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-5.1	VOC Ref #5	Tamis Dudo	01/31/11 12:45	Retrieve from Storage
M97347-5.1 Tamis Dudo VOC Ref #5 02/02/11 15:51 Return to Storage M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storage M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-5.1	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument
M97347-5.5 Walk In Ref #22 Michael Widuta 01/25/11 07:34 Retrieve from Storag 01/25/11 14:02 Depleted	M97347-5.1	GCMSE	Tamis Dudo	02/01/11 09:30	Unload from Instrument
M97347-5.5 Michael Widuta 01/25/11 14:02 Depleted	M97347-5.1	Tamis Dudo	VOC Ref #5	02/02/11 15:51	Return to Storage
·			Michael Widuta		
	M97347-5.5	Michael Widuta		01/25/11 14:02	Depleted
	M97347-6.3	VOC Ref #5	Tamis Dudo		
M97347-6.3 Tamis Dudo GCMSE 01/31/11 12:45 Load on Instrument	M97347-6.3	Tamis Dudo	GCMSE	01/31/11 12:45	Load on Instrument

Page 1 of 2

Accutest Internal Chain of Custody Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Received: 01/22/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97347-6.3	GCMSE	Tamis Dudo		Unload from Instrument
M97347-6.3	Tamis Dudo	VOC Ref #5		Return to Storage
M97347-6.5	Walk In Ref #22	Michael Widuta	01/25/11 07:34	Retrieve from Storage
M97347-6.5	Michael Widuta		01/25/11 14:02	Depleted

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- · Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary Job Number: M97347

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample MSN1853-MB	File ID N49091.D	DF 1	Analyzed 01/27/11		Prep Date n/a	Prep Batch n/a	Analytical Batch MSN1853
----------------------	---------------------	---------	-------------------	--	------------------	-------------------	-----------------------------

The QC reported here applies to the following samples:

Method: SW846 8260B

M97347-1, M97347-2

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Асетоле	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/I
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-ButyIbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND ·	5.0	0.34	ug/l
	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/I

Page 2 of 2

Method: SW846 8260B

Method Blank Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN1853-MB	N49091.D	1	01/27/11	JP	n/a	n/a	MSN1853

The QC reported here applies to the following samples:

M97347-1, M97347-2

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/i
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l
100-42-5	Styrene	ND	5.0	0.68	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/I
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l
108-88-3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/i
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/i
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND	1.0	0.56	ug/l
CAS No.	Surrogate Recoveries		Limits	3	
1868-53-7	Dibromofluoromethane	90%	70-130		
2037-26-5	Toluene-D8	101%	70-130		
460-00-4	4-Bromofluorobenzene	94%	70-130)%	

Method Blank Summary Job Number: M97347

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSE2170-MB	E51394.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples: Method: SW846 8260B

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-ButyIbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/I
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/I
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/I
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-5 8- 6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5		ND	0.50	0.23	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Page 2 of 2

Method Blank Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2170-MB	E51394.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

Method: SW846 8260B

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l
100-42-5	Styrene	ND	5.0	0.68	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l
108-88 - 3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/I
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63- 6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND	1.0	0.56	ug/l
CAS No.	Surrogate Recoveries		Limits	3	
1868-53-7	Dibromofluoromethane	112%	70-130		
2037-26-5	Toluene-D8	116%	70-130		
460-00-4	4-Bromofluorobenzene	110%	70-130)%	

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

MSN1853-BSD N49089.D 1 01/27/11 JP n/a n/a MSN1853
--

The QC reported here applies to the following samples:

M97347-1, M97347-2

G. G. Y		Spike	BSP	BSP	BSD	BSD	222	Limits
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	50	45.4	91	29.1	58* a	44* a	70-130/25
71-43-2	Benzene	50	45.9	92	44.2	88	4	70-130/25
108-86-1	Bromobenzene	50	54.9	110	55.0	110	0	70-130/25
74-97-5	Bromochloromethane	50	51.8	104	49.7	99	4	70-130/25
75-27-4	Bromodichloromethane	50	49.0	98	47.7	95	3	70-130/25
75-25-2	Bromoform	50	57.6	115	56.6	113	2	70-130/25
74-83-9	Bromomethane	50	61.0	122	59.7	119	2	70-130/25
78-93-3	2-Butanone (MEK)	50	53.0	106	37.3	75	35* b	70-130/25
104-51-8	n-Butylbenzene	50	48.0	96	46.9	94	2	70-130/25
135-98-8	sec-Butylbenzene	50	50.7	101	49.5	99	2	70-130/25
98-06-6	tert-Butylbenzene	50	48.0	96	46.3	93	4	70-130/25
75-15-0	Carbon disulfide	50	44.5	89	42.7	85	4	70-130/25
56-23-5	Carbon tetrachloride	50	50.6	101	46.7	93	8	70-130/25
108-90-7	Chlorobenzene	50	58.4	117	58.0	116	1	70-130/25
75-00-3	Chloroethane	50	34.0	68* a	31.2	62* a	9	70-130/25
67-66-3	Chloroform	50	41.6	83	40.0	80	4	70-130/25
74-87-3	Chloromethane	50	43.4	87	41.5	83	4	70-130/25
95-49-8	o-Chlorotoluene	50	45.5	91	44.5	89	2	70-130/25
106-43-4	p-Chlorotoluene	50	48.2	96	47.3	95	2	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	43.2	86	41.7	83	4	70-130/25
124-48-1	Dibromochloromethane	50	62.9	126	61.5	123	2	70-130/25
95-50-1	1,2-Dichlorobenzene	50	52.1	104	51.9	104	0	70-130/25
541-73-1	1,3-Dichlorobenzene	50	53.5	107	53.0	106	1	70-130/25
106-46-7	1,4-Dichlorobenzene	50	56.0	112	54.9	110	2	70-130/25
75-71-8	Dichlorodifluoromethane	50	49.0	98	45.8	92	7	70-130/25
75-34-3	1,1-Dichloroethane	50	39.4	79	37.4	75	5	70-130/25
107-06-2	1,2-Dichloroethane	50	47.6	95	46.5	93	2	70-130/25
75-35-4	1,1-Dichloroethene	50	48.3	97	42.7	85	12	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	43.8	88	42.0	84	4	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	45.2	90	43.9	88	3	70-130/25
78-87-5	1,2-Dichloropropane	50	40.6	81	39.4	79	3	70-130/25
142-28-9	1,3-Dichloropropane	50	49.2	98	49.0	98	0	70-130/25
594-20-7	2,2-Dichloropropane	50	42.4	85	40.1	80	6	70-130/25
563-58-6	1,1-Dichloropropene	50	48.9	98	44.2	88	10	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	48.1	96	46.4	93	4	70-130/25
10061-02-6	trans-1,3-Dichloropropene	50	51.3	103	49.3	99	4	70-130/25

Page 2 of 2

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN1853-BS	N49088.D	I	01/27/11	JP	n/a	n/a	MSN1853
MSN1853-BSD	N49089.D	1	01/27/11	JP	n/a	n/a	MSN1853

The QC reported here applies to the following samples:

M97347-1, M97347-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	50	55.6	111	53.6	107	4	70-130/25
87-68-3	Hexachlorobutadiene	50	65.1	130	62.5	125	4	70-130/25
98-82-8	Isopropylbenzene	50	58.4	117	56.2	112	4	70-130/25
99-87-6	p-Isopropyltoluene	50	50.4	101	49.0	98	3	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	42.9	86	41.3	83	4	70-130/25
74-95-3	Methylene bromide	50	54.4	109	53.1	106	2	70-130/25
75-09-2	Methylene chloride	50	42.7	85	39.3	79	8	70-130/25
103-65-1	n-Propylbenzene	50	48.1	96	46.6	93	3	70-130/25
100-42-5	Styrene	50	62.6	125	61.8	124	1	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	60.8	122	59.2	118	3	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	44.8	90	44.1	88	2	70-130/25
127-18-4	Tetrachloroethene	50	67.5	135* a	65.0	130	4	70-130/25
108-88-3	Toluene	50	51.0	102	49.2	98	4	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	59.9	120	60.0	120	0	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	64.0	128	62.6	125	2	70-130/25
71-55-6	1,1,1-Trichloroethane	50	43.4	87	41.2	82	5	70-130/25
79-00-5	1,1,2-Trichloroethane	50	46.7	93	46.3	93	1	70-130/25
79-01-6	Trichloroethene	50	48.8	98	45.1	90	8	70-130/25
75-69-4	Trichlorofluoromethane	50	40.3	81	36.0	72	11	70-130/25
96-18-4	1,2,3-Trichloropropane	50	43.5	87	42.3	85	3	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	49.7	99	48.4	97	3	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	49.5	99	48.4	97	2	70-130/25
108-05-4	Vinyl Acetate	50	24.2	48* ^a	23.9	48* a	1	70-130/25
75-01-4	Vinyl chloride	50	42.6	85	41.0	82	4	70-130/25
	m,p-Xylene	100	119	119	116	116	3	70-130/25
95-47-6	o-Xylene	50	59.6	119	58.4	117	2	70-130/25
CAS No.	Surrogate Recoveries	BSP	F	BSD	Limits			
21101101	2211 28410 21000 , 01 100		~					
1868-53-7	Dibromofluoromethane	91%	9	2%	70-1309	6		
2037-26-5	Toluene-D8	104%	104%		70-130%			
460-00-4	4-Bromofluorobenzene	90%	9	1%	70-1309	6		

⁽a) Outside control limits. Blank Spike meets program technical requirements.

⁽b) Outside control limits. Individual spike recoveries within acceptance limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2170-BS	E51391.D	1	01/31/11	TD	n/a	n/a	MSE2170
MSE2170-BSD	E51392.D	1	01/31/11	TD	n/a	n/a	MSE2170

The QC reported here applies to the following samples:

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	50	62.5	125	57.6	115	8	70-130/25
71-43-2	Benzene	50	54.7	109	55.9	112	2	70-130/25
108-86-1	Bromobenzene	50	52.4	105	54.8	110	4	70-130/25
74-97-5	Bromochloromethane	50	50.5	101	51.3	103	2	70-130/25
75-27-4	Bromodichloromethane	50	53.3	107	53.7	107	1	70-130/25
75-25-2	Bromoform	50	46.8	94	46.5	93	1	70-130/25
74-83-9	Bromomethane	50	49.1	98	48.8	98	1	70-130/25
78-93-3	2-Butanone (MEK)	50	51.3	103	49.4	99	4	70-130/25
104-51-8	n-Butylbenzene	50	58.3	117	60.0	120	3	70-130/25
135-98-8	sec-Butylbenzene	50	56.6	113	57.9	116	2	70-130/25
98-06-6	tert-Butylbenzene	50	57.9	116	59.8	120	3	70-130/25
75-15-0	Carbon disulfide	50	57.1	114	58.5	117	2	70-130/25
56-23-5	Carbon tetrachloride	50	55.6	111	56.5	113	2	70-130/25
108-90-7	Chlorobenzene	50	52.2	104	54 .5	109	4	70-130/25
75-00-3	Chloroethane	50	51.0	102	52.5	105	3	70-130/25
67-66-3	Chloroform	50	52.9	106	54.3	109	3	70-130/25
74-87-3	Chloromethane	50	49.8	100	51.4	103	3	70-130/25
95-49-8	o-Chlorotoluene	50	55.5	111	57.8	116	4	70-130/25
106-43-4	p-Chlorotoluene	50	56.2	112	57.6	115	2	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	42.8	86	42.5	85	1	70-130/25
124-48-1	Dibromochloromethane	50	49.2	98	50.9	102	3	70-130/25
95-50-1	1,2-Dichlorobenzene	50	51.7	103	53.6	107	4	70-130/25
541-73-1	1,3-Dichlorobenzene	50	50.5	101	52.2	104	3	70-130/25
106-46-7	1,4-Dichlorobenzene	50	55.3	111	56.6	113	2	70-130/25
75-71-8	Dichlorodifluoromethane	50	64.5	129	65.5	131* a	2	70-130/25
75-34-3	1,1-Dichloroethane	50	53.2	106	55.3	111	4	70-130/25
107-06-2	1,2-Dichloroethane	50	49.5	99	50.4	101	2	70-130/25
75-35-4	1,1-Dichloroethene	50	52.7	105	54.0	108	2	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	47.5	95	47.9	96	1	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	50.5	101	52.3	105	4	70-130/25
78-87-5	1,2-Dichloropropane	50	51.2	102	51.6	103	1	70-130/25
142-28-9	1,3-Dichloropropane	50	47.3	95	47.6	95	1	70-130/25
594-20-7	2,2-Dichloropropane	50	58.3	117	59.6	119	2	70-130/25
563-58-6	1,1-Dichloropropene	50	53.8	108	55.3	111	3	70-130/25
	cis-1,3-Dichloropropene	50	53.8	108	55.2	110	3	70-130/25
10061-02-6	trans-1,3-Dichloropropene	50	55.5	111	58.2	116	5	70-130/25

Page 2 of 2

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch MSE2170-BS E51391.D 1 01/31/11 TD n/a n/a MSE2170 MSE2170-BSD E51392.D 1 01/31/11 TD n/a n/a MSE2170
--

The QC reported here applies to the following samples:

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	50	53.5	107	55.3	111	3	70-130/25
87-68-3	Hexachlorobutadiene	50	60.8	122	63.7	127	· 5	70-130/25
98-82-8	Isopropylbenzene	50	62.9	126	65.7	131* a	4	70-130/25
99-87-6	p-Isopropyltoluene	50	58.3	117	59.7	119	2	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	41.1	82	42.0	84	2	70-130/25
74-95-3	Methylene bromide	50	50.1	100	50.6	101	1	70-130/25
75-09-2	Methylene chloride	50	50.4	101	51.9	104	3	70-130/25
103-65-1	n-Propylbenzene	50	54.7	109	56.5	113	3	70-130/25
100-42-5	Styrene	50	49.1	98	50.3	101	2	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	53.5	107	53.9	108	1	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	47.2	94	48.5	97	3	70-130/25
127-18-4	Tetrachloroethene	50	50.2	100	51.2	102	2	70-130/25
108-88-3	Toluene	50	50.6	101	51.7	103	. 2	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	43.3	87	46.2	92	6	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	49.1	98	51.7	103	5	70-130/25
71-55-6	1,1,1-Trichloroethane	50	52.8	106	53.6	107	2	70-130/25
79-00-5	1,1,2-Trichloroethane	50	48.9	98	50.9	102	4	70-130/25
79-01-6	Trichloroethene	50	54.3	109	55.2	110	2	70-130/25
75-69-4	Trichlorofluoromethane	50	55.2	110	55.6	111	1	70-130/25
96-18-4	1,2,3-Trichloropropane	50	44.3	89	46.2	92	4	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	54.6	109	56.6	113	4	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	55.0	110	56.4	113	3	70-130/25
108-05-4	Vinyl Acetate	50	32.6	65* a	34.4	69* a	5	70-130/25
75-01-4	Vinyl chloride	50	51.2	102	53.1	106	4	70-130/25
	m,p-Xylene	100	107	107	111	111	4	70-130/25
95-47-6	o-Xylene	50	48.8	98	49.4	99	1	70-130/25
CAS No.	Surrogate Recoveries	BSP	BS	SD	Limits			
1868-53-7	Dibromofluoromethane	109%		1%	70-1309			
2037-26-5	Toluene-D8	115%	11	6%	70-1309	%		
460-00-4	4-Bromofluorobenzene	112%	11	4%	70-1309	%		

⁽a) Outside control limits. Blank Spike meets program technical requirements.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample M97323-5MS M97323-5MSD M97323-5	File ID N49107.D N49108.D N49106.D	DF 1 1	Analyzed 01/27/11 01/27/11 01/27/11	By JP JP JP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSN1853 MSN1853 MSN1853
---	---	--------------	--	----------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

M97347-1, M97347-2

CAS No.	Compound	M97323 ug/l	i-5 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
CAS No.	Compound	ug/1	Ų	ug/1	пВл	70	ugyı	/6	KI D	KWKID
67-64-1	Acetone	ND		50	20.2	40* a	21.0	42* a	4	70-130/30
71-43-2	Benzene	14.9		50	58.5	87	57.4	85	2	70-130/30
108-86-1	Bromobenzene	ND		50	53.9	108	54.1	108	0	70-130/30
74-97-5	Bromochloromethane	ND		50	49.7	99	47.9	96	4	70-130/30
75-27-4	Bromodichloromethane	ND		50	45.4	91	44.3	89	2	70-130/30
75-25-2	Bromoform	ND		50	56.1	112	57.2	114	2	70-130/30
74-83-9	Bromomethane	ND		50	55.6	111	58.2	116	5	70-130/30
78-93-3	2-Butanone (MEK)	ND		50	29.6	59* ª	29.9	60* a	1	70-130/30
104-51-8	n-Butylbenzene	ND		50	46.1	92	46.0	92	0	70-130/30
135-98-8	sec-Butylbenzene	ND		50	49.6	99	49.7	99	0	70-130/30
98-06-6	tert-Butylbenzene	ND		50	46.2	92	45.4	91	2	70-130/30
75-15-0	Carbon disulfide	ND		50	45.7	91	44.5	89	3	70-130/30
56-23-5	Carbon tetrachloride	ND		50	44.4	89	43.7	87	2	70-130/30
108-90-7	Chlorobenzene	ND		50	60.2	120	60.1	120	0	70-130/30
75-00-3	Chloroethane	ND		50	38.3	77	33.8	68* a	12	70-130/30
67-66-3	Chloroform	ND		50	37.9	76	37.6	75	1	70-130/30
74-87-3	Chloromethane	ND		50	40.0	80	38.2	76	5	70-130/30
95-49-8	o-Chlorotoluene	ND		50	43.9	88	43.4	87	1	70-130/30
106-43-4	p-Chlorotoluene	ND		50	46.8	94	45.6	91	3	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		50	40.1	80	42.5	85	6	70-130/30
124-48-1	Dibromochloromethane	ND		50	60.5	121	59.9	120	1	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		50	51.2	102	51.9	104	1	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		50	52.3	105	52.3	105	0	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		50	54.5	109	54.3	109	0	70-130/30
75-71-8	Dichlorodifluoromethane	ND		50	46.4	93	43.4	87	7	70-130/30
75-34-3	1,1-Dichloroethane	ND		50	37.5	75	36.7	73	2	70-130/30
107-06-2	1,2-Dichloroethane	ND		50	43.0	86	41.1	82	5	70-130/30
75-35-4	1,1-Dichloroethene	ND		50	48.6	97	47.4	95	3	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		50	43.6	87	42.6	85	2	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		50	45.4	91	44.6	89	2	70-130/30
78-87-5	1,2-Dichloropropane	ND		50	40.6	81	39.1	78	4	70-130/30
142-28-9	1,3-Dichloropropane	ND		50	49.9	100	49.3	99	1	70-130/30
594-20-7	2,2-Dichloropropane	ND		50	36.6	73	35.5	71	3	70-130/30
563-58-6	1,1-Dichloropropene	ND		50	46.8	94	45.4	91	3	70-130/30
	cis-1,3-Dichloropropene	ND		50	44.0	88	44.2	88	0	70-130/30
10061-02-6	trans-1,3-Dichloropropene	ND		50	45.6	91	45.6	91	0	70-130/30

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
M97323-5MS	N49107.D	1	01/27/11	JP	11/a	n/a	MSN1853
M97323-5MSD	N49108.D	1	01/27/11	JP	11/a	n/a	MSN1853
M97323-5	N49106.D	1	01/27/11	JP	11/a	n/a	MSN1853

The QC reported here applies to the following samples:

Method: SW846 8260B

M97347-1, M97347-2

M97323-5 Spike MS MS MSD MS CAS No. Compound ug/l Q ug/l ug/l % ug/l %	SD RPD	Limits Rec/RPD
100-41-4 Ethylbenzene 188 50 208 40* b 203 30°	* b 2	70-130/30
87-68-3 Hexachlorobutadiene ND 50 61.2 122 64.4 125	-	70-130/30
98-82-8 Isopropylbenzene 25.8 50 76.3 101 75.0 98		70-130/30
99-87-6 p-Isopropyltoluene ND 50 49.4 99 48.6 97		70-130/30
1634-04-4 Methyl Tert Butyl Ether 120 50 165 90 163 86		70-130/30
74-95-3 Methylene bromide ND 50 50.6 101 48.9 98		70-130/30
75-09-2 Methylene chloride ND 50 41.9 84 41.2 82		70-130/30
103-65-1 n-Propylbenzene 6.6 50 51.9 91 51.0 89		70-130/30
FJ	1*a 1	70-130/30
630-20-6 1,1,1,2-Tetrachloroethane ND 50 60.5 121 59.7 119		70-130/30
79-34-5 1,1,2,2-Tetrachloroethane ND 50 42.2 84 42.9 86		70-130/30
, v v	6* a 2	70-130/30
108-88-3 Toluene 5.0 50 54.8 100 53.8 98		70-130/30
87-61-6 1,2,3-Trichlorobenzene ND 50 59.7 119 62.4 129		70-130/30
120-82-1 1,2,4-Trichlorobenzene ND 50 63.2 126 65.0 130		70-130/30
71-55-6 1,1,1-Trichloroethane ND 50 40.5 81 39.2 78		70-130/30
79-00-5 1,1,2-Trichloroethane ND 50 45.5 91 45.8 92		70-130/30
79-01-6 Trichloroethene ND 50 46.0 92 45.7 91		70-130/30
75-69-4 Trichlorofluoromethane ND 50 36.8 74 35.4 71		70-130/30
96-18-4 1,2,3-Trichloropropane ND 50 40.5 81 40.4 81		70-130/30
95-63-6 1,2,4-Trimethylbenzene 55.2 50 92.4 74 90.8 71		70-130/30
108-67-8 1,3,5-Trimethylbenzene 3.5 50 51.1 95 49.5 92		70-130/30
108-05-4 Vinyl Acetate ND 50 23.7 47* a 24.4 49		70-130/30
75-01-4 Vinyl chloride ND 50 43.8 88 42.4 85	3	70-130/30
m,p-Xylene 23.1 100 142 119 139 116	6 2	70-130/30
95-47-6 o-Xylene 83.8 50 132 96 130 92	2	70-130/30
CAS No. Surrogate Recoveries MS MSD M97323-5 Limits		
1868-53-7 Dibromofluoromethane 87% 87% 86% 70-130%		
2037-26-5 Toluene-D8 101% 100% 102% 70-130%		
460-00-4 4-Bromofluorobenzene 87% 87% 89% 70-130%		

⁽a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

⁽b) Outside control limits due to high level in sample relative to spike amount.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample File ID DF Analymeter M97347-3MS E51402.D 5 01/31 M97347-3MSD E51403.D 5 01/31 M97347-3 E51401.D 1 01/31	/11 TD n/a /11 TD n/a	Date Prep Batch Analytical Batch n/a MSE2170 n/a MSE2170 n/a MSE2170
---	--------------------------	--

The QC reported here applies to the following samples:

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	M97347 ug/l	7-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
07.04.1		ND		250	229	92	232	93	1	70-130/30
67-64-1	Acetone	8.2		250 250	282	110	288	112	2	70-130/30
71-43-2	Benzene	ND		250	261	104	274	110	5	70-130/30
108-86-1	Bromobenzene Bromochloromethane	ND		250	254	102	260	104	2	70-130/30
74-97-5	Bromodichloromethane	ND		250 250	243	97	252	101	4	70-130/30
75-27-4	Bromoform	ND		250	178	71	179	72	1	70-130/30
75-25-2		ND		250 250	260	104	263	105	1	70-130/30
74-83-9	Bromomethane	ND		250	244	98	200	80	20	70-130/30
78-93-3	2-Butanone (MEK)	ND		250	290	116	308	123	6	70-130/30
104-51-8	n-Butylbenzene	ND		250 250	283	113	300	120	6	70-130/30
135-98-8	sec-Butylbenzene	ND		250	282	113	301	120	7	70-130/30
98-06-6	tert-Butylbenzene	ND		250	236	94	240	96	2	70-130/30
75-15-0	Carbon disulfide	ND		250	280	112	289	116	3	70-130/30
56-23-5	Carbon tetrachloride			250 250	269	108	273	109	1	70-130/30
108-90-7	Chlorobenzene	ND ND		250 250	267	108	276	110	3	70-130/30
75-00-3	Chloroethane	ND		250 250	274	110	276	110	1	70-130/30
67-66-3	Chloroform			250 250	278	111	284	114	2	70-130/30
74-87-3	Chloromethane	ND ND		250 250	275	110	291	116	6	70-130/30
95-49-8	o-Chlorotoluene	ND		250 250	279	112	293	117	5	70-130/30
106-43-4	p-Chlorotoluene			250 250	195	78	204	82	5	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane			250		84	217	87	3	70-130/30
124-48-1	Dibromochloromethane	ND ND		250 250	211 255	102	265	106	3 4	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		250 250	252	102	258	103	2	70-130/30
541-73-1	1,3-Dichlorobenzene			250 250	273	101	280	112	3	70-130/30
106-46-7	1,4-Dichlorobenzene	ND ND		250 250	348	109 139* a	350	140* a	3 1	70-130/30
75-71-8	Dichlorodifluoromethane	ND		250 250	278	111	287	115	3	70-130/30
75-34-3	1,1-Dichloroethane	ND		250	237	95	244	98	3	70-130/30
107-06-2	1,2-Dichloroethane			250	273	109	282	113	3	70-130/30
75-35-4	1,1-Dichloroethene	ND				96	248	99	3	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		250 250	240 260	104	268	107	3	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND					266	107	ა 5	70-130/30
78-87-5	1,2-Dichloropropane	ND		250	254 230	102 92	242	97	5 5	70-130/30
142-28-9	1,3-Dichloropropane	ND		250		92 121	305	122		70-130/30
594-20-7	2,2-Dichloropropane	ND		250	303				1	
563-58-6	1,1-Dichloropropene	ND		250	277	111	282	113	2	70-130/30 70-130/30
	cis-1,3-Dichloropropene	ND		250	244	98	252	101 102	3 4	
10061-02-6	trans-1,3-Dichloropropene	ND		250	247	99	256	102	4	70-130/30

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

The QC reported here applies to the following samples:

Method: SW846 8260B

M97347-3, M97347-4, M97347-5, M97347-6

CAS No.	Compound	M97347 ug/l	7-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	ND		250	270	108	282	113	4	70-130/30
87-68-3	Hexachlorobutadiene	ND		250	311	124	334	134* a	7	70-130/30
98-82-8	Isopropylbenzene	ND		250	315	126	336	134* a	6	70-130/30
99-87-6	p-Isopropyltoluene	ND		250	290	116	307	123	6	70-130/30
1634-04-4	Methyl Tert Butyl Ether	1.6		250	200	79	209	83	4	70-130/30
74-95-3	Methylene bromide	ND		250	250	100	249	100	0	70-130/30
75-09-2	Methylene chloride	ND		250	256	102	265	106	3	70-130/30
103-65-1	n-Propylbenzene	ND		250	275	110	290	116	5	70-130/30
100-42-5	Styrene	ND		250	209	84	215	86	3	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND		250	269	108	277	111	3	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		250	232	93	236	94	2	70-130/30
127-18-4	Tetrachloroethene	ND		250	256	102	264	106	3	70-130/30
108-88-3	Toluene	ND		250	251	100	254	102	1	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		250	216	86	232	93	7	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND		250	238	95	260	104	9	70-130/30
71-55-6	1,1,1-Trichloroethane	ND		250	279	112	282	113	1	70-130/30
79-00-5	1,1,2-Trichloroethane	ND		250	248	99	243	97	2	70-130/30
79-01-6	Trichloroethene	ND		250	270	108	275	110	2	70-130/30
75-69-4	Trichlorofluoromethane	ND		250	293	117	304	122	4	70-130/30
96-18-4	1,2,3-Trichloropropane	ND		250	204	82	218	87	7	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND		250	254	102	272	109	7	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND		250	261	104	279	112	7	70-130/30
108-05-4	Vinyl Acetate	ND		250	149	60* a	160	64* a	7	70-130/30
75-01-4	Vinyl chloride	ND		250	276	110	284	114	3	70-130/30
	m,p-Xylene	ND		500	538	108	556	111	3	70-130/30
95-47-6	o-Xylene	ND		250	243	97	250	100	3	70-130/30
CAS No.	Surrogate Recoveries	MS		MSD	:	M97347-3	Limits			
1868-53-7	Dibromofluoromethane	108%		110%		114%	70-1309	%		
2037-26-5	Toluene-D8	112%		113%		118%	70-1309			
460-00-4	4-Bromofluorobenzene	108%		115%		112%	70-1309			

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Volatile Internal Standard Area Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSE2170-CC2152 Injection Date: 01/31/11 Lab File ID: E51390.D Injection Time: 10:10

Instrument ID: GCMSE Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	258610	9.10	421768	9.98	186730	13.24	181279	15.80	45421	6.61
Upper Limit a	517220	9.60	843536	10.48	373460	13.74	362558	16.30	90842	7.11
Lower Limit b	129305	8.60	210884	9.48	93365	12.74	90640	15.30	22711	6.11
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSE2170-BS	260644	9.10	422955	9.97	189126	13.24	176962	15.80	43862	6.61
MSE2170-BSD	255699	9.10	415613	9.97	185442	13.24	172080	15.80	44740	6.60
MSE2170-MB	242359	9.09	389164	9.97	166698	13.24	158217	15.80	39770	6.61
ZZZZZZ	236819	9.10	380812	9.97	162514	13.25	153840	15.80	37004	6.61
ZZZZZZ	250666	9.10	399919	9.98	168270	13.24	160247	15.81	40885	6.61
ZZZZZZ	246889	9.10	397174	9.98	165727	13.24	161053	15.80	42108	6.60
M97347-5	236949	9.10	380012	9.98	162471	13.24	151386	15.81	33128	6.61
M97347-6	238982	9.10	383811	9.97	163262	13.24	156243	15.80	40223	6.61
ZZZZZZ	237548	9.10	376532	9.97	161884	13.25	151687	15.80	35730	6.62
M97347-3	233433	9.09	374476	9.98	157549	13.24	149198	15.80	37233	6.60
M97347-3MS	242688	9.10	398125	9.97	176314	13.24	170130	15.80	37199	6.61
M97347-3MSD	244229	9.09	400072	9.98	174295	13.24	163410	15.80	36875	6.60
M97347-4	237201	9.09	378277	9.97	157690	13.24	153787	15.80	36247	6.60
ZZZZZZ	241972	9.10	382213	9.98	164786	13.24	151740	15.80	36929	6.61
ZZZZZZ	233061	9.10	376272	9.97	158030	13.24	147882	15.80	35185	6.61
ZZZZZZ	237457	9.10	381939	9.97	162081	13.24	154036	15.80	34352	6.60
ZZZZZZ	225056	9.09	367319	9.97	153964	13.24	145320	15.80	34019	6.61
ZZZZZZ	220505	9.09	361291	9.98	153410	13.24	142387	15.80	35261	6.60
ZZZZZZ	222436	9.10	354027	9.97	150787	13.24	146005	15.80	31157	6.61
ZZZZZZ	223741	9.09	352296	9.98	156478	13.24	144588	15.80	36835	6.60
ZZZZZZ	220666	9.10	355602	9.98	151629	13.24	144221	15.80	35853	6.61
ZZZZZZ	223768	9.09	361745	9.97	153859	13.24	143640	15.80	32181	6.60
ZZZZZZ	215077	9.10	356557	9.97	153432	13.24	142576	15.80	32321	6.60

IS 1 = Pentafluorobenzene

IS 2 = 1,4-Difluorobenzene

IS 3 = Chlorobenzene-D5

IS 4 = 1,4-Dichlorobenzene-d4

IS 5 = Tert Butyl Alcohol-D9

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Page I of I

Volatile Internal Standard Area Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std:	MSN1853-CC1823	Injection Date:	01/27/11
Lab File ID:	N49087.D	Injection Time:	12:29
Instrument ID:	GCMSN	Method:	SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	167293	8.60	228544	9.46	124496	12.71		15.27	60814	6.19
Upper Limit ^a	334586	9.10	457088	9.96	248992	13.21			121628	6.69
Lower Limit b	83647	8.10	114272	8.96	62248	12.21	59383	14.77	30407	5.69
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSN1853-BS	171973	8.60	235759	9.46	129645	12.71	122920	15.27	65373	6.19
MSN1853-BSD	172901	8.60	238171	9.46	128716	12.71	121843		61507	6.19
MSN1853-MB	167568	8.61	230698	9.46	119475	12.71	106453		65796	6.19
ZZZZZZ	167656	8.61	227015	9.46	115712	12.71	104611	15.27		6.19
ZZZZZZ	150220	8.61	203142	9.47	114651	12.71	102569	15.27	54835	6.19
ZZZZZZ	165488	8.60	226318	9.46	117240	12.71	113961	15.27	57167	6.19
ZZZZZZ	169643	8.61	231137	9.46	121461	12.71	118830	15.27	58986	6.19
ZZZZZZ	174500	8.60	238281	9.46	122847	12.71	119979	15.27	61898	6.19
ZZZZZZ	177827	8.60	242382	9.46	123658	12.71	124441	15.27	62003	6.19
ZZZZZZ	178478	8.60	245822	9.46	125782	12.71	123814	15.27	68820	6.19
ZZZZZZ	180740	8.60	247357	9.46	125170	12.71	116329	15.27	70138	6.19
M97347-1	173511	8.60	240361	9.46	122013	12.71	112928.	15.27	64973	6.19
M97347-2	173123	8.60	238017	9.46	120131	12.71	111408	15.27	69741	6.19
ZZZZZZ	174180	8.60	236904	9.46	123066	12.71	124552	15.27	66478	6.19
ZZZZZZ	185310	8.61	250555	9.46	128644	12.71	123763	15.27	68471	6.19
ZZZZZZ	186798	8.60	255134	9.46	127624	12.71	121197	15.27	67310	6.19
M97323-5	187988	8.60	256688	9.46	129415	12.71	129707	15.27	65318	6.19
M97323-5MS	195056	8.60	268216	9.46	138949	12.71	139537	15.27	69942	6.19
M97323-5MSD	195750	8.60	267415	9.46	139495	12.71	139807	15.27	73926	6.19
ZZZZZZ	193474	8.61	262804	9.46	131558	12.71	131227	15.27	65654	6.19
ZZZZZZ	196003	8.60	262972	9.46	130182	12.71	121431	15.27	64874	6.19

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Method: SW846 8260B

Matrix: AQ

Samples and QC shown here apply to the above method

Lab			
File ID	S1	S2	S3
N49101.D	91.0	102.0	93.0
N49102.D	88.0	101.0	95.0
E51401.D	114.0	118.0	112.0
E51404.D	111.0	115.0	110.0
E51398.D	113.0	116.0	111.0
E51399.D	110.0	116.0	109.0
N49107.D	87.0	101.0	87.0
N49108.D	87.0	100.0	87.0
E51402.D	108.0	112.0	108.0
E51403.D	110.0	113.0	115.0
E51391.D	109.0	115.0	112.0
E51392.D	111.0	116.0	114.0
E51394.D	112.0	116.0	110.0
N49088.D	91.0	104.0	90.0
N49089.D	92.0	104.0	91.0
N49091.D	90.0	101.0	94.0
	File ID N49101.D N49102.D E51401.D E51404.D E51398.D E51399.D N49107.D N49108.D E51402.D E51403.D E51391.D E51392.D E51394.D N49088.D N49089.D	File ID S1 N49101.D 91.0 N49102.D 88.0 E51401.D 114.0 E51404.D 111.0 E51398.D 113.0 E51399.D 110.0 N49107.D 87.0 N49108.D 87.0 E51402.D 108.0 E51403.D 110.0 E51391.D 109.0 E51392.D 111.0 E51394.D 112.0 N49088.D 91.0 N49089.D 92.0	File ID S1 S2 N49101.D 91.0 102.0 N49102.D 88.0 101.0 E51401.D 114.0 118.0 E51404.D 111.0 115.0 E51398.D 113.0 116.0 E51399.D 110.0 116.0 N49107.D 87.0 101.0 N49108.D 87.0 100.0 E51402.D 108.0 112.0 E51391.D 109.0 115.0 E51392.D 111.0 116.0 E51394.D 112.0 116.0 N49088.D 91.0 104.0 N49089.D 92.0 104.0

Surrogate Compounds Recovery Limits

S1 = Dibromofluoromethane 70-130% S2 = Toluene-D870-130% S3 = 4-Bromofluorobenzene 70-130%

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-MB	I70221.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/I
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/l
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.3	ug/I
108-95-2	Phenol	ND	5.0	2.1	ug/I
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/I
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l
					_

Method Blank Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-MB	170221.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units	Q
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	1.8	5.0	0.61	ug/I	J
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/i	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalen e	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries		Limits			
367-12-4	2-Fluorophenol	43%	15-110			
4165-62-2	Phenol-d5	26%	15-110			
118-79-6	2,4,6-Tribromophenol	65%	15-110			
4165-60-0	Nitrobenzene-d5	74%	30-130			
321-60-8	2-Fluorobiphenyl	73%	30-130			
1718-51-0	Terphenyl-d14	82%	30-130	%		

Method: SW846 8270C

Blank Spike Summary Job Number: M97347

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-BS	170222.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
65-85-0	Benzoic Acid	100	18.3	18* a	30-130
95-57-8	2-Chlorophenol	100	78.4	78	30-130
59-50-7	4-Chloro-3-methyl phenol	100	84.5	85	30-130
120-83-2	2,4-Dichlorophenol	100	85.8	86	30-130
105-67-9	2,4-Dimethylphenol	100	76.4	76	30-130
51-28-5	2,4-Dinitrophenol	100	86.5	87	30-130
534-52-1	4,6-Dinitro-o-cresol	100	85.1	85	30-130
95-48-7	2-Methylphenol	100	72.7	73	30-130
	3&4-Methylphenol	200	133	67	30-130
88-75-5	2-Nitrophenol	100	85.5	86	30-130
100-02-7	4-Nitrophenol	100	46.5	47	30-130
87-86-5	Pentachlorophenol	100	78.1	78	30-130
108-95-2	Phenol	100	34.1	34	30-130
95-95-4	2,4,5-Trichlorophenol	100	85.1	85	30-130
88-06-2	2,4,6-Trichlorophenol	100	85.2	85	30-130
83-32-9	Acenaphthene	50	43.2	86	40-140
208-96-8	Aceлaphthylene	50	35.3	71	40-140
62-53-3	Aniline	50	32.3	65	40-140
120-12-7	Anthracene	50	41.9	84	40-140
56-55-3	Benzo(a)anthracene	50	47.4	95	40-140
50-32-8	Benzo(a) pyrene	50	39.3	79	40-140
205-99-2	Benzo(b)fluoranthene	50	44.9	90	40-140
191-24-2	Benzo(g,h,i)perylene	50	35.4	71	40-140
207-08-9	Benzo(k)fluoranthene	50	45.6	91	40-140
101-55-3	4-Bromophenyl phenyl ether	50	42.3	85	40-140
85-68-7	Butyl benzyl phthalate	50	46.2	92	40-140
91-58-7	2-Chloronaphthalene	50	42.1	84	40-140
106-47-8	4-Chloroaniline	50	34.8	70	40-140
218-01-9	Chrysene	50	50.1	100	40-140
111-91-1	bis(2-Chloroethoxy)methane	50	41.7	83	40-140
111-44-4	bis(2-Chloroethyl)ether	50	43.3	87	40-140
108-60-1	bis(2-Chloroisopropyl)ether	50	45.3	91	40-140
7005-72-3	4-Chlorophenyl phenyl ether	50	43.9	88	40-140
121-14-2	2,4-Dinitrotoluene	50	44.9	90	40-140
606-20-2	2,6-Dinitrotoluene	50	43.6	87	40-140
91-94-1	3,3'-Dichlorobenzidine	50	38.2	76	40-140

Method: SW846 8270C

Blank Spike Summary Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-BS	I70222.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

M97347-2, M97347-3,	M97347-4,	M97347-5,	M97347-6
---------------------	-----------	-----------	----------

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
53-70-3	Dibenzo(a,h)anthracene	50	37.7	75	40-140
132-64-9	Dibenzofuran	50	41.9	84	40-140
84-74-2	Di-n-butyl phthalate	50	45.7	91	40-140
117-84-0	Di-n-octyl phthalate	50	51.7	103	40-140
84-66-2	Diethyl phthalate	50	46.7	93	40-140
131-11-3	Dimethyl phthalate	50	44.7	89	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	50	48.1	96	40-140
206-44-0	Fluoranthene	50	46.0	92	40-140
86-73-7	Fluorene	50	44.3	89	40-140
118-74-1	Hexachlorobenzene	50	42.6	85	40-140
77-47-4	Hexachlorocyclopentadiene	50	30.2	60	40-140
67-72-1	Hexachloroethane	50	38.6	77	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	50	37.7	7 5	40-140
78-59-1	Isophorone	50	41.5	83	40-140
91-57-6	2-Methylnaphthalene	50	39.4	79	40-140
88-74-4	2-Nitroaniline	50	44.6	89	40-140
99-09-2	3-Nitroaniline	50	34.9	70	40-140
100-01-6	4-Nitroaniline	50	42.0	84	40-140
91-20-3	Naphthalene	50	42.4	85	40-140
98-95-3	Nitrobenzene	50	41.4	83	40-140
621-64-7	N-Nitroso-di-n-propylamine	50	46.3	93	40-140
86-30-6	N-Nitrosodiphenylamine	50	43.0	86	40-140
85-01-8	Phenanthrene	50	43.1	86	40-140
129-00-0	Pyrene	50	43.8	88	40-140
110-86-1	Pyridine	50	26.1	52	40-140
CAS No.	Surrogate Recoveries	BSP	Lio	nits	
367-12-4	2-Fluorophenol	50%	15-	110%	
4165-62-2	Phenol-d5	32%	15-	110%	
118-79-6	2,4,6-Tribromophenol	78%	15-	110%	
4165-60-0	Nitrobenzene-d5	83%	30-	130%	
321-60-8	2-Fluorobiphenyl	81%	30-	130%	
1718-51-0	Terphenyl-d14	85%	30-	130%	
	- -				

Page 3 of 3

Blank Spike Summary Job Number: M97347

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23942-BS	I70222.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

M97347-2, M97347-3, M97347-4, M97347-5, M97347-6

(a) Outside control limits. Blank Spike meets program technical requirements.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	M97378 ug/l	8-1 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	ND		100	20.3	20* a	22.4	22* a	10	30-130/20
95-57-8	2-Chlorophenol	ND		100	79.9	80	76.7	77	4	30-130/20
59-50-7	4-Chloro-3-methyl phenol	ND		100	88.6	89	84.6	85	5	30-130/20
120-83-2	2,4-Dichlorophenol	ND		100	87.5	88	84.5	85	3	30-130/20
105-67-9	2,4-Dimethylphenol	ND		100	69.4	69	68.8	69	1	30-130/20
51-28-5	2,4-Dinitrophenol	ND		100	88.8	89	89.1	89	0	30-130/20
534-52-1	4,6-Dinitro-o-cresol	ND		100	87.3	87	88.7	89	2	30-130/20
95-48-7	2-Methylphenol	ND		100	71.7	72	70.4	70	2	30-130/20
	3&4-Methylphenol	ND		200	134	67	129	65	4	30-130/20
88-75-5	2-Nitrophenol	ND		100	87.8	88	85.1	85	3	30-130/20
100-02-7	4-Nitrophenol	ND		100	45.4	45	45.2	45	0	30-130/20
87-86-5	Pentachlorophenol	ND		100	83.9	84	80.8	81	4	30-130/20
108-95-2	Phenol	ND		100	34.0	34	33.4	33	2	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND		100	87.0	87	82.6	83	5	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND		100	87.2	87	84.2	84	4	30-130/20
83-32-9	Acenaphthene	ND		50	43.5	87	41.1	82	6	40-140/20
208-96-8	Acenaphthylene	ND		50	36.2	72	34.9	70	4	40-140/20
62-53-3	Aniline	ND		50	24.7	49	27.8	56	12	40-140/20
120-12-7	Anthracene	ND		50	41.6	83	40.6	81	2	40-140/20
56-55- 3	Benzo(a)anthracene	ND		50	48.5	97	46.8	94	4	40-140/20
50-32-8	Benzo(a)pyrene	ND		50	40.5	81	39.0	78	4	40-140/20
205-99-2	Benzo(b)fluoranthene	ND		50	46.3	93	43.9	88	5	40-140/20
191-24-2	Benzo(g,h,i)perylene	ND		50	35.8	72	33.5	67	7	40-140/20
207-08-9	Benzo(k)fluoranthene	ND		50	47.3	95	47.0	94	1	40-140/20
101-55-3	4-Bromophenyl phenyl ether	ND		50	43.4	87	41.8	84	4	40-140/20
85-68-7	Butyl benzyl phthalate	ND		50	46.9	94	45.6	91	3	40-140/20
91-58-7	2-Chloronaphthalene	ND		50	43.0	86	41.3	83	4	40-140/20
106-47-8	4-Chloroaniline	ND		50	18.3	37* a	21.2	42	15	40-140/20
218-01-9	Chrysene	ND		50	51.4	103	48.5	97	6	40-140/20
111-91-1	bis(2-Chloroethoxy)methane	ND		50	43.1	86	41.6	83	4	40-140/20
111-44-4	bis(2-Chloroethyl)ether	ND		50	44.8	90	41.7	83	7	40-140/20
108-60-1	bis(2-Chloroisopropyl)ether	ND		50	46.0	92	41.6	83	10	40-140/20
7005-72-3	4-Chlorophenyl phenyl ether	ND		50	43.7	87	41.1	82	6	40-140/20
121-14-2	2,4-Dinitrotoluene	ND		50	44.9	90	43.9	88	2	40-140/20
606-20-2	2,6-Dinitrotoluene	ND		50	44.3	89	43.3	87	2	40-140/20
91-94-1	3,3'-Dichlorobenzidine	ND		50	29.1	58	28.9	58	1	40-140/20

Page 2 of 3

Method: SW846 8270C

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample OP23942-MS OP23942-MSD M97378-1	File ID I70223.D I70224.D I70225.D	DF 1 1	Analyzed 02/02/11 02/02/11 02/02/11	By AA AA AA	Prep Date 01/25/11 01/25/11 01/25/11	Prep Batch OP23942 OP23942 OP23942	Analytical Batch MSI2472 MSI2472 MSI2472

The QC reported here applies to the following samples:

CAS No.	Compound	M97378-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
53-70-3	Dibenzo(a,h)anthracene	ND	50	38.2	76	36.I	72	6	40-140/20
132-64-9	Dibenzofuran	ND	50	42.2	84	40.3	81	5	40-140/20
84-74-2	Di-n-butyl phthalate	ND	50	45.8	92	44.8	90	2	40-140/20
117-84-0	Di-n-octyl phthalate	ND	50	53.7	107	52.7	105	2	40-140/20
84-66-2	Diethyl phthalate	1.6	50	46.8	90	45.2	87	3	40-140/20
131-11-3	Dimethyl phthalate	ND	50	44.7	89	43.7	87	2	40-140/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND	50	49.1	98	47.7	95	3	40-140/20
206-44-0	Fluoranthene	ND	50	46.1	92	44.1	88	4	40-140/20
86-73-7	Fluorene	ND	50	44.4	89	42.1	84	5	40-140/20
118-74-1	Hexachlorobenzene	ND	50	43.7	87	41.6	83	5	40-140/20
77-47-4	Hexachlorocyclopentadiene	ND	50	31.4	63	30.8	62	2	40-140/20
67-72-1	Hexachloroethane	ND	50	39.5	79	37.4	75	5	40-140/20
193-39-5	Indeno(1,2,3-cd)pyrene	ND	50	38.4	77	36.6	73	5	40-140/20
78-59-1	Isophorone	ND	50	43.0	86	41.3	83	4	40-140/20
91-57-6	2-Methylnaphthalene	ND	50	41.0	82	38.3	77	7	40-140/20
88-74-4	2-Nitroaniline	ND	50	45.3	91	44.0	88	3	40-140/20
99-09-2	3-Nitroaniline	ND	50	21.9	44	24.6	49	12	40-140/20
100-01-6	4-Nitroaniline	ND	50	38.6	77	38.8	78	1	40-140/20
91-20-3	Naphthalene	ND	50	43.8	88	41.9	84	4	40-140/20
98-95-3	Nitrobenzene	ND	50	42.0	84	40.8	82	3	40-140/20
621-64-7	N-Nitroso-di-n-propylamine	ND	50	48.1	96	44.5	89	8	40-140/20
86-30-6	N-Nitrosodiphenylamine	ND	50	44.3	89	42.5	85	4	40-140/20
85-01-8	Phenanthrene	ND	50	43.6	87	42.4	85	3	40-140/20
129-00-0	Pyrene	ND	50	44.4	89	43.0	86	3	40-140/20
110-86-1	Pyridine	ND	50	24.9	50	28.2	56	12	40-140/20
CAS No.	Surrogate Recoveries	MS	MSD	M 9	77378-1	Limits			
367-12-4	2-Fluorophenol	49%	49%	359		15-1109			
4165-62-2	Phenol-d5	31%	31%	219		15-1109			
118-79-6	2,4,6-Tribromophenol	78%	76%	599		15-1109			
4165-60-0	Nitrobenzene-d5	84%	80%	649		30-1309			
321-60-8	2-Fluorobiphenyl	82%	78%	659		30-1309			
1718-51-0	Terphenyl-d14	86%	85%	739	%	30-1309	%		

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97347

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample OP23942-MS	File ID I70223.D	DF	Analyzed 02/02/11	By AA	Prep Date 01/25/11	Prep Batch OP23942	Analytical Batch MSI2472
OP23942-MSD	170223.D 170224.D	1	02/02/11	AA AA	01/25/11	OP23942 OP23942	MSI2472 MSI2472
M97378-1	I70225.D	1	02/02/11	AA	01/25/11	OP23942	MSI2472

The QC reported here applies to the following samples:

Method: SW846 8270C

M97347-2, M97347-3, M97347-4, M97347-5, M97347-6

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Semivolatile Internal Standard Area Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSI2472-CC2467 Injection Date: 02/02/11 Lab File ID: I70217.D Injection Time: 12:31

Instrument ID: GCMSI Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std	292933	5.83	1097131	7.18	550055	9.67	902740	12.22	810859	17.20	707204	19.75
Upper Limit a	585866	6.33	2194262	7.68	1100110	10.17	1805480	12.72	1621718	17.70	1414408	20.25
Lower Limit b	146467	5.33	548566	6.68	275028	9.17	451370	11.72	405430	16.70	353602	19.25
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	283222	5.83	1084662	7.17	544971	9.67	894222	12.21	748949	17.19	641120	19.74
ZZZZZZ	304905	5.83	1164586	7.17	591102	9.67	965005	12.22	818052	17.20	700266	19.74
OP23942-MB	273706	5.83	1040413	7.17	527168	9.67	860523	12.22	743118	17.19	658728	19.74
OP23942-BS	252157	5.83	957662	7.17	473238	9.67	775808	12.22	689687	17.20	627759	19.74
OP23942-MS	260122	5.83	989310	7.17	500497	9.67	814896	12.22	722322	17.20	642526	19.74
OP23942-MSD	299395	5.83	1118022	7.17	551394	9.67	881335	12.22	765990	17.20	661545	19.74
M97378-1	262832	5.83	990445	7.17	495978	9.67	810599	12.21	701280	17.19	633202	19.74
ZZZZZZ	251252	5.83	947311	7.17	482552	9.67	783972	12.21	682158	17.19	607960	19.74
ZZZZZZ	258382	5.83	996174	7.17	494269	9.67	807884	12.21	701949	17.19	628283	19.74
ZZZZZZ	266583	5.83	1043941	7.18	531365	9.68	888782	12.23	788659	17.21	731119	19.75
ZZZZZZ	247082	5.83	917076	7.17	465023	9.67	767257	12.21	675145	17.19	631847	19.74
ZZZZZZ	264943	5.83	981407	7.17	487666	9.67	809096	12.21	702523	17.19	632100	19.74
ZZZZZZ	258274	5.83	965175	7.17	484318	9.67	791603	12.21	687327	17.19	622567	19.74
ZZZZZZ	232860	5.83	873207	7.17	447155	9.67	747819	12.21	653918	17.19	601004	19.74
M97347-2	244343	5.83	922740	7.17	460954	9.67	758191	12.22	660731	17.19	579604	19.74
M97347-3	246163	5.83	926909	7.17	462415	9.67	763454	12.21	656129	17.19	588324	19.74
ZZZZZZ	234573	5.83	891727	7.17	455255	9.67	745866	12.21	669674	17.19	596765	19.74

= 1,4-Dichlorobenzene-d4 IS 1

IS 2 = Naphthalene-d8 = Acenaphthene-D10 IS 3 = Phenanthrene-d10 IS 4

= Chrysene-d12 IS 5 IS 6 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Internal Standard Area Summary

Job Number: M97347

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSS888-CC884 Injection Date: 02/02/11 Lab File ID: S21213.D Injection Time: 12:54

Instrument ID: GCMSS Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	163195 326390 81598	5.72 6.22 5.22	636245 1272490 318123	7.07 7.57 6.57	303706 607412 151853	9.25 9.75 8.75	456723 913446 228362	11.44 11.94 10.94	428438 856876 214219	15.79 16.29 15.29	414759 829518 207380	18.02 18.52 17.52
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	153876	5.72	644200	7.07	311817	9.25	478355	11.43	432471	15.78	430786	18.02
M97347-4	188231	5.72	756203	7.07	372070	9.25	547151	11.43	468631	15.79	448103	18.02
M97347-5	180844	5.72	744597	7.07	363502	9.25	554158	11.43	492731	15.79	481183	18.02
M97347-6	133383	5.72	556129	7.07	267158	9.25	412175	11.43	367456	15.78	359904	18.02
ZZZZZZ	196045	5.72	805982	7.07	391757	9.25	581409	11.43	491353	15.79	471756	18.02
ZZZZZZ	187772	5.72	778262	7.07	373597	9.25	562799	11.43	507506	15.79	488668	18.02
ZZZZZZ	197713	5.72	822333	7.07	397650	9.25	609042	11.43	538695	15.79	522884	18.02
ZZZZZZ	186149	5.72	752311	7.07	368481	9.25	561793	11.43	508037	15.79	496618	18.02
ZZZZZZ	194109	5.72	798381	7.07	394050	9.25	590743	11.43	529269	15.78	507312	18.02
OP23982-MS	173864	5.72	665027	7.07	319891	9.25	478058	11.44	428244	15.79	429183	18.02
OP23982-MSD	174057	5.72	677142	7.07	323062	9.25	487152	11.43	441664	15.79	437928	18.02
ZZZZZZ	172579	5.72	702657	7.07	341221	9.25	531801	11.43	462993	15.78	468300	18.02
M97427-2	171997	5.72	701838	7.07	343974	9.25	521496	11.43	464968	15.78	458609	18.02
ZZZZZZ	178896	5.72	714774	7.07	351291	9.25	547595	11.43	461989	15.78	464311	18.02
ZZZZZZ	181307	5.72	744551	7.07	356081	9.25	547214	11.43	487837	15.78	480694	18.02
ZZZZZZ	185150	5.72	769476	7.06	368321	9.25	552772	11.43	509251	15.78	488099	18.01
OP23963-MB	223635	5.72	904117	7.06	444024	9.25	667369	11.43	570705	15.78	517933	18.01
OP23963-BS	186914	5.72	726279	7.07	342642	9.25	512609	11.43	449976	15.78	399841	18.02
OP23963-MS	183005	5.72	707658	7.06	332292	9.25	481805	11.43	405146	15.78	365992	18.01
OP23963-MSD	207483	5.72	810349	7.07	400003	9.25	602490	11.43	496412	15.78	458168	18.02
M97350-10	202524	5.72	844111	7.06	400402	9.25	594470	11.43	502754	15.78	475366	18.01

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8 IS 3 = Acenaphthene-D10

IS 4 = Phenanthrene-d10

IS 5 = Chrysene-d12 IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary Job Number: M97347

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Method: SW846 8270C Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	S2	S3	S4	S 5	S6
M97347-2	170233.D	37.0	23.0	69.0	68.0	70.0	75.0
M97347-3	I70234.D	40.0	24.0	73.0	72.0	75.0	85.0
M97347-4	S21215.D	38.0	23.0	87.0	72.0	74.0	77.0
M97347-5	S21216.D	38.0	23.0	87.0	78.0	78.0	85.0
M97347-6	S21217.D	38.0	22.0	84.0	75.0	77.0	84.0
OP23942-BS	I70222.D	50.0	32.0	78.0	83.0	81.0	85.0
OP23942-MB	170221.D	43.0	26.0	65.0	74.0	73.0	82.0
OP23942-MS	I70223.D	49.0	31.0	78.0	84.0	82.0	86.0
OP23942-MSD	I70224.D	49.0	31.0	76.0	80.0	78.0	85.0

Surrogate	Recovery
Compounds	Limits

S1	=	2-Fluorophenol	15-110%
S2	=	Phenol-d5	15-110%
S3	==	2,4,6-Tribromophenol	15-110%
S4	=	Nitrobenzene-d5	30-130%
S5	=	2-Fluorobiphenyl	30-130%
S 6	=	Terphenyl-d14	30-130%

Roxana Groundwater Quarterly – 1st Quarter 2011

Laboratory SDG: M97395

Data Reviewer: Wendy Buchman

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 2/24/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
TB-ROX-012411	MW12-ROX-012411
MW11-ROX-012411	MW10-ROX-012411
MW10-ROX-012411DUP	P54-ROX-012411
MW13-ROX-012511EB	MW13-ROX-012511
MW7-ROX-012511	MW8-ROX-012511
MW8-ROX-012511DUP	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated VOC and SVOC LCS/LCSD recoveries were outside evaluation criteria. VOC MS/MSD recoveries and MS/MSD RPDs were outside of evaluation criteria. VOC surrogate recoveries were outside evaluation criteria in samples MW7-ROX-012511, MW8-ROX-012511 and MW8-ROX-012511DUP. Internal standard recoveries for samples MW8-ROX-012511 and MW8-ROX-012511DUP were outside of evaluation criteria. Although not indicated in the laboratory case narrative, acetone and methylene chloride were detected in the trip blank; benzene and methyl tert-butyl ether were detected in the equipment blank. Bromomethane and diethyl phthalate were detected in the method blank. The compound phenol was qualified in field duplicate pair MW8-ROX-012511/MW8-ROX-012511DUP due to field duplicate RPD outside evaluation criteria. In addition several samples were diluted due to high levels of target analytes. The compounds benzene and/or toluene exceeded calibration range in samples MW7-ROX-012511 and field duplicates MW8-ROX-012511/MW8-ROX-012511DUP; these samples were rerun at dilution and reported from the second run; other compounds, except for toluene in the field duplicate sample which exceeded calibration range in the diluted run, were reported from the original analysis. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated samples were received by the laboratory at 1.9° C which was outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore, no qualification of data was required.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits? Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes. The following table summarizes analytes detected in sample-associated blanks.

Blank ID	Parameter	Analyte	Concentration/ Amount
TB-ROX-012411	VOCs	Acetone	11.8 μg/L
TB-ROX-012411	VOCs	Methylene chloride	3.7 μg/L
MW-13-ROX-012511EB	VOCs	Benzene	2.1 μg/L
MW-13-ROX-012511EB	VOCs	Methyl Tert Butyl Ether	2.1 μg/L
MSL1644-MB	VOCs	Bromomethane	12.0 μg/L
OP23969-MB	VOCs	Diethyl phthalate	0.63 μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
MW12-ROX-012411	SVOCs	Diethyl phthalate	-	U
MW-11-ROX-012411	SVOCs	Diethyl phthalate	-	U
MW10-ROX-012411	VOCs	Acetone	12.2	U
MW10-ROX-012411	SVOCs	Diethyl phthalate	-	U
MW10-ROX- 012411DUP	SVOCs	Diethyl phthalate	-	U
P54-ROX-012411	VOCs	Acetone	-	U
P54-ROX-012411	VOCs	Benzene	-	U
P54-ROX-012411	SVOCs	Diethyl phthalate	-	U
MW13-ROX-012511	SVOCs	Diethyl phthalate	-	U
MW7-ROX-012511	VOCs	Methyl Tert Butyl Ether	5.7	U
MW7-ROX-012511	SVOCs	Diethyl phthalate	-	U
MW8-ROX-012511	VOCs	Acetone	46.9	U
MW8-ROX-012511	SVOCs	Diethyl phthalate	-	U
MW8-ROX- 012511DUP	VOCs	Acetone	40.3	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/ LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
MSG4155- BS	VOCs	Dichlorodifluoromethane	67	NA	70-130
MSL1644- BS/BSD	VOCs	2-Butanone	132 /117	12	70-130/25
MSL1644- BS/BSD	VOCs	4-Methyl-2-pentanone	142/146	3	70-130/25
OP23969-BS	SVOCs	Aniline	39	NA	40-140
OP23969-BS	SVOCs	4-Chloroaniline	34	NA	40-140
OP23969-BS	SVOCs	Hexachlorocyclopentadie ne	31	NA	40-140

Analytical data that required qualification based on LCS data are included in the table below. Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Sample ID	Parameter	Analyte	Qualification
MW12-ROX-012411	SVOCs	Aniline	UJ
MW12-ROX-012411	SVOCs	4-Chloroaniline	UJ
MW12-ROX-012411	SVOCs	Hexachlorocyclopentadiene	UJ
MW11-ROX-012411	SVOCs	Aniline	UJ
MW11-ROX-012411	SVOCs	4-Chloroaniline	UJ
MW11-ROX-012411	SVOCs	Hexachlorocyclopentadiene	UJ
MW10-ROX-012411	SVOCs	Aniline	UJ
MW10-ROX-012411	SVOCs	4-Chloroaniline	UJ
MW10-ROX-012411	SVOCs	Hexachlorocyclopentadiene	UJ
MW10-ROX-012411DUP	SVOCs	Aniline	UJ
MW10-ROX-012411DUP	SVOCs	4-Chloroaniline	UJ
MW10-ROX-012411DUP	SVOCs	Hexachlorocyclopentadiene	UJ
P54-ROX-012411	SVOCs	Aniline	UJ
P54-ROX-012411	SVOCs	4-Chloroaniline	UJ
P54-ROX-012411	SVOCs	Hexachlorocyclopentadiene	UJ
MW-13-ROX-012511	SVOCs	Aniline	UJ
MW-13-ROX-012511	SVOCs	4-Chloroaniline	UJ
MW-13-ROX-012511	SVOCs	Hexachlorocyclopentadiene	UJ
MW7-ROX-012511	SVOCs	Aniline	UJ
MW7-ROX-012511	SVOCs	4-Chloroaniline	UJ
MW7-ROX-012511	SVOCs	Hexachlorocyclopentadiene	UJ
MW8-ROX-12511	SVOCs	Aniline	UJ
MW8-ROX-12511	SVOCs	4-Chloroaniline	UJ

Sample ID	Parameter	Analyte	Qualification
MW8-ROX-12511	SVOCs	Hexachlorocyclopentadiene	UJ
MW8-ROX-12511DUP	SVOCs	Aniline	UJ
MW8-ROX-12511DUP	SVOCs	4-Chloroaniline	UJ
MW8-ROX-12511DUP	SVOCs	Hexachlorocyclopentadiene	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Sample ID	Parameter	Surrogate	Recovery	Criteria
MW7-ROX-012511	VOCs	Dibromofluoromethane	38	70-130
MW7-ROX-012511	VOCs	Toluene-D8	149	70-130
MW8-ROX-012511	VOCs	Dibromofluoromethane	38	70-130
MW8-ROX-012511	VOCs	Toluene-D8	269	70-130
MW8-ROX-012511DUP	VOCs	Toluene-D8	257	70-130

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data reported as non-detect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Sample ID	Parameter	Analyte	Qualification
MW7-ROX-012511	VOCs	All VOC detects/nondetects	J/UJ
MW8-ROX-012511	VOCs	All VOC detects/nondetects	J/UJ
MW8-ROX-012511DUP	VOCs	All VOC detects	J

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?

Yes. Sample MW12-ROX-012411 was spiked and analyzed for VOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD (%)	MS/MSD/RPD Criteria (%)
MW12-ROX-012411	VOCs	Benzene	766/456	51	70-130/30
MW12-ROX-012411	VOCs	Methyl Tert Butyl Ether	69/67	7	70-130/30
MW12-ROX-012411	VOCs	Vinyl Acetate	71/ 69	2	70-130/30

Analytical results reported as nondetect and associated with MS/MSD recoveries above evaluation criteria, indicating a high bias, did not require qualification. USEPA National Functional Guidelines for Organic Data Review indicates that organic data does not require qualification based on MS/MSD data alone. LCS recoveries for Methyl Tert Butyl Ether and Vinyl Acetate were within evaluation criteria, therefore no qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?
No

Sample ID	Parameter	Analyte	IS Area Recovery	IS Criteria
MW8-ROX-012511- Run#1	VOCs	1,4-difluorobenzene	70927	90905-363618
MW8-ROX- 012511DUP-Run#1	VOCs	1,4-difluorobenzene	84425	90905-363618

Analytical data that required qualification based on IS data are included in the table below. The compounds benzene and toluene exceeded calibration range in the original run. Benzene was within calibration range in the second run, however toluene was not. Benzene was reported from the second run and toluene was reported from the first run. All VOC detects reported from the first run were qualified estimated detect (**J**), therefore toluene was included with the J-qualified results and did not require further qualification.

Sample ID	Parameter	Analyte	Qualification
MW8-ROX-012511- Run#1	VOCs	All VOC detects/non-detects	J/UJ
MW8-ROX- 012511DUP-Run#1	VOCs	All VOC detects/non-detects	J/UJ

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
MW10-ROX-012411	MW10-ROX-012411DUP
MW8-ROX-012511	MW8-ROX-012511DUP

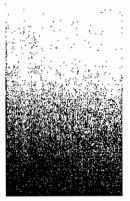
Were field duplicates within evaluation criteria?

No

Field ID	Field Duplicate ID	Analyte	RPD (%)	Qualification
MW8-ROX-012511	MW8-ROX-012511DUP	Phenol	36	J

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were reported in samples that were diluted.


12.0 Additional Qualifications

Were additional qualifications applied?

No

03/08/11

Technical Report for

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

SAP#340061

Accutest Job Number: M97395

Sampling Dates: 01/24/11 - 01/25/11

Report to:

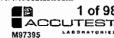
URS Corporation

Elizabeth_Kunkel@URSCorp.com

ATTN: Elizabeth Kunkel

Total number of pages in report: 98

3/8/2011



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Lab Director

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

_

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	
3.1: M97395-1: TB-ROX-012411	7
3.2: M97395-2: MW12-ROX-012411	9
3.3: M97395-3: MW11-ROX-012411	13
3.4: M97395-4: MW10-ROX-012411	17
3.5: M97395-5: MW10-ROX-012411DUP	21
3.6: M97395-6: P54-ROX-012411	25
3.7: M97395-7: MW13-ROX-012511EB	29
3.8: M97395-8: MW13-ROX-012511	33
3.9: M97395-9: MW7-ROX-012511	37
3.10: M97395-10: MW8-ROX-012511	42
3.11: M97395-11: MW8-ROX-012511 DUP	4 7
Section 4: Misc. Forms	52
4.1: Chain of Custody	53
4.2: Sample Tracking Chronicle	56
4.3: Internal Chain of Custody	58
Section 5: GC/MS Volatiles - QC Data Summaries	61
5.1: Method Blank Summary	62
5.2: Blank Spike Summary	69
5.3: Blank Spike/Blank Spike Duplicate Summary	72
5.4: Matrix Spike/Matrix Spike Duplicate Summary	77
5.5: Internal Standard Area Summaries	84
5.6: Surrogate Recovery Summaries	87
Section 6: GC/MS Semi-volatiles - QC Data Summaries	88
6.1: Method Blank Summary	89
6.2: Blank Spike Summary	91
6.3: Matrix Spike/Matrix Spike Duplicate Summary	94
6.4: Internal Standard Area Summaries	97
6.5: Surrogate Recovery Summaries	98

1	2 of 98	3
	CUTEST	•
M97395	LAUDBATORIC	0

Sample Summary

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Job No:	M97395

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M97395-1	01/24/11	00:00	01/26/11	AQ	Trip Blank Water	TB-ROX-012411
M97395-2	01/24/11	10:00	01/26/11	AQ	Ground Water	MW12-ROX-012411
M97395-2D	01/24/11	10:00	01/26/11	AQ	Water Dup/MSD	MW12-ROX-012411
M97395-2S	01/24/11	10:00	01/26/11	AQ	Water Matrix Spike	MW12-ROX-012411
M97395-3	01/24/11	11:35	01/26/11	AQ	Ground Water	MW11-ROX-012411
M97395-4	01/24/11	12:50	01/26/11	AQ	Ground Water	MW10-ROX-012411
M97395-5	01/24/11	12:50	01/26/11	AQ	Ground Water	MW10-ROX-012411DUP
M97395-6	01/24/11	14:55	01/26/11	AQ	Ground Water	P54-ROX-012411
M97395-7	01/25/11	08:00	01/26/11	AQ	Equipment Blank	MW13-ROX-012511EB
M97395-8	01/25/11	11:10	01/26/11	AQ	Ground Water	MW13-ROX-012511
М97395-9	01/25/11	14:35	01/26/11	AQ	Ground Water	MW7-ROX-012511
M97395-10	01/25/11	13:25	01/26/11	AQ	Ground Water	MW8-ROX-012511
M97395-11	01/25/11	13:25	01/26/11	AQ	Ground Water	MW8-ROX-012511 DUP

SAMPLE DELIVERY GROUP CASE NARRATIVE

Job No M97395 Shell Oil Client:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Report Date 2/10/2011 12:46:38 PM Site:

10 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were collected on between 01/24/2011 and 01/25/2011 and were received at Accutest on 01/26/2011 properly preserved, at 1.9 Deg. C and intact. These Samples received an Accutest job number of M97395. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Batch ID: MSG4155

- All samples were analyzed within the recommended method holding time.
- Sample(s) M97501-3MS, M97501-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for Dichlorodifluoromethane are outside control limits. Blank Spike meets program technical requirements.

Batch ID: MSL1644 Matrix AQ

- All samples were analyzed within the recommended method holding time.
- Sample(s) M97395-2MS, M97395-2MSD were used as the QC samples indicated.
- Sample(s) M97395-I have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- Blank Spike Recovery(s) for 2-Butanone (MEK), 4-Methyl-2-pentanone (MIBK) are outside control limits. Associated samples are non-detect for this compound.
- Matrix Spike Recovery(s) for Methyl Tert Butyl Ether are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Methyl Tert Butyl Ether, Vinyl Acetate are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- RPD(s) for MSD for Benzene are outside control limits for sample M97395-2MSD. High RPD due to possible matrix interference and/or sample non-homogeneity.
- Blank Spike Duplicate Recovery(s) for 4-Methyl-2-pentanone (MIBK) are outside control limits. Associated samples are nondetect for this compound.
- MSL1644-BS for 4-Methyl-2-pentanone (MIBK): Outside control limits. Associated samples are non-detect for this compound.
- M97395-11 for Toluene-D8: Outside control limits due to possible matrix interference. Confirmed by reanalysis.
- M97395-9, 10 for Dibromofluoromethane, Toluene-D8: Outside control limits due to possible matrix interference. Confirmed by
- M97395-2MS/2MSD for Benzene: Outside control limits due to possible sample carryover.
- M97395-10, 11 has internal standards outside control limits due to possible matrix interference. Confirmed by reanalysis.

Matrix AQ

Batch ID: MSN1863

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97571-1MS, M97571-1MSD were used as the QC samples indicated.

Extractables by GCMS By Method SW846 8270C

Matrix AQ

Batch ID: OP23969

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) M97395-2MS, M97395-2MSD were used as the QC samples indicated.
- Sample(s) M97395-10, M97395-2, M97395-3, M97395-4, M97395-5, M97395-6, M97395-7, M97395-8, M97395-9 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- Blank Spike Recovery(s) for 4-Chloroaniline, Aniline, Hexachlorocyclopentadiene are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for 4-Chloroaniline are outside control limits. Outside control limits due to possible matrix interference.
 Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for 4-Chloroaniline, Aniline are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- OP23969-MS/MSD for 3,3'-Dichlorobenzidine, Hexachlorocyclopentadiene: Outside control limits. Blank Spike meets program technical requirements.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97395).

Sample Results		
Report of Analysis		

Report of Analysis

Client Sample ID: TB-ROX-012411

Date Sampled: 01/24/11 Lab Sample ID: M97395-1 Date Received: 01/26/11 Matrix: AQ - Trip Blank Water Percent Solids: n/a Method: SW846 8260B

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Batch Analytical Batch File ID DF Analyzed Ву Prep Date L49358.D 02/03/11 **AMY** n/a n/a MSL1644 Run #1 1

Run #2

Purge Volume

5.0 ml Run #1

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	11.8	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	11.7	2.0	0.95	ug/l	В
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/I	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87 -5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-ROX-012411

Lab Sample ID: M97395-1 Date Sampled: 01/24/11
Matrix: AQ - Trip Blank Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/I	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/I	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Нехалопе	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	3.7	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/I	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		70-13	30%	
2037-26-5	Toluene-D8	99%		70-13	30%	
460-00-4	4-Bromofluorobenzene	89%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW12-ROX-012411

Lab Sample ID: M97395-2 Date Sampled: 01/24/11 Date Received: 01/26/11 Matrix: AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Analytical Batch File ID DF Analyzed Ву Prep Date Prep Batch MSL1644 Run #1 L49366.D 1 02/03/11 AMY n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
7 5-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/I	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-I	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-I	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156 - 60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW12-ROX-012411

Lab Sample ID: M97395-2 Date Sampled: 01/24/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Нехаполе	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	NĐ	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/I	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene ;	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/I	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	102%		70-13	0%	
2037-26-5	Toluene-D8	100%		70-13	0%	
460-00-4	4-Bromofluorobenzene	91%		70-13	0%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 1 of 2

Report of Analysis

Client Sample ID: MW12-ROX-012411

Lab Sample ID: M97395-2 Matrix: AQ - Ground Water Date Sampled: 01/24/11 Date Received: 01/26/11

Method: Project:

SW846 8270C SW846 3510C

Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Prep Date Analytical Batch File ID DF Analyzed Ву Prep Batch 02/04/11 PR 01/27/11 OP23969 MSS890 Run #1 S21267.D 1

Run #2

Initial Volume Final Volume 1.0 ml

Run #1 1000 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l	
95-48-7	2-Methylphenol	ND	10	0.48	ug/l	
	3&4-Methylphenol	ND	10	0.63	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/I	
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l	
108-95-2	Phenol	ND	5.0	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l	
62-53-3	Aniline	ND	10	0.46	ug/l	« uJ"
120-12-7	Anthracene	ND	5.0	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l	cuj"
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l	· u
218-01-9	Chrysene	ND	5.0	0.22	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.0	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: MW12-ROX-012411

 Lab Sample ID:
 M97395-2
 Date Sampled:
 01/24/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	0.770.0ND	5.0	0.61	ug/l	TB ~U"
131-11-3	Dimethyl phthalate	"ND	5.0	1.3	ug/l	_
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/I	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	/1	1.0
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	· u3"
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/I	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/i	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/I	
91-20-3	Naphthalene	ND	5.0	0.33	ug/I	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	45%		15-11	0%	
4165-62-2	Phenol-d5	30%		15-11	0%	
118-79-6	2,4,6-Tribromophenol	79%		15-11	0%	
4165-60-0	Nitrobenzene-d5	77%		30-13	80%	
321-60-8	2-Fluorobiphenyl	77%		30-13	0%	
1718-51-0	Terphenyl-d14	65%		30-13	0%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 2

Client Sample ID: MW11-ROX-012411

Lab Sample ID: M97395-3 Date Sampled: 01/24/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L49367.D 1 02/03/11 AMY n/a n/a MSL1644

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/I	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3

Lab Sample ID: M97395-3 Date Sampled: 01/24/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/1	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		70-13		
2037-26-5	Toluene-D8	100%		70-13	30%	
460-00-4	4-Bromofluorobenzene	95%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

3.3

Client Sample ID: MW11-ROX-012411

Date Sampled: 01/24/11 Lab Sample ID: M97395-3 Matrix: AQ - Ground Water Date Received: 01/26/11 Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch Run #1 S21268.D 1 02/04/11 PR 01/27/11 OP23969 MSS890

Run #2

Initial Volume Final Volume

Run #1 960 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.80	ug/l	
95-57-8	2-Chlorophenol	ND	5.2	0.71	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.72	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/I	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.2	ug/l	
95-48-7	2-Methylphenol	ND	10	0.50	ug/l	
	3&4-Methylphenol	ND	10	0.66	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.69	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.2	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	ND	5.2	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.39	ug/I	
83-32-9	Acenaphthene	ND	5.2	0.35	ug/l	
208-96-8	Acenaphthylene	ND .	5.2	1.3	ug/l	+4
62-53-3	Aniline	ND	10	0.47	ug/l	`uj"
120-12-7	Anthracene	ND	5.2	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	0.28	ug/l	
50-32-8	Вепzо(а)рутепе	ND	5.2	0.24	ug/I	
205-99-2	Benzo(b)fluoranthene	ND	5.2	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	0.33	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	0.32	ug/i	· · · -D
106-47-8	4-Chloroaniline	ND	10	0.60	ug/l	~ n1.,
218-01- 9	Chrysene	ND	5.2	0.23	ug/I	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: MW11-ROX-012411

Lab Sample ID: M97395-3 Date Sampled: 01/24/11 Matrix: AQ - Ground Water Date Received: 01/26/11 Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	0.26	ug/I	
132-64-9	Dibenzofuran	ND	5.2	0.33	·ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	0.35	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.2	0.35	ug/l	S 12
84-66-2	Diethyl phthalate	4000 D.T.	5.2	0.64	ug/l	-JB "U"
131-11-3	Dimethyl phthalate	ND	5.2	1.3	ug/l	-
117-81-7	bis(2-Ethylhexyl)phthalate	0.73	2.1	0.51	ug/l	J
206-44-0	Fluoranthene	ND	5.2	0.23	ug/l	
86-73-7	Fluorene	ND	5.2	0.30	ug/I	
118-74-1	Hexachlorobenzene	ND	5.2	0.16	ug/I	~ UT"
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/I	1.00
67-72-1	Hexachloroethane	ND	5.2	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	0.30	ug/l	
78-59-1	Isophorone	ND	5.2	0.49	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.2	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.35	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.34	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.35	ug/l	
91-20-3	Naphthalene	ND	5.2	0.34	ug/l	
98-95-3	Nitrobenzene	ND	5.2	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2 ·	0.42	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.64	ug/I	
85-01-8	Phenanthrene	ND	5.2	0.27	ug/l	
129-00-0	Pyrene	ND	5.2	0.26	ug/l	
110-86-1	Pyridine	ND	10	0.52	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	43%		15-1	10%	
4165-62-2	Phenol-d5	33%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	71%		15-1	10%	
4165-60-0	Nitrobenzene-d5	82%		30-13	30%	
321-60-8	2-Fluorobiphenyl	79%		30-13	30%	
1718-51-0	Terphenyl-d14	77%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4 دی

Client Sample ID: MW10-ROX-012411

Lab Sample ID: M97395-4 Date Sampled: 01/24/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L49368.D 1 02/03/11 AMY n/a n/a MSL1644

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	12.20-0ND	5.0	4.6	ug/l	"u"
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	18.0	ug/I	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW10-ROX-012411

Lab Sample ID: M97395-4 Date Sampled: 01/24/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/I	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/I	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	л-Propylbenzene	ND	5.0	0.43	ug/I	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/I	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		70-13		
2037-26-5	Toluene-D8	102%		70-13	80%	
460-00-4	4-Bromofluorobenzene	94%		70-13	80%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW10-ROX-012411

 Lab Sample ID:
 M97395-4
 Date Sampled:
 01/24/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21269.D 1 02/04/11 PR 01/27/11 OP23969 MSS890

Run #2

Initial Volume Final Volume
Run #1 980 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.79	ug/l	
95-57-8	2-Chlorophenol	ND	5.1	0.70	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.58	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.71	ug/i	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.1	ug/l	
95-48-7	2-Methylphenol	ND	10	0.49	ug/I	
	3&4-Methylphenol	ND	10	0.64	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.67	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.1	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	ND	5.1	2.1	ug/l	
95-95 -4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.1	0.34	ug/l	
208-96-8	Acenaphthyleпе	ND	5.1	1.3	ug/l	" us"
62-53-3	Aniline	ND	10	0.46	ug/l	- 40
120-12-7	Anthracene	ND	5.1	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.28	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.62	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.1	0.30	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.1	0.33	ug/I	
85-68-7	Butyl benzyl phthalate	ND	5.1	0.42	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.1	0.31	ug/l	"u"
106-47-8	4-Chloroaniline	ND	10	0.59	ug/l	. U 3
218-01-9	Chrysene	ND	5.1	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	0.36	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.1	0.24	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.1	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.4 3

Client Sample ID: MW10-ROX-012411

 Lab Sample ID:
 M97395-4
 Date Sampled:
 01/24/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	0.62	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/I	
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	0.25	ug/l	
132-64- 9	Dibenzofuran	ND	5.1	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.1	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.1	0.34	ug/l	A
84-66-2	Diethyl phthalate	1.TO-CND	5.1	0.62	ug/l	Æ''u"
131-11-3	Dimethyl phthalate	ND	5.1	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	0.68	2.0	0.50	ug/l	J
206-44-0	Fluoranthene	ND	5.1	0.22	ug/l	
86-73-7	Fluorene	ND	5.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	5.1	0.16	ug/I	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	out"
67-72-1	Hexachloroethane	ND	5.1	0.44	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.1	0.29	ug/l	
78-59-1	Isophorone	ND	5.1	0.48	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.1	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.1	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	0.41	ug/I	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.62	ug/l	
85-01-8	Phenanthrene	ND	5.1	0.26	ug/Ì	
129-00-0	Pyrene	ND	5.1	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.51	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	48%		15-11		
4165-62-2	Phenol-d5	31%		15-11	0%	
118-79-6	2,4,6-Tribromophenol	90%		15-11		
4165-60-0	Nitrobenzene-d5	86%		30-13	0%	
321-60-8	2-Fluorobiphenyl	81%		30-13	0%	
1718-51-0	Terphenyl-d14	79%		30-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

Client Sample ID: MW10-ROX-012411DUP

Lab Sample ID:

M97395-5

Date Sampled: 01/24/11 Date Received: 01/26/11

Prep Date

n/a

Matrix: Method: AQ - Ground Water SW846 8260B

DF

1

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Ву

AMY

Analyzed

02/03/11

Prep Batch Analytical Batch

n/a

MSL1644

Run #1 Run #2

Purge Volume

File ID

5.0 ml

L49369.D

Run #1

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/I	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/I	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/I	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/I	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
7 5-71 -8	Dichlorodifluoromethane	ND	2.0	0.61	ug/I	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 1 of 2

Page 2 of 2

Report of Analysis

Client Sample ID: MW10-ROX-012411DUP

Date Sampled: 01/24/11 Lab Sample ID: M97395-5 Matrix: AQ - Ground Water Date Received: 01/26/11 SW846 8260B Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
74-88-4	Iodomethane	ND	5.0	0.47	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/I	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/I	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	86%		70-13	80%	
2037-26-5	Toluene-D8	101%		70-13	80%	
460-00-4	4-Bromofluorobenzene	101%		70-13	80%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW10-ROX-012411DUP

 Lab Sample ID:
 M97395-5
 Date Sampled:
 01/24/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Analytical Batch DF Ву Prep Date Prep Batch File ID Analyzed OP23969 MSS890 S21270.D 02/04/11 PR 01/27/11 Run #1 1 Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l	
95-48-7	2-Methylphenol	ND	10	0.48	ug/I	
	3&4-Methylphenol	ND	10	0.63	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/I	
100-02-7	4-Nitrophenol	ND	20	5.0	ug/I	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/I	
108-95-2	Phenol	ND	5.0	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l	"uJ"
62-53-3	Aniline	ND	10	0.46	ug/l	us
120-12-7	Anthracene	ND	5.0	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.0	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.58	ug/I	e UJ
218-01-9	Chrysene	ND	5.0	0.22	ug/Ì	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.0	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

5

Page 1 of 2

Lab Sample ID: M97395-5 Date Sampled: 01/24/11 Matrix: AQ - Ground Water Date Received: 01/26/11 Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	V
84-66-2	Diethyl phthalate	1.2 COND	5.0	0.61	ug/I	-BB , n,
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/I	_
117-81-7	bis (2-Ethylhexyl) phthalate	0.71	2.0	0.49	ug/l	J
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ng/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	ックタト
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/I	
110-86-1	Pyridine	ND	10	0.50	ug/l	,
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	46%		15-11	10%	
4165-62-2	Phenol-d5	32%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	87%		15-1		
4165-60-0	Nitrobenzene-d5	81%		30-13		
321-60-8	2-Fluorobiphenyl	77%		30-13	30%	
1718-51-0	Terphenyl-d14	77%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P54-ROX-012411

Lab Sample ID: M97395-6 Date Sampled: 01/24/11 Matrix: AQ - Ground Water Date Received: 01/26/11 Method: SW846 8260B Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

By File ID DF Analyzed Prep Date Prep Batch Analytical Batch G103080.D 02/07/11 EL MSG4155 Run #1 1 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	4.8 0.0 M		4.6	ug/l 📜"
71-43-2	Benzene	0.390.0ND	0.50	0.35	ug/l "IL"
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/I
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

AQ - Ground Water Matrix: Method:

SW846 8260B

Date Received: 01/26/11 Percent Solids: n/a

Date Sampled: 01/24/11

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/I	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/I	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		70-13	30%	
2037-26-5	Toluene-D8	99%		70-13	30%	
460-00-4	4-Bromofluorobenzene	98%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: P54-ROX-012411

Lab Sample ID: M97395-6
Matrix: AO - Ground Water

Date Sampled: 01/24/11 Date Received: 01/26/11

Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21271.D 1 02/04/11 PR 01/27/11 OP23969 MSS890

Run #2

Initial Volume Final Volume

1.0 ml

Run #1 1000 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/1
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/l
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l
108-95-2	Phenol	ND	5.0	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ng/l የጠረ ,
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l
50-32-8	Вепzо(а) рутепе	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l "UJY
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis (2-Chloroethyl) ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P54-ROX-012411

Date Sampled: 01/24/11 Lab Sample ID: M97395-6 Date Received: 01/26/11 AQ - Ground Water Matrix: Percent Solids: n/a SW846 8270C SW846 3510C Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/I	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	2.00.0ND	5.0	0.61	ug/l	JB ~U"
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5:0	0.16	ug/l	-33
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	" N 2")
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/I	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/I	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Ругеле	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	38%		15-13	10%	
4165-62-2	Phenol-d5	28%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	67%		15-1		
4165-60-0	Nitrobenzene-d5	86%		30-13	30%	
321-60-8	2-Fluorobiphenyl	85%		30-13	30%	
1718-51-0	Terphenyl-d14	96%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 2

Report of Analysis

Client Sample ID: MW13-ROX-012511EB

Date Sampled: 01/25/11 Lab Sample ID: M97395-7 Matrix: AQ - Equipment Blank Date Received: 01/26/11 Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch AMY MSL1644 Run #1 L49359.D 1 02/03/11 n/a n/a Run #2

Purge Volume

5.0 ml Run #1

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	2.1	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/I	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

M97395-7

AQ - Equipment Blank

Date Sampled: 01/25/11 Date Received: 01/26/11

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	2.1	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)		5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	п-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	100%		70-13	0%	
2037-26-5	Toluene-D8	100%		70-13	0%	
460-00-4	4-Bromofluorobenzene	115%		70-13	0%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW13-ROX-012511EB

 Lab Sample ID:
 M97395-7
 Date Sampled:
 01/25/11

 Matrix:
 AQ - Equipment Blank
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21272.D 1 02/04/11 PR 01/27/11 OP23969 MSS890

Run #2

Initial Volume Final Volume

Run #1 970 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.79	ug/l	
95-57-8	2-Chlorophenol	ND	5.2	0.70	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.59	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.71	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.2	ug/l	
95-48-7	2-Methylphenol	ND	10	0.49	ug/l	
	3&4-Methylphenol	ND	10	0.65	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.68	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.2	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	ND	5.2	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.39	ug/l	
83-32-9	Acenaphthene	ND	5.2	0.35	ug/l	
208-96-8	Acenaphthylene	ND	5.2	1.3	ug/I	
62-53-3	Aniline	ND	10	0.47	ug/l	
120-12-7	Anthracene	ND	5.2	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	0.28	ug/l	
50-32-8	Вепzо(а)ругепе	ND	5.2	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.2	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	0.63	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	0.30	ug/i	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	0.33	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	0.42	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.59	ug/l	
218-01-9	Chrysene	ND	5.2	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	0.36	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.₇

Client Sample ID: MW13-ROX-012511EB

Lab Sample ID:

M97395-7

AQ - Equipment Blank

Date Sampled: 01/25/11 Date Received: 01/26/11

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	0.63	ug/I	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	0.35	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.2	0.35	ug/l	
84-66-2	Diethyl phthalate	2.0	5.2	0.63	ug/l	JВ
131-11-3	Dimethyl phthalate	ND	5.2	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.50	ug/l	
206-44-0	Fluoranthene	ND	5.2	0.22	ug/l	
86-73-7	Fluorene	ND	5.2	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	5.2	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	
67-72-1	Hexachloroethane	ND	5.2	0.44	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	0.30	ug/l	
78-59-1	Isophorone	ND	5.2	0.49	ug/I	
91-57-6	2-Methylnaphthalene	ND	5.2	0.32	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.2	0.34	ug/I	
98-95-3	Nitrobenzene	ND	5.2	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	0.42	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.63	ug/l	
85-01-8	Phenanthrene	ND	5.2	0.26	ug/l	
129-00-0	Pyrene	ND	5.2	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.52	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	51%		15-11		
4165-62-2	Phenol-d5	34%		15-11		
118-79-6	2,4,6-Tribromophenol	87%		15-11		
4165-60-0	Nitrobenzene-d5	87%		30-13		
321-60-8	2-Fluorobiphenyl	86%		30-13		
1718-51-0	Terphenyl-d14	95%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW13-ROX-012511

Lab Sample ID:M97395-8Date Sampled:01/25/11Matrix:AQ - Ground WaterDate Received:01/26/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 N49339.D 1 02/08/11 JP n/a n/a MSN1863

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/I	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/I	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/I	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	16.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ç

Date Sampled: 01/25/11

Lab Sample ID: M97395-8 Matrix: AQ - Ground Water Method:

Date Received: 01/26/11 SW846 8260B Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropeле	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/I	
75-01-4	Vînyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	NĐ	1.0	0.62	ug/I	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		70-13	30%	
2037-26-5	Toluene-D8	105%		70-13	30%	
460-00-4	4-Bromofluorobenzene	106%		70-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW13-ROX-012511

Lab Sample ID: M97395-8 Date Sampled: 01/25/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8270C SW846 3510C Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S21273.D 1 02/04/11 PR 01/27/11 OP23969 MSS890

Run #2

Initial Volume Final Volume Run #1 960 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.80	ug/l	
95-57-8	2-Chlorophenol	ND	5.2	0.71	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.72	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.2	ug/I	
95-48-7	2-Methylphenol	ND	10	0.50	ug/l	
	3&4-Methylphenol	ND	10	0.66	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.69	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.2	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	ND	5.2	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.39	ug/l	
83-32-9	Acenaphthene	ND	5.2	0.35	ug/l	
208-96-8	Acenaphthylene	ND	5.2	1.3	ug/l	1/
62-53-3	Aniline	ND	10	0.47	ug/l	<i>"</i> ''
120-12-7	Anthracene	ND	5.2	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	0.28	ug/l	
50-32-8	Вепzо(а)рутепе	ND	5.2	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.2	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	0.33	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	0.32	ug/l	+V
106-47-8	4-Chloroaniline	ND	10	0.60	ug/l	~ ひび"
218-01-9	Chrysene	ND	5.2	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW13-ROX-012511

 Lab Sample ID:
 M97395-8
 Date Sampled:
 01/25/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	0.26	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.33	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	0.35	ug/l	
117-84-0	Di-n-octyl phthalate	ND .	5.2	0.35	ug/I	1
84-66-2	Diethyl phthalate	2.7 C.OND	5.2	0.64	ug/l	18 $_{ij}$
131-11-3	Dimethyl phthalate	ND	5.2	1.3	ug/l	•
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.51	ug/l	
206-44-0	Fluoranthene	ND	5.2	0.23	ug/l	
86-73-7	Fluorene	0.44	5.2	0.30	ug/I	J
118-74-1	Hexachlorobenzene	ND	5.2	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	"uJ"
67-72-1	Hexachloroethane	ND	5.2	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	0.30	ug/l	
78-59-1	Isophorone	ND	5.2	0.49	ug/l	
91-57-6	2-Methylnaphthalene	2.1	5.2	0.32	ug/l	J
88-74-4	2-Nitroaniline	ND	10	0.35	ug/l	_
99-09-2	3-Nitroaniline	ND	10	0.34	ug/l	
100-01-6	4-Nitroaniline	ND .	10	0.35	ug/I	
91-20-3	Naphthalene	ND	5.2	0.34	ug/I	
98-95-3	Nitrobenzene	ND	5.2	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	0.42	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.64	ug/l	
85-01-8	Phenanthrene	1.2	5.2	0.27	ug/l	J
129-00-0	Pyrene	0.32	5.2	0.26	ug/l	J
110-86-1	Pyridine	ND	10	0.52	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	53%		15-11	10%	
4165-62-2	Phenol-d5	35%		15-11	10%	
118-79-6	2,4,6-Tribromophenol	99%		15-11	10%	
4165-60-0	Nitrobenzene-d5	86%		30-13	30%	
321-60-8	2-Fluorobiphenyl	90%		30-13	30%	
1718-51-0	Terphenyl-d14	89%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW7-ROX-012511

Lab Sample ID: Matrix:

M97395-9

AQ - Ground Water

Date Sampled: 01/25/11

Date Received: 01/26/11

Method: Project:

SW846 8260B URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	L49372.D	1	02/03/11	AMY	n/a	n/a	MSL1644
Run #2	N49340.D	10000	02/08/11	JP	n/a	n/a	MSN1863

Purge Volume Run #1 5.0 ml

5.0 ml Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	~ u5"
71-43-2	Benzene	1150000 a	5000	3500	ug/l	"UU"
108-86-1	Вготовепле	ND	5.0	0.52	ug/l	. 0.0
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/i	ł
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	ì
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	1,
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	Ψ
104-51-8	n-Butylbenzene	1.5	5.0	0.49	ug/l	~ .5"
135-98-8	sec-Butylbenzene	1.1	5.0	0.37	ug/l	~ J "
98-06-6	tert-Butylbenzene	1.2	5.0	0.53	ug/l	"J"
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	U J .
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	1
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	1
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	(
67-66-3	Chloroform	ND	1.0	0.72	ug/l)
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	(
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	\
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	ì
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	l
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l]
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	ì
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	- 1
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	A

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW7-ROX-012511

Lab Sample ID:

M97395-9

Date Sampled: 01/25/11

Date Received: 01/26/11

Matrix: Method: AQ - Ground Water SW846 8260B

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Unit	-
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	auJ"
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	ì
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	Ţ
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	V
100-41-4	Ethylbenzene	32.5	1.0	0.61	ug/l	،' J"ֱ,
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	" " 11.
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	$\sim \tau$
98-82-8	Isopropylbenzene	4.0	5.0	0.51	ug/I	3 J $^{\circ}$
99-87-6	p-Isopropyltoluene	ND	5.0 5.7	0.45	ug/l	`uJ"
1634-04-4	Methyl Tert Butyl Ether	5.7 0.0 ND	-1.0 5.1	0.54	ug/I	W ".
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	"UJ"
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	١.
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	1)
103-65-1	n-Propylbenzene	5.8	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	v uJ"
630-20-6	1,1,2-Tetrachloroethane	NĐ	5.0	0.64	ug/l	1
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/i	1.
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	- T11
108-88-3	Toluene	90.7	1.0	0.74	ug/l	· · · ·
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	~u1''
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	1
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	,
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	- 1
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	\downarrow
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	11
95-63-6	1,2,4-Trimethylbenzene	55.2	5.0	0.62	ug/l	"J"
108-67-8	1,3,5-Trimethylbenzene	13.3	5.0	0.51	ug/l	"J"
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/I	"u 1"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	"u, '
	m,p-Xylene	69.4	1.0	0.62	ug/l	<u>, 7</u> "
95-47-6	o-Xylene	23.5	1.0	0.56	ug/l	- 7
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	38% b	100%	70-13	80%	
2037-26-5	Toluene-D8	149% b	106%	70-13		
460-00-4	4-Bromofluorobenzene	88%	105%	70-13		
100 00 1						

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW7-ROX-012511

Lab Sample ID:

M97395-9

Date Sampled: 01/25/11

Matrix: Method: AQ - Ground Water SW846 8260B

Percent Solids: n/a

Date Received: 01/26/11

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.

Compound

Result

RL

MDL Units

Q

(a) Result is from Run# 2

(b) Outside control limits due to possible matrix interference. Confirmed by reanalysis.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW7-ROX-012511

Lab Sample ID: M97395-9 Date Sampled: 01/25/11 Matrix: AQ - Ground Water Date Received: 01/26/11 SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Prep Date Analytical Batch File ID DF Analyzed Ву Prep Batch S21274.D 02/04/11 PR 01/27/11 OP23969 MSS890 Run #1 1

Run #2

Initial Volume Final Volume

Run #1 950 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	11	0.81	ug/l	
95-57-8	2-Chlorophenol	ND	5.3	0.72	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.60	ug/l	
120-83-2	2,4-Dichlorophenol	ND	11	0.73	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l	
95-48-7	2-Methylphenol	ND	11	0.50	ug/l	
	3&4-Methylphenol	0.99	11	0.66	ug/l	J
88-75-5	2-Nitrophenol	ND	11	0.69	ug/I	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86-5	Pentachlorophenol	ND	11	3.5	ug/l	
108-95-2	Phenol	73.7	5.3	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.42	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	W
62-53-3	Aniline	ND	11	0.48	ug/l	« لا ۲"
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Вепzо(а)ругепе	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l	11
106-47-8	4-Chloroaniline	ND	11	0.61	ug/l	עס"'
218-01-9	Chrysene	ND	5.3	0.24	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: MW7-ROX-012511

Lab Sample ID: M97395-9 Date Sampled: 01/25/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8270C SW846 3510C Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.64	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.33	ug/l	
84-74-2	Di-n-butyI phthalate	ND	5.3	0.35	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.3	0.36	ug/l	
84-66-2	Diethyl phthalate	3.00.0ND	5.3	0.64	ug/l	TB "U"
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.51	ug/I	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	"uJ"
77-47-4	Hexachlorocyclopentadiene	ND	11	2.6	ug/l	·uo
67-72-1	Hexachloroethane	ND	5.3	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.30	ug/l	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	2.3	5.3	0.32	ug/l	J
88-74-4	2-Nitroaniline	ND	11	0.35	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.34	ug/l	
100-01-6	4-Nitroaniline	ND	11	0.35	ug/l	
91-20-3	Naphthalene	5.8	5.3	0.34	ug/l	
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.64	ug/I	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	43%		15-1	10%	
4165-62-2	Phenol-d5	28%		15-1	10%	
118-79-6	2,4,6-Tribromophenol	79%		15-1	10%	
4165-60-0	Nitrobenzene-d5	73%		30-13		
321-60-8	2-Fluorobiphenyl	73%		30-13		
1718-51-0	Terphenyl-d14	82%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

မ

01/25/11

01/26/11

Client Sample ID: MW8-ROX-012511

Lab Sample ID: M97395-10 Date Sampled: 01/3
Matrix: AQ - Ground Water Date Received: 01/3
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	L49373.D	1	02/03/11	AMY	n/a	n/a	MSL1644
Run #2	N49341.D	10000	02/08/11	JΡ	n/a	n/a	MSN1863

Purge Volume
Run #1 5.0 ml
Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL 46.	MDL	Units	Q
67-64-1	Acetone	46:9 0.UN	·5 .0	4.6	ug/l	"u"
71-43-2	Benzene	986000 a	5000	3500	ug/l	
108-86-1	Bromobenzen e	ND	5.0	0.52	ug/l	' ひJ"
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/I	1
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	•
104-51-8	n-Butylbenzene	2.1	5.0	0.49	ug/l	` J "
135-98-8	sec-Butylbenzene	1.4	5.0	0.37	ug/l	丁"
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	" O.1.
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	1
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	{
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	1
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	1
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	- 1
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	I.
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	l'
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	1
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	J
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	JI
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	V

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

 $E \,=\, Indicates \; value \; exceeds \; calibration \; range \;$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW8-ROX-012511

Lab Sample ID: M97395-10 Date Sampled: 01/25/11
Matrix: AQ - Ground Water Date Received: 01/26/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	ึ นงี"
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	1
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	ì
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	l.
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	₩.
100-41-4	Ethylbenzene	234	1.0	0.61	ug/l	"J"
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/I	"u2"
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	Tru'
98-82-8	Isopropylbenzene	10.4	5.0	0.51	ug/I	~ 3"
99-87-6	p-Isopropyltoluene	1.2	5.0	0.45	ug/l	`J '
1634-04-4	Methyl Tert Butyl Ether	210	1.0	0.54	ug/l	΄ ΄
108-10-1	4-Methyl-2-pentanone (MIBK)		5.0	1.3	ug/l	~u3"
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	i
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	V
103-65-1	n-Propylbenzene	17.3	5.0	0.43	ug/l	~ 2"
100-42-5	Styrene	ND	5.0	0.68	ug/l	~ U2"
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	}
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	}
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	1
108-88-3	Toluene	1200	1.0	0.74	ug/l	₹ ″J"
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	"rr2"
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	ì
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	ļ
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	l,
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	V
95-63-6	1,2,4-Trimethylbenzene	109	5.0	0.62	ug/l	"J"
108-67-8	1,3,5-Trimethylbenzene	33.2	5.0	0.51	ug/l	~ J"
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/i	" UN"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/I	~ UJ"
	m,p-Xylene	499	1.0	0.62	ug/l	~ 7.
95-47-6	o-Xylene	188	1.0	0.56	ug/l	~ 1,
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	38% b	99%	70-13	80%	
2037-26-5	Toluene-D8	269% ^b	105%	70-13	30%	
460-00-4	4-Bromofluorobenzene	91%	104%	70-13	80%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

ි ය

Page 3 of 3

Client Sample ID: MW8-ROX-012511

M97395-10

Date Sampled: 01/25/11 Date Received: 01/26/11

Matrix: Method: AQ - Ground Water SW846 8260B

Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

Lab Sample ID:

CAS No. Compound Result

RLMDL

Units

Q

(a) Result is from Run# 2

(b) Outside control limits due to possible matrix interference. Confirmed by reanalysis.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: MW8-ROX-012511

Lab Sample ID: M97395-10 Date Sampled: 01/25/11 Date Received: 01/26/11 Matrix: AQ - Ground Water Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Ву File ID DF Analyzed Prep Date Prep Batch Analytical Batch MSS890 Run #1 S21275.D 02/04/11 PR 01/27/11 OP23969 1

Run #2

1000 ml 1.0 ml Run #1

Initial Volume Final Volume

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l	
105-67-9	2,4-Dimethylphenol	23.3	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l	
95-48-7	2-Methylphenol	19.5	10	0.48	ug/l	
	3&4-Methylphenol	50.2	10	0.63	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l	· > ~ 1)
108-95-2	Phenol	119	5.0	2.1	ug/l	~ J"
95-9 5-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l	11
62-53-3	Aniline	ND	10	0.46	ug/l	"Ամ"
120-12 - 7	Anthracene	NĎ	5.0	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/I	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l	"UJ"
218-01-9	Chrysene	ND	5.0	0.22	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW8-ROX-012511

 Lab Sample ID:
 M97395-10
 Date Sampled:
 01/25/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/26/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	0.40	5.0	0.34	ug/l	J
84-66-2	Diethyl phthalate	2.5 0.0ND	5.0	0.61	ug/l	_jB~~a,
131-11-3	Dimethyl phthalate	ND ·	5.0	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	0.86	2.0	0.49	ug/l	J
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	_
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	$\alpha \pi_{\lambda}$
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	6.9	5.0	0.31	ug/I	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	26.0	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
367-12-4	2-Fluorophenol	52%		15-11	0%	
4165-62-2	Phenol-d5	34%		15-11	0%	
118-79-6	2,4,6-Tribromophenol	90%		15-11		
4165-60-0	Nitrobenzene-d5	81%		30-13		
321-60-8	2-Fluorobiphenyl	80%		30-13	0%	
1718-51-0	Terphenyl-d14	83%		30-13	0%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 3

Client Sample ID: MW8-ROX-012511 DUP

Lab Sample ID: M97395-11 Matrix: AQ - Ground Water Method: SW846 8260B

Date Sampled: 01/25/11 Date Received: 01/26/11 Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	L49374.D	1	02/03/11	AMY	n/a	n/a	MSL1644
Run #2	N49342.D	10000	02/08/11	JP	n/a	n/a	MSN1863

	Purge Volume		
Run #1	5.0 ml		
Run #2	5.0 ml		

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
			40.3			~ W
67-64-1	Acetone	49.300ND	. 5.0	4.6	ug/l	٠ 0
71-43-2	Benzene	1030000 ^a	5000	3500	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	~ 172 a
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	ì
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	1
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	(
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	V
104-51-8	n-Butylbenzene	2.0	5.0	0.49	ug/l	`J"
135-98-8	sec-Butylbenzene	1.4	5.0	0.37	ug/l	-Ju -Ju
98-06-6	tert-Butylbenzene	1.1	5.0	0.53	ug/l	21"
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	~"UJ"
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	1
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	1
75-00-3	Chloroethane	ND	2.0	0.76	ug/I	1
67-66-3	Chloroform	ND	1.0	0.72	ug/l	l
74-87-3	Chloromethane	ND	2.0	0.81	ug/I	l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	ì
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	1
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	1
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	ľ
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	l l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	1,
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	\forall

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 3

Client Sample ID: MW8-ROX-012511 DUP

Lab Sample ID: M97395-11 Date Sampled: 01/25/11 Matrix: AQ - Ground Water Date Received: 01/26/11 Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	~ ルブ"
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	1
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	Ì
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	l.
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	<i>i</i> .
100-41-4	Ethylbenzene	237	1.0	0.61	ug/l	~ 5"
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	~`uJ''
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	~ UD"
98-82-8	Isopropylbenzene	10.5	5.0	0.51	ug/l	~.J
99-87-6	p-Isopropyltoluene	1.0	5.0	0.45	ug/l	~I "
1634-04-4	Methyl Tert Butyl Ether	205	1.0	0.54	ug/l	~J* "
108-10-1	4-Methyl-2-pentanone (MIBK)		5.0	1.3	ug/l	~ 112°
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	~ U50
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	~`` પ્ર હ"
103-65-1	n-Propylbenzene	17.0	5.0	0.43	ug/l	~ 2" -"
100-42-5	Styrene	ND	5.0	0.68	ug/l	, "UZ"
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	i
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	l
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	₩.
108-88-3	Toluene	1120	1.0	0.74	ug/l	X 12,
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	" 1274
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	1
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	}
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	ſ
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	- 1
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	• <u>(</u>
95-63-6	1,2,4-Trimethylbenzene	110	5.0	0.62	ug/l	~ 7.
108-67-8	1,3,5-Trimethylbenzene	33.6	5.0	0.51	ug/l	~7"
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	JU 7"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	``uÿ''
	m,p-Xylene	518	1.0	0.62	ug/l	22,1
95-47-6	o-Xylene	191	1.0	0.56	ug/l	" 5"
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	85%	99%	70-13	0%	
2037-26-5	Toluene-D8	257% b	103%	70-13	0%	
460-00-4	4-Bromofluorobenzene	90%	101%	70-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW8-ROX-012511 DUP

Lab Sample ID:M97395-11Date Sampled:01/25/11Matrix:AQ - Ground WaterDate Received:01/26/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No. Compound Result RL MDL Units Q

(a) Result is from Run# 2

(b) Outside control limits due to possible matrix interference. Confirmed by reanalysis.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW8-ROX-012511 DUP

Lab Sample ID: M97395-11 Date Sampled: 01/25/11 Matrix: AO - Ground Water Date Received: 01/26/11 Method: SW846 8270C SW846 3510C Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed $\mathbf{B}\mathbf{y}$ Prep Date Prep Batch Analytical Batch MSS890 Run #1 S21276.D 1 02/04/11 PR 01/27/11 OP23969 Run #2

Initial Volume Final Volume

Run #1 880 ml 1.0 ml Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	11	0.87	ug/l
95-57-8	2-Chlorophenol	ND	5.7	0.77	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.65	ug/I
120-83-2	2,4-Dichlorophenol	ND	11	0.79	ug/l
105-67-9	2,4-Dimethylphenol	29.9	11	2.4	ug/l
51-28- 5	2,4-Dinitrophenol	ND	23	2.8	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.7	ug/l
95-48-7	2-Methylphenol	22.8	11	0.54	ug/l
	3&4-Methylphenol	58.7	11	0.71	ug/l
88-75-5	2-Nitrophenol	ND	11	0.75	ug/l
100-02-7	4-Nitrophenol	ND	23	5.7	ug/l
87-86-5	Pentachlorophenol	ND	11	3.8	ug/l
108-95-2	Phenol	171	5.7	2.3	ug/I ``J`
95-95-4	2,4,5-Trichlorophenol	ND	11	0.46	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	11	0.43	ug/l
83-32-9	Acenaphthene	ND	5.7	0.38	ug/l
208-96-8	Acenaphthylene	ND	5.7	1.4	ug/l
62-53-3	Aniline	ND	11	0.52	ug/i · u5
120-12-7	Anthracene	ND	5.7	0.31	ug/l
56-55-3	Benzo(a) anthracene	ND	5.7	0.31	ug/l
50-32-8	Benzo(a)pyrene	ND	5.7	0.26	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.7	0.31	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5 <i>.</i> 7	0.70	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.7	0.33	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.7	0.36	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.7	0.46	ug/l
91-58-7	2-Chloronaphthalene	ND	5.7	0.35	ug/l
106-47-8	4-Chloroaniline	ND	11	0.65	ug/l "UJ"
218-01-9	Сһгуѕепе	ND	5.7	0.25	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.7	0.40	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.7	0.27	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.7	0.24	ug/l

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: MW8-ROX-012511 DUP

Date Sampled: 01/25/11 Lab Sample ID: M97395-11 Date Received: 01/26/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.7	0.70	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.4	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.38	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.7	2.8	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.7	0.28	ug/l	
132-64-9	Dibenzofuran	ND	5.7	0.36	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.7	0.38	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.7	0.38	ug/l	
84-66-2	Diethyl phthalate	12.5	5.7	0.70	ug/l	
131-11-3	Dimethyl phthalate	ND	5.7	1.4	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	1.2	2.3	0.56	ug/l	J
206-44-0	Fluoranthene	ND	5.7	0.25	ug/I	
86-73-7	Fluorene	ND	5.7	0.33	ug/l	
118-74-1	Hexachlorobenzene	ND	5.7	0.18	ug/l	vi
77-47-4	Hexachlorocyclopentadiene	ND	11	2.8	ug/l	~ 172 A
67-72-1	Hexachloroethane	ND	5.7	0.49	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.7	0.33	ug/l	
78-59-1	Isophorone	ND	5.7	0.54	ug/l	
91-57-6	2-Methylnaphthalene	7.5	5.7	0.35	ug/l	
88-74-4	2-Nitroaniline	ND	11	0.38	ug/l	
99-09-2	3-Nitroaniline	ND	11	0.37	ug/l	
100-01-6	4-Nitroaniline	ND	11	0.38	ug/l	
91-20-3	Naphthalene	28.8	5.7	0.37	ug/l	
98-95-3	Nitrobenzene	ND	5.7	0.35	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.7	0.46	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.7	0.70	ug/l	
85-01-8	Phenanthrene	ND	5.7	0.29	ug/l	
129-00-0	Pyrene	ND	5.7	0.28	ug/l	
110-86-1	Pyridine	ND	11	0.57	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	55%		15-11	10%	
4165-62-2	Phenol-d5	36%		15-1 1		
118-79-6	2,4,6-Tribromophenol	97%		15-11		
4165-60-0	Nitrobenzene-d5	83%		30-13		
321-60-8	2-Fluorobiphenyl	84%		30-13		
1718-51-0	Terphenyl-d14	90%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Certification Exceptions
- · Certification Exceptions (IL)
- · Chain of Custody
- Sample Tracking Chronicle
- · Internal Chain of Custody

(((
LAS (LOCATION)					6	TO S		Sh	ell (Oil	Pr	rod	ucl	s C	ha	in (Of (Cus	sto	ly F	₹ec	or	ď				
□×m∞ ()		PH	ease C	heck	Appro	portate	Box.	: -		Print Bill To Contact Name: INCID					NCIDE	DENT # (ENV SERVICES) CHECKY NO LICORIST & APPLIES											
CASCING CONFICENCE TO TOUS TOUS TOUS TOUS TOUS TOUS TOUS T	=). SEXVICES		□*	JIIVA BET	AL		SHELL	LIAL	<u>]</u> [GTON	ı		•	7	2	٦	٥		4 0	DA7	. 10 1 2
DSP. (LD **	TIVA SCORCI	4	Ūα	SULTAN	<u> </u>		Wes		PO # ·						SAP #				1 2							
Lab Vendor #	□ No	AL MPALIN	ŧ	0 01	_			<u></u>			Γ	T	П	\top	Т	Τ	П	Т	٦,	1	0	0	в	7	Т	PAC	Æ_ <u>\</u> d
URS CORPORATION					untere-	-				170	EA5	TRA	D AV	ENUE	- HA	शास्त्र	70		L.			(Lube	i di eti				-
100) HIGHLANDS PLAZA DRIVE WEST - SLITE 300, I	57. LOL	JES, JMQ 63	9110							Part.	i dell'es	- J (6)		C			٦	न्त्रमध				j					Rosmon Quarterly!
WENDY PENNINGTON										1	स्य अ	14016-	_			_							_		Tu	USEG	21502533.00003
314-743-4168 or 341-452-8828 314-429-0462		কাৰ্ডিয়ে	11 ≒ .							1															-	E	197395
TURNAROUNO TAKE (CALENDAR DAYOR STANDARO (14 DAY)				2H HOU	<u> </u>			ATEKEN		T					_				REQU	ESTE	D AN	ALY:	242				111212
☐ LA - RANGES REPORT FORMAT ☐ LIST AGENCY:										†	Т	Г	П	7	Т	Т	П	T	Т	Т	П		Т	Т		Т	FIELD NOTES:
OSLINERABLES: DIEVEL BIEVEL 2 DIEVEL 3			2 отни	ISPECI	m	EDO		_									$ \ $									ļ	EMPERATURE ON RECEPT C*
·	Corto F	_		ļ	Crain #3]		l	Н				Ш		1		Ш			-		l.	Carpon of the Carlo
SPECIAL INSTRUCTIONS OR NOTES :					MINAC!					1	ĺ	l	Н	-			Ш			1						-	
				SED NO	RELIDURS THE LOCK					1	l				ſ	1	П						- 1				
OHOTE A PERCENCIA A			8	LECATO	T VERIFIC SE LEDO D	ATION I EE	II CUTS	720		۱.	8	ı					П	J					- 1				Contained PTD Residents
000)E#PEKI##II0-14							럞	SVOC 8270C	1					1 1	- 1	J		1						or Lebomtery Holes			
Field Sample Identification			MATE	74 4		PRESENT.	/A1ME		IAD. OF	٥	8	1					ſΙ				Ш				PID		
QRLY	DATE	TAKE			MG. 1840	147 20	Die.	опнел		Š	3	L		_	┸	L	L.I			L			_	ᆚ	(6bw	<u> </u>	
	112414		Wa	لببا	2	\perp	上		؞	~	L		Ц	_										Ţ		_	
2 MW 12- ROX- 01 2411		lboo	\sqcup	_	3	Ļ	2	<u> </u>	5	1	<u> </u>			\perp	4	┸	Ш				Ц	_1	_	_		_	
		1000	\sqcup		3	↓_	12	L	L	1	<u>~</u>	L	Ц	_ _		1_		L	\perp	1_	Ц		_				
20 MW12- ROX-C12411 HSD			L- -		3	<u> </u>	12.	ļ	Щ	l×	<u></u>	L	Ц	_	_ _	L	L		1	┸	Ц	\perp	_				
-3 MW 11- ROX-0124 V	i 29 H	1i35	나	_	3	<u>Ļ</u> .	<u> 2</u>	<u> </u>	<u> </u>	<u> </u>	v	Ļ	\sqcup	_			Ш			Ш		\perp	_	┙			
9 Mic 18 - ROX - 012411		1250	L		3	<u> </u>	Z			<u></u>	_	·		L	_					Ш				_			
3 MW 10 -ROX - 01 2411 DUP	1/24/1	1250			3		12		IT	V	J	-	\sqcap	T				T	Τ			\neg	T			Т	
-6 P54 - ROX-012411	Hadi	455	П	\neg	3	Γ	2		П	V	~			T	T	Τ	П	7	Τ	П	П	\exists	\neg	T		\neg	
	-1	0800	\sqcap		3	1	2.		广	v	U	1	\forall	7	1	忊	Ħ	_	十	Ħ	\exists	7	1	+		\top	176,5114
0	12514	مالا	พม	ik	3	+-	2	-	7	T	V	Τ	\dashv	+	- -	┢	\vdash	十	十	┰	Ħ	7	寸	+		_	110/011
And the design of	F- 1-	-:	^	عارا کر	-					-	_		щ	-1.		1.		ф.		<u> </u>	Days.	-+			_		
Militari						F	edl	5x													1	2	5/1	l)			1630
Refrance by Clyster)			Permission	A: (DA	رصف			_	_			_									7	Ja.	~ l	, ,		file:	10:20
FrdEX			Parameter	by, (Days		Z	0/	CUM	<u>/_</u>		_				_						را	130	0/1(_		10:30
				-,	,.,			_						_												_	1-9/1-6°C

M97395: Chain of Custody

Page 1 of 3

(((
LAB (LOCATION)		€®	Shell (Oi	il P	rođ	ucts	: Ch	ıaln	Of	Cu	sto	dv I	Red	cor	d			
	Plea	se Check Appropriat			_							ENT # (ENV SERVICES) Contest if no incident a septitis							
Conscience (OW. SERVICES	ACTIVA RETAIL	☐ SHELL RELAKE								1 2	Ī	, ,	$\neg \neg \neg$	\neg	ne 1/25/1			
DINTE (Mathemonth NA.01752 (508-451-6300)	□ нстгул эзиси	□ co≥sutium	() uses	마				PQ :					,,,	SAP#					
Lab Vendor S	☐ SKET VALUE	☐ QUHEN		마	Т	\Box	T	T	Π	Т	П		١,	1	ı۰	8 1	\mathbf{I}	- P^	GE:2_ ar _ 7
URS CORPORATION		D) (A)		- 1		Wille to						-		, ,	Time t	t no			_
1001 HIGHLANDS PLAZA ORIVE WEST - SUITE 300, I	ST LOUIS MORNI			╬	IU EX	ST RAN	U AVE	D-III	A CIT	OND	NO.	<u> </u>			-				THE THE HE IS
WENDY PENNINGTON	01. E00-0, III-0 (0)			۲.		و کرکات					Ц.				L.				Roumna Quarterly / 21542593,00002
Michigan I (a)	hali (com)			⊢,'	M. 110	DECK PROPERTY.	•										- 1	و فعدا مدا	San Color
314-743-4166 or 341-452-8928 314-429-0462 TURNANOUND TIME (CALENDAR DAYS):			RESULTS HELDED	4				_											197395
STANDARD (14 DAY) STANS DE DAYS	Dievo	[] 24 HOURS	ON MEDITING	4					_			REQ	JE8TI	ED AV	LALYS	15			
DELIMENANCE DIEVEL SIEVEL DILVELD	B 19			_						1	Ш		1	П			'		FIELD NOTES:
	Grant #2	THER (SPECIFY)EOO		\dashv	-						П			П					TEMPERATURE ON RECEIPT C
SPECIAL INSTRUCTIONS OR NOTES :	UNIO 22	Cooler #3		\dashv		11					ſΙ		1	П					
" LONE MATRICE TORRO OR HOTES:		STATE DEBUGGESCHENT STATE DEBUGGESCHENT 100 NOT WEEDED	apties Rate applies	-							Ιí	1	1	П				ł	
,		O FECTER VERIFICATION OF RECEIPT VERIFICATION	INCLUSIO	Ι.	ہ _	,[]	ſ	11			Ш		1	П					
OUCTE # PEK12/2018-14				<u></u>	5260B			11		1	Ш			П	1				Container PED Residings or Laboratory Notes
Field Sample identification	SAMPLING .	NATIFIE PRODUCTION	MO, OF	و اع	D 10						Ш						Ι.	at at	
0=17	DATE TIME	No. (mant street	1 1 1		8 8			\perp	\perp		Щ		Т.		_	_		PITT)	
115510 HAT - KOX - SMEH 012511	25111435	vatu 3	2		<u> </u>	<u>. </u>		Ш	\bot				Ł	L	Ц	1			
-10 MW8-RCX-012511	125 V 1325	3	- a - L -	_հ	1 2	11							┸	L.	Ц	\perp			
-11 11W8 - ROX-012511	2511 1325	1 3	2	__	<u>د اه</u>	<u> </u>	\perp	Ш				\perp	┸	$oxed{oxed}$				[
				_L	_L		\perp	\perp	_	┸	L	\perp	<u> </u>	Ш		_L			
177				L	\perp		┙			\perp			L			\perp			
				Т		11	Т	\Box		Т	П	Т	Т			1			
ğ.				_	7	П	┪	7-1	\top	1	1-1	┪	_	П	\neg	十	_		
	-		 - - 	+	+	+	-	+ +	+	+	 	+	╁	Н	+	十	+	\dashv	
	\rightarrow	~ 	╀┼┼┼	+	╀	┿	╁	┼┤	+	╁	 		╀	╁┤	4		+	\rightarrow	
· · · · · · · · · · · · · · · · · · ·		\rightarrow	 	4	4	44	\perp	Щ		┦~	Ц	\perp	\perp	Ш	_4	4_			
											L			∐					
Walan		(د الحد) . (د الحد د)											_	Gar.:	122	/n		Pau:	163 D
OSCIULIAN DE CONTROL		natural by: Zartelarry												<u> </u>	1,53	"			10 2 0
	~	at lateral																, m	
Followide by (Options)		ده مخصوات .پدا اواخوا								_								7200	
		, -																	
					-							_							PSCOR. Providen

M97395: Chain of Custody

Page 2 of 3

ACCUTEST.
LABORATORIES

Accutest Laboratories Sample Receipt Summary

LABORAT	TORIES									
Accutest Job Number: N	197395	Cllent:	URS			Immediate Client Servi	ces Actio	n Rec	juired:	No
Date / Time Received: 1	/26/2011		Delive	ry Metho	od:	Client Service Action	Logín:	No		
Project: 170 EAST RAND	AVE HART	FORD	No. Co	olers:	:	2 Airbiii #'s: N/A				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: Quality Control Preserva	Infa		es/Time OK	Y or		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recyd wilhin HT: 2. All containers accounted for: 3. Condition of sample:	Y	or or		
1. Trip Blank present / cooler 2. Yrip Blank listed on COC; 3. Samples preserved prope 4. VOCs headspace free;	r Ø		•			Sample Integrity - Instructions 1. Analysis requested is clear. 2. Boltles received for unspecified tests 3. Sufficient volume recyd for analysis: 4. Compositing instructions clear; 5. Filtering instructions clear;	Y	or		NVA
Comments										
Accutest Laboratories V.508.481.6200					ology Center F: 508.461.	r West, Bidg One 7753				orough, MA /accutest.com

M97395: Chain of Custody Page 3 of 3

Internal Sample Tracking Chronicle

Shell Oil

Job No:

M97395

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
M97395-1 TB-ROX-0	Collected: 24-JAN-11	00:00 By:	Recei	ved: 26-JAN	-11 By	: JB
M97395-1	SW846 8260B	03-FEB-11 11:41	AMY			V8260STD
M97395-2 MW12-RO	Collected: 24-JAN-11 X-012411	10:00 By:	Recei	ved: 26-JAN	-11 By	: ЈВ
M97395-2 M97395-2	SW846 8260B SW846 8270C	03-FEB-11 15:30 04-FEB-11 00:48	AMY PR	27-JAN-11	AJ	V8260STD AB8270PPL
M97395-3 MW11-RO	Collected: 24-JAN-11 X-012411	11:35 By:	- Recei	ved: 26-JAN	-11 By	: JB
M97395-3 M97395-3	SW846 8260B SW846 8270C	03-FEB-11 15:59 04-FEB-11 01:14	AMY PR	27-JAN-11	AJ	V8260STD AB8270PPL
M97395-4 MW10-RO	Collected: 24-JAN-11 X-012411	12:50 By:	Recei	ved: 26-JAN	-11 By	: JB .
M97395-4	SW846 8260B SW846 8270C	04-FEB-11 01:41	PR	27-JAN-11	AJ	AB8270PPL
M97395-5 MW10-RO	Collected: 24-JAN-11 X-012411DUP	12:50 By:	Recei	ved: 26-JAN	-11 By	: JB
M97395-5 M97395-5	SW846 8260B SW846 8270C	03-FEB-11 16:56 04-FEB-11 02:08	AMY PR	27-JAN-11	AJ	V8260STD AB8270PPL
M97395-6 P54-ROX-0	Collected: 24-JAN-11 012411	14:55 By:	Recei	ved: 26-JAN	-11 By	: JB
M97395-6 M97395-6	SW846 8270C SW846 8260B	04-FEB-11 02:35 07-FEB-11 15:59	PR EL	27-JAN-11	AJ	AB8270PPL V8260STD
	Collected: 25-JAN-11 X-012511EB	08:00 By:	Recei	ved: 26-JAN	-11 By	: JB
M97395-7 M97395-7	SW846 8260B SW846 8270C	03-FEB-11 12:08 04-FEB-11 03:01	AMY PR	27-JAN-11	AJ	V8260STD AB8270PPL

Internal Sample Tracking Chronicle

Shell Oil

Job No: M97395

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
M97395-8 MW13-RO	Collected: 25-JAN-11	11:10 By:	Receiv	/ed: 26-JAN-	11 By:	JB
	SW846 8270C SW846 8260B		PR JP	27-JAN-11	AJ	AB8270PPL V8260STD
M97395-9 MW7-ROX	Collected: 25-JAN-11	14:35 By:	Receiv	/ed: 26-JAN-	11 By:	JB
M97395-9	SW846 8260B SW846 8270C SW846 8260B			27-JAN-11	AJ	V8260STD AB8270PPL V8260STD
M97395-10 MW8-ROX	Collected: 25-JAN-11 1 -012511	13:25 By:	Receiv	/ed: 26-JAN-	11 By:	JB
M97395-10	SW846 8260B SW846 8270C SW846 8260B	04-FEB-11 04:22	PR		АJ	
M97395-11 MW8-ROX	Collected: 25-JAN-11 1 -012511 DUP	13:25 By:	Receiv	ed: 26-JAN-	11 By:	JB
M97395-11	SW846 8260B SW846 8270C SW846 8260B	03-FEB-11 19:20 04-FEB-11 04:48 08-FEB-11 16:45	AMY PR JP	27-JAN-11		V8260STD AB8270PPL V8260STD

Accutest Internal Chain of Custody Job Number: M97395

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

01/26/11 Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
Пишоеі			Data i me	Reason
M97395-1.1	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-1.1	Amy Min Yang	GCMSL		Load on Instrument
M97395-1.1	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-1.1	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-2.1	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-2.1	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-2.3	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-2.3	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-2.4	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-2.4	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-2.9	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-2.9	Amy Min Yang	GCMSL	*	Load on Instrument
M97395-2.9	GCMSL	Amy Min Yang		Unload from Instrument
M97395-2.9	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-2.10	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-2.10	Amy Min Yang	GCMSL		Load on Instrument
M97395-2.10	GCMSL	Amy Min Yang		Unload from Instrument
M97395-2.10	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-2.13	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-2.13	Amy Min Yang	GCMSL		Load on Instrument
M97395-2.13	GCMSL	Amy Min Yang		Unload from Instrument
M97395-2.13	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-2.14	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-2.14	Amy Min Yang	GCMSL		Load on Instrument
M97395-2.14	GCMSL	Amy Min Yang		Unload from Instrument
M97395-2.14	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-3.1	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-3.1	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-3.5	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-3.5	Amy Min Yang	GCMSL		Load on Instrument
M97395-3.5	GCMSL	Amy Min Yang		Unload from Instrument
M97395-3.5	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-4.2	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
W197393-4.2	Mahmoud Afzali		01/28/11 11:13	

Accutest Internal Chain of Custody Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received: 01/26/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97395-4.3	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-4.3	Amy Min Yang	GCMSL	02/03/11 10:11	Load on Instrument
M97395-4.3	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-4.3	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-5.1	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
M97395-5.1	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-5.3	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-5.3	Amy Min Yang	GCMSL	02/03/11 10:11	Load on Instrument
M97395-5.3	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-5.3	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-6.2	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
M97395-6.2	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-6.3	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-6.3	Amy Min Yang	GCMSL		Load on Instrument
M97395-6.3	GCMSL	Amy Min Yang	02/04/11 11:04	Unload from Instrument
M97395-6.3	Amy Min Yang	VOC Ref #5	02/04/11 11:04	Return to Storage
M97395-7.1	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
M97395-7.1	Mahmoud Afzali		01/28/11 11:13	
M97395-7.4	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-7.4	Amy Min Yang	GCMSL		Load on Instrument
M97395-7.4	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-7.4	Amy Min Yang	VOC Ref #5		Return to Storage
M97395-8.1	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
M97395-8.1	Mahmoud Afzali		01/28/11 11:13	
M97395-8.3	VOC Ref #5	Jugal Patel	02/07/11 16:43	Retrieve from Storage
M97395-8.3	Jugal Patel	GCMSN		Load on Instrument
M97395-8.3	GCMSN	Jugal Patel		Unload from Instrument
M97395-8.3	Jugal Patel	VOC Ref #5		Return to Storage
M97395-8.4	VOC Ref #5	Jugal Patel	02/08/11 12:04	Retrieve from Storage
M97395-8.4	Jugal Patel	GCMSN		Load on Instrument
M97395-8.4	GCMSN	Jugal Patel		Unload from Instrument
M97395-8.4	Jugal Patel	VOC Ref #5		Return to Storage
M97395-8.5	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage

Accutest Internal Chain of Custody Job Number: M97395

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

01/26/11 Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97395-8.5	Amy Min Yang	GCMSL	02/03/11 10:11	Load on Instrument
M97395-8.5	GCMSL	Amy Min Yang	02/04/11 11:04	Unload from Instrument
M97395-8.5	Amy Min Yang	VOC Ref #5	02/04/11 11:04	Return to Storage
M97395-9.1	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-9.1	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-9.3	VOC Ref #5	Jugal Patel		Retrieve from Storage
M97395-9.3	Jugal Patel	GCMSN		Load on Instrument
M97395-9.3	GCMSN	Jugal Patel	02/09/11 10:55	Unload from Instrument
M97395-9.3	Jugal Patel	VOC Ref #5	02/09/11 10:55	Return to Storage
M97395-9.4	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-9.4	Amy Min Yang	GCMSL		Load on Instrument
M97395-9.4	GCMSL	Amy Min Yang		Unload from Instrument
M97395-9.4	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-10.1	Walk In Ref #22	Mahmoud Afzali		Retrieve from Storage
M97395-10.1	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-10.3	VOC Ref #5	Jugal Patel		Retrieve from Storage
M97395-10.3	Jugal Patel	GCMSN		Load on Instrument
M97395-10.3	GCMSN	Jugal Patel		Unload from Instrument
M97395-10.3	Jugal Patel	VOC Ref #5	02/09/11 10:55	Return to Storage
M97395-10.4	VOC Ref #5	Amy Min Yang		Retrieve from Storage
M97395-10.4	Amy Min Yang	GCMSL	02/03/11 10:11	Load on Instrument
M97395-10.4	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-10.4	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage
M97395-11.2	Walk In Ref #22	Mahmoud Afzali	01/27/11 11:42	Retrieve from Storage
M97395-11.2	Mahmoud Afzali		01/28/11 11:13	Depleted
M97395-11.3	VOC Ref #5	Jugal Patel	02/09/11 10:54	Retrieve from Storage
M97395-11.3	Jugal Patel	GČMSN	02/09/11 10:54	Load on Instrument
M97395-11.3	GČMSN	Jugal Patel	02/09/11 10:55	Unload from Instrument
M97395-11.3	Jugal Patel	VOC Ref #5	02/09/11 10:55	Return to Storage
M97395-11.4	VOC Ref #5	Amy Min Yang	02/03/11 10:11	Retrieve from Storage
M97395-11.4	Amy Min Yang	GCMSL		Load on Instrument
M97395-11.4	GCMSL	Amy Min Yang	02/08/11 11:40	Unload from Instrument
M97395-11.4	Amy Min Yang	VOC Ref #5	02/08/11 11:40	Return to Storage

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- · Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed 02/03/11	By	Prep Date	Prep Batch	Analytical Batch
MSL1644-MB	L49356.D	1		AMY	n/a	n/a	MSL1644

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	12.0	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/I
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/I
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/I
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Method: SW846 8260B

Method Blank Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSL1644-MB	L49356.D	1	02/03/11	AMY		n/a	MSL1644

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries		Limits			
1868-53-7	Dibromofluoromethane	103%	70-1309			
2037-26-5	Toluene-D8	100%	70-1309			
460-00-4	4-Bromofluorobenzene	96%	70-1309	%		

Method Blank Summary Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

MSG4155-MB G103071.D 1 02/07/11 EL n/a n/a MSG4155	Sample MSG4155-MB	File ID G103071.D	DF 1		By EL	Prep Date n/a	Prep Batch n/a	Analytical Batch MSG4155
--	----------------------	----------------------	---------	--	----------	------------------	-------------------	-----------------------------

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	NĎ	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12 - 8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/i
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Method Blank Summary Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSG4155-MB	G103071.D	1	02/07/11	EL	n/a	n/a	MSG4155

The QC reported here applies to the following samples: Method: SW846 8260B

M97395-6

10061-02-6 trans-1,3-Dichloropropene ND 0.50 0.23 ug/l 100-41-4 Ethylbenzene ND 1.0 0.61 ug/l 87-68-3 Hexachlorobutadiene ND 5.0 0.56 ug/l 591-78-6 2-Hexanone ND 5.0 2.5 ug/l 98-82-8 Isopropylbenzene ND 5.0 0.51 ug/l 99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
100-41-4 Ethylbenzene ND 1.0 0.61 ug/l 87-68-3 Hexachlorobutadiene ND 5.0 0.56 ug/l 591-78-6 2-Hexanone ND 5.0 2.5 ug/l 98-82-8 Isopropylbenzene ND 5.0 0.51 ug/l 99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
87-68-3 Hexachlorobutadiene ND 5.0 0.56 ug/l 591-78-6 2-Hexanone ND 5.0 2.5 ug/l 98-82-8 Isopropylbenzene ND 5.0 0.51 ug/l 99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
591-78-6 2-Hexanone ND 5.0 2.5 ug/l 98-82-8 Isopropylbenzene ND 5.0 0.51 ug/l 99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
98-82-8 Isopropylbenzene ND 5.0 0.51 ug/l 99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
99-87-6 p-Isopropyltoluene ND 5.0 0.45 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.54 ug/l 108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.3 ug/l 74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
74-95-3 Methylene bromide ND 5.0 0.94 ug/l 75-09-2 Methylene chloride ND 2.0 0.75 ug/l
75-09-2 Methylene chloride ND 2.0 0.75 ug/l
103-65-1 n-Propylhenzene ND 5.0 0.43 ug/l
100-42-5 Styrene ND 5.0 0.68 ug/l
630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 0.64 ug/l
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.89 ug/1
127-18-4 Tetrachloroethene ND 1.0 0.39 ug/l
108-88-3 Toluene ND 1.0 0.74 ug/l
87-61-6 1,2,3-Trichlorobenzene ND 5.0 1.0 ug/l
120-82-1 1,2,4-Trichlorobenzene ND 5.0 0.57 ug/l
71-55-6 1,1,1-Trichloroethane ND 1.0 0.35 ug/l
79-00-5 1,1,2-Trichloroethane ND 1.0 0.72 ug/1
79-01-6 Trichloroethene ND 1.0 0.49 ug/l
75-69-4 Trichlorofluoromethane ND 1.0 0.47 ug/l
96-18-4 1,2,3-Trichloropropane ND 5.0 0.61 ug/l
95-63-6 1,2,4-Trimethylbenzene ND 5.0 0.62 ug/l
108-67-8 1,3,5-Trimethylbenzene ND 5.0 0.51 ug/l
108-05-4 Vinyl Acetate ND 5.0 0.51 ug/l
75-01-4 Vinyl chloride ND 1.0 0.86 ug/l
m,p-Xylene ND 1.0 0.62 ug/l
95-47-6 o-Xylene ND 1.0 0.56 ug/l
CAS No. Surrogate Recoveries Limits
1868-53-7 Dibromofluoromethane 99% 70-130%
2037-26-5 Toluene-D8 99% 70-130%
460-00-4 4-Bromofluorobenzene 100% 70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN1863-MB	N49335.D	1	02/08/11	JP	n/a	n/a	MSN1863

The QC reported here applies to the following samples:

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/l
74-83-9	Bromomethane	ND	2.0	0.95	ug/l
78 - 93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51 - 8	n-Butylbenzene	ND	5.0	0.49	ug/I
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/i
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.76	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Method: SW846 8260B

Method Blank Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN1863-MB	N49335.D	1	02/08/11	JP	n/a	n/a	MSN1863

The QC reported here applies to the following samples:

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	Result	RL	MDL	Units Q
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l
591 -78-6	2-Hexanone	ND	5.0	2.5	ug/l
98-82-8	Isopropyibenzene	ND	5.0	0.51	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.3	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l
100-42-5	Styrene	ND	5.0	0.68	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l
108-88-3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/I
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/I
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/I
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND.	1.0	0.56	ug/l
CAS No.	Surrogate Recoveries		Limits		
1868-53-7	Dibromofluoromethane	101%	70-1309	%	
2037-26-5	Toluene-D8	104%	70-1309		
460-00-4	4-Bromofluorobenzene	105%	70-1309	_	
200 00 3	- 22 OHIOTAGO O O OHIO CHO	20070	. 0 100/	•	

Page 3 of 3

Method Blank Summary

Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN1863-MB	N49335.D	1	02/08/11	JP	n/a	n/a	MSN1863

The QC reported here applies to the following samples:

Method:

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.

Tentatively Identified Compounds

R.T.

Est. Conc. Units Q

Total TIC, Volatile

0

ug/l

Blank Spike Summary Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed H	By	Prep Date	Prep Batch	Analytical Batch
MSG4155-BS	G103069.D	1	02/07/11 H	EL	n/a	n/a	MSG4155

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67.64.1	-	50	56.3	113	70 120
67-64-1	Acetone		•		70-130
71-43-2	Benzene	50	46.4	93	70-130
108-86-1	Bromobenzene	50	47.9	96	70-130
74-97-5	Bromochloromethane	50	45.9	92	70-130
75-27-4	Bromodichloromethane	50	47.2	94	70-130
75-25-2	Bromoform	50	50.8	102	70-130
74-83-9	Bromomethane	50	42.0	84	70-130
78-93-3	2-Butanone (MEK)	50	49.0	98	70-130
104-51-8	n-Butylbenzene	50	50.5	101	70-130
135-98-8	sec-Butylbenzene	50	48.8	98	70-130
98-06-6	tert-Butylbenzene	50	46.8	94	70-130
75-15-0	Carbon disulfide	50	47.5	95	70-130
56-23-5	Carbon tetrachloride	50	47.6	95	70-130
108-90-7	Chlorobenzene	50	47.2	94	70-130
75-00-3	Chloroethane	50	43.1	86	70-130
67-66-3	Chloroform	50	46.6	93	70-130
74-87-3	Chloromethane	50	45.5	91	70-130
95-49-8	o-Chlorotoluene	50	46.1	92	70-130
106-43-4	p-Chlorotoluene	50	48.1	96	70-130
96-12-8	1,2-Dibromo-3-chloropropane	50	47.5	95	70-130
124-48-1	Dibromochloromethane	50	49.6	99	70-130
106-93-4	1,2-Dibromoethane	50	46.9	94	70-130
95-50-1	1,2-Dichlorobenzene	50	48.7	97	70-130
541-73-1	1,3-Dichlorobenzene	50	48.2	96	70-130
106-46-7	1,4-Dichlorobenzene	50	48.4	97	70-130
75-71-8	Dichlorodifluoromethane	50	33.7	67* a	70-130
75-34-3	1,1-Dichloroethane	50	46.5	93	70-130
107-06-2	1,2-Dichloroethane	50	47.8	96	70-130
75-35-4	1,1-Dichloroethene	50	50.0	100	70-130
156-59-2	cis-1,2-Dichloroethene	50	47.9	96	70-130
156-60-5	trans-1,2-Dichloroethene	50	48.9	98	70-130
78-87-5	1,2-Dichloropropane	50	46.4	93	70-130
142-28-9	1,3-Dichloropropane	50	47.5	95	70-130
594-20-7	2,2-Dichloropropane	50	46.7	93	70-130
563-58-6	1,1-Dichloropropene	50	48.8	98	70-130
10061-01-5	cis-1,3-Dichloropropene	50	50.0	100	70-130
*0001-01-3	cio 1,0-Dichiotopiopene	50	30.0	100	, 0 100

Blank Spike Summary Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSG4155-BS	G103069.D	1	02/07/11	EL	n/a	n/a	MSG4155

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
10061-02-6	trans-1,3-Dichloropropene	50	53.8	108	70-130
100-41-4	Ethylbenzene	50	46.6	93	70-130
87-68-3	Hexachlorobutadiene	50	52.8	106	70-130
591-78-6	2-Hexanone	50	46.2	92	70-130
98-82-8	Isopropylbenzene	50	53.7	107	70-130
99-87-6	p-Isopropyltoluene	50	49.5	99	70-130
1634-04-4	Methyl Tert Butyl Ether	50	46.6	93	70-130
108-10-1	4-Methyl-2-pentanone (MIBK)	50	47.9	96	70-130
74-95-3	Methylene bromide	50	47.8	96	70-130
75-09-2	Methylene chloride	50	45.9	92	70-130
103-65-1	n-Propylbenzene	50	47.0	94	70-130
100-42-5	Styrene	50	48.0	96	70-130
630-20-6	1,1,1,2-Tetrachloroethane	50	47.0	94	70-130
79-34-5	1,1,2,2-Tetrachloroethane	50	47.7	95	70-130
127-18-4	Tetrachloroethene	50	47.9	96	70-130
108-88-3	Toluene	50	48.1	96	70-130
87-61-6	1,2,3-Trichlorobenzene	50	50.4	101	70-130
120-82-1	1,2,4-Trichlorobenzene	50	50.8	102	70-130
71-55-6	1,1,1-Trichloroethane	50	45.8	92	70-130
79-00-5	1,1,2-Trichloroethane	50	46.1	92	70-130
79-01-6	Trichloroethene	50	46.1	92	70-130
75-69-4	Trichlorofluoromethane	50	45.1	90	70-130
96-18-4	1,2,3-Trichloropropane	50	48.7	97	70-130
95-63-6	1,2,4-Trimethylbenzene	50	47.5	95	70-130
108-67-8	1,3,5-Trimethylbenzene	50	47.4	95	70-130
108-05-4	Vinyl Acetate	50	37.7	75	70-130
75-01-4	Vinyl chloride	50	42.0	84	70-130
	m,p-Xylene	100	93.5	94	70-130
95-47-6	o-Xylene	50	47.4	95	70-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1000 52 7	Dibromofluoromethere	1000/	70.1	200/	
1868-53-7	Dibromofluoromethane	100%	70-1		
2037-26-5	Toluene-D8	99%	70-1		
460-00-4	4-Bromofluorobenzene	95%	70-1	30%	

Blank Spike Summary Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch MSG4155-BS G103069.D 1 02/07/11 EL MSG4155 n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

(a) Outside control limits. Blank Spike meets program technical requirements.

Page 3 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSL1644-BS	L49353.D	1	02/03/11	AMY	n/a	n/a	MSL1644
MSL1644-BSD	L49354.D	1	02/03/11	AMY	n/a	n/a	MSL1644

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	50	46.1	92	42.9	86	7	70-130/25
71-43-2	Benzene	50	50.3	101	48.8	98	3	70-130/25
108-86-1	Bromobenzene	50	49.3	99 .	49.8	100	1	70-130/25
74-97-5	Bromochloromethane	50	49.7	99	49.9	100	0	70-130/25
75-27-4	Bromodichloromethane	50	55.2	110	55.3	111	0	70-130/25
75-25-2	Bromoform	50	43.7	87	44.2	88	1	70-130/25
74-83-9	Bromomethane	50	40.6	81	41.3	83	2	70-130/25
78-93-3	2-Butanone (MEK)	50	66.2	132* a	58.7	117	12	70-130/25
104-51-8	n-Butylbenzene	50	55.6	111	56.4	113	1	70-130/25
135-98-8	sec-Butylbenzene	50	54.1	108	54.4	109	1	70-130/25
98-06-6	tert-Butylbenzene	50	5 5.0	110	55.6	111	1	70-130/25
75-15-0	Carbon disulfide	50	60.0	120	57.3	115	5	70-130/25
56-23-5	Carbon tetrachloride	50	56.2	112	54.8	110	3	70-130/25
108-90-7	Chlorobenzene	50	48.9	98	47.9	96	2	70-130/25
75-00-3	Chloroethane	50	44.6	89	41.4	83	7	70-130/25
67-66-3	Chloroform	50	55.1	110	53.4	107	3	70-130/25
74-87-3	Chloromethane	50	58.1	116	56.4	113	3	70-130/25
95-49-8	o-Chlorotoluene	50	49.7	99	50.1	100	1	70-130/25
106-43-4	p-Chlorotoluene	50	52.7	105	53.5	107	2	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	60.0	120	62.0	124	3	70-130/25
124-48-1	Dibromochloromethane	50	51.1	102	49.8	100	3	70-130/25
106-93-4	1,2-Dibromoethane	50	50.1	100	50.2	100	0	70-130/25
95-50-1	1,2-Dichlorobenzene	50	52.5	105	52.5	105	0	70-130/25
541-73-1	1,3-Dichlorobenzene	50	52.8	106	52.8	106	0	70-130/25
106-46-7	1,4-Dichlorobenzene	50	48.6	97	48.8	98	0	70-130/25
75-71-8	Dichlorodifluoromethane	50	59.7	119	56.4	113	6	70-130/25
75-34-3	1,1-Dichloroethane	50	56.4	113	55.7	111	1	70-130/25
107-06-2	1,2-Dichloroethane	50	55.3	111	53.8	108	3	70-130/25
75-35-4	1,1-Dichloroethene	50	51.4	103	51.3	103	0	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	51.9	104	51.9	104	0	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	51.9	104	50.6	101	3	70-130/25
78-87-5	1,2-Dichloropropane	50	55.6	111	55.1	110	1	70-130/25
142-28-9	1,3-Dichloropropane	50	51.3	103	48.9	98	5	70-130/25
594-20-7	2,2-Dichloropropane	50	54.8	110	51.9	104	5	70-130/25
563-58-6	1,1-Dichloropropene	50	59.0	118	56.9	114	4	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	49.0	98	49.3	99	1	70-130/25

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

MSL1644-BS	File ID L49353.D L49354.D	DF 1	Analyzed 02/03/11 02/03/11	By AMY AMY	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch MSL1644 MSL1644
------------	---------------------------------	---------	----------------------------------	------------------	-------------------------	--------------------------	--

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	50	47.9	96	47.9	96	0 .	70-130/25
100-41-4	Ethylbenzene	50	47.4	95	44.9	90	5	70-130/25
87-68-3	Hexachlorobutadiene	50	59.7	119	60.3	121	1	70-130/25
591-78-6	2-Hexanone	50	62.6	125	64.3	129	3	70-130/25
98-82-8	Isopropylbenzene	50	59.8	120	60.1	120	1	70-130/25
99-87-6	p-Isopropyltoluene	50	53.5	107	53.8	108	1	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	40.1	80	39.9	80	1	70-130/25
108-10-1	4-Methyl-2-pentanone (MIBK)	50	71.1	142* a	73.0	146* a	3	70-130/25
74-95-3	Methylene bromide	50	43.7	87	43.8	88	0	70-130/25
75-09-2	Methylene chloride	50	48.4	97	47.5	95	2	70-130/25
103-65-1	n-Propylbenzene	50	52.3	105	52.2	104	0	70-130/25
100-42-5	Styrene	50	50.2	100	49.0	98	2	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	50.8	102	50.6	101	0	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	53.0	106	54.5	109	3	70-130/25
127-18-4	Tetrachloroethene	50	52.9	106	51.6	103	2	70-130/25
108-88-3	Toluene	50	53.5	107	51.9	104	3	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	53.7	107	56.1	112	4	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	55.6	111	57.8	116	4	70-130/25
71-55-6	1,1,1-Trichloroethane	50	60.3	121	58.4	117	3	70-130/25
79-00-5	1,1,2-Trichloroethane	50	53.9	108	54.1	108	0	70-130/25
79-01-6	Trichloroethene	50	53.3	107	52.0	104	2	70-130/25
75-69-4	Trichlorofluoromethane	50	45.6	91	43.5	87	5	70-130/25
96-18-4	1,2,3-Trichloropropane	50	48.3	97	50.3	101	4	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	49.7	99	50.6	101	2	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	51.7	103	52.1	104	1	70-130/25
108-05-4	Vinyl Acetate	50	49.4	99	48.4	97	2	70-130/25
75-01-4	Vinyl chloride	50	47.3	95	45.4	91	4	70-130/25
	m,p-Xylene	100	91.9	92	87.5	88	5	70-130/25
95-47-6	o-Xylene	50	47.4	95	45.2	90	5	70-130/25
	·							
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7	Dibromofluoromethane	96%	989	6	70-130%	6		
2037-26-5	Toluene-D8	97%	100	1%	70-1309	6		
460-00-4	4-Bromofluorobenzene	90%	959	6	70-130%	6		

Page 3 of 3

Blank Spike/Blank Spike Duplicate Summary

Job Number:

M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

MSL1644-BS L49353.D I 02/03/11 AMY n/a n/a MSL1644 MSL1644-BSD L49354.D I 02/03/11 AMY n/a n/a MSL1644			DF 1 1					
---	--	--	--------------	--	--	--	--	--

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-1, M97395-2, M97395-3, M97395-4, M97395-5, M97395-7, M97395-9, M97395-10, M97395-11

(a) Outside control limits. Associated samples are non-detect for this compound.

Blank Spike/Blank Spike Duplicate Summary

Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample File ID DF Analy MSN1863-BS N49332.D 1 02/08 MSN1863-BSD N49333.D 1 02/08	11 JP n/a	Prep Batch Analytical Batch n/a MSN1863 n/a MSN1863
--	-----------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	50	61.4	123	60.6	121	1	70-130/25
71-43-2	Benzene	50	52.7	105	51.2	102	3	70-130/25
108-86-1	Bromobenzene	50	52.6	105	52.9	106	1	70-130/25
74-97-5	Bromochloromethane	50	50.8	102	48.8	98	4	70-130/25
75-27-4	Bromodichloromethane	50	55.7	111	53.7	107	4	70-130/25
75-25-2	Bromoform	50	46.2	92	47.6	95	3	70-130/25
74-83-9	Bromomethane	50	46.5	93	45.0	90	3	70-130/25
78-93-3	2-Butanone (MEK)	50	55.0	110	58.0	116	5	70-130/25
104-51-8	n-Butylbenzene	50	57.4	115	55.3	111	4	70-130/25
135-98-8	sec-Butylbenzene	50	54.9	110	53.2	106	3	70-130/25
98-06-6	tert-Butylbenzene	50	54.3	109	52.3	105	4	70-130/25
75-15-0	Carbon disulfide	50	50.3	101	48.9	98	3	70-130/25
56-23-5	Carbon tetrachloride	50	57.3	115	54.3	109	5	70-130/25
108-90-7	Chlorobenzene	50	51.0	102	51.2	102	0	70-130/25
75-00-3	Chloroethane	50	49.5	99	46.4	93	6	70-130/25
67-66-3	Chloroform	50	51.7	103	50.3	101	3	70-130/25
74-87-3	Chloromethane	50	45.4	91	43.3	87	5	70-130/25
95-49-8	o-Chlorotoluene	50	52.1	104	51.2	102	2	70-130/25
106-43-4	p-Chlorotoluene	50	55.4	111	53.9	108	3	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	50	49.8	100	51.5	103	3	70-130/25
124-48-1	Dibromochloromethane	50	50.0	100	50.5	101	1	70-130/25
106-93-4	1,2-Dibromoethane	50	53.1	106	55.2	110	4	70-130/25
95-50-1	1,2-Dichlorobenzene	50	51.7	103	53.0	106	2	70-130/25
541-73-1	1,3-Dichlorobenzene	50	53.9	108	52.8	106	2	70-130/25
106-46-7	1,4-Dichlorobenzene	50	50.6	101	50.9	102	1	70-130/25
75-71-8	Dichlorodifluoromethane	50	40.3	81	38.5	77	5	70-130/25
75-34-3	1,1-Dichloroethane	50	50.9	102	49.4	99	3	70-130/25
107-06-2	1,2-Dichloroethane	50	52.2	104	50.8	102	3	70-130/25
75-35-4	1,1-Dichloroethene	50	51.4	103	49.5	99	4	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	50.1	100	49.9	100	0	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	50.6	101	49.1	98	3	70-130/25
78-87-5	1,2-Dichloropropane	50	52.3	105	51.0	102	3	70-130/25
142-28-9	1,3-Dichloropropane	50	51.6	103	52.1	104	1	70-130/25
594-20-7	2,2-Dichloropropane	50	61.3	123	57.0	114	7	70-130/25
563-58-6	1,1-Dichloropropene	50	54.9	110	51.6	103	6	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	52.8	106	51.3	103	3	70-130/25

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: M97395

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

|--|

The QC reported here applies to the following samples:

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	Spike ug/l	BSI ug/	_	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	50	55.	6	111	54.7	109	2	70-130/25
100-41-4	Ethylbenzene	50	53.3	3	107	52.3	105	2	70-130/25
87-68-3	Hexachlorobutadiene	50	56.	6	113	53.1	106	6	70-130/25
591-78-6	2-Hexanone	50	52.3	3	105	54.5	109	4	70-130/25
98-82-8	Isopropylbenzene	50	62.3	3	125	60.9	122	2	70-130/25
99-87-6	p-Isopropyltoluene	50	54.	2	108	52.8	106	3	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	51.4	4	103	51.5	103	0	70-130/25
108-10-1	4-Methyl-2-pentanone (MIBK)	50	51.0	0	102	52.7	105	3	70-130/25
74-95-3	Methylene bromide	50	53.9	9	108	52.1	104	3	70-130/25
75-09-2	Methylene chloride	50	47.	1 .	- 94	44.9	90	5	70-130/25
103-65-1	n-Propylbenzene	50	55.0	6	111	54.3	109	2	70-130/25
100-42-5	Styrene	50	54.0	0	108	54.6	109	1	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	50	52.9	9	106	54.0	108	2	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	51.4	4	103	53.5	107	4	70-130/25
127-18-4	Tetrachloroethene	50	53.6	0	106	52.0	104	2	70-130/25
108-88-3	Toluene	50	52.	1	104	50.3	101	4	70-130/25
87-61-6	1,2,3-Trichlorobenzene	50	56.3	3	113	56.7	113	1	70-130/25
120-82-1	1,2,4-Trichlorobenzene	50	56.5	5	113	55.9	112	1	70-130/25
71-55-6	1,1,1-Trichloroethane	50	55.0	0	110	53.2	106	3	70-130/25
79-00-5	1,1,2-Trichloroethane	50	51.5	5	103	52.1	104	1	70-130/25
79-01-6	Trichloroethene	50	51.3	3	103	49.1	98	4	70-130/25
75-69-4	Trichlorofluoromethane	50	47.5	5	95	45.2	90	5	70-130/25
96-18-4	1,2,3-Trichloropropane	50	52.9	9	106	54.0	108	2	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	53.1	I	106	51.7	103	3	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	54.1	I	108	52.7	105	3	70-130/25
108-05-4	Vinyl Acetate	50	45.9	9	92	45.2	90	2	70-130/25
75-01 - 4	Vinyl chloride	50	46.3	3	93	43.7	87	6	70-130/25
	m,p-Xylene	100	108		108	106	106	2	70-130/25
95-47-6	o-Xylene	50	53.9	9	108	53.1	106	1	70-130/25
	·								
CAS No.	Surrogate Recoveries	BSP		BSD		Limits			
1868-53-7	Dibromofluoromethane	104%		1019	6	70-130%	ó		
2037-26-5	Toluene-D8	106%		1059	6	70-130%	,		
460-00-4	4-Bromofluorobenzene	102%		1019		70-130%			

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	Sample M97395-2MS M97395-2MSD M97395-2	File ID L49376.D L49377.D L49366.D	DF 1 1	Analyzed 02/03/11 02/03/11 02/03/11	By AMY AMY AMY	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSL1644 MSL1644 MSL1644
--	---	---	--------------	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	M97395 ug/l	-2 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		50	38.0	76	37.0	74	3	70-130/30
71-43-2	Benzene	ND		50	383	766* a	228	456* a	51* b	70-130/30
108-86-1	Bromobenzene	ND		50	48.3	97	50.7	101	5	70-130/30
74-97-5	Bromochloromethane	ND		50	48.4	97	47.7	95	í	70-130/30
75-27-4	Bromodichloromethane	ND		50	49.3	99	48.9	98	1	70-130/30
75-25-2	Bromoform	ND		50	45.0	90	47.3	95	5	70-130/30
74-83-9	Bromomethane	ND		50	35.6	71	45.3	91	24	70-130/30
78-93-3	2-Butanone (MEK)	ND		50	47.5	95	47.9	96	1	70-130/30
104-51-8	n-Butylbenzene	ND		50	41.5	83	44.6	89	7	70-130/30
135-98-8	sec-Butylbenzene	ND		50	44.1	88	46.2	92	5	70-130/30
98-06-6	tert-Butylbenzene	ND		50	45.3	91	47.1	94	4	70-130/30
75-15-0	Carbon disulfide	ND		50	47.7	95	45.5	91	5	70-130/30
56-23-5	Carbon tetrachloride	ND		50	50.4	101	48.3	97	4	70-130/30
108-90-7	Chlorobenzene	ND		50	51.9	104	52.8	106	2	70-130/30
75-00-3	Chloroethane	ND		50	43.5	87	41.0	82	6	70-130/30
67-66-3	Chloroform	ND		50	45.1	90	44.3	89	2	70-130/30
74-87-3	Chloromethane	ND		50	46.6	93	46.1	92	1	70-130/30
95-49-8	o-Chlorotoluene	ND		50	42.4	85	43.5	87	3	70-130/30
106-43-4	p-Chlorotoluene	ND		50	45.0	90	46.1	92	2	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		50	44.5	89	47.3	95	6	70-130/30
124-48-1	Dibromochloromethane	ND		50	52.4	105	53.9	108	3	70-130/30
106-93-4	1,2-Dibromoethane	ND		50	53.1	106	54.6	109	3	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		50	49.8	100	51.7	103	4	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		50	48.0	96	51.9	104	8	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		50	45.4	91	47.8	96	5	70-130/30
75-71-8	Dichlorodifluoromethane	ND		50	43.1	86	41.4	83	4	70-130/30
75-34-3	1,1-Dichloroethane	ND		50	43.8	88	41.3	83	6	70-130/30
107-06-2	1,2-Dichloroethane	ND		50	46.9	94	45.7	91	3	70-130/30
75-35-4	1,1-Dichloroethene	ND		50	48.9	98	45.7	91	7	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		50	46.7	93	45.2	90	3	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		50	44.2	88	44.4	89	0	70-130/30
78-87-5	1,2-Dichloropropane	ND		50	46.2	92	44.4	89	4	70-130/30
142-28-9	1,3-Dichloropropane	ND		50	47.3	95	48.2	96	2	70-130/30
594-20-7	2,2-Dichloropropane	ND		50	41.3	83	35.8	72	14	70-130/30
563-58-6	1,1-Dichloropropene	ND		50	51.2	102	48.8	98	5	70-130/30
10061-01-5	cis-1,3-Dichloropropene	ND		50	40.9	82	41.6	83	2	70-130/30

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97395

Account:

SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample M97395-2MS M97395-2MSD M97395-2	File ID L49376.D L49377.D L49366.D	DF 1 1	Analyzed 02/03/11 02/03/11 02/03/11	By AMY AMY AMY	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSL1644 MSL1644 MSL1644
					_		

The QC reported here applies to the following samples:

Method: SW846 8260B

		M97395-2	2	Spike	MS		MS	MSD	MSD		Limits
CAS No.	Compound		Q	ug/l	ug/l		%	ug/l	%	RPD	Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	ND		50	38.4		77	39.4	79	3	70-130/30
100-41-4	Ethylbenzene	ND		50	46.5		93	46.8	94	1	70-130/30
87-68-3	Hexachlorobutadiene	ND		50	49.3		99	55.7	111	12	70-130/30
591-78-6	2-Hexanone	ND		50	47.4		95	49.5	99	4	70-130/30
98-82-8	Isopropylbenzene	ND		50	52.1		104	53.7	107	3	70-130/30
99-87-6	p-Isopropyltoluene	ND		50	45.4		91	48.8	98	7	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND		50	34.3		69* c	33.7	67* c	2	70-130/30
108-10-1	4-Methyl-2-pentanone (MIBK)			50	51.1		102	52.4	105	3	70-130/30
74-95-3	Methylene bromide	ND		50	41.8		84	40.3	81	4	70-130/30
75-09-2	Methylene chloride	ND		50	43.8		88	44.2	88	1	70-130/30
103-65-1	n-Propylbenzene	ND		50	42.8		86	44.2	88	3	70-130/30
100-42-5	Styrene	ND		50	51.4		103	54.4	109	6	70-130/30
630-20-6	1,1,2-Tetrachloroethane	ND		50	52.7		105	53.6	107	2	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	43.5		87	44.4	89	2	70-130/30
127-18-4	Tetrachloroethene	ND		50	59.2		118	59.5	119	1	70-130/30
108-88-3	Toluene	ND		50	51.1		102	50.1	100	2	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		50	48.2		96	54.6	109	12	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND		50	51.8		104	56.8	114	9	70-130/30
71-55-6	1,1,1-Trichloroethane	ND		50	49.5		99	46.6	93	6	70-130/30
79-00-5	1,1,2-Trichloroethane	ND		50	51.2		102	51.0	102	0	70-130/30
79-01-6	Trichloroethene	ND		50	49.2		98	48.4	97	2	70-130/30
75-69-4	Trichlorofluoromethane	ND		50	38.3		77	37.9	76	1	70-130/30
96-18-4	1,2,3-Trichloropropane	ND		50	38.1		76	39.4	79	3	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND		50	44.2		88	45.7	91	3	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND		50	45.1		90	46.4	93	3	70-130/30
108-05-4	Vinyl Acetate	ND		50	35.3		71	34.6	69* c	2	70-130/30
75-01-4	Vinyl chloride	ND		50	42.5		85	40.6	81	5	70-130/30
	m,p-Хуlеле	ND		100	95.9		96	96.0	96	0	70-130/30
95-47-6	o-Xylene	ND		50	50.5		101	51.5	103	2	70-130/30
	•										
CAS No.	Surrogate Recoveries	MS		MSD	N	197	395-2	Limits			
	_				_						
1868-53-7	Dibromofluoromethane	89%		85%		02%		70-1309			
2037-26-5	Toluene-D8	99%		97%		00%	6	70-1309			
460-00-4	4-Bromofluorobenzene	86%		84%	9	1%		70-1309	6		

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample M97395-2MS M97395-2MSD M97395-2	File ID L49376.D L49377.D L49366.D	DF 1 1	Analyzed 02/03/11 02/03/11 02/03/11	By AMY AMY AMY	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSL1644 MSL1644 MSL1644
---	---	--------------	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

- (a) Outside control limits due to possible sample carryover.
- (b) High RPD due to possible matrix interference and/or sample non-homogeneity.
- (c) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

M97501-3 G103079.D 1 02/07/11 EL n/a n/a MSG4155	Sample M97501-3MS M97501-3MSD M97501-3	File ID G103081.D G103082.D G103079.D	1	Analyzed 02/07/11 02/07/11 02/07/11	By EL EL EL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSG4155 MSG4155 MSG4155
--	---	--	---	--	----------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

CAS No.	Compound	M97501 ug/l	-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		50	51.0	102	53.3	107	4	70-130/30
71-43-2	Benzene	ND		50	52.0	104	50.9	102	2	70-130/30
108-86-1	Bromobenzene	ND		50	51.2	102	51.9	104	1	70-130/30
74-97-5	Bromochloromethane	ND		50	50.4	101	50.9	102	1	70-130/30
75-27-4	Bromodichloromethane	ND		50	51.8	104	50.7	101	2	70-130/30
75-25-2	Bromoform	ND		50	50.1	100	50.8	102	1	70-130/30
74-83-9	Bromomethane	ND		50	46.4	93	46.8	94	1	70-130/30
78-93-3	2-Butanone (MEK)	ND		50	50.9	102	51.0	102	0	70-130/30
104-51-8	n-Butylbenzene	ND		50	53.4	107	53.6	107	0	70-130/30
135-98-8	sec-Butylbenzene	ND		50	52.5	105	53.0	106	1	70-130/30
98-06-6	tert-Butylbenzene	ND		50	50.0	100	51.4	103	3	70-130/30
75-15-0	Carbon disulfide	ND		50	43.1	86	43.8	88	2	70-130/30
56-23-5	Carbon tetrachloride	ND		50	50.7	101	51.1	102	1	70-130/30
108-90-7	Chlorobenzene	ND		50	51.1	102	50.0	100	2	70-130/30
75-00-3	Chloroethane	ND		50	48.0	96	48.3	97	1	70-130/30
67-66-3	Chloroform	ND		50	52.0	104	52.1	104	0	70-130/30
74-87-3	Chloromethane	ND		50	51.5	103	52.0	104	1	70-130/30
95-49-8	o-Chlorotoluene	ND		50	50.4	101	50.6	101	0	70-130/30
106-43-4	p-Chlorotoluene	ND		50	51.7	103	52.1	104	1	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane			50	51.5	103	52.6	105	2	70-130/30
124-48-1	Dibromochloromethane	ND		50	50.7	101	50.0	100	1	70-130/30
106-93-4	1,2-Dibromoethane	ND		50	50.3	101	50.6	101	1	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		50	52.1	104	52.5	105	1	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		50	51.6	103	51.9	104	1	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		50	51.6	103	51.8	104	0	70-130/30
75-71-8	Dichlorodifluoromethane	ND		50	38.7	77	39.3	79	2	70-130/30
75-34-3	1,1-Dichloroethane	ND		50	51.5	103	52.3	105	2	70-130/30
107-06-2	1,2-Dichloroethane	ND		50	53.0	106	53.1	106	0	70-130/30
75-35-4	1,1-Dichloroethene	ND		50	57.1	114	56.9	114	0	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		50	53.0	106	53.6	107	1	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		50	54.4	109	54.9	110	1	70-130/30
78-87 -5	1,2-Dichloropropane	ND		50	52.2	104	51.1	102	2	70-130/30
142-28-9	1,3-Dichloropropane	ND		50	51.0	102	51.2	102	0	70-130/30
594-20-7	2,2-Dichloropropane	ND		50	50.7	101	50.0	100	1	70-130/30
563-58-6	1,1-Dichloropropene	ND		50	54.1	108	52.9	106	2	70-130/30
10061-01-5	cis-1,3-Dichloropropene	ND		50	52.4	105	51.8	104	1	70-130/30

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample File ID DF Analyzed By M97501-3MS G103081.D 1 02/07/11 EL M97501-3MSD G103082.D 1 02/07/11 EL M97501-3 G103079.D 1 02/07/11 EL	Prep Date	Prep Batch	Analytical Batch
	n/a	n/a	MSG4155
	n/a	n/a	MSG4155
	n/a	n/a	MSG4155

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-6

GAGNI	G	M97501-3	Spik	е	MS	MS	MSD	MSD %	RPD	Limits Rec/RPD
CAS No.	Compound	ug/l Q	ug/l		ug/l	%	ug/l	70	KPD	RECKPD
10061-02-6	trans-1,3-Dichloropropene	ND	50		56.7	113	55.9	112	1	70-130/30
100-41-4	Ethylbenzene	ND	50		50.6	101	50.4	101	0	70-130/30
87-68-3	Hexachlorobutadiene	ND	50		53.2	106	54.0	108	1	70-130/30
591-78-6	2-Hexanone	ND	50		47.2	94	49.0	98	4	70-130/30
98-82-8	Isopropylbenzene	ND	50		58.4	117	59.2	118	1	70-130/30
99-87-6	p-Isopropyltoluene	ND	5 0		53.4	107	53.1	106	1	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND	50		50.6	101	51.0	102	1	70-130/30
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50		52.2	104	52.8	106	1	70-130/30
74-95-3	Methylene bromide	ND	50		52.3	105	52.4	105	0	70-130/30
75-09-2	Methylene chloride	ND	50		51.4	103	51.6	103	0	70-130/30
103-65-1	n-Propylbenzene	ND	50		51.2	102	51.8	104	1	70-130/30
100-42-5	Styrene	ND	50		51.4	103	50.9	102	1	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND	50		50.0	100	50.2	100	0	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND	50		51.7	103	52.4	105	1	70-130/30
127-18-4	Tetrachloroethene	ND	50		52.3	105	51.1	102	2	70-130/30
108-88-3	Toluene	ND	50		52.6	105	52.1	104	1	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND	50		50.8	102	52.1	104	3	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND	50		50.6	101	51.5	103	2	70-130/30
71-55-6	1,1,1-Trichloroethane	ND	50		50.9	102	51.9	104	2	70-130/30
79-00-5	1,1,2-Trichloroethane	ND	50		51.4	103	51.7	103	1	70-130/30
79-01-6	Trichloroethene	ND	50		51.2	102	50.5	101	1	70-130/30
75-69-4	Trichlorofluoromethane	ND	50		49.9	100	50.6	101	1	70-130/30
96-18-4	1,2,3-Trichloropropane	ND	50		49.4	99	50.9	102	3	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND	50		51.4	103	51.5	103	0	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND	50		50.4	101	50.3	101	0	70-130/30
108-05-4	Vinyl Acetate	ND	50		41.2	82	41.4	83	0	70-130/30
75-01-4	Vinyl chloride	ND	50		48.7	97	49.5	99	2	70-130/30
	m,p-Xylene	ND	100		101	101	100	100	1	70-130/30
95-47-6	o-Xylene	ND	50		51.1	102	50.2	100	2	70-130/30
CAS No.	Surrogate Recoveries	MS	MSD)	M	97501-3	Limits			
CAD III.	2411 08410 11000101100	1-10	14100		.,,,					
1868-53-7	Dibromofluoromethane	101%	102%		100%		70-130%			
2037-26-5	Toluene-D8	101%	100%	6	10		70-1309			
460-00-4	4-Bromofluorobenzene	94%	96%		100	0%	70-1309	%		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample File ID DF M97571-1MS N49351.D 5 M97571-1MSD N49352.D 5 M97571-1 N49350.D 1	02/08/11 02/08/11	By Prep Date JP n/a JP n/a JP n/a	Prep Batch n/a n/a n/a	Analytical Batch MSN1863 MSN1863 MSN1863
--	----------------------	-----------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	M97571 ug/l	-1 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		250	270	108	240	96	12	70-130/30
71-43-2	Benzene	ND		250	276	110	247	99	11	70-130/30
108-86-1	Bromobenzene	ND		250	266	106	251	100	6	70-130/30
74-97-5	Bromochloromethane	ND		250	261	104	246	98	6	70-130/30
75-27-4	Bromodichloromethane	ND		250	301	120	265	106	13	70-130/30
75-25-2	Bromoform	ND		250	241	96	225	90	7	70-130/30
74-83-9	Bromomethane	ND		250	216	86	212	85	2	70-130/30
78-93-3	2-Butanone (MEK)	ND		250	267	107	242	97	10	70-130/30
104-51-8	n-Butylbenzene	ND		250	277	111	252	101	9	70-130/30
135-98-8	sec-Butylbenzene	ND		250	267	107	246	98	8	70-130/30
98-06-6	tert-Butylbenzene	ND		250	272	109	249	100	9	70-130/30
75-15-0	Carbon disulfide	ND		250	261	104	233	93	11	70-130/30
56-23-5	Carbon tetrachloride	ND		250	302	121	264	106	13	70-130/30
108-90-7	Chlorobenzene	ND		250	266	106	241	96	10	70-130/30
75-00-3	Chloroethane	ND		250	255	102	238	95	7	70-130/30
67-66-3	Chloroform	ND		250	276	110	249	100	10	70-130/30
74-87-3	Chloromethane	ND		250	227	91	215	86	5	70-130/30
95-49-8	o-Chlorotoluene	ND		250	264	106	242	97	9	70-130/30
106-43-4	p-Chlorotoluene	ND		250	281	112	259	104	8	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		250	262	105	232	93	12	70-130/30
124-48-1	Dibromochloromethane	ND		250	260	104	240	96	8	70-130/30
106-93-4	1,2-Dibromoethane	ND		250	281	112	254	102	10	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		250	267	107	246	98	8	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		250	270	108	249	100	8	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		250	255	102	241	96	6	70-130/30
75-71-8	Dichlorodifluoromethane	ND		250	215	86	188	75	13	70-130/30
75-34-3	1,1-Dichloroethane	ND		250	271	108	243	97	11	70-130/30
107-06-2	1,2-Dichloroethane	ND		250	289	116	259	104	11	70-130/30
75-35-4	1,1-Dichloroethene	ND		250	258	103	234	94	10	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		250	266	106	249	100	7	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		250	264	106	240	96	10	70-130/30
78-87-5	1,2-Dichloropropane	ND		250	273	109	251	100	8	70-130/30
142-28-9	1,3-Dichloropropane	ND		250	275	110	251	100	9	70-130/30
594-20-7	2,2-Dichloropropane	ND		250	281	112	247	99	13	70-130/30
563- 58- 6	1,1-Dichloropropene	ND		250	281	112	248	99	12	70-130/30
10061-01-5	cis-1,3-Dichloropropene	ND		250	268	107	245	98	9	70-130/30

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

M97571-1MS M97571-1MSD	File ID N49351.D N49352.D N49350.D	DF 5 5	Analyzed 02/08/11 02/08/11 02/08/11	By JP JP JP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSN1863 MSN1863 MSN1863
---------------------------	---	--------------	--	----------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

M97395-8, M97395-9, M97395-10, M97395-11

CAS No.	Compound	M97571-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	ND	250	289	116	265	106	9	70-130/30
100-41-4	Ethylbenzene	ND	250	276	110	244	98	12	70-130/30
87-68-3	Hexachlorobutadiene	ND	250	258	103	245	98	5	70-130/30
591-78-6	2-Hexanone	ND	250	258	103	243	97	6	70-130/30
98-82-8	Isopropylbenzene	ND	250	312	125	287	115	8	70-130/30
99-87-6	p-Isopropyltoluene	ND	250	264	106	246	98	7	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND	250	274	110	253	101	8	70-130/30
108-10-1	4-Methyl-2-pentanone (MIBK)		250	272	109	248	99	9	70-130/30
74-95-3	Methylene bromide	ND	250	286	114	264	106	8	70-130/30
75-09-2	Methylene chloride	ND	250	246	98	225	90	9	70-130/30
103-65-1	n-Propylbenzene	ND	250	274	110	253	101	8	70-130/30
100-42-5	Styrene	ND	250	284	114	253	101	12	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND	250	286	114	249	100	14	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND	250	266	106	259	104	3	70-130/30
127-18-4	Tetrachloroethene	ND	250	271	108	236	94	14	70-130/30
108-88-3	Toluene	ND	250	273	109	248	99	10	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND	250	265	106	264	106	0	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ND	250	266	106	254	102	5	70-130/30
71-55-6	1,1,1-Trichloroethane	ND	250	291	116	259	104	12	70-130/30
79-00-5	1,1,2-Trichloroethane	ND	250	272	109	254	102	7	70-130/30
79-01-6	Trichloroethene	ND	250	268	107	241	96	11	70-130/30
75-69-4	Trichlorofluoromethane	ND	250	250	100	220	88	13	70-130/30
96-18-4	1,2,3-Trichloropropane	ND	250	267	107	253	101	5	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND	250	268	107	248	99	8	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND	250	271	108	249	100	8	70-130/30
108-05-4	Vinyl Acetate	ND	250	226	90	211	84	7	70-130/30
75-01-4	Vinyl chloride	ND	250	235	94	217	87	8	70-130/30
	m,p-Xylene	ND	500	552	110	498	100	10	70-130/30
95-47-6	o-Xylene	ND	250	278	111	251	100	10	70-130/30
G.G.X	Successive Property	1/0	MgD	3.4	107571 1	Y iita			
CAS No.	Surrogate Recoveries	MS	MSD	IV.	197571-1	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	104% 106% 102%	103% 105% 102%	10	03% 05% 06%	70-130 ⁶ 70-130 ⁶ 70-130 ⁶	%		

Volatile Internal Standard Area Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSG4155-CC4151 Injection Date: 02/07/11 Lab File ID: G103068.D Injection Time: 10:23

Instrument ID: GCMSG Method: SW846 8260B

	IS 1		IS 2		IS 3		IS 4		IS 5	
	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
Check Std	288889	9.13	435103	10.01	231624	13.28	216289	15.86	120484	6.68
Upper Limit a	577778	9.63	870206	10.51	463248	13.78	432578	16.36	240968	7.18
Lower Limit b	144445	8.63	217552	9.51	115812	12.78	108145	15.36	60242	6.18
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSG4155-BS	290998	9.13	440015	10.01	230182	13.28	217623	15.86	124906	6.67
MSG4155-MB	288085	9.13	436887	10.01	218207	13.28	197908	15.86	125970	6.68
ZZZZZZ	285135	9.13	426309	10.01	216264	13.28	194938	15.86	102494	6.68
ZZZZZZ	280586	9.13	427010	10.01	215287	13.28	194254	15.86	112290	6.67
ZZZZZZ	279262	9.13	422635	10.01	211012	13.28	193900	15.86	112037	6.68
ZZZZZZ	279896	9.13	422058	10.01	215227	13.28	209254	15.85	129732	6.68
ZZZZZZ	285592	9.13	424868	10.01	217940	13.28			118827	6.67
ZZZZZZ	283566	9.13	430583	10.01	218898		197964		125590	6.68
ZZZZZZ	283402	9.13	423770	10.01	216360		191575		117609	6.67
M97501-3	281561	9.13	421320	10.01	214704	13.28	192836	15.86	132090	6.67
M97395-6	278242	9.13	425540	10.01	215797	13.28	194019	15.86	122340	6.68
M97501-3MS	277367	9.13	421686	10.00	225099	13.28	212670	15.86	120667	6.68
M97501-3MSD	271678	9.13	419434	10.01	222346	13.28	207334	15.86	126924	6.68
ZZZZZZ	272087	9.13	413043	10.01			187865	15.86	120808	6.68
ZZZZZZ	275920	9.13	418813		216500	13.29	207697		132583	6.68
ZZZZZZ	274294	9.13	417949		214790	13.29	204814		125990	6.67
ZZZZZZ	276812	9.13	419200	10.01	211955	13.28	198599	15.86	123083	6.68
ZZZZZZ	280617	9.13	426540	10.01	213698	13.28	197203	15.86	126376	6.67
ZZZZZZ	272872	9.13	411971	10.01	209757	13.28	189876	15.86	121905	6.67
ZZZZZZ	275767	9.13	418827	10.01	212666	13.28	191314	15.86	125988	6.67
ZZZZZZ	274528	9.13	417090	10.01			187778		125065	6.67
ZZZZZZ	275354	9.13	413758	10.01	208724	13.29	189391	15.86	124116	6.67

IS 1 = Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3 = Chlorobenzene-D5 IS 4 = 1,4-Dichlorobenzene-d4

IS 5 = Tert Butyl Alcohol-D9

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Internal Standard Area Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSL1644-CC1580 Lab File ID: L49352.D Instrument ID: GCMSL	Injection Date: 02/03/11 Injection Time: 08:48 Method: SW846 8260B
--	--

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	105901	8.19	181809	9.03	107264	12.27			41968	5.82
Upper Limit a	211802	8.69	363618	9.53	214528	12.77			83936	6.32
Lower Limit ^b	52951	7.69	90905	8.53	53632	11.77	51625	14.33	20984	5.32
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSL1644-BS	108646	8.19	187717	9.03	108952	12.26	102140	14.82	43019	5.82
MSL1644-BSD	110180	8.19	192418	9.03	113193		101376		46788	5.82
MSL1644-MB	106445	8.19	184246	9.03	100847	12.27	91449	14.83	44553	5.82
ZZZZZZ	109701	8.19	192929	9.03	105270	12.27	96578	14.83	46038	5.82
M97395-1	105439	8.19	180965	9.03	100147	12.27	93496	14.83	45301	5.82
M97395-7	107751	8.19	181588	9.03	101331	12.27	95845	14.83	43571	5.82
ZZZZZZ	105975	8.19	179546	9.03	100334	12.27	92316	14.83	43483	5.82
ZZZZZZ	103093	8.19	182170	9.03	100352	12.27	92768	14.83	45946	5.82
ZZZZZZ	103494	8.20	179128	9.03	97870	12.27	90407	14.83	44547	5.82
ZZZZZZ	101830	8.20	176345	9.03	96443	12.27	90362	14.83	44746	5.82
ZZZZZZ	101093	8.19	170877	9.03	94042	12.27	90580	14.83	44739	5.82
ZZZZZZ	101917	8.20	175391	9.03	99956	12.27	92305	14.83	47173	5.82
M97395-2	102472	8.19	177965	9.03	99280	12.27		14.83	45911	5.82
M97395-3	101167	8.19	172866	9.03	96569	12.27	88733	14.83	42020	5.82
M97395-4	102626	8.19	175798	9.03	101095	12.27	92663	14.83	48428	5.82
M97395-5	148905	8.19	255890	9.02	140714	12.27	109301	14.83	41996	5.94
M97395-9	97198	8.38	115071	9.15	103278	12.28	111280	14.83	32866	5.85
M97395-10	112597	8.34	70927 ^c	9.12	113570	12.27	126724	14.83	38498	5.85
M97395-11	126697	8.35	84425c	9.12	116055		128034	14.83		5.86
M97395-2MS	151622	8.19	239143	9.03	130548		139429	14.82	59076	5.82
M97395-2MSD	155325	8.19	242099	9.03	129116	12.26	138435	14.82	50533	5.82

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (c) Outside control limits due to possible matrix interference. Confirmed by reanalysis.

Volatile Internal Standard Area Summary

Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Check Std:	MSN1863-CC1860	Injection Date:	02/08/11
Lab File ID:	N49331.D	Injection Time:	11:32

Instrument ID: GCMSN Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	120498	8.60	193537	9.46	118237	12.71	90271	15.27	60406	6.19
Upper Limit ^a	240996	9.10	387074	9.96	236474	13.21	180542	15.77	120812	6.69
Lower Limit b	60249	8.10	96769	8.96	59119	12.21	45136	14.77	30203	5.69
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSN1863-BS	123183	8.60	201145	9.46	118384	12.71	93491	15.27	61090	6.19
MSN1862-BS2	123183	8.60	201145	9.46	118384	12.71	93491	15.27	61090	6.19
MSN1863-BSD	125398	8.60	206085	9.46	119030	12.71	95206	15.27	66662	6.19
MSN1863-MB	122108	8.60	198756	9.46	109803	12.71	83866	15.27	63539	6.19
MSN1862-MB2	122108	8.60	198756	9.46	109803	12.71	83866	15.27	63539	6.19
ZZZZZZ	122323	8.60	194467	9.46	110471	12.71	83794	15.27	60701	6.19
ZZZZZZ	120141	8.61	195522	9.46	110762	12.71	81488	15.27	57908	6.19
M97511-30	118759	8.60	192452	9.46	109000	12.71	78537	15.27	64508	6.19
M97395-8	114746	8.61	188073	9.47	108372	12.71	79325	15.27	60131	6.19
M97395-9	116664	8.60	188950	9.46	108691	12.71	78572	15.27	55624	6.19
M97395-10	115780	8.60	186275	9.46	106898	12.71	78399	15.27	59084	6.19
M97395-11	114890	8.61	187152	9.46	104973	12.71	79604	15.27	53040	6.19
ZZZZZ Z	112248	8.61	180510	9.46	106819	12.71	81492	15.27	51379	6.19
ZZZZZ Z	112917	8.60	185750	9.46	106901	12.71	80075	15.27	54444	6.19
ZZZZZZ	110845	8.61	180342	9.46	103703	12.71	74545	15.27	55411	6.19
222ZZZ	110106	8.60	182374	9.46	104527	12.71	76395	15.27	54234	6.19
ZZZZZZ	112540	8.60	181125	9.46	102642	12.71	76129	15.27	57030	6.19
M97571-1	109994	8.60	180385	9.46	102914	12.71	76085	15.27	56290	6.19
M97571-1MS	113380	8.60	184448	9.46	109448	12.71	89494	15.27	59340	6.19
M97571-1MSD	118722	8.60	194401	9.46	116801	12.71	92086	15.27	61865	6.18
ZZZZZ Z	120146	8.60	197218	9.46	110212	12.71	79768	15.27	57856	6.19
ZZZZZZ	115390	8.60	189072	9.46	108661	12.71	78765	15.27	57044	6.18

IS 1	 Pentafluorobenzene
IS 2	= 1,4-Difluorobenzene
IS 3	Chlorobenzene-D5
IS 4	= 1,4-Dichlorobenzene-d4
IS 5	= Tert Butvl Alcohol-D9

⁽a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes. (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	SI	S2	S3
M97395-1	L49358.D	102.0	99.0	89.0
M97395-2	L49366.D	102.0	100.0	91.0
M97395-3	L49367.D	97.0	100.0	95.0
M97395-4	L49368.D	100.0	102.0	94.0
M97395-5	L49369.D	86.0	101.0	101.0
M97395-6	G103080.D	100.0	99.0	98.0
M97395-7	L49359.D	100.0	100.0	115.0
M97395-8	N49339.D	103.0	105.0	106.0
M97395-9	N49340.D	100.0	106.0	105.0
M97395-9	L49372.D	38.0* a	149.0* a	88.0
M97395-10	N49341.D	99.0	105.0	104.0
M97395-10	L49373.D	38.0* a	269.0* a	91.0
M97395-11	N49342.D	99.0	103.0	101.0
M97395-11	L49374.D	85.0	257.0* a	90.0
M97395-2MS	L49376.D	89.0	99.0	86.0
M97395-2MSD	L49377.D	85.0	97.0	84.0
M97501-3MS	G103081.D	101.0	101.0	94.0
M97501-3MSD	G103082.D	102.0	100.0	96.0
M97571-1MS	N49351.D	104.0	106.0	102.0
M97571-1MSD	N49352.D	103.0	105.0	102.0
MSG4155-BS	G103069.D	100.0	99.0	95.0
MSG4155-MB	G103071.D	99.0	99.0	100.0
MSL1644-BS	L49353.D	96.0	97.0	90.0
MSL1644-BSD	L49354.D	98.0	100.0	95.0
MSL1644-MB	L49356.D	103.0	100.0	96.0
MSN1863-BS	N49332.D	104.0	106.0	102.0
MSN1863-BSD	N49333.D	101.0	105.0	101.0
MSN1863-MB	N49335.D	101.0	104.0	105.0
Surrogate		Recovery		
Compounds		Limits		
•				
S1 = Dibromofluo	oromethane	70-130%		
		50 1000/		

S2 = Toluene-D870-130% 70-130%

S3 = 4-Bromofluorobenzene

(a) Outside control limits due to possible matrix interference. Confirmed by reanalysis.

α	/A .F.O.	•	•	1		
GC	/M/N	10	mı_v	VO	atı	29
-		-		v v.		

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- · Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary

Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23969-MB	S21263.D	1	02/03/11	PR	01/27/11	OP23969	MSS890

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/I
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/l
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l
108-95-2	Phenol	ND	5.0	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5.0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	0.23	ug/I
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68 - 7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/I
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/l

Page 2 of 2

Method: SW846 8270C

Method Blank Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date 01/27/11	Prep Batch	Analytical Batch
OP23969-MB	S21263.D	1	02/03/11	PR		OP23969	MSS890

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/I	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	0.63	5.0	0.61	ug/l	J
131-11-3	Dimethyl phthalate	ND	5.0	. 1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/I	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries		Limit	S		
367-12-4	2-Fluorophenol	50%	15-11	0%		
4165-62-2	Phenol-d5	34%	15-11			
118-79-6	2,4,6-Tribromophenol	85%	15-11			
4165-60-0	Nitrobenzene-d5	85%	30-13			
321-60-8	2-Fluorobiphenyl	88%	30-13			
1718-51-0	Terphenyl-d14	91%	30-13	0%		

Blank Spike Summary

Job Number:

M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23969-BS	S21264.D	1	02/03/11	PR	01/27/11	OP23969	MSS890

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
05.05.0	•			4.1	20.100
65-85-0	Benzoic Acid	100	41.1	41	30-130
95-57-8	2-Chlorophenol	100	74.8	75	30-130
59-50-7	4-Chloro-3-methyl phenol	100	80.9	81	30-130
120-83-2	2,4-Dichlorophenol	100	83.4	83	30-130
105-67-9	2,4-Dimethylphenol	100	41.3	41	30-130
51-28-5	2,4-Dinitrophenol	100	79.1	79	30-130
534-52-1	4,6-Dinitro-o-cresol	100	79.1	79	30-130
95-48-7	2-Methylphenol	100	67.2	67	30-130
	3&4-Methylphenol	200	133	67	30-130
88-75-5	2-Nitrophenol	100	86.8	87	30-130
100-02-7	4-Nitrophenol	100	47.5	48	30-130
87-86-5	Pentachlorophenol	100	70.2	70	30-130
108-95-2	Phenol	100	37.6	38	30-130
95-95-4	2,4,5-Trichlorophenol	100	82.3	82	30-130
88-06-2	2,4,6-Trichlorophenol	100	76.4	76	30-130
83-32-9	Acenaphthene	50	38.8	78	40-140
208-96-8	Acenaphthylene	50	33.1	66	40-140
62-53-3	Aniline	50	19.6	39* a	40-140
120-12-7	Anthracene	50	37.8	76	40-140
56-55-3	Benzo(a)anthracene	50	42.2	84	40-140
50-32-8	Benzo(a)pyrene	50	35.4	71	40-140
205-99-2	Benzo(b)fluoranthene	50	42.6	85	40-140
191-24-2	Benzo(g,h,i)perylene	50	44.2	88	40-140
207-08-9	Benzo(k)fluoranthene	50	39.2	78	40-140
101-55-3	4-Bromophenyl phenyl ether	50	39.8	80	40-140
85-68-7	Butyl benzyl phthalate	50	40.7	81	40-140
91-58-7	2-Chloronaphthalene	50	37.7	75	40-140
106-47-8	4-Chloroaniline	50	17.1	34* a	40-140
218-01-9	Chrysene	50	42.6	85	40-140
111-91-1	bis(2-Chloroethoxy)methane	50	40.1	80	40-140
111-44-4	bis(2-Chloroethyl)ether	50	37.7	75	40-140
108-60-1	bis(2-Chloroisopropyl)ether	50	39.9	80	40-140
7005-72-3	4-Chlorophenyl phenyl ether	50	40.4	81	40-140
121-14-2	2,4-Dinitrotoluene	50	41.9	84	40-140
606-20-2	2,6-Dinitrotoluene	50	41.2	82	40-140
91-94-1	3,3'-Dichlorobenzidine	50	23.6	47	40-140

Page 2 of 3

Blank Spike Summary Job Number: M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23969-BS	S21264.D	1	02/03/11	PR	01/27/11	OP23969	MSS890

The QC reported here applies to the following samples:

Method: SW846 8270C

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
	-				
53-70-3	Dibenzo(a,h)anthracene	50	44.9	90	40-140
132-64 - 9	Dibenzofuran	50	38.2	76	40-140
84-74-2	Di-n-butyl phthalate	50	39.3	79	40-140
117-84-0	Di-n-octyl phthalate	50	44.5	89	40-140
84-66-2	Diethyl phthalate	50	42.0	84	40-140
131-11-3	Dimethyl phthalate	50	41.5	83	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	50	41.7	83	40-140
206-44-0	Fluoranthene	50	40.7	81	40-140
86-73-7	Fluorene	50	40.5	81	40-140
118-74-1	Hexachlorobenzene	50	40.9	82	40-140
77-47-4	Hexachlorocyclopentadiene	50	15.7	31* a	40-140
67-72-1	Hexachloroethane	50	30.8	62	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	50	46.2	92	40-140
78-59-1	Isophorone	50	39.1	78	40-140
91-57-6	2-Methylnaphthalene	5 0	36.8	74	40-140
88-74-4	2-Nitroaniline	50	43.6	87	40-140
99-09-2	3-Nitroaniline	50	22.7	45	40-140
100-01-6	4-Nitroaniline	50	36.0	72	40-140
91-20-3	Naphthalene	50	39.7	79	40-140
98-95-3	Nitrobenzene	50	39.7	79	40-140
621-64-7	N-Nitroso-di-n-propylamine	50	41.8	84	40-140
86-30-6	N-Nitrosodiphenylamine	50	40.1	80	40-140
85-01-8	Phenanthrene	50	39.9	80	40-140
129-00-0	Pyrene	50	40.4	81	40-140
110-86-1	Pyridine	50	24.4	49	40-140
CAS No.	Surrogate Recoveries	BSP	Lir	nits	
367-12-4	2-Fluorophenol	52%	15-	110%	
4165-62-2	Phenol-d5	36%	15-	110%	
118-79-6	2,4,6-Tribromophenol	83%	15-	110%	
4165-60-0	Nitrobenzene-d5	79%	30-	130%	
321-60-8	2-Fluorobiphenyl	79%	30-	130%	
1718-51-0	Terphenyl-d14	80%	30-	130%	
	-				

Blank Spike Summary

Job Number:

M97395

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date 01/27/11	Prep Batch	Analytical Batch
OP23969-BS	S21264.D	1	02/03/11	PR		OP23969	MSS890

The QC reported here applies to the following samples:

Method: SW846 8270C

M97395-2, M97395-3, M97395-4, M97395-5, M97395-6, M97395-7, M97395-8, M97395-9, M97395-10, M97395-11

(a) Outside control limits. Blank Spike meets program technical requirements.

Method: SW846 8270C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP23969-MS	S21265.D	1	02/03/11	PR	01/27/11	OP23969	MSS890
OP23969-MSD	S21266.D	1	02/04/11	PR	01/27/11	OP23969	MSS890
M97395-2	\$21267.D	1	02/04/11	PR	01/27/11	OP23969	MSS890

The QC reported here applies to the following samples:

		M97395	5-2	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
	-	_	_	_	_		_			
65-85-0	Benzoic Acid	ND		109	50.9	47	52.9	50	4	30-130/20
95-57-8	2-Chlorophenol	ND		109	85.4	79	88.5	83	4	30-130/20
59-50-7	4-Chloro-3-methyl phenol	ND		109	94.2	87	98.1	92	4	30-130/20
120-83-2	2,4-Dichlorophenol	ND		109	98.2	90	101	95	3	30-130/20
105-67-9	2,4-Dimethylphenol	ND		109	49.3	45	50.9	48	3	30-130/20
51-28-5	2,4-Dinitrophenol	ND		109	96.2	89	105	99	9	30-130/20
534-52-1	4,6-Dinitro-o-cresol	ND		109	98.3	90	103	97	5	30-130/20
95-48-7	2-Methylphenol	ND		109	81.0	75	81.2	76	0	30-130/20
	3&4-Methylphenol	ND		217	159	73	158	74	1	30-130/20
88-75-5	2-Nitrophenol	ND		109	101	93	106	100	5	30-130/20
100-02-7	4-Nitrophenol	ND		109	57.2	53	61.3	58	7	30-130/20
87-86-5	Pentachlorophenol	ND		109	94.1	87	91.9	86	2	30-130/20
108-95-2	PhenoI	ND		109	45.2	42	42.9	40	5	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND		109	95.5	88	100	94	5	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND		109	90.3	83	95.0	89	5	30-130/20
83-32-9	Acenaphthene	ND		54.3	46.5	86	47.7	90	3	40-140/20
208-96-8	Acenaphthylene	ND		54.3	39.1	72	40.0	75	2	40-140/20
62-53-3	Aniline	ND		54.3	21.9	40	20.1	38* a	9	40-140/20
120-12-7	Anthracene	ND		54.3	45.1	83	46.0	86	2	40-140/20
56-55-3	Benzo(a)anthracene	ND		54.3	49.3	91	48.7	92	1	40-140/20
50-32-8	Benzo(a)pyrene	ND		54.3	40.5	75	41.3	78	2	40-140/20
205-99-2	Benzo(b)fluoranthene	ND		54.3	47.5	87	48.0	90	1	40-140/20
191-24-2	Benzo(g,h,i)perylene	ND		54.3	50.4	93	48.4	91	4	40-140/20
207-08-9	Benzo(k)fluoranthene	ND		54.3	42.0	77	45.9	86	9	40-140/20
101-55-3	4-Bromophenyl phenyl ether	ND		54.3	48.9	90	49.4	93	1	40-140/20
85-68-7	Butyl benzyl phthalate	ND		54.3	47.8	88	45.2	85	6	40-140/20
91-58-7	2-Chloronaphthalene	ND		54.3	45.1	83	46.7	88	3	40-140/20
106-47-8	4-Chloroaniline	ND		54.3	16.8	31* a	20.0	38* a	17	40-140/20
218-01-9	Chrysene	ND		54.3	50.6	93	50.6	95	0	40-140/20
111-91-1	bis(2-Chloroethoxy)methane	ND		54.3	47.7	88	48.6	91	2	40-140/20
111-44-4	bis(2-Chloroethyl)ether	ND		54.3	43.5	80	45.3	85	4	40-140/20
108-60-1	bis(2-Chloroisopropyl)ether	ND		54.3	48.2	89	48.9	92	1	40-140/20
7005-72-3	4-Chlorophenyl phenyl ether	ND		54.3	47.6	88	49.6	93	4	40-140/20
121-14-2	2,4-Dinitrotoluene	ND		54.3	48.9	90	52.2	98	7	40-140/20
606-20-2	2,6-Dinitrotoluene	ND		54.3	49.9	92	51.4	97	3	40-140/20
91-94-1	3,3'-Dichlorobenzidine	ND		54.3	19.8	36* b	19.2	36* ^b	3	40-140/20
	•									

Page 2 of 3

Method: SW846 8270C

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97395

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample OP23969-MS OP23969-MSD M97395-2	File ID S21265.D S21266.D S21267.D	DF 1 1	Analyzed 02/03/11 02/04/11 02/04/11	By PR PR PR	Prep Date 01/27/11 01/27/11 01/27/11	Prep Batch OP23969 OP23969 OP23969	Analytical Batch MSS890 MSS890 MSS890

The QC reported here applies to the following samples:

CAS No.	Compound	M97395 ug/l	5-2 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
53-70-3	Dibenzo(a,h)anthracene	ND		54.3	51.1	94	50.3	95	2	40-140/20
132-64-9	Dibenzofuran	ND		54.3	45.5	84	46.8	88	3	40-140/20
84-74-2	Di-n-butyl phthalate	ND		54.3	48.1	89	49.0	92	2	40-140/20
117-84-0	Di-n-octyl phthalate	ND		54.3	43.7	80	45.1	85	3	40-140/20
84-66-2	Diethyl phthalate	0.77	JΒ		55.3	100	52.6	97	5	40-140/20
131-11-3	Dimethyl phthalate	ND	•	54.3	49.0	90	50.9	96	4	40-140/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		54.3	45.7	84	45.7	86	0	40-140/20
206-44-0	Fluoranthene	ND		54.3	47.2	87	51.0	96	8	40-140/20
86-73-7	Fluorene	ND		54.3	48.0	88	50.3	95	5	40-140/20
118-74-1	Hexachlorobenzene	ND		54.3	49.5	91	49.8	94	1	40-140/20
77-47-4	Hexachlorocyclopentadiene	ND		54.3	21.4	39* b	21.0	39* p	2	40-140/20
67-72-1	Hexachloroethane	ND		54.3	37.8	70	36.7	69	3	40-140/20
193-39-5	Indeno(1,2,3-cd)pyrene	ND		54.3	52.1	96	51.5	97	1	40-140/20
78-59-1	Isophorone	ND		54.3	46.0	85	48.3	91	5	40-140/20
91-57-6	2-Methylnaphthalene	ND		54.3	43.5	80	45.4	85	4	40-140/20
88-74-4	2-Nitroaniline	ND		54.3	46.2	8 5	50.6	95	9	40-140/20
99-09-2	3-Nitroaniline	ND		54.3	26.3	48	29.5	55	11	40-140/20
100-01-6	4-Nitroaniline	ND		54.3	37.4	69	41.5	78	10	40-140/20
91-20-3	Naphthalene	ND		54.3	46.6	86	48.5	91	4	40-140/20
98-95-3	Nitrobenzene	ND		54.3	50.8	93	51.7	97	2	40-140/20
621-64-7	N-Nitroso-di-n-propylamine	ND		54.3	49.1	90	50.5	95	3	40-140/20
86-30-6	N-Nitrosodiphenylamine	ND		54.3	49.0	90	48.9	92	0	40-140/20
85-01-8	Phenanthrene	ND		54.3	46.3	85	48.1	90	4	40-140/20
129-00-0	Pyrene	ND		54.3	46.7	86	44.8	84	4	40-140/20
110-86-1	Pyridine	ND		54.3	28.9	53	26.8	50	8	40-140/20
CAS No.	Surrogate Recoveries	MS		MSD	М9	7395-2	Limits			
367-12-4	2-Fluorophenol	56%		58%	459	%	15-1109	%		
4165-62-2	Phenol-d5	40%		40%	309	%	15-1109	%		
118-79-6	2,4,6-Tribromophenol	91%		95%	799	%	15-1109	%		
4165-60-0	Nitrobenzene-d5	86%		91%	779	%	30-1309			
321-60-8	2-Fluorobiphenyl	84%		89%	779		30-1309			
1718-51-0	Terphenyl-d14	74%		71%	659		30-1309			
	• •									

Page 3 of 3

Method: SW846 8270C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample OP23969-MS OP23969-MSD M97395-2	File ID S21265.D S21266.D S21267.D	DF 1 1	Analyzed 02/03/11 02/04/11 02/04/11	By PR PR PR	Prep Date 01/27/11 01/27/11 01/27/11	Prep Batch OP23969 OP23969 OP23969	Analytical Batch MSS890 MSS890 MSS890

The QC reported here applies to the following samples:

- (a) Outside control limits. Blank Spike meets program technical requirements.
- (b) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Semivolatile Internal Standard Area Summary

Job Number: M97395

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSS890-CC884 Injection Date: 02/03/11 Lab File ID: S21252.D Injection Time: 18:04 Instrument ID: GCMSS Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA F	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std	196735	5.68	741586 7	7.03	343868	9.20	512662	11.39	455373	15.74	439084	17.97
Upper Limit ^a Lower Limit ^b	393470 98368	6.18 5.18	1483172 7 370793 6	7.53 6.53	687736 171934	9.70 8.70	1025324 256331	11.89 10.89	910746 227687	16.24 15.24	878168 219542	18.47 17.47
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA F	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	170549	5.68	721000 7	7.02	353599	9.20	525818	11.39	476073	15.73	461602	17.96
ZZZZZZ	216841	5.68		7.02	401551	9.20	592062	11.39	446876	15.73		17.96
ZZZZZZ	247101	5.68	1014141 7		470070	9.20	681343	11.39	503218	15.73	421782	17.96
ZZZZZZ	181616	5.68		7.02	361338	9.20	536249	11.39	461543	15.73		17.96
ZZZZZZ	257111	5.69	1083312 7	7.02	509786	9.20	755779	11.39	544618	15.73	444170	17.96
ZZZZZZ	193567	5.68		7.02	373825	9.20	542825	11.39	462336	15.73		17.96
ZZZZZZ	199287	5.69		7.03	358714	9.20	498013	11.39	409563		457273	17.98
ZZZZZZ	202729	5.68	793074 7	7.02	371522	9.20	534304	11.39	443400	15.73	444495	17.97
ZZZZZZ	213181	5.68	835510 7	7.02	383910	9.20	558341	11.39	457683	15.73	470152	17.97
ZZZZZZ	218292	5.68	891927 7	7.02	413832	9.20	615730	11.39	531117	15.73	515164	17.97
OP23969-MB	220569	5.68	881336 7	7.02	406408	9.20	608583	11.39	502833	15.73	488858	17.96
OP23969-BS	226173	5.68		7.03	400515	9.20	591590	11.39	486555		430961	17.97
OP23969-MS	204864	5.68	772780 7	7.03	356132	9.20	508726	11.39	420262	15.73	425478	17.97
OP23969-MSD	191783	5.69	725794 7	7.03	339867	9.20	505014	11.39	470044	15.74	456720	17.97
M97395-2	194794	5.68	781118 7	7.03	375345	9.20	562067	11.39	496129	15.73	493087	17.97
M97395-3	200059	5.68	792115 7	7.03	375808	9.20	559019	11.39	493864	15.73	477823	17.97
M97395-4	202685	5.68	778188 7	7.03	368945	9.20	548227	11.39	473505	15.73	471204	17.96
M97395-5	207826	5.68	801552 7	7.03	385774	9.20	567546	11.39	488096	15.73	467981	17.97
M97395-6	220351	5.68	873884 7	7.03	418552	9.20	630179	11.39	508056	15.73	447543	17.97
M97395-7	214550	5.68	865023 7	7.03	406941	9.20	610343	11.39	498210	15.73	457106	17.97
M97395-8	216162	5.68	853507 7	7.03	378859	9.20	559539	11.39	440179	15.74	426076	17.97
M97395-9	211510	5.69	846878 7	7.03	402274	9.20	599774	11.39	487275	15.73	425722	17.97
M97395-10	196099	5.69	779108 7	7.03	369067	9.20	550554	11.39	434543		400950	17.97
M97395-11	206822	5.69	818548 7	7.03	377316	9.20	571651	11.39	439088	15.74	401798	17.97
ZZZZZZ	223567	5.69	874747 7	7.03	422309	9.20	624865	11.39	519277	15.73	467699	17.97

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

⁽a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

⁽b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary Job Number: M97395

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Method: SW846 8270C Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	S2	S3	S4	S5	S6
-							
M97395-2	S21267.D	45.0	30.0	79.0	77.0	77.0	65.0
M97395-3	S21268.D	43.0	33.0	71.0	82.0	79.0	77.0
M97395-4	S21269.D	48.0	31.0	90.0	86.0	81.0	79.0
M97395-5	S21270.D	46.0	32.0	87.0	81.0	77.0	77.0
M97395-6	S21271.D	38.0	28.0	67.0	86.0	85.0	96.0
M97395-7	S21272.D	51.0	34.0	87.0	87.0	86.0	95.0
M97395-8	S21273.D	53.0	35.0	99.0	86.0	90.0	89.0
M97395-9	S21274.D	43.0	28.0	79.0	73.0	73.0	82.0
M97395-10	S21275.D	52.0	34.0	90.0	81.0	80.0	83.0
M97395-11	S21276.D	55.0	36.0	97.0	83.0	84.0	90.0
OP23969-BS	S21264.D	52.0	36.0	83.0	79.0	79.0	80.0
OP23969-MB	S21263.D	50.0	34.0	85.0	85.0	88.0	91.0
OP23969-MS	S21265.D	56.0	40.0	91.0	86.0	84.0	74.0
OP23969-MSD	S21266.D	58.0	40.0	95.0	91.0	89.0	71.0

Compounds	Limits
S1 = 2-Fluorophenol	15-110%
S2 = Phenol-d5	15-110%
S3 = 2,4,6-Tribromophenol	15-110%
S4 = Nitrobenzene-d5	30-130%

S5 = 2-Fluorobiphenyl 30-130% S6 = Terphenyl-d1430-130%

Roxana Groundwater Quarterly – 1st Quarter 2011

Laboratory SDG: M97427

Data Reviewer: Wendy Buchman

Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 2/25/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
P93A-ROX-012611	P93B-ROX-012611
P93C-ROX-012611	TB-ROX-012611

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated VOC and SVOC LCS/LCSD recoveries were outside evaluation criteria. VOC MS/MSD recoveries were outside of evaluation criteria. Additionally, diethyl phthalate was detected in the method blank. Although not indicated in the laboratory case narrative, methylene chloride was detected in the trip blank. Samples P93A-ROX-012611, P93B-ROX-012611, and P93C-ROX-012611 were rerun at dilutions due to high levels of benzene; the compound benzene was reported from the second runs and all other compounds were reported from the original analyses. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated two out of two coolers were received by the laboratory at 1.9° C and 1.4° C which were outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore, no qualification of data was required.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes. The following table summarizes analytes detected in sample-associated blanks.

Blank ID	Parameter	Analyte	Concentration/Amount
TB-ROX-012611	VOCs	Methylene chloride	4.7 μg/L
OP23982-MB	SVOCs	Diethyl phthalate	0.83 μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
P93A-ROX-012611	SVOCs	Diethyl phthalate	-	U
P93B-ROX-012611	SVOCs	Diethyl phthalate	-	U
P93C-ROX-012611	SVOCs	Diethyl phthalate	-	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	LCS Criteria
MSE2175-BS	VOCs	Dichlorodifluoromethane	142	70-130
MSE2175-BS	VOCs	2,2-Dichloropropane	133	70-130
MSE2175-BS	VOCs	Hexachlorobutadiene	132	70-130
MSE2175-BS	VOCs	Vinyl Acetate	66	70-130
OP23982-BS	SVOCs	Benzoic Acid	24	30-130
OP23982-BS	SVOCs	4-Chloroaniline	34	30-130
OP23982-BS	SVOCs	Hexachlorocyclopentadiene	37	40-140
OP23982-BS	SVOCs	3-Nitroaniline	36	40-140

Analytical data that required qualification based on LCS data are included in the table below. Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Sample ID	Parameter	Analyte	Qualification
P93A-ROX-012611	VOCs	Vinyl Acetate	UJ
P93A-ROX-012611	SVOCs	Benzoic Acid	UJ
P93A-ROX-012611	SVOCs	4-Chloroaniline	UJ
P93A-ROX-012611	SVOCs	Hexachlorocyclopentadiene	UJ
P93A-ROX-012611	SVOCs	3-Nitroaniline	UJ
P93B-ROX-012611	VOCs	Vinyl Acetate	UJ
P93B-ROX-012611	SVOCs	Benzoic Acid	UJ
P93B-ROX-012611	SVOCs	4-Chloroaniline	UJ
P93B-ROX-012611	SVOCs	Hexachlorocyclopentadiene	UJ
P93B-ROX-012611	SVOCs	3-Nitroaniline	J
P93C-ROX-012611	VOCs	Vinyl Acetate	UJ
P93C-ROX-012611	SVOCs	Benzoic Acid	UJ
P93C-ROX-012611	SVOCs	4-Chloroaniline	UJ
P93C-ROX-012611	SVOCs	Hexachlorocyclopentadiene	UJ
P93C-ROX-012611	SVOCs	3-Nitroaniline	UJ

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples analyzed as part of this SDG?

Yes. Sample P93B-ROX-012611 was spiked and analyzed for VOCs and SVOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/ RPD Criteria
P93B-ROX- 012611	VOCs	Acetone	1564/1558	0	70-130/30
P93B-ROX- 012611	VOCs	Dichlorodifluoromethane	141/139	2	70-130/30
P93B-ROX- 012611	VOCs	Isopropylbenzene	140/143	2	70-130/30
P93B-ROX- 012611	VOCs	Styrene	69/77	11	70-130/30
P93B-ROX- 012611	SVOCs	Phenol	32/ 20	10	30-130/20

Analytical results reported as nondetect and associated with MS/MSD recoveries above evaluation criteria, indicating a high bias, did not require qualification. USEPA National Functional Guidelines for Organic Data Review indicates that organic data does not require qualification based on MS/MSD data alone. LCS recoveries for styrene and phenol were within evaluation criteria; therefore, no qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

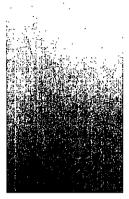
Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?
No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?


No

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied?
No

Technical Report for

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

SAP#340061

Accutest Job Number: M97427

Sampling Date: 01/26/11

Report to:

URS Corporation

Elizabeth_Kunkel@URSCorp.com

ATTN: Elizabeth Kunkel

Total number of pages in report: 53

Reviewed
3/3/2011

Lab Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	
3.1: M97427-1: P93A-ROX_012611	7
3.2: M97427-2: P93B-ROX_012611	11
3.3: M97427-3: P93C-ROX_012611	15
3.4: M97427-4: TB-ROX-012611	19
Section 4: Misc. Forms	21
4.1: Chain of Custody	22
4.2: Sample Tracking Chronicle	24
4.3: Internal Chain of Custody	25
Section 5: GC/MS Volatiles - QC Data Summaries	27
5.1: Method Blank Summary	28
5.2: Blank Spike Summary	31
5.3: Blank Spike/Blank Spike Duplicate Summary	33
5.4: Matrix Spike/Matrix Spike Duplicate Summary	34
5.5: Internal Standard Area Summaries	38
5.6: Surrogate Recovery Summaries	40
Section 6: GC/MS Semi-volatiles - QC Data Summaries	41
6.1: Method Blank Summary	42
6.2: Blank Spike Summary	44
6.3: Matrix Spike/Matrix Spike Duplicate Summary	
6.4: Internal Standard Area Summaries	50
6.5: Surrogate Recovery Summaries	53

Sample Summary

Job No:

M97427

Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Collected Date	Time By	Received	Matr. Code		Client Sample ID
M97427-1	01/26/11	11:50 NSKH	01/27/11	AQ	Ground Water	P93A-ROX_012611
M97427-2	01/26/11	10:55 NSKH	01/27/11	AQ	Ground Water	P93B-ROX_012611
M97427-2D	01/26/11	10:55 NSKH	01/27/11	AQ	Water Dup/MSD	P93B-ROX_012611
M97427-2S	01/26/11	10:55 NSKH	01/27/11	AQ	Water Matrix Spike	P93B-ROX_012611
M97427-3	01/26/11	11:20 NSKH	01/27/11	AQ	Ground Water	P93C-ROX_012611
M97427-4	01/26/11	00:00 NSKH	01/27/11	AQ	Trip Blank Water	TB-ROX-012611

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Shell Oil Job No M97427

Site: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Report Date 2/9/2011 9:31:54 AM

3 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were collected on 01/26/2011 and were received at Accutest on 01/27/2011 properly preserved, at 1.9 Deg. C and intact. These Samples received an Accutest job number of M97427. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix AQ Batch ID: MSE2175

- All samples were analyzed within the recommended method holding time.
- Sample(s) M97427-2MS, M97427-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for 2,2-Dichloropropane, Dichlorodifluoromethane, Hexachlorobutadiene, Vinyl Acetate are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for Acetone, Dichlorodifluoromethane, Isopropylbenzene, Styrene are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for Dichlorodifluoromethane, Isopropylbenzene are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.
- MS/MSD Recovery(s) for Benzene are outside control limits. Outside control limits due to high level in sample relative to spike amount

Matrix AQ Batch ID: MSE2177

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97427-2MS, M97427-2MSD were used as the QC samples indicated.
- MS/MSD Recovery(s) for Benzene are outside control limits. Outside control limits due to high level in sample relative to spike
 amount.

Extractables by GCMS By Method SW846 8270C

Matrix AQ Batch ID: OP23982

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M97427-2MS, M97427-2MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for 3-Nitroaniline, 4-Chloroaniline, Benzoic Acid, Hexachlorocyclopentadiene, Phenol are outside control limits. Blank Spike meets program technical requirements.
- Matrix Spike Recovery(s) for 3,3'-Dichlorobenzidine, 4-Chloroaniline are outside control limits. Outside control limits due to
 possible matrix interference. Refer to Blank Spike.
- Matrix Spike Duplicate Recovery(s) for 3,3'-Dichlorobenzidine, 4-Chloroaniline, Phenol are outside control limits. Outside control limits due to possible matrix interference. Refer to Blank Spike.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M97427).

Sample Results	22.
Report of Analysis	

Client Sample ID: P93A-ROX_012611

Lab Sample ID:M97427-1Date Sampled:01/26/11Matrix:AQ - Ground WaterDate Received:01/27/11Method:SW846 8260BPercent Solids:n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1	E51525.D	1	02/03/11	TD	n/a	n/a	MSE2175
Run #2	E51582.D	5000	02/05/11	TD	n/a	n/a	MSE2177

Purge Volume
Run #1 5.0 ml
Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	491000 a	2500	1800	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/I	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
7 5-2 5-2	Bromoform	ND	1.0	0.73	ug/I	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	5.9	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	9.6	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	21.3	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	0.81	1.0	0.42	ug/l	J
108-90-7	Chlorobenzene	0.61	1.0	0.61	ug/l	J
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49 - 8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/I	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID: P93A-ROX_012611

Date Sampled: 01/26/11 Lab Sample ID: M97427-1 Matrix: AQ - Ground Water Date Received: 01/27/11 Method: SW846 8260B Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	373	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	1.6	5.0	0.56	ug/l	J
74-88-4	Iodomethane	ND	5.0	0.47	ug/l	
98-82-8	Isopropylbenzene	22.5	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	4.7	5.0	0.45	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	124	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	25.4	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND ·	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/I	
108-88-3	Toluene	65.4	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	2.6	5.0	1.0	ug/I	J
120-82-1	1,2,4-Trichlorobenzene	1.5	5.0	0.57	ug/l	J J
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	1.7	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	210	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	45.0	5.0	0.51	ug/l	. 11
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	" UJ"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	622	1.0	0.62	ug/l	
95-47-6	o-Xylene	70.5	1.0	0.56	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%	111%	70-13	30%	
2037-26-5	Toluene-D8	121%	111%	70-13		
460-00-4	4-Bromofluorobenzene	102%	107%	70-13	30%	

(a) Result is from Run# 2

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P93A-ROX_012611

Lab Sample ID:

M97427-1

AQ - Ground Water

Date Sampled: 01/26/11 Date Received: 01/27/11

Percent Solids: n/a

Method: Project:

Matrix:

SW846 8270C SW846 3510C URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Prep Batch Analytical Batch

Run #1

File ID S21225.D

Analyzed DF 02/02/11 1

Prep Date Вy PR 01/28/11

OP23982

MSS888

Run #2

Initial Volume 1020 ml

Final Volume 1.0 ml

Run #1 Run #2

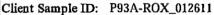
ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	9.8	0.75	ug/l	~`uō"
95-57-8	2-Chlorophenol	ND	4.9	0.67	ug/I	
59-50-7	4-Chloro-3-methyl phenol	ND	9.8	0.56	ug/l	
120-83-2	2,4-Dichlorophenol	ND	9.8	0.68	ug/l	
105-67-9	2,4-Dimethylphenol	ND	9.8	2.1	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	9.8	4.9	ug/l	
95-48-7	2-Methylphenol	ND	9.8	0.47	ug/l	
	3&4-Methylphenol	64.0	9.8	0.62	ug/l	
88-75-5	2-Nitrophenol	ND	9.8	0.65	ug/l	
100-02-7	4-Nitrophenol	ND	20	4.9	ug/l	
87-86-5	Pentachlorophenol	ND	9.8	3.2	ug/l	
108-95-2	Phenol	172	4.9	2.0	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	9.8	0.39	ug/1	
88-06-2	2,4,6-Trichlorophenol	ND	9.8	0.37	ug/l	
83-32-9	Acenaphthene	ND	4.9	0.33	ug/l	
208-96-8	Acenaphthylene	ND	4.9	1.2	ug/l	
62-53-3	Aniline	ND	9.8	0.45	ug/l	
120-12-7	Anthracene	ND	4.9	0.27	ug/l	
56-55-3	Benzo(a)anthracene	ND	4.9	0.27	ug/l	
50-32-8	Benzo(a) pyrene	ND	4.9	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	4.9	0.27	ug/l	
191-24 - 2	Benzo(g,h,i)perylene	ND	4.9	0.60	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	4.9	0.29	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ŇD	4.9	0.31	ug/l	
85-68-7	Butyl benzyl phthalate	ND	4.9	0.40	ug/l	
91-58-7	2-Chloronaphthalene	ND	4.9	0.30	ug/I	
106-47-8	4-Chloroaniline	ND	9.8	0.56	ug/l	" UJ"
218-01-9	Chrysene	ND	4.9	0.22	ug/I	
111-91-1	bis(2-Chloroethoxy)methane	ND	4.9	0.34	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	4.9	0.23	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	4.9	0.20	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit


E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Lab Sample ID: M97427-1 Date Sampled: 01/26/11 Date Received: 01/27/11 Matrix: AQ - Ground Water SW846 8270C SW846 3510C Method: Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	4.9	0.60	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	9.8	1.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	9.8	0.33	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	4.9	2.5	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	4.9	0.24	ug/l	
132-64-9	Dibenzofuran	ND	4.9	0.31	ug/l	
84-74-2	Di-n-butyl phthalate	ND	4.9	0.33	ug/l	
117-84-0	Di-n-octyl phthalate	ND	4.9	0.33	ug/l	
84-66-2	Diethyl phthalate	1.4 0.0ND	4.9	0.60	ug/l	" u "
131-11-3	Dimethyl phthalate	ND	4.9	1.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.48	ug/l	
206-44-0	Fluoranthene	ND	4.9	0.21	ug/l	
86-73-7	Fluorene	0.32	4.9	0.29	ug/l	J
118-74-1	Hexachlorobenzene	ND	4.9	0.15	ug/l	.,
77-47-4	Hexachlorocyclopentadiene	ND	9.8	2.5	ug/l	~`ひび"
67-72-1	Hexachloroethane	ND	4.9	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.9	0.28	ug/l	
78-59-1	Isophorone	ND	4.9	0.46	ug/l	
91-57-6	2-Methylnaphthalene	25.4	4.9	0.30	ug/l	
88-74-4	2-Nitroaniline	ND	9.8	0.33	ug/l	. 11
99-09-2	3-Nitroaniline	ND	9.8	0.32	ug/l	$'_{\iota}UU''$
100-01-6	4-Nitroaniline	ND	9.8	0.33	ug/l	
91-20-3	Naphthalene	80.3	4.9	0.32	ug/l	
98-95-3	Nitrobenzene	ND	4.9	0.30	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	4.9	0.40	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.9	0.60	ug/l	
85-01-8	Phenanthrene	0.40	4.9	0.25	ug/l	J
129-00-0	Pyrene	ND	4.9	0.24	ug/l	
110-86-1	Pyridine	ND	9.8	0.49	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S	
367-12-4	2-Fluorophenol	44%		15-11	0%	
4165-62-2	Phenol-d5	27%		15-11	0%	
118-79-6	2,4,6-Tribromophenol	92%		15-11	0%	
4165-60-0	Nitrobenzene-d5	82%		30-13	0%	
321-60-8	2-Fluorobiphenyl	79%		30-13	0%	
1718-51-0	Terphenyl-d14	80%		30-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P93B-ROX_012611

Lab Sample ID:

M97427-2

AQ - Ground Water

Date Sampled: 01/26/11 Date Received: 01/27/11

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	E51522.D	1	02/03/11	TD	n/a	n/a	MSE2175
Run #2	E51578.D	500	02/05/11	TD	n/a	n/a	MSE2177

Purge Volume

5.0 ml Run #1

5.0 ml Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	105000 a	250	180	ug/I	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97 -5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	0.58	5.0	0.53	ug/l	J
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	0.77	2.0	0.76	ug/l	J
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	1.4	2.0	0.81	ug/l	J
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	NĐ	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/i	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: P93B-ROX_012611

Lab Sample ID: M97427-2 Date Sampled: 01/26/11
Matrix: AQ - Ground Water Date Received: 01/27/11
Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	10.4	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
74-88-4	Iodomethane	ND	5.0	0.47	ug/l	
98-82-8	Isopropylbenzene	10.8	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	8.8	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	11.0	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	32.1	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/I	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/I	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	5.2	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	1.6	5.0	0.51	ug/l	J
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	"ບັນ"
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	55.5	1.0	0.62	ug/l	
95-47-6	o-Xylene	9.2	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	109%	116%	70-1	30%	
2037-26-5	Toluene-D8	110%	112%	70-1	30%	
460-00-4	4-Bromofluorobenzene	111%	109%	70-1	30%	

(a) Result is from Run# 2

ND = Not detected M

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: P93B-ROX_012611

 Lab Sample ID:
 M97427-2
 Date Sampled:
 01/26/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/27/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 S21226.D 1 02/02/11 PR 01/28/11 OP23982 MSS888

Run #2

Initial Volume Final Volume

Run #1 940 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
					_	", π2,,
65-85-0	Benzoic Acid	ND	11	0.82	ug/l	. 0.0
95-57-8	2-Chlorophenol	ND	5.3	0.73	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	11	0.61	ug/I	
120-83-2	2,4-Dichlorophenol	ND	11	0.74	ug/l	
105-67-9	2,4-Dimethylphenol	ND	11	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	21	2.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.3	ug/l	
95-48-7	2-Methylphenol	ND	11	0.51	ug/l	
	3&4-Methylphenol	ND	11	0.67	ug/l	
88-75-5	2-Nitrophenol	ND	11	0.70	ug/l	
100-02-7	4-Nitrophenol	ND	21	5.3	ug/l	
87-86-5	Pentachlorophenol	ND	11	3.5	ug/I	
108-95-2	Phenol	106	5.3	2.2	ug/i	
95-95-4	2,4,5-Trichlorophenol	ND	11	0.43	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	11	0.40	ug/l	
83-32-9	Acenaphthene	ND	5.3	0.36	ug/l	
208-96-8	Acenaphthylene	ND	5.3	1.3	ug/l	
62-53-3	Aniline	ND	11	0.48	ug/l	
120-12-7	Anthracene	ND	5.3	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	0.29	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.3	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.29	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.65	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.31	ug/I	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	0.34	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	0.43	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.32	ug/l	
106-47-8	4-Chloroaniline	ND	11	0.61	ug/l '	, エ ユ,,
218-01-9	Chrysene	ND	5.3	0.24	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.37	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.25	ug/l	
108-60-1	bis (2-Chloroisopropyl) ether	ND	5.3	0.22	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: P93B-ROX_012611

Lab Sample ID: M97427-2 Date Sampled: 01/26/11 Date Received: 01/27/11 Matrix: AQ - Ground Water Method: SW846 8270C SW846 3510C Percent Solids: n/a

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	0.65	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	0.36	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	2.7	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.26	ug/I	
132-64-9	Dibenzofuran	ND	5.3	0.34	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.3	0.36	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.3	0.36	ug/l	
84-66-2	Diethyl phthalate	10.860.0ND	5.3	0.65	ug/l	"は"
131-11-3	Dimethyl phthalate	ND	5.3	1.3	ug/I	_
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.52	ug/l	
206-44-0	Fluoranthene	ND	5.3	0.23	ug/l	
86-73-7	Fluorene	ND	5.3	0.31	ug/l	
118-74-1	Hexachlorobenzene	ND	5.3	0.17	ug/l	11
77-47-4	Hexachlorocyclopentadiene	ND	11	2.7	ug/l	$\alpha \pi \Omega_n$
67-72-1	Hexachloroethane	ND	5.3	0.46	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.31	ug/l	
78-59-1	Isophorone	ND	5.3	0.50	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.33	ug/l	
88-74-4	2-Nitroaniline	ND	11	0.36	ug/l	
99-09-2	3-Nitroaniline	0.69	11	0.34	ug/l	~ J "
100-01-6	4-Nitroaniline	ND	11	0.36	ug/l	
91-20-3	Naphthalene	1.1	5.3	0.35	ug/l	J
98-95-3	Nitrobenzene	ND	5.3	0.32	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	0.43	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.65	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.27	ug/l	
129-00-0	Pyrene	ND	5.3	0.26	ug/l	
110-86-1	Pyridine	ND	11	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
367-12-4	2-Fluorophenol	45%		15-11	0%	
4165-62-2	Phenol-d5	28%		15-11		
118-79-6	2,4,6-Tribromophenol	97%		15-11		
4165-60-0	Nitrobenzene-d5	87%		30-13		
321-60-8	2-Fluorobiphenyl	82%		30-13		
1718-51-0	Terphenyl-d14	79%		30-13	0%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P93C-ROX_012611

Lab Sample ID: M97427-3 Matrix: AQ - Ground Water Method: SW846 8260B

Date Sampled: 01/26/11 Date Received: 01/27/11 Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	E51526.D	1	02/03/11	TD	n/a	n/a	MSE2175
Run #2	E51581.D	500	02/05/11	TD	n/a	n/a	MSE2177

Purge Volume 5.0 ml Run #1 Run #2 5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	86500 a	250	180	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	0.56	5.0	0.53	ug/l	J
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/I	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: M97427-3 Date Sampled: 01/26/11 Matrix: AQ - Ground Water Date Received: 01/27/11 Method: SW846 8260B Percent Solids: n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

VOA 8260 List

						_
CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	17.5	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
74-88-4	Iodomethane	ND	5.0	0.47	ug/l	
98-82-8	Isopropylbenzene	1.9	5.0	0.51	ug/l	J
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	-
1634-04-4	Methyl Tert Butyl Ether	1.4	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	1.3	5.0	0.43	ug/l	J
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	6.7	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	2.5	5.0	0.62	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	<u day<="" td=""></u>
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	5.1	1.0	0.62	ug/l	
95-47-6	o-Xylene	3.5	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	103%	110%	70-130%		
2037-26-5	Toluene-D8	106%	113%	70-130%		
460-00-4	4-Bromofluorobenzene	122%	105%	70-130%		

(a) Result is from Run# 2

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P93C-ROX_012611

Lab Sample ID:

M97427-3

AQ - Ground Water

Date Sampled: 01/26/11 Date Received: 01/27/11

SW846 8270C SW846 3510C Method:

Percent Solids: n/a

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch S21227.D 1 02/02/11 PR 01/28/11 OP23982 MSS888 Run #1

Run #2

Matrix:

Initial Volume Final Volume

Run #1 980 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	10	0.79	ug/l	" UJ"
95-57-8	2-Chlorophenol	ND	5.1	0.70	ug/l	
59-50- 7	4-Chloro-3-methyl phenol	ND	10	0.58	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	0.71	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	2.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.1	ug/l	
95-48-7	2-Methylphenol	ND	10	0.49	ug/l	
	3&4-Methylphenol	ND	10	0.64	ug/l	
88-75-5	2-Nitrophenol	ND	10	0.67	ug/l	
100-02-7	4-Nitrophenol	ND	20	5.1	ug/l	
87-86-5	Pentachlorophenol	ND	10	3.4	ug/l	
108-95-2	Phenol	16.6	5.1	2.1	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	10	0.41	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l	
83-32-9	Acenaphthene	ND	5.1	0.34	ug/l	
208-96-8	Acenaphthylene	ND	5.1	1.3	ug/l	
62-53-3	Aniline	ND	10	0.46	ug/l	
120-12-7	Anthracene	ND	5.1	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.28	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	0.28	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.62	ug/l	
207-08-9	Benzo(k) fluoranthene	ND	5.1	0.30	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.1	0.33	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.1	0.42	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.1	0.31	ug/l	
106-47-8	4-Chloroaniline	ND	10	0.59	ug/l	トはひっ
218-01-9	Chrysene	ND	5.1	0.23	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	0.36	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.1	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.1	0.21	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: P93C-ROX_012611

 Lab Sample ID:
 M97427-3
 Date Sampled:
 01/26/11

 Matrix:
 AQ - Ground Water
 Date Received:
 01/27/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	0.62	ug/i	
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	2.6	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.1	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND _	5.1	0.34	ug/I	
84-66-2	Diethyl phthalate	9.97 O.O.D	5.1	0.62	ug/l	J
131-11-3	Dimethyl phthalate	ND	5.1	1.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.50	ug/l	
206-44-0	Fluoranthene	ND	5.1	0.22	ug/l	
86-73-7	Fluorene	ND	5.1	0.30	ug/l	
118-74-1	Hexachlorobenzene	ND	5.1	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.6	ug/l	٠u٤"
67-72-1	Hexachloroethane	ND	5.1	0.44	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.1	0.29	ug/l	
78-59-1	Isophorone	ND	5.1	0.48	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.34	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.33	ug/l	"UJ"
100-01-6	4-Nitroaniline	ND	10	0.34	ug/l	
91-20-3	Naphthalene	ND	5.1	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.1	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	0.41	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.62	ug/l	
8 5-01-8	Phenanthrene	ND	5.1	0.26	ug/l	_
129-00-0	Pyrene	ND	5.1	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.51	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	40%		15-11	10%	
4165-62-2	Phenol-d5	25%		15-11	10%	
118-79-6	2,4,6-Tribromophenol	88%		15-11	0%	
4165-60-0	Nitrobenzene-d5	83%		30-13	30%	
321-60-8	2-Fluorobiphenyl	78%		30-13	30%	
1718-51 - 0	Terphenyl-d14	75%		30-13	30%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: TB-ROX-012611

Lab Sample ID: M97427-4
Matrix: AQ - Trip Blank Water

SW846 8260B

Date Sampled: 01/26/11
Date Received: 01/27/11
Percent Solids: n/a

Method: Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

00/00/44	Prep Date Prep n/a n/a	Batch Analytical Batch MSE2175
----------	---------------------------	-----------------------------------

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	0.50	0.35	ug/l	
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l	
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l	
75-25-2	Bromoform	ND	1.0	0.73	ug/l	
74-83-9	Bromomethane	ND	2.0	0.95	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/I	
135-98-8	sec-Butylbenzene	ND ·	5.0	0.37	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l	
108-90-7	Chlorobenzene	ND ·	1.0	0.61	ug/l	
75-00-3	Chloroethane	ND	2.0	0.76	ug/l	
67-66-3	Chloroform	ND	1.0	0.72	ug/l	
74-87-3	Chloromethane	ND	2.0	0.81	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane		5.0	1.3	ug/I	
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/I	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/I	
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-ROX-012611

Lab Sample ID: M97427-4 Date Sampled: 01/26/11 AQ - Trip Blank Water Date Received: 01/27/11 Matrix: SW846 8260B Percent Solids: n/a Method:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l	
74-88-4	Iodomethane	ND	5.0	0.47	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l	
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l	
75-09-2	Methylene chloride	4.7	2.0	0.75	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l	
100-42-5	Styrene	ND	5.0	0.68	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.74	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l	
	m,p-Xylene	ND	1.0	0.62	ug/l	
95-47-6	o-Xylene	ND	1.0	0.56	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	115%		70-1		
2037-26-5	Toluene-D8	113%		70-1	30%	
460-00-4	4-Bromofluorobenzene	103%		70-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Certification Exceptions
- · Certification Exceptions (IL)
- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

(((;
LAB (LOCATION)					(III)	1	Shell	Dil	Pn	od	ucts	s CI	hai	n C	f C	ust	od	v R	ec	ord	ı			
□x5x00 ()		Plea	se Chec	ck An	Oropris						Cont						_					VICES)	CT CHIE	IS IF NO INCIDENT & APPLIES
CALECTORICE CHOICE, THE TREMENDED OF W	⊠ ow.	SZIMOS			BETAIL		SHELL RETAIL	ıl'''	,,,,,				• •			٠,			<u> </u>	1	Т	4 0		E 01 26 11
Control (Marchardon) MA 01752 (1908 481 4000)	(I xon	IVA SONO	一点	COME.	TANT		1985	i⊢	: .·.		WENC		MING.				9	71		i e	<u> </u>	110	[E 01 10-0111
Lab Vandor #	☐ sh€1	PRESE		onus,				ĭ⊢	<u>, , , , </u>		т	T	1	ĽΉ	Ť	Ť	l í ì		_		- 1		PAG	€ <u>L</u> o' <u>L</u>
E-ALC (GROW)				LCH C	C			-				┵	,	L_1		Ь.		4	٠,	O d	1	<u> </u>		
URS CORPORATION								170	EAST	RAN	D AYE	NUE -	HART	FORE		410	<u>L_</u>			_				Description of the control of the co
1001 HIGHLANDS PLAZA ORIVE WEST - SUITE 300,	ST. LOUIS	8, MO 631	10					_""		11 10 9			_		~ °	4-2				-				Rozana Quarterly /
WENDY PENNINGTON									A.D. 100		-					_						Ç.	Ú	21502543.00003
314-743-4166 or 341-452-8829 314-429-0482		le la Coma la	 	, .	e - 1	,-	-	1	N.	Sa	tem	. /	K		l) (L	١٠						3	1110	7435
TURNACUNC THE (CLUSTERS DAYS). RETAROND (HOAT) DECATE DECATE		2 5AYS	Вия	DURS		TARSA []	S MEEDEO	T								R	POUE	STED	ANA	TASI	s	112	7.7.	12(4) 1 2 2,1
CL U. RAQCE REPORT PORMET C UST AGENCE:								T	Γ	П	П	Т	П	П	Т	Τ	ТП	П	Т	Т	Т			FIELD NOTES:
DILMONANCS: DIEVELI ZILEVELI DILEVELI	☐ uvo	.4 🛭	OTHER (SPE	CDA)	EDX	· -																	<u>_</u>	EMPERATURE ON RECEIPT C
TEMPERATURE ON RECEIPT C* Confer #1	Cocker \$2			Certi	B]	L	H		1	П	Ш			Ш						- ["	
SPECIAL INSTRUCTIONS OR HOTES:			O ETAL CEGO	TE ALEMA POT INE EIPE YUR	BLASENĖI EDED WRZATIO	E APPLIES HT RATE A M REQUES			٥														\dagger	
QUOTE # PEK12/2010-14			D Filo	ALOS ITO	00 02JE			- 188 228 228	B270C				П	Ш			Н			Т				Container P.D Resdings or Laboratory Nation
Sample identification	BATE	THE	SOUTHER	<u></u>	ĖТ	204 75-4	BO. OF		100										1			PID {ppm		
	1241	150	hinte			2		V	 	П	\top	+	17	П	十	\top	П	┪	7	╅	+		1	
2 P93 B - Rox-012611	ılıdı		1	3	<u> </u>	2	 	l٧	V	П	\top	1	\top	П	_	1	П	7	┪	7	Τ		T	
19 1938 - ROX - 012611HS			\neg	8		2		レ	V	П		1	П	П	丁	1-	П		1	T	7			
D POSB- ROX - DIZENTAD			\neg	3	П	2		1.	1 4		\Box	\top	\Box	П	_	†	П	7	7	1	1		丁	_
NIVERS IN	1210		_	13	 	75	 	し	J	П	+	十	Ħ	\forall	┰	┿	┱	7	+	+	十		\top	
1930- Rov -012611-	1 6	-	1	3		3	 	-	7	Н	\top	十	П	\Box	\top	\top	Н	7	\top	+	1		十	
	1/247	-+	1	_	F+	╅	1 1 -	f	+-	\vdash	+	十	╁┪	\dashv	+	╁	╁┩	+	+	十	┿		\dashv	
TB-Rox-012611	ikan	-+	*	2	╌		\vdash	ľ	-	-	+	╀	Н	Н		+-	┼┥		+		╁╌		+	
	<u> </u>			╄	$\sqcup \downarrow$		$oldsymbol{oldsymbol{oldsymbol{eta}}}$	┺	┖	Ц	\perp	╄	Ш	Ц	4	丄	Ц	4	4	┸	↓_		_	
###								1.	<u>.</u>			L			\perp	L				L	L			17C/1B2
0,1				Г	ΓΤ	T		Т	П				П		T	Г	\Box	T	T	T	Γ		T	,
Labour						Fo	d (2 >	<u>. </u>				_				-1		7	Ī	26	١n		1	1500
FedEX		<u></u>		Z	J.		dE> V	-		_								1	16	2/	11		7884	11:00
(otherwise sky influence)		 ,	- (,	-													_	- -	Olk	711	-		T⊫≪	
									_	_														1-4/1.9°

M97427: Chain of Custody
Page 1 of 2

Accutest Laboratories Sample Receipt Summary

LABORATOR		0 114-			b	and Antina Barrierd.	
Accutest Job Number: M97		Cllent:			Immediate Client Servi	•	
Date / Time Received: 1/27	/2011		Delive	ry Method: _	Client Service Actio	on Required at Login:	No
Project: 170 EAST RAND AV	E HARTFOI	RD	No. Co	olers:	2 Airbiii #s: N/A		
1. Custody Seats Present: 2. Custody Seats Intact: Cooler Temperature 1. Temp critena achieved: 2. Cooler temp venification: 3. Cooler media:	Y or Infared	gun gg)		Z	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recyd within HT: 2. All containers accounted for:	Y or N Z D Y or N	
Quality Control Preservatio	Y or				3. Condition of sample:	Intact	_
1. Trip Blank present / cooler:					Sample Integrity - Instructions	Y or N	N/A
2. Trip Blank listed on COC:					Analysis requested is clear.	<u> </u>	
Samples preserved properly;					Bottles received for unspecified tests		
4. VOCs headspace free;	2				Sufficient volume recyd for analysis:	Ø [-
					Compositing instructions clear:		3
					5. Filtering instructions clear:		9
Comments							
Acculest Laboratories				495 Technology Cer	ater West, Bidg One	Mari	borough, MA

M97427: Chain of Custody Page 2 of 2

Internal Sample Tracking Chronicle

Shell Oil

Job No: M97427

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project No: SAP#340061

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes	
	Collected: 26-JAN-11 012611		Recei	ved: 27-JĀN	11 By	: JB	;
							• •
	SW846 8270C		PR	28-JAN-11	AJ		
	SW846 8260B SW846 8260B		TD TD			V8260STD V8260STD	
M97427-2 P93B-ROX	Collected: 26-JAN-11 _012611	10:55 By: NSKH	Recei	ved: 27-JAN-	11 By	: JB	
M97427-2	SW846 8270C	02-FEB-11 18:46	PR	28-JAN-11	AJ	AB8270PPL	
	SW846 8260B		TD		-	V8260STD	
M97427-2	SW846 8260B	05-FEB-11 02:22	TD			V8260STD	
	Collected: 26-JAN-11 _012611		Recei	ved: 27-JAN-	11 By	: JB	د دست
M97427-3	SW846 8270C	02-FEB-11 19:13	PR	28-JAN-11	AJ	AB8270PPL	
	SW846 8260B		TD			V8260STD	
M97427-3	SW846 8260B	05-FEB-11 03:49	TD			V8260STD	
M97427-4 TB-ROX-0	Collected: 26-JAN-11 12611	00:00 By: NSKH		ved: 27-JAN-	11 By:	: JB	
M97427-4	SW846 8260B	03-FEB-11 12:44	TD			V8260STD	

Accutest Internal Chain of Custody Job Number: M97427

Account:

SHELLWIC Shell Oil URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Received: 01/27/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97427-1.1	Walk In Ref #22	Bijan Jafari	01/28/11 11:08	Retrieve from Storage
M97427-1.1	Bijan Jafari	Dijan Jaran	02/07/11 10:33	
M97427-1.4	VOC Ref #1	Tamis Dudo	02/03/11 11:50	Retrieve from Storage
M97427-1.4	Tamis Dudo	GCMSE		Load on Instrument
M97427-1.4	GCMSE	Tamis Dudo		Unload from Instrument
M97427-1.4	Tamis Dudo	VOC Ref #1		Return to Storage
M97427-1.5	VOC Ref #1	Tamis Dudo	02/04/11 15:37	Retrieve from Storage
M97427-1.5	Tamis Dudo	GCMSE		Load on Instrument
M97427-1.5	GCMSE	Tamis Dudo	02/07/11 08:45	Unload from Instrument
M97427-1.5	Tamis Dudo	VOC Ref #1	02/08/11 15:31	Return to Storage
M97427-2.1	Walk In Ref #22	Bijan Jafari		Retrieve from Storage
M97427-2.1	Bijan Jafari		02/07/11 10:33	Depleted
M97427-2.4	Walk In Ref #22	Bijan Jafari		Retrieve from Storage
M97427-2.4	Bijan Jafari		02/07/11 10:33	Depleted
M97427-2.5	Walk In Ref #22	Bijan Jafari		Retrieve from Storage
M97427-2.5	Bijan Jafari		02/07/11 10:33	Depleted
M97427-2.10	VOC Ref #1	Tamis Dudo		Retrieve from Storage
M97427-2.10	Tamis Dudo	GCMSE		Load on Instrument
M97427-2.10	GCMSE	Tamis Dudo	02/04/11 08:57	Unload from Instrument
M97427-2.10	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage
M97427-2.11	VOC Ref #1	Tamis Dudo		Retrieve from Storage
M97427-2.11	Tamis Dudo	GCMSE		Load on Instrument
M97427-2.11	GCMSE	Tamis Dudo		Unload from Instrument
M97427-2.11	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage
M97427-2.13	VOC Ref #1	Tamis Dudo		Retrieve from Storage
M97427-2.13	Tamis Dudo	GCMSE		Load on Instrument
M97427-2.13	GCMSE	Tamis Dudo		Unload from Instrument
M97427-2.13	Tamis Dudo	VOC Ref #1	02/08/11 15:31	Return to Storage
M97427-2.14	VOC Ref #1	Tamis Dudo		Retrieve from Storage
M97427-2.14	Tamis Dudo	GCMSE		Load on Instrument
M97427-2.14	GCMSE	Tamis Dudo		Unload from Instrument
M97427-2.14	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage
M97427-2.15	VOC Ref #1	Tamis Dudo		Retrieve from Storage
M97427-2.15	Tamis Dudo	GCMSE	02/03/11 11:50	Load on Instrument

Accutest Internal Chain of Custody Job Number: M97427

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Received: 01/27/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
M97427-2.15	GCMSE	Tamis Dudo	02/04/11 08:57	Unload from Instrument
M97427-2.15	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage
M97427-3.1	Walk In Ref #22	Bijan Jafari	01/28/11 14:10	Retrieve from Storage
M97427-3.1	Bijan Jafari	3 - 5	02/07/11 10:33	•
M97427-3.4	VOC Ref #1	Tamis Dudo	02/04/11 15:37	Retrieve from Storage
M97427-3.4	Tamis Dudo	GCMSE		Load on Instrument
M97427-3.4	GCMSE	Tamis Dudo	02/07/11 08:45	Unload from Instrument
M97427-3.4	Tamis Dudo	VOC Ref #1	02/08/11 15:31	Return to Storage
M97427-3.5	VOC Ref #I	Tamis Dudo	02/03/11 11:50	Retrieve from Storage
M97427-3.5	Tamis Dudo	GCMSE		Load on Instrument
M97427-3.5	GCMSE	Tamis Dudo	02/04/11 08:57	Unload from Instrument
M97427-3.5	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage
M97427-4.1	VOC Ref #1	Tamis Dudo	02/03/11 11:50	Retrieve from Storage
M97427-4.1	Tamis Dudo	GCMSE		Load on Instrument
M97427-4.1	GCMSE	Tamis Dudo	02/04/11 08:57	Unload from Instrument
M97427-4.1	Tamis Dudo	VOC Ref #1	02/04/11 11:04	Return to Storage

GC/I	YV.	Vol	latil	Δe
してし/ [VI.O	voi	atti	1.5

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2175-MB	E51520.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	4.6	ug/l
71-43-2	Benzene	ND	0.50	0.35	ug/l
108-86-1	Bromobenzene	ND	5.0	0.52	ug/l
74-97-5	Bromochloromethane	ND	5.0	0.91	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.62	ug/l
75-25-2	Bromoform	ND	1.0	0.73	ug/I
74-83-9	Bromomethane	ND	2.0	0.95	ug/I
78-93-3	2-Butanone (MEK)	ND	5.0	2.1	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.49	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	0.37	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.53	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.35	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.42	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.61	ug/l
75-00-3	Chloroethane	ND	2.0	0.76	ug/l
67-66-3	Chloroform	ND	1.0	0.72	ug/l
74-87-3	Chloromethane	ND	2.0	0.81	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	0.58	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	0.67	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.3	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.86	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.74	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.77	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.81	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.61	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.63	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.74	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.70	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.66	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.74	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.83	ug/l
142-28-9	1,3-Dichloropropane	ND	5.0	0.73	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	0.44	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.23	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.23	ug/l

Page 2 of 2

Method Blank Summary Job Number: M97427

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2175-MB	E51520.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

CAS No.	Compound	Result	RL	MDL	Units Q
100-41-4	Ethylbenzene	ND	1.0	0.61	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.56	ug/l
74-88-4	Iodomethane	ND	5.0	0.47	ug/l
98-82-8	Isopropylbenzene	ND	5.0	0.51	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.45	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.54	ug/l
74-95-3	Methylene bromide	ND	5.0	0.94	ug/l
75-09-2	Methylene chloride	ND	2.0	0.75	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.43	ug/l
100-42-5	Styrene	ND	5.0	0.68	ug/l
630-20 - 6	1,1,1,2-Tetrachloroethane	ND	5.0	0.64	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.89	ug/I
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l
108-88-3	Toluene	ND	1.0	0.74	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.57	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.35	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.72	ug/l
79-01-6	Trichloroethene	ND	1.0	0.49	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.47	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.61	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.62	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.51	ug/l
108-05-4	Vinyl Acetate	ND	5.0	0.51	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.86	ug/l
	m,p-Xylene	ND	1.0	0.62	ug/l
95-47-6	o-Xylene	ND	1.0	0.56	ug/l
CAS No.	Surrogate Recoveries		Limit	S	
1868-53-7	Dibromofluoromethane	119%	70-13		
2037-26-5	Toluene-D8	116%	70-130		
460-00-4	4-Bromofluorobenzene	110%	70-130	0%	

Method Blank Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2177-MB	E51577.D	1	02/05/11	TD	n/a	n/a	MSE2177

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units (Q
71-43-2	Benzene	ND	0.50	0.35	ug/l	
CAS No.	Surrogate Recoveries		Limits			
1868-53-7	Dibromofluoromethane	110%	70-130	%		
2037-26-5	Toluene-D8	114%	70-130	%		
460-00-4	4-Bromofluorobenzene	112%	70-130	%		

Blank Spike Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2175-BS	E51518A.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
67-64-1	Acetone	50	54.4	109	70-130
71-43-2	Benzene	50	57.9	116	70-130
108-86-1	Bromobenzene	50	53.4	107	70-130
74-97-5	Bromochloromethane	50	54.7	109	70-130
75-27-4	Bromodichloromethane	50	56.6	113	70-130
75-27- 4 75-25-2	Bromoform	50	49.6	99	70-130
73-23-2 74-83-9	Bromomethane	50	56.1	112	70-130
74-63-9 78-93-3	2-Butanone (MEK)	50	45.6	91	70-130
104-51-8	` ,	50	59.9	120	70-130
135-98-8	n-Butylbenzene sec-Butylbenzene	50	58.0	116	70-130
98-06-6	tert-Butylbenzene	50	59.6	119	70-130
75-15-0	Carbon disulfide	50 50	61.9	124	70-130
	Carbon disunide	50	61.8	124	70-130
56-23-5	Chlorobenzene	50	54.1	108	70-130
108-90-7	Chloroethane	50 50	54.1 58.7	117	70-130
75-00-3		50	58.6	117	70-130 70-130
67-66-3	Chloroform	50 50	58.6 59.4	117	70-130 70-130
74-87-3	Chloromethane		57.4 57.4	115	70-130 70-130
95-49-8	o-Chlorotoluene	50 50			
106-43-4	p-Chlorotoluene	50	58.6	117 87	70-130
96-12-8	1,2-Dibromo-3-chloropropane	50	43.3		70-130
124-48-1	Dibromochloromethane	5 0	51.7	103	70-130
95-50-1	1,2-Dichlorobenzene	50	53.1	106	70-130
541-73-1	1,3-Dichlorobenzene	50	51.8	104	70-130
106-46-7	1,4-Dichlorobenzene	50	56.2	112	70-130
75-71-8	Dichlorodifluoromethane	50	70.8	142* a	70-130
75-34-3	1,1-Dichloroethane	50	59.0	118	70-130
107-06-2	1,2-Dichloroethane	50	53.7	107	70-130
75-35-4	1,1-Dichloroethene	50	56.6	113	70-130
156-59-2	cis-1,2-Dichloroethene	50	50.8	102	70-130
156-60-5	trans-1,2-Dichloroethene	50	53.4	107	70-130
78-87-5	1,2-Dichloropropane	50	54.8	110	70-130
142-28-9	1,3-Dichloropropane	50	48.9	98	70-130
594-20-7	2,2-Dichloropropane	50	66. 4	133* a	70-130
563-58-6	1,1-Dichloropropene	50	56.5	113	70-130
10061-01-5		50	55.7	111	70-130
10061-02-6	trans-1,3-Dichloropropene	50	57.2	114	70-130

Page 2 of 2

Blank Spike Summary Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSE2175-BS	E51518A.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
100-41-4	Ethylbenzene	50	53.2	106	70-130
87-68- 3	Hexachlorobutadiene	50	66.2	132* a	70-130
74-88-4	Iodomethane	50	59.9	120	70-130
98-82-8	Isopropylbenzene	50	64.8	130	70-130
99-87-6	p-Isopropyltoluene	50	60.5	121	70-130
1634-04-4	Methyl Tert Butyl Ether	50	43.0	86	70-130
74-95-3	Methylene bromide	50	53.4	107	70-130
75-09-2	Methylene chloride	50	53.5	107	70-130
103-65-1	n-Propylbenzene	50	56.0	112	70-130
100-42-5	Styrene	50	48.8	98	70-130
630-20-6	1,1,1,2-Tetrachloroethane	50	55.4	111	70-130
79-34-5	1,1,2,2-Tetrachloroethane	50	50.1	100	70-130
127-18-4	Tetrachloroethene	50	56.7	113	70-130
108-88-3	Toluene	50	58.5	117	70-130
87-61-6	1,2,3-Trichlorobenzene	50	46.8	94	70-130
120-82-1	1,2,4-Trichlorobenzene	50	50.6	101	70-130
71-55-6	1,1,1-Trichloroethane	50	58.8	118	70-130
79-00-5	1,1,2-Trichloroethane	50	51.5	103	70-130
79-01-6	Trichloroethene	50	57.9	116	70-130
75-69-4	Trichlorofluoromethane	50	61.9	124	70-130
96-18-4	1,2,3-Trichloropropane	50	46.4	93	70-130
95-63-6	1,2,4-Trimethylbenzene	50	56.7	113	70-130
108-67-8	1,3,5-Trimethylbenzene	50	57.0	114	70-130
108-05-4	Vinyl Acetate	50	33.0	66* a	70-130
75-01-4	Vinyl chloride	50	58.8	118	70-130
	m,p-Xylene	100	110	110	70-130
95-47-6	o-Xylene	50	56.1	112	70-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	113%	70-1	30%	
2037-26-5	Toluene-D8	113%	70-1	30%	
460-00-4	4-Bromofluorobenzene	112%	70-1	30%	

(a) Outside control limits. Blank Spike meets program technical requirements.

Blank Spike/Blank Spike Duplicate Summary Job Number: M97427 Account: SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID DF MSE2177-BS E51574.D 1 MSE2177-BSD E51575.D 1	Analyzed By	Prep Date Prep Bat	ch Analytical Batch
	02/05/11 TD	n/a n/a	MSE2177
	02/05/11 TD	n/a n/a	MSE2177

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	50	57.1	114	57.3	115	0	70-130/25
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	114% 112% 113%	111 113 113	%	70-1309 70-1309 70-1309	%		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

M97427-2MS E M97427-2MSD E	ile ID 51523.D 51524.D 51522.D	DF 1 1	Analyzed 02/03/11 02/03/11 02/03/11	By TD TD TD	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch MSE2175 MSE2175 MSE2175
-------------------------------	---	--------------	--	----------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

		M97427	-2	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND		50	782	1564* a		1558* a	-	70-130/30
71-43-2	Benzene	7220	E	50	6930	-58 0 * b		-420* b	1	70-130/30
108-86-1	Bromobenzene	ND		50	53.5	107	54.2	108	1	70-130/30
74-97-5	Bromochloromethane	ND		50	50.5	101	48.6	97	4	70-130/30
75-27-4	Bromodichloromethane	ND		50	48.1	96	47.4	95	1	70-130/30
75-25-2	Bromoform	ND		50	37.9	76	37.3	75	2	70-130/30
74-83-9	Bromomethane	ND		50	55.7	111	54.0	108	3	70-130/30
78-93-3	2-Butanone (MEK)	ND		50	39.0	78	46.3	93	17	70-130/30
104-51 -8	n-Butylbenzene	ND		50	62.0	124	62.0	124	0	70-130/30
135-98-8	sec-Butylbenzene	ND		50	58.8	118	60.9	122	4	70-130/30
98-06-6	tert-Butylbenzene	0.58	J	50	62.6	124	64.4	128	3	70-130/30
75-15-0	Carbon disulfide	ND		50	53.0	106	51.3	103	3	70-130/30
56-23-5	Carbon tetrachloride	ND		50	45.5	91	45.2	90	1	70-130/30
108-90-7	Chlorobenzene	ND		50	54.5	109	54.1	108	1	70-130/30
75-00-3	Chloroethane	0.77	J	50	59.0	116	56.8	112	4	70-130/30
67-66-3	Chloroform	ND		50	55.3	111	54.1	108	2	70-130/30
74-87-3	Chloromethane	1.4	J	50	59.7	117	59.8	117	0	70-130/30
95-49-8	o-Chlorotoluene	ND		50	60.3	121	60.0	120	0	70-130/30
106-43-4	p-Chlorotoluene	ND		50	59.7	119	60.9	122	2	70-130/30
96-12-8	1,2-Dibromo-3-chloropropane	ND		50	44.1	88	38.1	76	15	70-130/30
124-48-1	Dibromochloromethane	ND		50	43.8	88	43.6	87	0	70-130/30
95-50-1	1,2-Dichlorobenzene	ND		50	54.5	10 9	54.4	109	0	70-130/30
541-73-1	1,3-Dichlorobenzene	ND		50	51.0	102	52.0	104	2	70-130/30
106-46-7	1,4-Dichlorobenzene	ND		50	55.9	112	55.5	111	1	70-130/30
75-71-8	Dichlorodifluoromethane	ND		50	70.7	141* ^a	69.4	139* a	2	70-130/30
75-34-3	1,1-Dichloroethane	ND		50	56.4	113	54.9	110	3	70-130/30
107-06-2	1,2-Dichloroethane	ND		50	49.0	98	47.5	95	3	70-130/30
75-35-4	1,1-Dichloroethene	ND		50	56.9	114	55.0	110	3	70-130/30
156-59-2	cis-1,2-Dichloroethene	ND		50	48.5	97	48.8	98	1	70-130/30
156-60-5	trans-1,2-Dichloroethene	ND		50	52.5	105	52.4	105	0	70-130/30
78-87-5	1,2-Dichloropropane	ND		5 0	58.9	118	54.1	108	8	70-130/30
142-28-9	1,3-Dichloropropane	ND		50	46.3	93	48.7	97	5	70-130/30
594-20-7	2,2-Dichloropropane	ND		50	59.3	119	58.0	116	2	70-130/30
563-58-6	1,1-Dichloropropene	ND		50	58.1	116	58.0	116	0	70-130/30
	cis-1,3-Dichloropropene	ND		50	52.4	105	51.8	104	1	70-130/30
	trans-1,3-Dichloropropene	ND		50	51.7	103	53.6	107	4	70-130/30

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
M97427-2MS	E51523.D	1	02/03/11	TD	n/a	n/a	MSE2175
M97427-2MSD	E51524.D	1	02/03/11	TD	n/a	n/a	MSE2175
M97427-2	E51522.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

Method: SW846 8260B

M97427-1, M97427-2, M97427-3, M97427-4

CAS No.	Compound	M9742′ ug/l	7-2 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	10.4		50	66.8	113	67.6	114	1	70-130/30
87-68-3	Hexachlorobutadiene	ND		50	64.1	128	64.3	129	0	70-130/30
74-88-4	Iodomethane	ND		50	57.6	115	56.4	113	2	70-130/30
98-82-8	Isopropylbenzene	10.8		50	80.7	140* a	82.2	143* a	2	70-130/30
99-87-6	p-Isopropyltoluene	ND		50	60.7	121	61.8	124	2	70-130/30
1634-04-4	Methyl Tert Butyl Ether	8.8		50	51.8	86	54.1	91	4	70-130/30
74-95-3	Methylene bromide	ND		50	47.7	95	44.9	90	6	70-130/30
75-09-2	Methylene chloride	ND		50	51.8	104	49.7	99	4	70-130/30
103-65-1	n-Propylbenzene	11.0		50	70.6	119	71.8	122	2	70-130/30
100-42-5	Styrene	ND		50	34.7	69* a	38.7	77	11	70-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND		50	53.9	108	51.9	104	4	70-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	47.7	95	46.8	94	2	70-130/30
127-18-4	Tetrachloroethene	ND		50	59.1	118	59.0	118	0	70-130/30
108-88-3	Toluene	32.1		50	86.5	109	85.4	107	1	70-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		50	49.3	99	50.6	101	3	70-130/30
120-82-1	1,2,4-Trichlorobenzene	ИD		50	52.5	105	54.6	109	4	70-130/30
71-55-6	1,1,1-Trichloroethane	ND		50	55.2	110	53.3	107	4	70-130/30
79-00-5	1,1,2-Trichloroethane	ND		50	45.5	91	46.4	93	2	70-130/30
79-01-6	Trichloroethene	ND		50	57.7	115	57.4	115	1	70-130/30
75-69-4	Trichlorofluoromethane	ND		50	60.1	120	59.4	119	1	70-130/30
96-18-4	1,2,3-Trichloropropane	ND		50	45.3	91	45.7	91	1	70-130/30
95-63-6	1,2,4-Trimethylbenzene	5.2		50	60.6	111	61.9	113	2	70-130/30
108-67-8	1,3,5-Trimethylbenzene	1.6	J	50	56.2	109	57.5	112	2	70-130/30
108-05-4	Vinyl Acetate	ND		50	39.1	78	40.0	80	2	70-130/30
75-01-4	Vinyl chloride	ND		50	58.1	116	58.9	118	1	70-130/30
	m,p-Xylene	55.5		100	163	108	162	107	1	70-130/30
95-47-6	o-Xylene	9.2		50	65.4	112	65.6	113	0	70-130/30
CAS No.	Surrogate Recoveries	MS		MSD	MS	7427-2	Limits			
1868-53-7	Dibromofluoromethane	108%		105%	109		70-1309			
2037-26-5	Toluene-D8	113%		112%	110		70-1309			
460-00-4	4-Bromofluorobenzene	112%		114%	111	1%	70-1309	%		

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
M97427-2MS	E51523.D	1	02/03/11	TD	n/a	n/a	MSE2175
M97427-2MSD	E51524.D	1	02/03/11	TD	n/a	n/a	MSE2175
M97427-2	E51522.D	1	02/03/11	TD	n/a	n/a	MSE2175

The QC reported here applies to the following samples:

M97427-1, M97427-2, M97427-3, M97427-4

(b) Outside control limits due to high level in sample relative to spike amount.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

Account:

SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample File ID DF M97427-2MS E51579.D 500 M97427-2MSD E51580.D 500 M97427-2 E51578.D 500	Analyzed B 02/05/11 T 02/05/11 T 02/05/11 T	D n/a D n/a	Prep Batch n/a n/a n/a	Analytical Batch MSE2177 MSE2177 MSE2177
--	--	----------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	M97427-2 ug/l Q	Spike ug/l		MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	105000	25000	79400	-102* a	80100	-100* a	1	70-130/30
CAS No.	Surrogate Recoveries	MS	MSD	M97	427-2	Limits			
1868-53-7	Dibromofluoromethane	112%	113%	116%	6	70-130%	•		
2037-26-5	Toluene-D8	112%	113%	112%	6	70-130%	•		
460-00-4	4-Bromofluorobenzene	109%	113%	109%	6	70-130%	•		

⁽a) Outside control limits due to high level in sample relative to spike amount.

Volatile Internal Standard Area Summary

Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std:	MSE2175-CC2152	Injection Date:	02/03/11
Lab File ID:	E51518.D	Injection Time:	11:21
l	0.03.402		017/010 00

Instrument ID: GCMSE Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	225621	9.11	371787	9.98	171689	13.26	160050	15.81	32731	6.62
Upper Limit a	451242	9.61	743574	10.48	343378	13.76	320100	16.31	65462	7.12
Lower Limit b	112811	8.61	185894	9.48	85845	12.76	80025	15.31	16366	6.12
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSE2175-BS	225621	9.11	371787	9.98	171689	13.26	160050	15.81	32731	6.62
MSE2175-MB	209335	9.11	339370	9.98	144720	13.26	133384	15.81	29869	6.62
M97427-4	213976	9.11	348175	9.99	146474	13.26	134226	15.81	27065	6.63
M97427-2	230405	9.12	386844	9.99	154498	13.26	143894	15.81	32874	6.62
M97427-2MS	237073	9.12	387782	10.00	163931	13.25	150702	15.81	46878	6.62
M97427-2MSD	242685	9.11	400007	9.99	170146	13.25	156234	15.81	47661	6.63
M97427-1	230705	9.13	335834	10.01	161474	13.26	172115	15.81	43328	6.63
M97427-3	226663	9.12	392259	9.99	145884	13.25	135455	15.82	36534	6.62

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Internal Standard Area Summary

Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSE2177-CC2152 Injection Date: 02/05/11
Lab File ID: E51573.D Injection Time: 00:05
Instrument ID: CCMSE Method: SW846-83

Instrument ID: GCMSE Method: SW846 8260B

	IS 1	D. W.	IS 2	D.T.	IS 3	200	IS 4	7.7	IS 5	
	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
Check Std	221949	9.12	374039	10.00	169275	13.26	162910	15.82	37436	6.63
Upper Limit ^a	443898	9.62	748078	10.50	338550	13.76	325820	16.32	74872	7.13
Lower Limit ^b	110975	8.62	187020	9.50	84638	12.76	81455	15.32	18718	6.13
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
MSE2177-BS	220567	9.13	371256	10.00	167558	13.27	154623	15.82	37518	6.63
MSE2177-BSD	229888	9.12	384728	10.00	171656	13.26	157169	15.82	37211	6.63
MSE2177-MB	226863	9.12	364349	10.00	154537	13.26	142711	15.83	33155	6.64
M97427-2	220282	9.12	367781	10.00	157167	13.27	142049	15.82	34860	6.64
M97427-2MS	226121	9.13	378392	10.00	174061	13.27	162665	15.82	36250	6.64
M97427-2MSD	226994	9.12	375427	10.00	170876	13.27	156837	15.82	34086	6.64
M97427-3	223466	9.12	370550	10.00	159531	13.27	151002	15.83	35371	6.65
M97427-1	222572	9.12	370379	10.00	155483	13.26	142298	15.83	33011	6.64
ZZZZZZ	212784	9.12	344118	10.01	151418	13.27	146655	15.83	38968	6.64
ZZZZZZ	230737	9.12	375583	10.00	163533	13.27	155120	15.83	36890	6.64
ZZZZZZ	221395	9.12	365515	10.01	158679	13.27	149258	15.83	38011	6.63
ZZZZZZ	230360	9.12	382608	10.00	158769	13.26	146688	15.83	39941	6.64
ZZZZZZ	225458	9.12	377124	10.00	160491	13.27	156905	15.83	34695	6.64
ZZZZZZ	225025	9.12	380032	10.00	163565	13.26	150168	15.83	39520	6.64
ZZZZZZ	220450	9.13	368184	10.00	155266	13.27	147418	15.83	35967	6.64
ZZZZZZ	220388	9.13	361403	10.00	153882	13.27	144970	15.83	34378	6.64
ZZZZZZ	222468	9.12	365889	10.00	155917	13.26	143469	15.83	35716	6.65

IS 1 = Pentafluorobenzene
IS 2 = 1,4-Difluorobenzene
IS 3 = Chlorobenzene-D5
IS 4 = 1,4-Dichlorobenzene-d4
IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S 2	S3
M97427-1	E51582.D	111.0	111.0	107.0
M97427-1	E51525.D	98.0	121.0	102.0
M97427-2	E51578.D	116.0	112.0	109.0
M97427-2	E51522.D	109.0	110.0	111.0
M97427-3	E51581.D	110.0	113.0	105.0
M97427-3	E51526.D	103.0	106.0	122.0
M97427-4	E51521.D	115.0	113.0	103.0
M97427-2MS	E51523.D	108.0	113.0	112.0
M97427-2MS	E51579.D	112.0	112.0	109.0
M97427-2MSD	E51524.D	105.0	112.0	114.0
M97427-2MSD	E51580.D	113.0	113.0	113.0
MSE2175-BS	E51518A.D	113.0	113.0	112.0
MSE2175-MB	E51520.D	119.0	116.0	110.0
MSE2177-BS	E51574.D	114.0	112.0	113.0
MSE2177-BSD	E51575.D	111.0	113.0	113.0
MSE2177-MB	E51577.D	110.0	114.0	112.0

Surrogate Recovery Compounds Limits

S1 = Dibromofluoromethane 70-130% S2 = Toluene-D870-130% S3 = 4-Bromofluorobenzene 70-130%

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- · Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary Job Number: M97427

SHELLWIC Shell Oil Account:

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23982-MB	S21177.D	1	02/01/11	PR	01/28/11	OP23982	MSS887

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.77	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.68	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	10	0.57	ug/l
120-83-2	2,4-Dichlorophenol	ND	10	0.69	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	2.2	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	2.5	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	5.0	ug/l
95-48-7	2-Methylphenol	ND	10	0.48	ug/l
	3&4-Methylphenol	ND	10	0.63	ug/l
88-75-5	2-Nitrophenol	ND	10	0.66	ug/l
100-02-7	4-Nitrophenol	ND	20	5.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.3	ug/l
108-95-2	Phenol	ND	5.0	2.1	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	10	0.40	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	10	0.38	ug/l
83-32-9	Acenaphthene	ND	5. 0	0.34	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.3	ug/l
62-53-3	Aniline	ND	10	0.46	ug/l
120-12-7	Anthracene	ND	5.0	0.27	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	0.27	ug/l
50-32-8	Велго (а) ругеле	ND	5.0	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.27	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.61	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.29	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	0.32	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	0.41	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.31	ug/l
106-47-8	4-Chloroaniline	ND	10	0.58	ug/l
218-01-9	Chrysene	ND	5.0	0.22	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.35	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.23	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.21	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	0.61	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	1.3	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	0.34	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	2.5	ug/I

Method Blank Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23982-MB	S21177.D	1	02/01/11	PR	01/28/11	OP23982	MSS887

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	Result	RL	MDL	Units	Q
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.25	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.32	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.0	0.34	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.0	0.34	ug/l	
84-66-2	Diethyl phthalate	0.83	5.0	0.61	ug/l	J
131-11-3	Dimethyl phthalate	ND	5.0	1.3	ug/l	-
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.49	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.22	ug/l	
86-73-7	Fluorene	ND	5.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.16	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.5	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.29	ug/l	
78-59-1	Isophorone	ND	5.0	0.47	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	10	0.33	ug/l	
99-09-2	3-Nitroaniline	ND	10	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	10	0.33	ug/l	
91-20-3	Naphthalene	ND	5.0	0.33	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.31	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	0.41	ug/I	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.61	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.26	ug/l	
129-00-0	Pyrene	ND	5.0	0.25	ug/l	
110-86-1	Pyridine	ND	10	0.50	ug/l	
CAS No.	Surrogate Recoveries		Limits			
367-12-4	2-Fluorophenol	36%	15-110	%		
4165-62-2	Phenol-d5	22%	15-110	%		
118-79-6	2,4,6-Tribromophenol	77%	15-110			
4165-60-0	Nitrobenzene-d5	70%	30-130			
321-60-8	2-Fluorobiphenyl	67%	30-130	%		
1718-51-0	Terphenyl-d14	76%	30-130	%		

Method: SW846 8270C

Blank Spike Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
OP23982-BS	S21178.D	1	02/01/11	PR	01/28/11	OP23982	MSS887

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
05.05.0	D:- A -:-!	100	23.9	24* a	30-130
65-85-0	Benzoic Acid	100	65.5		30-130
95-57-8	2-Chlorophenol			66	
59-50-7	4-Chloro-3-methyl phenol	100	73.8	74 76	30-130
120-83-2	2,4-Dichlorophenol	100	75.6	76	30-130
105-67-9	2,4-Dimethylphenol	100	71.1	71 78	30-130 30-130
51-28-5	2,4-Dinitrophenol	100	77.9		
534-52-1	4,6-Dinitro-o-cresol	100	76.8	77	30-130
95-4 8-7	2-Methylphenol	100	58.2	58	30-130
	3&4-Methylphenol	200	107	54	30-130
88-75-5	2-Nitrophenol	100	78.0	78	30-130
100-02-7	4-Nitrophenol	100	39.2	39	30-130
87-86-5	Pentachlorophenol	100	67.8	68	30-130
108-95-2	Phenol	100	25.6	26* a	30-130
95-95-4	2,4,5-Trichlorophenol	100	71.5	72	30-130
88-06-2	2,4,6-Trichlorophenol	100	73.0	73	30-130
83-32-9	Acenaphthene	50	32.0	64	40-140
208-96-8	Acenaphthylene	50	27.8	56	40-140
62-53-3	Aniline	50	22.6	45	40-140
120-12-7	Anthracene	50	34.7	69	40-140
56-55-3	Benzo(a)anthracene	50	38.9	78	40-140
50-32-8	Вепzо(а) ругепе	50	33.5	67	40-140
205-99-2	Benzo(b)fluoranthene	50	37.5	75	40-140
191-24-2	Benzo(g,h,i)perylene	50	36.0	72	40-140
207-08-9	Benzo(k)fluoranthene	50	38.3	77	40-140
101-55-3	4-Bromophenyl phenyl ether	50	33.2	66	40-140
85-68-7	Butyl benzyl phthalate	50	36.9	74	40-140
91-58-7	2-Chloronaphthalene	50	31.0	62	40-140
106-47-8	4-Chloroaniline	50	16.8	34* a	40-140
218-01-9	Chrysene	50	40.8	82	40-140
111-91-1	bis(2-Chloroethoxy)methane	50	36.5	73	40-140
111-44-4	bis(2-Chloroethyl)ether	50	35.5	71	40-140
108-60-1	bis(2-Chloroisopropyl)ether	50	35.6	71	40-140
7005-72-3	4-Chlorophenyl phenyl ether	50	32.7	65	40-140
121-14-2	2.4-Dinitrotoluene	50	38.6	77	40-140
606-20-2	2,6-Dinitrotoluene	50	36.8	74	40-140
91-94-1	3,3'-Dichlorobenzidine	50	21,6	43	40-140
J	-,-		• -		-

Method: SW846 8270C

Blank Spike Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date 01/28/11	Prep Batch	Analytical Batch
OP23982-BS	S21178.D	1	02/01/11	PR		OP23982	MSS887

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
53-70-3	Dibenzo(a,h)anthracene	50	37.9	76	40-140
132-64-9	Dibenzofuran	50	31.7	63	40-140
84-74-2	Di-n-butyl phthalate	50	36.7	73	40-140
117-84-0	Di-n-octyl phthalate	50	38.8	78	40-140
84-66-2	Diethyl phthalate	50	39.5	79	40-140
131-11-3	Dimethyl phthalate	50	37.3	7 5	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	50	38.0	76	40-140
206-44-0	Fluoranthene	50	37.0	74	40-140
86-73-7	Fluorene	50	34.3	69	40-140
118-74-1	Hexachlorobenzene	50	35.2	70	40-140
77-47-4	Hexachlorocyclopentadiene	50	18.5	37* a	40-140
67-72-1	Hexachloroethane	50	27.8	56	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	50	38.5	77	40-140
78-59-1	Isophorone	50	35.4	71	40-140
91-57-6	2-Methylnaphthalene	50	30.4	61	40-140
88-74-4	2-Nitroaniline	50	38.3	77	40-140
99-09-2	3-Nitroaniline	50	18.0	36* a	40-140
100-01-6	4-Nitroaniline	50	32.5	65	40-140
91-20-3	Naphthalene	50	33.4	67	40-140
98-95-3	Nitrobenzene	50	36.6	73	40-140
621-64-7	N-Nitroso-di-n-propylamine	50	39.5	79	40-140
86-30-6	N-Nitrosodiphenylamine	50	37.1	74	40-140
85-01-8	Phenanthrene	50	34.9	70	40-140
129-00-0	Рутепе	50	36.2	72	40-140
110-86-1	Pyridine	50	19.8	40	40-140
CAS No.	Surrogate Recoveries	BSP	Lim	nits	
367-12-4	2-Fluorophenol	39%		110%	
4165-62-2	Phenol-d5	23%		110%	
118-79-6	2,4,6-Tribromophenol	75%	15-1	110%	
4165-60-0	Nitrobenzene-d5	71%	30-1	130%	
321-60-8	2-Fluorobiphenyl	67%	30-2	130%	
1718-51-0	Terphenyl-d14	69%	30-1	130%	

Page 3 of 3

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23982-BS	S21178.D	1	02/01/11	PR	01/28/11	OP23982	MSS887

The QC reported here applies to the following samples:

Method: SW846 8270C

M97427-1, M97427-2, M97427-3

(a) Outside control limits. Blank Spike meets program technical requirements.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

Account: SHELLWIC Shell Oil

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

The QC reported here applies to the following samples:

Method: SW846 8270C

CAS No.	Compound	M9742 ug/l	7-2 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	ND		106	49.0	46	55.1	53	12	30-130/20
95-57-8	2-Chlorophenol	ND		106	80.5	76	0.18	79	1	30-130/20
59-50-7	4-Chloro-3-methyl phenol	ND		106	94.4	89	93.2	90	1	30-130/20
120-83-2	2,4-Dichlorophenol	ND		106	96.0	90	95.9	93	0	30-130/20
105-67-9	2,4-Dimethylphenol	ND		106	93.1	88	94.6	92	2	30-130/20
51-28-5	2,4-Dinitrophenol	ND		106	109	102	111	108	2	30-130/20
534-52-1	4,6-Dinitro-o-cresol	ND		106	99.9	94	101	98	1	30-130/20
95-48-7	2-Methylphenol	ND		106	76.2	72	78.6	76	3	30-130/20
	3&4-Methylphenol	ND		213	136	64	137	66	1	30-130/20
88-75-5	2-Nitrophenol	ND		106	100	94	97.5	95	3	30-130/20
100-02-7	4-Nitrophenol	ND		106	47.5	45	50.7	49	7	30-130/20
87-86-5	Pentachlorophenol	ND		106	100	94	101	98	1	30-130/20
108-95-2	Phenol	106		106	140	32	127	20* a	10	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND		106	93.8	88	96.1	93	2	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND		106	88.9	84	89.2	87	0	30-130/20
83-32-9	Acenaphthene	ND		53.2	42.7	80	41.0	80	4	40-140/20
208-96-8	Acenaphthylene	ND		53.2	36.5	69	35.7	69	2	40-140/20
62-53-3	Aniline	ND		53.2	21.4	40	20.4	40	5	40-140/20
120-12-7	Anthracene	ND		53.2	44.7	84	43.5	84	3	40-140/20
56-55-3	Benzo(a)anthracene	ND		53.2	49.6	93	49.0	95	1	40-140/20
50-32-8	Вепzо(а)рутепе	ND		53.2	40.5	76	41.1	80	1	40-140/20
205-99-2	Benzo(b)fluoranthene	ND		53.2	44.4	83	45.1	87	2	40-140/20
191-24-2	Benzo(g,h,i)perylene	ND		53.2	45.1	85	44.4	86	2	40-140/20
207-08-9	Benzo(k)fluoranthene	ND		53.2	47.8	90	46.2	90	3	40-140/20
101-55-3	4-Bromophenyl phenyl ether	ND		53.2	45.3	85	44.4	86	2	40-140/20
85-68-7	Butyl benzyl phthalate	ND		53.2	45.5	86	44.9	87	1	40-140/20
91-58-7	2-Chloronaphthalene	ND		53.2	40.0	7 5	38.4	74	4	40-140/20
106-47-8	4-Chloroaniline	ND		53.2	20.5	39* a	17.6	34* a	15	40-140/20
218-01-9	Chrysene	ND		53.2	52.1	98	49.3	96	6	40-140/20
111-91-1	bis(2-Chloroethoxy)methane	ND		53.2	45.7	86	45.5	88	0	40-140/20
111-44-4	bis(2-Chloroethyl)ether	ND		53.2	43.6	82	43.4	84	0	40-140/20
108-60-1	bis(2-Chloroisopropyl)ether	ND		53.2	45.9	86	46.7	91	2	40-140/20
7005-72-3	4-Chlorophenyl phenyl ether	ND		53.2	43.6	82	42.9	83	2	40-140/20
121-14-2	2,4-Dinitrotoluene	ND		53.2	48.9	92	49.2	95	1	40-140/20
606-20-2	2,6-Dinitrotoluene	ND		53.2	47.9	90	47.5	92	1	40-140/20
91-94-1	3,3'-Dichlorobenzidine	ND		53.2	ND	0* a	ND	0* a	пc	40-140/20

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP23982-MS	S21223.D	1	02/02/11	PR	01/28/11	OP23982	MSS888
OP23982-MSD	S21224.D	1	02/02/11	PR	01/28/11	OP23982	MSS888
M97427-2	S21226.D	1	02/02/11	PR	01/28/11	OP23982	MSS888

The QC reported here applies to the following samples:

Method: SW846 8270C

		M9742	7-2	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
53-70-3	Dibenzo(a,h)anthracene	ND		53.2	47.6	89	47.1	91	1	40-140/20
132-64-9	Dibenzofuran	ND		53.2	42.7	80	41.4	80	3	40-140/20
84-74-2	Di-n-butyl phthalate	ND		53.2	44.6	84	47.2	92	6	40-140/20
117-84-0	Di-n-octyl phthalate	ND		53.2	43.9	83	44.4	86	1	40-140/20
84-66-2	Diethyl phthalate	0.86	J	53.2	50.0	92	49.7	95	1	40-140/20
131-11-3	Dimethyl phthalate	ND		53.2	47.4	89	47.6	92	0	40-140/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		53.2	44.9	84	45.0	87	0	40-140/20
206-44-0	Fluoranthene	ND		53.2	48.8	92	48.9	95	0	40-140/20
86-73-7	Fluorene	ND		53.2	45.3	85	44.8	87	1	40-140/20
118-74-1	Hexachlorobenzene	ND		53.2	46.3	87	46.9	91	1	40-140/20
77-47-4	Hexachlorocyclopentadiene	ND		53.2	25.3	48	26.6	52	5	40-140/20
67-72-1	Hexachloroethane	ND		53.2	33.7	63	34.8	68	3	40-140/20
193-39-5	Indeno(1,2,3-cd)pyrene	ND		53.2	48.0	90	47.9	93	0	40-140/20
78-59-1	Isophorone	ND		53.2	45.3	85	45.2	88	0	40-140/20
91-57-6	2-Methylnaphthalene	ND		53.2	40.3	76	39.6	77	2	40-140/20
88-74-4	2-Nitroaniline	ND		53.2	50.4	95	50.1	97	1	40-140/20
99-09-2	3-Nitroaniline	0.69	J	53.2	25.5	47	23.2	44	9	40-140/20
100-01-6	4-Nitroaniline	ND		53.2	42.4	80	42.1	82	1	40-140/20
91-20-3	Naphthalene	1.1	J	53.2	44.8	82	44.0	83	2	40-140/20
98-95-3	Nitrobenzene	ND		53.2	45.5	86	44.9	87	1	40-140/20
621-64-7	N-Nitroso-di-n-propylamine	ND		53.2	49.6	93	49.6	96	0	40-140/20
86-30-6	N-Nitrosodiphenylamine	ND		53.2	47.1	89	46.0	89	2	40-140/20
85-01 -8	Phenanthrene	ND		53.2	45.6	86	45.9	89	1	40-140/20
129-00-0	Pyrene	ND		53.2	44.4	83	42.1	82	5	40-140/20
110-86-1	Pyridine	ND		53.2	22.1	42	24.4	47	10	40-140/20
		2.60		1 (CP)			.			
CAS No.	Surrogate Recoveries	MS		MSD	MS	97427-2	Limits			
367-12-4	2-Fluorophenol	45%		47%	459		15-110			
4165-62-2	Phenol-d5	28%		30%	289		15-1109			
118-79-6	2,4,6-Tribromophenol	92%		96%	979		15-1109			•
4165-60-0	Nitrobenzene-d5	86%		87%	879		30-1309			
321-60-8	2-Fluorobiphenyl	82%		83%	829		30-1309			
1718-51-0	Terphenyl-d14	79%		79%	799	%	30-1309	%		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: M97427

Account:

SHELLWIC Shell Oil

Project:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

	Sample OP23982-MS OP23982-MSD M97427-2	File ID S21223.D S21224.D S21226.D	DF 1 1	Analyzed 02/02/11 02/02/11 02/02/11	By PR PR PR	Prep Date 01/28/11 01/28/11 01/28/11	Prep Batch OP23982 OP23982 OP23982	Analytical Batch MSS888 MSS888 MSS888
--	---	---	--------------	--	----------------------	---	---	--

The QC reported here applies to the following samples:

Method: SW846 8270C

M97427-1, M97427-2, M97427-3

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

Semivolatile Internal Standard Area Summary

Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSS887-CC884 Injection Date: 02/01/11 Lab File ID: S21176.D Injection Time: 16:41

Instrument ID: GCMSS Method: SW846 8270C

	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
CI I Cul	201022	5.70	700010	7.00	270702	0.04	550041	11.42	r0r007	15.70	501007	10.01
Check Std	201622	5.72		7.06	370762	9.24	559341		505227		501267	18.01
Upper Limit a	403244	6.22	1561626		741524	9.74					1002534	
Lower Limit b	100811	5.22	390407	6.56	185381	8.74	279671	10.93	252614	15.28	250634	17.51
Lab	IS 1		IS 2		IS 3	_	IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
OP23983-MB	226558	5.71	935342	7.06	440804		658175	11.42	568401	15.77		18.00
OP23982-MB	226558	5.71	935342	7.06	440804	9.24	658175	11.42	568401		547583	18.00
OP23983-BS	276639	5.71	1065008		506348	9.24	751598		640909		585986	18.00
OP23982-BS	276639	5.71	1065008		506348	9.24	751598		640909		585986	18.00
OP23983-MS	248473	5.71	990576	7.06	470949	9.24	691096		613985	15.77		18.00
OP23983-MSD	248727	5.71	984234	7.06	465689	9.24	685020	11.42	616609	15.77		18.00
M97394-2	196686	5.71	810659	7.06	379995	9.23	574595	11.42	506471		486930	18.00
ZZZZZZ	210273	5.71	868830	7.06	413727	9.24	628249	11.42	572608	15.77	566231	18.00
OP23992-MB	219005	5.71	894616	7.06	426518	9.24	638974	11.42	574318	15.77	564513	18.00
OP23992-BS	219757	5.71	844791	7.06	403528	9.24	588385	11.43	521149	15.77	517384	18.00
OP23992-MS	212009	5.71	813105	7.06	379362	9.24	566180	11.43	503971		499392	18.00
OP23992-MSD	217974	5.71	838545	7.06	399200	9.24	582936	11.43	505662	15.77	493448	18.00
M97452-1	205636	5.71	859676	7.06	412247	9.24	620566	11.42	559518	15.77	535041	18.00
ZZZZZZ	223795	5.71	890326	7.06	412134	9.24	620158	11.42	539134	15.77	528657	18.00
ZZZZZZ	214333	5.71	887844	7.06	419479	9.24	628548	11.42	558955	15.77	551793	18.00
ZZZZZZ	219760	5.71	900650	7.06	422821	9.24	636700	11.42	558050	15.77	543805	18.00
ZZZZZZ	232062	5.71	959046	7.06	461026	9.24	684866	11.42	608354	15.77	599766	18.00
ZZZZZZ	235374	5.71	972743	7.06	457350	9.24	702935	11.42	601975	15.77	579175	18.00
ZZZZZZ	213341	5.71	869920	7.06	422007	9.24	626828	11.42	542398	15.77	532970	18.00
ZZZZZZ	222268	5.71	899583	7.06	428052	9.24	645009	11.42	559187	15.77	551389	18.00
ZZZZZZ	217133	5.71	895812	7.06	423168	9.24	635893	11.42	559925	15.77	557283	18.00
ZZZZZZ	217136	5.71	871008	7.06	409250	9.24	604999	11.42	515639	15.77	497561	18.00
ZZZZZZ	228958	5.71	925721	7.06	433549	9.24	626860	11.42	510517	15.77	480863	18.00
ZZZZZZ	236729	5.71	949003	7.06	446436	9.24	615152	11.43	512583	15.77	500527	18.00
ZZZZZZ	226069	5.72	906777	7.06	417905	9.24	580958	11.43	490355	15.77	487700	18.00
ZZZZZZ	220990	5.72	893891	7.06	405618	9.24	585946	11.42	487214	15.77	469344	18.00
ZZZZZZ	219298	5.72	785882	7.07	378894	9.25	552398	11.43	449032	15.77	452629	18.00

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10

IS 5 = Chrysene-d12 IS 6 = Perylene-d12

Semivolatile Internal Standard Area Summary

Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSS887-CC884 Injection Date: 02/01/11 Lab File ID: S21176.D Injection Time: 16:41

Instrument ID: GCMSS Method: SW846 8270C

Lab IS 1 IS 2 IS 3 IS 4 IS 5 IS 6
Sample ID AREA RT AREA RT AREA RT AREA RT AREA RT

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Internal Standard Area Summary

Job Number: M97427

Account: SHELLWIC Shell Oil

Project: URSMOSTL:97216640 170 East Rand Avenue Hartford, IL

Check Std: MSS888-CC884 Injection Date: 02/02/11 Lab File ID: S21213.D Injection Time: 12:54

Instrument ID: GCMSS Method: SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT_	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	163195 326390 81598	5.72 6.22 5.22	636245 1272490 318123	7.07 7.57 6.57	303706 607412 151853	9.25 9.75 8.75	456723 913446 228362	11.44 11.94 10.94	856876	15.79 16.29 15.29	414759 829518 207380	18.02 18.52 17.52
Lab	IS 1	V.EE	IS 2		IS 3	-	IS 4		IS 5		IS 6	17.02
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
ZZZZZZ	153876	5.72	644200	7.07	311817	9.25	478355	11.43	432471	15.78	430786	18.02
ZZZZZZ	188231	5.72	756203	7.07	372070	9.25	547151	11.43	468631	15.79	448103	18.02
ZZZZZZ	180844	5.72	744597	7.07	363502	9.25	554158	11.43	492731	15.79	481183	18.02
ZZZZZZ	133383	5.72	556129	7.07	267158	9.25	412175	11.43	367456	15.78	359904	18.02
ZZZZZZ	196045	5.72	805982	7.07	391757	9.25	581409	11.43	491353	15.79	471756	18.02
ZZZZZZ	187772	5.72	778262	7.07	373597	9.25	562799	11.43	507506	15.79	488668	18.02
ZZZZZZ	197713	5.72	822333	7.07	397650	9.25	609042	11.43	538695	15. 79	522884	18.02
ZZZZZŽ	186149	5.72	752311	7.07	368481	9.25	561793	11.43	508037	15.79	496618	18.02
ZZZZZZ	194109	5.72	798381	7.07	394050	9.25	590743	11.43	529269	15.78	507312	18.02
OP23982-MS	173864	5.72	665027	7.07	319891	9.25	478058	11.44	428244	15.79	429183	18.02
OP23982-MSD	174057	5.72	677142	7.07	323062	9.25	487152	11.43	441664	15.79	437928	18.02
M97427-1	172579	5.72	702657	7.07	341221	9.25	531801	11.43	462993	15.78	468300	18.02
M97427-2	171997	5.72	701838	7.07	343974	9.25	521496	11.43	464968	15.78	458609	18.02
M97427-3	178896	5.72	714774	7.07	351291	9.25	547595	11.43	461989	15.78	464311	18.02
ZZZZZZ	181307	5.72	744551	7.07	356081	9.25	547214	11.43	487837	15.78	480694	18.02
ZZZZZZ	185150	5.72	769476	7.06	368321	9.25	552772	11.43	509251	15.78	488099	18.01
OP23963-MB	223635	5.72	904117	7.06	444024	9.25	667369	11.43	570705	15.78	517933	18.01
OP23963-BS	186914	5.72	726279	7.07	342642	9.25	512609	11.43	449976	15.78	399841	18.02
OP23963-MS	183005	5.72	707658	7.06	332292	9.25	481805	11.43	405146	15.78	365992	18.01
OP23963-MSD	207483	5.72	810349	7.07	400003	9.25	602490	11.43	496412	15.78	458168	18.02
M97350-10	202524	5.72	844111	7.06	400402	9.25	594470	11.43	502754	15.78	475366	18.01

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8

IS 3 = Acenaphthene-D10

IS 4 = Phenanthrene-d10

IS 5 = Chrysene-d12

IS 6 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary Job Number: M97427

SHELLWIC Shell Oil Account:

URSMOSTL:97216640 170 East Rand Avenue Hartford, IL Project:

Method: SW846 8270C Matrix: AQ

Samples and QC shown here apply to the above method

Lab						
File ID	S1	S2	S3	S4	S 5	S6
S21225.D	44.0	27.0	92.0	82.0	79.0	80.0
S21226.D	45.0	28.0	97.0	87.0	82.0	79.0
S21227.D	40.0	25.0	88.0	83.0	78.0	75.0
S21178.D	39.0	23.0	75.0	71.0	67.0	69.0
S21177.D	36.0	22.0	77.0	70.0	67.0	76.0
S21223.D	45.0	28.0	92.0	86.0	82.0	79.0
S21224.D	47.0	30.0	96.0	87.0	83.0	79.0
	File ID S21225.D S21226.D S21227.D S21178.D S21177.D S21223.D	File ID S1 S21225.D 44.0 S21226.D 45.0 S21227.D 40.0 S21178.D 39.0 S21177.D 36.0 S21223.D 45.0	File ID S1 S2 S21225.D 44.0 27.0 S21226.D 45.0 28.0 S21227.D 40.0 25.0 S21178.D 39.0 23.0 S21177.D 36.0 22.0 S21223.D 45.0 28.0	File ID S1 S2 S3 S21225.D 44.0 27.0 92.0 S21226.D 45.0 28.0 97.0 S21227.D 40.0 25.0 88.0 S21178.D 39.0 23.0 75.0 S21177.D 36.0 22.0 77.0 S21223.D 45.0 28.0 92.0	File ID S1 S2 S3 S4 S21225.D 44.0 27.0 92.0 82.0 S21226.D 45.0 28.0 97.0 87.0 S21227.D 40.0 25.0 88.0 83.0 S21178.D 39.0 23.0 75.0 71.0 S21177.D 36.0 22.0 77.0 70.0 S21223.D 45.0 28.0 92.0 86.0	File ID S1 S2 S3 S4 S5 S21225.D 44.0 27.0 92.0 82.0 79.0 S21226.D 45.0 28.0 97.0 87.0 82.0 S21227.D 40.0 25.0 88.0 83.0 78.0 S21178.D 39.0 23.0 75.0 71.0 67.0 S21177.D 36.0 22.0 77.0 70.0 67.0 S21223.D 45.0 28.0 92.0 86.0 82.0

30-130%

Limits				
15-110%				
15-110%				
15-110%				
30-130%				
30-130%				

S6 = Terphenyl-d14