

July 19, 2011

Mr. Steven F. Nightingale, P.E. Manager, Permit Section Illinois Environmental Protection Agency Bureau of Land 1021 North Grand Avenue East Springfield, Illinois 62794

Subject: Soil Vapor Extraction Pilot Test Report

Roxana, Illinois

119115002 – Madison County

Equilon Enterprises LLC d/b/a Shell Oil Products US

Log No. B-43-CA-16 and 18

Dear Mr. Nightingale:

On behalf of Shell Oil Products US, URS Corporation is submitting the enclosed pilot test report for your review. This report was developed in response to the Agency's letter dated March 15, 2011.

If you have any questions during your review, please contact Kevin Dyer, SOPUS project manager, at kevin.dyer@shell.com (618/288-7237), or me at bob_billman@urscorp.com (314/743-4108).

Sincerely,

Robert B. Billman

Senior Project Manager

Enclosures: RCRA Corrective Action Certification and Report (original plus 2 copies)

Cc: Kevin Dyer, SOPUS

Eric Petersen, ConocoPhillips

Jim Moore, IEPA

Lobat B Billman

Fax: 314.429.0462

ILLINOIS EPA RCRA CORRECTIVE ACTION CERTIFICATION

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LP - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): <u>1191150002</u>
	City: Roxana, IL 62084	Site No. (USEPA): ILD 080 012 305
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
	***************************************	Glen Carbon, IL 62034
	Contact Name:	
	Contact Title:	Principal Program Manager
	Phone No.:	618-288-7237
4.0	TYPE OF SUBMISSION (check applicable item and p	provide requested information, as applicable)
	☐ RFI Phase I Workplan/Report ☐ RFI Phase II Workplan/Report	IEPA Permit Log No. Date of Last IEPA Letter
	CMP Report; Phase	on Project 6/16/11 Log No. of Last IEPA
	Other (describe): Soil Vapor Extraction Pilot Test Report	Log No. of Last IEPA Letter on Project B-43R-CA-1; CA-3; CA5; CA-6; CA-7; CA-8;
	Son vapor Extraction 1 not 1est Report	CA-10; CA-11; and PS11-032
	Date of Submittal July 19, 2011	Does this submittal include groundwater information: X Yes No
5.0	DESCRIPTION OF SUBMITTAL : (briefly describe	what is being submitted and its purpose)
	Summary report of the March, 2011 SVE Pilot Test along Roxana, Illinois.	g the WRR west fenceline and the Roxana Public Works site in the Village of
6.0	<u>DOCUMENTS SUBMITTED</u> (identify all documents	in submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification, and	i Soil Vapor Extraction Pilot Test Report dated July, 2011
'.0	CERTIFICATION STATEMENT - (This statement is professional and laboratory in Items 7.1, 7.2 and 7.3 becarried out in accordance with procedures approved by I attachments were prepared under my direction or superv personnel properly gather and evaluate the information system, or those persons directly responsible for gathering knowledge and belief, true, accurate, and complete. I am information, including the possibility of fine and imprison	is part of the overall certification being provided by the owner/operator, elow). The activities described in the subject submittals have been illinois EPA. I certify under penalty of law that this document and all ision in accordance with a system designed to assure that qualified submitted. Based on my inquiry of the person or persons who manage the information, the information submitted is, to the best of my in aware that there are significant penalties for submitting false onment for knowing violations.

Equilon Enterprises LLC d/b/a Shell Oil Products US	
e of Submission: 7/19/11	
OWNER/OPERATOR CERTIFICATION (Must be set forth in 35 IAC 702.126.) All submittals pertaining signed by the person designated below (or by a duly at 1. For a Corporation, by a principal exect 2. For a Partnership or Sole Proprietorshim 3. For a Governmental Entity, by either a A person is a duly authorized representative only if: 1. the authorization is made in writing by	be completed for all submittals. Certification and signature requirements are not to the corrective action requirements set forth in a RCRA Permit must be authorized representative of that person): utive officer of at least the level of vice-president. ip, by a general partner or the proprietor, respectively. a principal executive officer or a ranking elected official. If a person described above; and with this submittal (a copy of a previously submitted authorization can be
Owner Signature:	
Title:	(Date)
1/ . 5/)	-/1/11
Operator Signature	(Date)
Title: Principal Program Manager	(Date)
to other laws governing professional services, such as Engineering Practice Act of 1989, the Professional Ge 1989. No one is relieved from compliance with these within the scope and definitions of these laws must be discovered violation of these laws to the appropriate re-	
Professional's Signature: fubet 6 (Su	PROTESTONAL CO
Professional's Name: Robert B. Billman	Professional's Seal:
Professional's Address: <u>URS Corporation</u>	ROBERT & SILLMAN ST
1001 Highlands Plaza Drive	West (3 (196-500046))
St. Louis, MO 63110	\\
Professional's Phone No.: 314-743-4108	ILLINO18
LABORATORY CERTIFICATION (if necessary) -	The sample collection, handling, preservation, preparation and analysis
efforts for which this laboratory was responsible were	carried out in accordance with procedures approved by Illinois EPA.
Name of Laboratory	7.19,11 Signature of Laboratory Date
Accutest Laboratories 495 Technology Center West Building One Marlboro, MA 01752 (508) 481-6200	Responsible Officer SRAD MADADIAN Region General MANAGE Name and Title of Laboratory Responsible Officer

ILLINOIS EPA RCRA CORRECTIVE ACTION CERTIFICATION

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	FACILITY IDENTIFICATION	
	Name: WRB Refining LP - Wood River Refinery	County: Madison
	Street Address: 900 South Central Ave.	Site No. (IEPA): <u>1191150002</u>
	City: Roxana, IL 62084	Site No. (USEPA): <u>ILD 080 012 305</u>
2.0	OWNER INFORMATION	3.0 OPERATOR INFORMATION
	Name: Not Applicable	Equilon Enterprises LLC d/b/a Shell Oil Products US
	Mailing Address:	17 Junction Drive, PMB #399
	·	
	Contact Name:	
	Contact Title:	Principal Program Manager
	Phone No.:	618-288-7237
4.0	TYPE OF SUBMISSION (check applicable item and pr	rovide requested information, as applicable)
	☐ RFI Phase I Workplan/Report ☐ RFI Phase II Workplan/Report ☐ CMP Report; Phase ☑ Other (describe): Soil Vapor Extraction Pilot Test Report Date of Submittal July 19, 2011	IEPA Permit Log No. Date of Last IEPA Letter on Project 6/16/11 Log No. of Last IEPA Letter on Project B-43R-CA-1; CA-3; CA5; CA-6; CA-7; CA-8; CA-10; CA-11; and PS11-032 Does this submittal include groundwater information: Yes □ No
5.0	DESCRIPTION OF SUBMITTAL : (briefly describe w	what is being submitted and its purpose)
		the WRR west fenceline and the Roxana Public Works site in the Village of
6.0	DOCUMENTS SUBMITTED (identify all documents in	in submittal, including cover letter; give dates of all documents)
	Cover letter, RCRA Corrective Action Certification, and	Soil Vapor Extraction Pilot Test Report dated July, 2011
7.0	carried out in accordance with procedures approved by II attachments were prepared under my direction or supervipersonnel properly gather and evaluate the information system or those persons directly responsible for gatherin	a part of the overall certification being provided by the owner/operator, elow). The activities described in the subject submittals have been llinois EPA. I certify under penalty of law that this document and all ision in accordance with a system designed to assure that qualified ubmitted. Based on my inquiry of the person or persons who manage the gother information, the information submitted is, to the best of my aware that there are significant penalties for submitting false inment for knowing violations.

For:]	RCRA Corrective Action Certification Equilon Enterprises LLC d/b/a Shell Oil Products US of Submission: 7/19/11	
7.1	OWNER/OPERATOR CERTIFICATION (Must be completed set forth in 35 IAC 702.126.) All submittals pertaining to the corresigned by the person designated below (or by a duly authorized replaced in the set of the corresion of the set of t	of at least the level of vice-president. al partner or the proprietor, respectively. cutive officer or a ranking elected official.
	Owner Signature:	
	Title:	(Date)
	V · 5/	7/14/11
	Operator Signature	(Date)
	Title: Principal Program Manager	
7.2	PROFESSIONAL CERTIFICATION (if necessary) - Work care to other laws governing professional services, such as the Illinois F Engineering Practice Act of 1989, the Professional Geologist Licer 1989. No one is relieved from compliance with these laws and the within the scope and definitions of these laws must be performed in discovered violation of these laws to the appropriate regulating aut	rofessional Land Surveyor Act of 1989, the Professional asing Act, and the Structural Engineering Licensing Act of regulations adopted pursuant to these laws. All work that falls a compliance with them. The Illinois EPA may refer any
	Professional's Name: Robert B. Billman	
	Professional's Address: <u>URS Corporation</u>	Protestional's Seal:
	1001 Highlands Plaza Drive West	196-600646
	St. Louis, MO 63110	//
	Professional's Phone No.: 314-743-4108	
7.3	<u>LABORATORY CERTIFICATION</u> (if necessary) - The sample efforts for which this laboratory was responsible were carried out in	collection, handling, preservation, preparation and analysis a accordance with procedures approved by Illinois EPA.
	Name of Laboratory Air Toxics Ud	Signature of Laboratory Date Responsible Officer
	Mailing Address of Laboratory	Hid Hayes Technical Director Name and Title of Laboratory Responsible Officer
	180 Blu Ravine Rd. Ste B	Name and Title of/Laboratory Responsible Officer
	Folsom, (A	
	95636	

REPORT

SOIL VAPOR EXTRACTION PILOT TEST REPORT

WRB REFINING, LP WOOD RIVER REFINERY ROXANA, ILLINOIS

Prepared for

Shell Oil Products US 17 Junction Drive PMB #399 Glen Carbon, IL 62034

URS Corporation 1001 Highlands Plaza Drive West, Suite 300 St. Louis, MO 63110 314.429.0100

Project #21562593

TABLE OF CONTENTS

SECTION 1	INTRODUCTION	. 1-1
SECTION 2	SITE BACKGROUND	. 2-1
SECTION 3	PILOT TEST ACTIVITIES	. 3-1
	 3.1 Extraction Well, Vapor Monitoring Point and Soil Boring Installation 3.2 Soil Vapor Extraction Pilot Test 3.3 Wastewater and Air Permitting Information 3.4 Data Quality Review and Data Management 	. 3-3 . 3-6
SECTION 4	TEST RESULTS	.4-1
	4.1 Public Works Site 4.2 WRR Site 4.2.1 SVE-1 Location 4.2.2 P-56 Location 4.2.3 P-60-11 Location 4.3 Soil Borings 4.3.1 Stratigraphy 4.3.2 Laboratory Results 4.4 Air Emission Results	. 4-2 . 4-2 . 4-3 . 4-3 . 4-3
SECTION 5	CONCLUSIONS	
List of Tables Table 1 Table 2 Table 3 Table 4	SVE Pilot Test Field Data – Public Works Facility SVE Pilot Test Field Data – WRR Facility Roxana Pilot Test Study Internal Combustion Engine Emission Air Sample Analytical Data Soil Sample Laboratory Analysis Results	e
List of Figures		
Figure 1 Figure 2 Figure 3	Site Location Map Project Site Map WRR SVE-1 Extraction Well, Vapor Monitoring Point, & Geoprobe Locations	
Figure 4 Figure 5 Figure 6	Public Works SVE-2 Extraction Well and Vapor Monitoring Point Location Public Works Pilot Test Piping and Instrumentation Diagram WRR Pilot Test Piping and Instrumentation Diagram	ns
List of Append	lices	
Appendix A Appendix B Appendix C	SVE Well and VMP, Boring Logs/Well Construction Diagrams Photographs of Pilot Test Field Activities Copy of Laboratory Analytical Reports	

i

SECTIONONE Introduction

Shell Oil Products US (SOPUS) is currently addressing historical petroleum releases inside the WRB Refining LP Wood River Refinery (WRR) (which was formerly owned/operated by Shell or predecessors); and in the Village of Roxana in the area generally bounded by Illinois Route 111 and the west property boundary (aka west fenceline) of the WRR (**Figure 1**).

In September of 2010, SOPUS submitted a *Vapor Intrusion Investigation Workplan*, in which the installation of a soil vapor extraction (SVE) system was first proposed. The Illinois Environmental Protection Agency (IEPA) approved the work plan in a letter to SOPUS dated November 15, 2010 and condition 19 of that letter requested the submittal of a pilot test work plan.

In December of 2010, URS Corporation (URS), on behalf of SOPUS, submitted a *Soil Vapor Extraction Pilot Test Work Plan*, which proposed SVE pilot test activities at two separate locations, the west fenceline area of the WRR and the Village of Roxana Public Works Yard (Public Works). The IEPA approved the work plan in a letter to SOPUS dated March 16, 2011.

SVE pilot test field activities at the Public Works site and the WRR west fenceline site were initiated on March 14, 2011 and concluded on March 24, 2011.

As requested by condition 8 in the Agency's March 16, 2011 letter, this report summarizes the results of the pilot tests.

Releases of petroleum products at the WRR have resulted in a dissolved phase groundwater plume along the west fenceline and extending beneath the eastern edge of the Village. In addition, an Light Non-Aqueous Phase Liquids (LNAPL) plume exists within certain areas within the WRR. The primary objective of groundwater pumping at the WRR as required by SOPUS' Resource Conservation and Recovery Act (RCRA) Part B Permit for the site are to contain (and eventually capture, recover, and treat) LNAPL and dissolved phase impacts.

In 1986 a benzene release occurred from a pipeline on the northwest corner of the intersection of Rand Avenue and Highway 111, near a commercial/industrial area across the highway from the Public Works. The groundwater flow direction, as a result of pumping the existing groundwater extraction wells, has caused the benzene impacted groundwater to migrate toward the refinery pumping centers and now exits beneath the Public Works site on its path to the pump's pumping centers.

Petroleum vapors (if any) in the eastern portion of the Village, would most likely be primarily associated with the LNAPL beneath the WRR, and to a lesser extent, the dissolved phase impact beneath the eastern edge of the Village. Any vapors in the southern portion of the Village would most likely be primarily associated with the benzene release.

The following section describes the field activities which took place both prior to and during the pilot test.

3.1 EXTRACTION WELL, VAPOR MONITORING POINT AND SOIL BORING INSTALLATION

The drilling associated with the pilot test was conducted from February 28th through March 7th, 2011, and included two extraction wells (SVE-1 and SVE-2), five vapor monitoring points (VMPs) (VMP-26 through VMP-30), and six geoprobe borings (GP-14 through GP-19). Extraction points SVE-1 and SVE-2 were installed for use during pilot test activities at WRR and Public Works, respectively. VMPs were installed at distances of 30, 60, and 90 feet from each extraction well and contained points at the top of the sand unit, one at or near the existing water table, and one in the middle of the vadose zone. At the Public Works location, previously installed VMP-10 was utilized as the 60 foot monitoring point for pilot test activities. The six geoprobe borings GP-14 through GP-19 were located along the west fenceline at the WRR and were installed to further delineate the sub-surface petroleum concentration. The above locations are illustrated on **Figure 2** through **Figure 6**.

The SVE extraction wells were first air knifed to a depth of 10 feet below ground surface (bgs) to ensure underground utilities were cleared and then were drilled by Boart Longyear using rotosonic drilling technology. Once the bore holes were drilled, the wells were installed with 4-inch diameter PVC and the base of the screens were set at a depth at or near the water table under low water level conditions (approximately 55 and 45 feet bgs along the west fence line and at Public Works respectively). The filter pack was installed in one foot lifts that extends to approximately 2-feet above the top of the screen. A three foot thick bentonite chip seal was installed immediately above the sand pack in one foot lifts with each lift being hydrated and the remaining annular space was filled with a cement bentonite grout. During SVE extraction well installation activities soil samples were collected from SVE-1 (11-12 ft. and 53-54 ft. bgs) and SVE-2 (11-12 ft. and 33-34 ft. bgs) for analytical testing.

Three associated VMPs were installed at the pre-determined distances from the SVE-1 location. VMP-26, installed 30 feet north, VMP-27, 60 feet east, and VMP-28, 90 feet south of SVE-1 (**Figure 3**). Two associated VMPs were installed at the predetermined distances from the SVE-2 location. VMP-29 was installed 30 feet southwest and VMP-30 installed 90 feet southeast of SVE-2. Previously installed VMP-10, located northwest of SVE-2, was utilized as the 60 foot

monitoring point for pilot test activities. A site map illustrating the points associated with the Public Works pilot test is included as **Figure 4**.

Each VMP consisted of nested multiple vapor sampling depth intervals. In general, each of the nested vapor points consists of a 1/2-inch diameter PVC pipe extending to the ground surface. A sand pack was placed in the annular space from approximately six inches below and above each vapor point sampling PVC screen. Granular bentonite seals were placed between individual vapor monitoring port screen/sand pack intervals. The annular space above the filter pack of the last screened interval was filled with cement bentonite grout to the ground surface and completed at the surface with a flush-mounted protective cover. During the VMP installation, soil samples were collected from VMP-26 (11-12 ft. and 31-32 ft. bgs) for analysis of VOCs and TPH.

Geoprobe soil borings GP-14 through GP-19 were performed by Roberts Environmental Drilling Inc. and soil sampling was conducted using a dual-tube sampling system. The dual-tube system consisted of a 4-foot long by 1.125-inch diameter clear acetate liner attached to 1-inch diameter inner rods. The acetate liner and inner rods were advanced simultaneously with the 2.125-inch diameter outer casing. Once a sample was collected within the acetate liner, the inner rods and acetate liner were retrieved while the outer rods remained in place. The acetate liner was replaced and returned to the sampling depth, at which point the process was repeated. The soil borings were advanced to groundwater, which was encountered at depths of approximately 40 ft. to 44 ft. bgs.

Upon completion of GP borings GP-14 through GP-19, the boreholes were backfilled with bentonite grout through the outer casing and the ground surface was returned to its original condition.

The subsurface stratigraphy for the SVE, VMP, and GP points was continuously logged by a qualified field scientist in accordance with applicable ASTM standards and the Unified Soil Classification System (USCS). The field scientist noted soil attributes such as color, particle size, consistency, moisture content, structure, plasticity, odor (if obvious), and organic content (if visible). Soil samples were also screened in the field using a photoionization detector (PID) and observations were noted on the soil boring logs.

The nine samples collected from the SVE, VMP-26, and GP points were delivered, under the proper COC documentation, to Accutest Laboratories in Marlborough, Massachusetts for analysis of VOCs via USEPA Method 8260B and TPH via USEPA Method 8015.

Boring logs and well construction diagrams developed for points utilized during pilot test studies at both locations are included in **Appendix A**.

3.2 SOIL VAPOR EXTRACTION PILOT TEST

SVE Pilot Test Equipment

Test equipment used during the pilot test was rented from, and operated by ProAct Services Corporation (ProAct), located in Ludington, Michigan, and included the following:

- A trailer mounted internal combustion engine (ICE) system capable of treating approximately 100 cfm of airflow @ 20 inches Hg vacuum. The engine apparatus consisted of a 4.6 Liter 8 cylinder Ford engine with a flame arrestor and a catalytic converter. The unit was controlled by a program logic controller (PLC) (Phoenix 1,000 Controller) maintaining and monitoring all aspects of air flow, temperature and concentration data. Two mufflers were utilized to reduce noise due to the nearby residential neighborhood. Propane gas was utilized for supplemental fuel to avoid shutdowns during testing.
- Vapor Liquid Separator to remove water from the vapor stream.
- Miscellaneous ancillary equipment including but not limited to health and safety monitoring equipment, water level meters, air sampling and monitoring equipment, and flow meters.

Photographs of the pilot test equipment are included in **Appendix B**.

Pilot Test Operation

The ICE operation is controlled by several site specific factors including: soil moisture, O_2 and CO_2 content in the soil, and soil vapor constituent concentrations available from the extraction well. The PLC controls the air flow from well based on a maximum hydrocarbon influent flow rate of 36 lb/hr.

SVE Pilot Test Field Activities

As discussed above, an extraction test was planned on the two SVE extraction wells (SVE-1 at the WRR property and SVE-2 at the Village of Roxana Public Works Yard).

Public Works Test Location

The test at Public Works began on March 14, 2011 with SVE-2 as the extraction well and with VMP-29, VMP-10, and VMP-30 measuring the influence of test activities at distances of 30, 60, and 90 feet respectively. The groundwater elevation in the area near SVE-2 was measured at 404.63 feet above mean sea level (msl). The ICE system was connected to SVE-2 by means of a 3-inch diameter hose, which is shown in a diagram illustrating pilot testing piping and equipment orientation associated with the Public Works pilot test (**Figure 5**).

Manual and automatic data collection methods were utilized depending on the specific information desired. Temperature readings, extraction well air flow, and concentrations from the extraction well were collected directly from the ICE unit. The vapor temperature, pressure, and air flow was routinely monitored by manual means at the extraction well. Vacuum / pressure readings were collected at the VMP locations utilizing magnahelic gauges with varying ranges. Readings were recorded at approximately the first 2, 5, 10, and 15 minutes and then every 15 minutes for the next three hours. The readings were then collected once an hour for the remainder of the test.

As described in the *Vapor Intrusion Investigation Workplan*, the ICE was to run at airflow rates of 50, 75, and 90 cfm over a period of three days. Following the tests at the three airflow rates, a sustainability test would then be initiated for an additional three days.

The first test on March 14th, 2011, was initiated by attempting to run the unit at approximately 50 cfm, however due to elevated initial concentrations; 50 cfm could not be achieved. Due to these elevated initial concentrations being pulled into the ICE unit, the ICE unit was indicating high temperature readings at the exhaust sensor and shutting down.

On March 15, 2011, pilot test activities resumed with 25 cfm as a projected operational setting in order to mitigate the measured elevated vapor hydrocarbon concentrations being pulled into the ICE unit. The unit began at approximately 25 cfm and after approximately six hours, a flow rate of 27 cfm was achieved. The test was conducted for a period of eight hours (without automatic shutdown conditions being encountered) and measured influent data of the vapor pulled into the ICE unit demonstrated a reduction in benzene concentrations at the SVE-2 location.

On March 16th, 2011, a successful daily test was again performed at a flow rate that ranged from 40-50 cfm. The test ran for approximately ten hours with results again indicating increased air flow and reduced concentrations of hydrocarbons being pulled into the ICE unit.

Based on pilot test performance on March 15th and 16th, 2011, including the ICE unit maintaining operational temperatures and increasing air flow readings, it was decided that a sustainability test would be initiated on March 17th, 2011. The sustainability test was performed for approximately 70 hours, initiated at 8:42 AM on March 17th, 2011, and concluded at 6:40 AM on March 20, 2011. The flow rates during the test ranged from 50-65 cfm.

During daily pilot testing activities as well as the sustainability test, influence was observed in all VMPs indicating a radius of influence of at least 90 feet. On March 19th, 2011, one field vapor sample from the SVE-2 wellhead was collected during the sustainability test and submitted for laboratory analysis. Data collected during the pilot testing activities at the Public Works location are presented on **Table 1**.

WRR Test Location

The test at the WRR location began on March 21, 2011 with SVE-1 as the extraction wells and subsequent tests were conducted at P-56, and P-60-11. The induced vacuum and/or pressure at the outlying monitoring points were measured with magnahelic gauges of varying ranges. A diagram illustrating pilot testing piping and equipment orientation associated with the WRR pilot test is included as **Figure 6**.

The hydrocarbon vapor concentrations being pulled from at SVE-1, as measured by the ICE unit increased from 120,000 to 392,000 ppm over the interval of the first eight hour test. Due to increasing hydrocarbon concentrations being pulled into the ICE unit, additional dilution air was required by the unit to maintain operating conditions. ICE unit readings indicated that extraction well air flow ranged from 5 cfm at the start of the test to a flow that was too low to measure with the instruments on the ICE unit within four hours of start-up. During the test, vacuum measurements were taken at VMP-26, VMP-27, and VMP-28 at distances of 30, 60, and 90 feet respectively from SVE-1. The VMPs being monitored did not display vacuum pressure at this time nor during the remainder of the test.

The following day of testing, March 22, 2011, yielded similar test results with increasingly elevated hydrocarbon concentrations being pulled from SVE-1 into the ICE unit. Initial readings

of hydrocarbons being pulled into the ICE unit indicated concentrations of 381,900 ppm, increasing over a four hour period to 501,000 ppm. The test again indicated diminished air flow at the extraction well due to elevated hydrocarbon concentrations being pulled into the ICE unit, and positive pressure was indicated at each of the three VMPs initial readings and maintained throughout the pilot test. Due to the trend of increasing hydrocarbon concentrations being pulled into the ICE unit and minimal extraction well air flow, the test was stopped at the SVE-1 location at the approximate time of 1400.

In an effort to still conduct the pilot test in the general area of the West Fenceline, it was decided to utilize monitoring well P-56 as the extraction well. Monitoring well P-56 is a 2-inch diameter monitoring well located approximately 240 feet south of extraction well SVE-1. This well is screened from approximately 38.5 to 63.5 ft. bgs. Based on the water levels at the time of testing, there was approximately 2.16 feet of open (unsaturated) well screen. No VMPs were available in the vicinity of P-56 for influence monitoring. Monitoring well P-56 exhibited similar results to SVE-1 with elevated hydrocarbon concentrations being pulled into the ICE unit and inhibiting air flow. In addition, during the testing the vacuum produced enough suction to lift the water level above the screen thereby occluding the screen and preventing the pilot test from continuing.

On March 23, 2011, a third location (P-60-11) was attempted north of SVE-1. Monitoring well P-60-11 is a 4-inch diameter well located approximately 200 feet north of extraction well SVE-1. This well is screened from approximately 30 to 60 ft. bgs. Based on the water level at the time of testing, there was approximately 9.69 feet of open (unsaturated) well screen. Similar conditions to the previous two locations were encountered with P-60-11 exhibiting elevated hydrocarbon concentrations being pulled into the ICE unit that inhibited flow rate.

Data collected during the above pilot testing activities at the WRR location is presented on **Table 2**.

3.3 WASTEWATER AND AIR PERMITTING INFORMATION

A total of two gallons of water were recovered from the vapor liquid separator during the pilot test activities at the Public Works location. No water was recovered during activities at the WRR location. The water was be managed with similar waste streams from the public works area.

For the pilot test with the ICE unit, a permit application for a federally enforceable state operating permit (FESOP) for construction was submitted to the IEPA on January 27, 2011and approved on March 1, 2011. Per the requirements of the FESOP air permit, one summa canister was collected from the exhaust sample port of the ICE unit during each day of activity for VOCs via USEPA method TO-15. A total of eight emission samples were collected and were identified as AE#1 through AE#8 (a ninth sample, Influent PT/PW, was an influent sample collected at the public works test location, but was not required by the FESOP permit). Results of air samples collected during pilot test activities are presented in **Table 3**; a copy of the laboratory analytical report is attached as **Appendix C**.

3.4 DATA QUALITY REVIEW AND DATA MANAGEMENT

Laboratory data were provided in electronic form. An independent Level III review was performed by URS on the analytical data following procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Methods Data Review (2008). Specific criteria reviewed included sample receipt condition and holding times, method blanks, surrogate spike recoveries, laboratory control samples, and results reported from dilutions. The laboratory assigned data qualifiers on the basis of their quality control or to indicate sample analysis information (e.g., dilutions). Data qualifiers were also added by URS, as appropriate, and are included on the data tables and laboratory result pages. Laboratory data reports along with data reviews (Level III) are included in **Appendix C.**

For the SVE Pilot study, a total of 9 samples were prepared and analyzed by the laboratory, Air Toxics, for VOCs (TO-15 analytes).

Laboratory method blanks were analyzed to evaluate for the existence and magnitude of any contamination that might result from field and/or laboratory activities. No compounds were detected in the method blanks; therefore, no qualification of data was required.

Surrogate spike recoveries are used by the laboratory to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. Vapor samples analyzed were spiked with surrogate compounds during sample preparation. No surrogate recoveries were outside evaluation criteria; therefore, no qualification of data was required.

Laboratory control standard (LCS) and laboratory control standard duplicates (LCSD) are analyzed with each analytical batch to assess the accuracy of the analytical process. LCS/LCSD

recoveries were above evaluation criteria for chloromethane in sample delivery groups (SDGs) 1103537, 1103591, and 1104017 as specified in the data reviews. Analytical data which were reported as non-detect and associated with LCS/LCSD recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with LCS/LCSD recoveries above evaluation criteria; therefore, no qualification of data was required.

Samples AE #5, AE #8, and Influent PT/PW were analyzed at dilution due to high levels of target analytes. Samples AE #1, AE # 2, AE #3, AE #4, AE #6, and AE #7 were analyzed at dilution due to high levels of non-target analytes. The laboratory analytical results are discussed in **Sections 4.3.2 and 4.4** of this report

The TO-15 VOC compound, chloromethane had continuing calibration recoveries above evaluation criteria in SDGs 1103537, 1103591, and 1104017. Analytical data which were reported as non-detect and associated with CCV recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with LCS/LCSD recoveries above evaluation criteria; therefore, no qualification of data was required.

Additionally, sample AE #2 was leaking during sample analysis and had to be re-pressurized. Professional judgment was used to qualify results from this sample as estimated.

Based on the review criteria, vapor results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on laboratory control sample (LCS) and surrogate data were achieved for these sample delivery groups (SDGs) to meet the project objectives.

Field data and documentation collected as part of this scope of work became part of the project file. URS maintains the files for the site, and the database management system.

The following documentation was completed and supplements the COC records:

- Field logbooks
- Field sample collection sheets
- Safety Documentation

The results of the each of the SVE tests and soil borings are presented below.

4.1 PUBLIC WORKS SITE

Pilot test activities were successfully performed over the course of 5 days at the following flow rates:

- March 15, 2011 flow rate range of 0 cfm to 27 cfm
- March 16, 2011 flow rate range of 18 cfm to 50 cfm
- March 17, 2011 flow rate range of 12 cfm to 55 cfm
- March 18, 2011 flow rate range of 61 cfm to 63 cfm
- March 19, 2011 flow rate range of 63 cfm to 65 cfm
- March 20, 2011 flow rate averaged 64 cfm

Elevated hydrocarbon concentrations being pulled into the ICE unit were encountered on initiating the pilot test on the first day (March 14, 2011). The ICE unit emergency shut off system was activated due to elevated hydrocarbon concentrations causing high temperature conditions at the exhaust. By operating the ICE unit primarily at lower cfm levels, the higher concentrations being pulled into the ICE unit dissipated and operating conditions were greatly enhanced.

A sustainability test was performed successfully for a period of 72 hours. The following presents a summary of the results from **Table 1**:

- Operated at 50-65 scfm (increasing over the duration of test)
- Concentrations of vapors being pulled into the ICE unit during test period ranged from 10,000 to 15,000 ppm
- Documented radius of influence (> 0.1 inches of water) of 90 feet. However, vacuum was measured up to 130 feet from extraction well.
- System vacuum measurements collected at ICE unit ranged from 10-25 inches of water.

4.2 WRR SITE

4.2.1 SVE-1 Location

Daily pilot test activities were performed for 8 hours on the first day of testing and 5 hours the second. The following presents a summary of the results from **Table 2**:

- ICE unit operated at a range of 0-6 scfm.
- Initial indication of minor vacuum was measured at VMP-26, VMP-27, and VMP-28 after the start of the test but no consistent system effects were observed.
- Initial hydrocarbon concentrations being pulled into the ICE unit were approximately 120,000 ppm and increased over the duration of the test to 501,000 ppm.
- Maximum system vacuum as measured at the ICE unit was indicated as approximately 15 inches of water.
- Hydrocarbon concentrations being pulled into the ICE unit from SVE-1 are too elevated for the ICE unit to increase air flow to desired testing rates.

4.2.2 P-56 Location

Pilot test activities were performed at the monitoring well P-56 location after encountering unsuitable conditions at the SVE-1 location. Testing was performed for 4 hours. The following presents a summary of the results from **Table 2**:

- Recent groundwater gauging data indicated that only 2 feet of screen was open (above the water table).
- Hydrocarbon concentrations increased over the duration of the test, while the well screen was open to 550,000 ppm.
- The ICE unit indicated 1-2 scfm.
- Well vacuum measured at P-56 ranged from 5-10 inches of water.
- As observed at the SVE-1 location, hydrocarbon concentrations being pulled into the ICE unit from P-56 are too elevated for the ICE to perform as intended.
- After 4 hours of operation, the vacuum pulled the water the up enough to occlude the screen.

4.2.3 P-60-11 Location

Pilot test activities were performed at the monitoring well P-60-11 location after encountering unsuitable conditions at the SVE-1 and P-56 locations. Testing was performed for 4 hours. The following presents a summary of the results from **Table 2**:

- Recent groundwater gauging data indicated 10 feet of screen was open (above the water table).
- Hydrocarbon concentrations being pulled into the ICE unit increased over the duration of the test to 379,000 ppm.
- The ICE unit indicated 1-10 scfm.
- Well vacuum measured at P-60-11 ranged from 5-10 inches of water.
- As observed at the two previous locations, concentrations at the P-60-11 location are too elevated for the ICE to perform as intended.

4.3 SOIL BORINGS

4.3.1 Stratigraphy

The stratigraphy beneath the investigation area consists of the following materials, from top down:

- Fill (mainly clay, some gravel and cinders, etc.) Extends from the surface up to approximately six feet bgs.
- Clay/Silt Primarily silty clay. Where present, the clay generally extends from the base of the fill to approximately 12 feet bgs.
- Sand Consisting primarily of fine to medium grained (which coarsens with depth) sand
 with some silt and clay, especially at the shallower depths. The sand begins at the base of
 the clay (or base of the fill if the clay is not present) and extends to the total depth of the
 borings.

Discontinuous lower permeability lenses of clay with some silt and sand are occasionally present. These lenses vary in thickness from 1 inch to a few feet and do not appear to be laterally (or vertically) extensive. The boring logs are presented in **Appendix A**.

SECTIONFOUR Test Results

4.3.2 Laboratory Results

The laboratory analytical results for the soil samples collected during this investigation can be viewed in **Table 4**.

The following petroleum hydrocarbons were detected in soil samples collected during this investigation:

Acetone Dichloromethane

Benzene tert-Butylbenzene

Ethylbenzene Isopropylbenzene

Toluene p-Isopropyltoluene
m,p-Xylenes Methyl tert-Butyl Ether

o-Xylenes n-Propylbenzene

n-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3,5-Trimethylbenzene TPH (C10-C28) TPH-GRO (VOA)

TPH (>C28-C40)

4.4 AIR EMISSION RESULTS

The laboratory analytical results for the ICE emission samples collected during this investigation can be viewed in **Table 3**. All results were within the limits permitted by the March 1, 2011 FESOP air permit. The following VOCs were detected in the ICE emission samples during this investigation:

Acetone Dichloromethane

Benzene Styrene

Ethylbenzene Isopropylbenzene Toluene Tetrachloroethane

m,p-Xylenes 2-Butanone o-Xylenes Tetrahydrofuran

1,3-Butadiene2,2,4-TrimethylpentaneEthanol1,2,4-Trimethylbenzene

Cyclohexane 2-Propanol Hexane 4-Ethyltoluene

Heptane 4-Methyl-2-pentanone

SECTIONFIVE Conclusions

Pilot test activities at the Public Works location indicate a range of influence of at least 90 feet and demonstrated air flow readings of 65 cfm following the decrease in initial concentrations. Potential air flow and range of influence information could not be obtained at the WRR site due to site conditions. Air flow potential at the WRR was measured during testing activities, but unlike the Public Works site, sustained elevated concentrations being pulled into the ICE unit did not decrease sufficiently to determine air flow potential under a sustained test. Based on boring logs, data collected at both sites, and the close proximity of the two site locations, assumptions can be made that air flow responses to SVE treatment at both sites should be similar.

The information from the above pilot testing is being incorporated into the full scale SVE design.

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY ROXANA, ILLINOIS March 15, 2011

		ICE Unit	Data			VM	P-10			VMI	P-29			VMI	P-30	
Time		SVE Te	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet
(min.)	Temp (°F)	Airflow (cfm)	Pressure (inches of water)	Vapor Conc. (ppmv) ¹	Pressure (inches of water)											
8:50am	0	0	0.0	0	0.0	0.0	0.0	0.05	0.5	0.0	0.0	0.0	0.0	0.06	>.25	0.0
8:52am	675	5	0.5	10,100	0.0	0.0	0.1	0.08	0.0	0.1	0.15	0.0	0.0	0.06	0.055	0.0
8:55am	755	10	1.5	17,500	0.0	0.0	0.1	0.09	0.0	0.18	0.21	0.0	0.0	0.06	0.065	0.0
9:00am	815	15	2.5	16,500	0.0	0.0	0.2	0.10	0.4	0.19	0.21	0.0	0.0	0.07	0.07	0.0
9:05am	920	25	3.0	19,000	0.0	0.0	0.4	0.10	0.5	0.2	0.22	0.0	0.0	0.05	0.05	0.0
9:20am	950	24	4.0	20,000	0.0	0.0	0.5	0.12	0.4	0.18	0.19	0.0	0.0	0.02	0.035	0.1
9:35am	950	19	3.0	17,500	0.0	0.0	0.4	0.08	0.5	0.19	0.21	0.0	0.0	0.01	0.005	0.3
9:50am	968	20	4.0	18,000	0.0	0.0	0.4	0.10	0.5	0.2	0.22	0.0	0.0	0.035	0.04	0.4
10:05am	968	23	3.0	20,000	0.0	0.0	0.5	0.14	0.5	0.5	0.24	0.0	0.0	0.08	0.085	0.35
10:20am	968	20	3.0	21,000	0.0	0.0	0.5	0.14	0.5	0.4	0.28	0.0	0.0	0.12	0.12	0.35
10:35am	960	18	3.0	13,500	0.0	0.0	0.6	0.17	0.5	0.5	0.31	0.0	0.0	0.14	0.15	0.2
10:50am	960	20	3.0	7,500	0.0	0.0	0.6	0.16	0.5	0.5	0.29	0.0	0.0	0.12	0.13	0.2
11:05am	965	20	3.0	5,000	0.0	0.0	0.5	0.16	0.5	0.5	0.28	0.0	0.0	0.1	0.11	0.2
11:20am	975	20	3.0	9,500	0.0	0.0	0.5	0.14	0.5	0.5	0.28	0.0	0.0	0.08	0.08	0.2
11:35am	965	20	3.0	9,000	0.0	0.0	0.6	0.17	0.6	0.6	0.30	0.0	0.0	0.13	0.14	0.2
11:50am	968	18	3.0	10,000	0.0	0.0	0.6	0.17	0.5	0.6	0.29	0.0	0.0	0.13	0.145	0.2
12:50pm	968	20	3.0	11,000	0.0	0.0	0.3	0.12	0.4	0.5	0.25	0.0	0.0	0.05	0.06	0.2
1:50pm	960	17	3.0	51,000	0.0	0.0	0.3	0.14	0.3	0.7	0.25	0.0	0.0	0.09	0.1	0.5
2:50pm	952	27	3.0	104,000	0.0	0.0	0.25	0.14	0.23	0.6	0.28	0.0	0.0	0.09	0.095	0.5
3:50pm	952	27	3.0	9,900	0.0	0.0	0.25	0.16	0.26	0.6	0.30	0.0	0.0	0.14	0.15	0.3
4:50pm	944	27	3.0	5,000	0.0	0.0	0.25	0.14	0.22	0.6	0.27	0.0	0.0	0.08	0.095	0.0

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

Page 1 of 8 July 2011

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY ROXANA, ILLINOIS March 16, 2011

		ICE Unit	Data			VM	P-10			VM	P-29			VMI	P-30	
Time		SVE Te	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of
			water)		water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)
9:00am	NA	18	2.0	NA	0.0	0.0	0.0	0.05	0.044	0.25	0.0	0.0	0.0	0.1	0.09	0.0
9:02am	NA	NA	NA	NA	0.0	0.0	0.0	0.10	0.183	0.3	0.15	0.0	0.0	0.1	0.105	0.0
9:05am	850	27	5.0	<2,000	0.0	0.0	0.0	0.12	0.246	0.5	0.20	0.0	0.0	0.1	0.115	0.0
9:10am	970	35	5.5	<2,000	0.0	0.0	0.0	0.14	0.32	0.5	0.28	0.0	0.0	0.11	0.14	0.0
9:15am	1050	40	6.0	<2,000	0.0	0.0	0.05	0.20	0.43	0.5	0.4	0.0	0.0	0.17	0.18	0.0
9:30am	NA	41.5	6.0	<2,000	0.0	0.0	0.16	0.22	0.48	0.4	0.4	0.0	0.0	0.2	0.21	0.0
9:45am	NA	41	6.0	<2,000	0.0	0.0	0.16	0.18	0.4	0.4	0.4	0.0	0.0	0.1	0.165	0.0
10:00am	1,050	41	6.0	3,900	0.0	0.0	0.18	0.20	0.42	0.4	0.4	0.0	0.0	0.15	0.155	0.0
10:15am	1,060	42	6.0	<2,000	0.0	0.0	0.16	0.18	0.436	0.42	0.4	0.0	0.0	0.17	0.16	0.0
10:30am	1,075	41.5	6.0	<2,000	0.0	0.0	0.16	0.18	0.420	0.4	0.4	0.0	0.0	0.16	0.15	0.0
10:45am	1,060	41	6.0	<2,000	0.0	0.0	0.16	0.16	0.421	0.4	0.41	0.0	0.0	0.14	0.125	0.0
11:00am	1,050	42	6.0	<2,000	0.0	0.0	0.16	0.16	0.395	0.35	0.4	0.0	0.0	0.13	0.115	0.0
11:15am	1,060	41	6.0	<2,000	0.0	0.0	0.16	0.16	0.373	0.3	0.38	0.0	0.0	0.1	0.085	0.0
11:30am	1,050	41	6.0	<2,000	0.0	0.0	0.15	0.16	0.400	0.35	0.39	0.0	0.0	0.12	0.105	0.0
11:45am	1,058	41	6.0	<2,000	0.0	0.0	0.16	0.16	0.372	0.35	0.37	0.0	0.0	0.1	0.085	0.0
12:00pm	1,043	41	6.0	<2,000	0.0	0.0	0.16	0.16	0.390	0.35	0.38	0.0	0.0	0.1	0.0875	0.0
1:00pm	1,153	40	5.8	<2,000	0.0	0.0	0.14	0.14	0.350	0.3	0.35	0.0	0.0	0.05	0.0425	0.0
						Increa	ased Air Flow	From Well He	ad Via Valve	at ICE Unit						
1:15pm	1,163	49	7.5	3,200	0.0	0.0	0.16	0.17	0.439	0.41	0.42	0.0	0.0	0.06	0.05	0.0
1:30pm	1,210	50	7.5	2,600	0.0	0.0	0.17	0.17	0.454	0.41	0.45	0.0	0.0	0.07	0.06	0.0
1:45pm	1,190	50	7.4	5,300	0.0	0.0	0.17	0.16	0.440	0.4	0.43	0.0	0.0	0.06	0.05	0.0
2:00pm	1,202	50	7.3	2,500	0.0	0.0	0.15	0.15	0.420	0.4	0.4	0.0	0.0	0.02	0.01	0.0
2:30pm	1,198	50	7.4	4,000	0.0	0.0	0.16	0.16	0.428	0.4	0.41	0.0	0.0	0.02	0.02	0.0
3:00pm	1,183	50	7.4	3,000	0.0	0.0	0.19	0.17	0.464	0.4	0.45	0.0	0.0	0.08	0.065	0.0
4:00pm	1,191	50	7.5	4,700	0.0	0.0	0.19	0.19	0.464	0.41	0.46	0.0	0.0	80.0	0.07	0.0

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

Page 2 of 8 July 2011

TABLE 1 **SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY** ROXANA, ILLINOIS March 16, 2011

		ICE Unit	Data			VMI	P-10			VMI	P-29		VMP-30				
Time					5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet	
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	
			water)	W1 /	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	
5:00pm	1,191	49	7.6	3,000	0.0	0.0	0.2	0.21	0.497	0.43	0.47	0.0	0.0	0.12	0.11	0.0	
6:00pm	1,200	49	7.8	2,200	0.0	0.0	0.2	0.22	0.493	0.41	0.47	0.0	0.0	0.22	0.19	0.0	
7:00pm	1,198	49	8.1	3,600	0.0	0.0	0.22	0.26	0.586	0.47	0.52	0.0	0.0	0.1	0.09	0.0	

Notes:

Indicates Negative Pressure (vacuum) Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

Page 3 of 8 July 2011

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY ROXANA, ILLINOIS March 17, 2011

		ICE Unit	Data			VMF	P-10			VMI	P-29			VMI	P-30	
Time		SVE Te	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of
			water)		water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)
8:42am	683	12	1.6	<2,000	0.0	0.0	0.0	0.0	0.01	0.00	0.0	0.0	0.0	0.00	0.01	NR
8:45am	781	23	2.8	<2,000	0.0	0.0	0.02	0.03	0.05	0.00	0.04	0.0	0.0	0.00	0.015	NR
8:50am	876	30	4.0	7,700	0.0	0.0	0.08	0.08	0.135	0.15	0.15	0.0	0.0	0.03	0.01	NR
8:55am	996	39	5.4	6,600	0.0	0.0	0.10	0.11	0.262	0.20	0.26	0.0	0.0	0.06	0.05	NR
9:10am	1,172	49	7.2	<2,000	0.0	0.0	0.19	0.20	0.444	0.40	0.44	0.0	0.0	0.14	0.115	NR
9:25am	1,244	53	7.8	9,800	0.0	0.0	0.19	0.20	0.462	0.40	0.46	0.0	0.0	0.14	0.12	NR
9:40am	1,272	54	8.1	8,900	0.0	0.0	0.19	0.20	0.464	0.50	0.49	0.0	0.0	0.13	0.105	NR
9:55am	1,270	55	8.1	8,500	0.0	0.0	0.20	0.22	0.460	0.50	0.47	0.0	0.0	0.08	0.07	NR
10:10am	1,265	54	8.2	8,700	0.0	0.0	0.20	0.21	0.465	0.50	0.48	0.0	0.0	0.07	0.05	NR
10:25am	1,265	55	8.3	9,400	0.0	0.0	0.20	0.22	0.472	0.50	0.49	0.0	0.0	0.1	0.09	NR
10:40am	1,260	55	8.3	4,000	0.0	0.0	0.20	0.22	0.507	0.50	0.51	0.0	0.0	0.15	0.125	NR
10:55am	1,248	55	8.2	3,000	0.0	0.0	0.21	0.23	0.483	0.50	0.51	0.0	0.0	0.14	0.12	NR
11:10am	1,242	55	8.1	10,300	0.0	0.0	0.20	0.21	0.467	0.45	0.48	0.0	0.0	0.12	0.09	NR
11:25am	1,235	55	8.0	11,300	0.0	0.0	0.18	0.19	0.429	0.40	0.46	0.0	0.0	0.07	0.05	NR
11:40am	1,231	55	8.0	5,500	0.0	0.0	0.16	0.15	0.385	0.30	0.42	0.0	0.0	0.00	0.00	NR
12:40pm	1,210	54	7.5	7,900	0.0	0.0	0.18	0.18	0.420	0.35	0.44	0.0	0.0	0.00	0.00	NR
1:40pm	1,199	53	7.5	13,000	0.0	0.0	0.18	0.10	0.435	0.40	0.46	0.0	0.0	0.05	0.04	NR
2:40pm	1,197	53	7.6	11,800	0.0	0.0	0.16	0.01	0.415	0.40	0.42	0.0	0.0	0.02	0.01	NR
3:40pm	1,127	52	7.1	14,400	0.0	0.0	0.18	0.0	0.423	0.40	0.44	0.0	0.0	0.04	0.03	NR
4:40pm	1,119	52	7.6	7,200	0.0	0.0	0.24	0.02	0.501	0.50	0.52	0.0	0.0	0.2	0.175	NR
5:40pm	1,147	53	7.9	11,800	0.0	0.0	0.25	0.22	0.533	0.50	0.55	0.0	0.0	0.22	0.195	NR
6:40pm	1,150	53	8.0	11,800	0.0	0.0	0.28	0.28	0.581	0.55	0.59	0.0	0.0	0.3	0.25	NR
7:40pm	NM	*72	8.2	NM	0.0	0.0	0.32	0.40	0.665	0.6	0.64	0.0	0.0	0.4	0.2	NR
8:40pm	NM	*68	8.4	NM	0.0	0.0	0.28	0.50	0.624	0.6	0.64	0.0	0.0	0.34	0.2	NR

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

NM - Not measured

NR - No response from instrumentation

Page 4 of 8 July 2011

¹ Vapor Concentrations were measured by an internal ICE unit PID

^{*} Calculated from Anemometer Readings at Influent Hose

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY ROXANA, ILLINOIS March 17, 2011

		ICE Unit	Data			VMI	P-10			VMI	P-29		VMP-30				
Time		SVE Tes	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet	
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	
			water)	,	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	
9:40pm	NM	*70	8.6	NM	NM	NM	0.26	0.54	0.608	0.6	0.6	0.0	0.0	0.3	0.2	NM	
10:40pm	NM	*71	8.7	NM	NM	NM	0.26	0.58	0.628	0.6	0.6	0.0	0.0	0.32	0.2	NM	
11:40pm	NM	*72	8.8	NM	NM	NM	0.26	0.62	0.601	0.6	0.62	0.0	0.0	0.3	0.2	NM	

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

* Calculated from Anemometer Readings at Influent Hose

NM - Not measured

Page 5 of 8 July 2011

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY **ROXANA, ILLINOIS** March 18, 2011

		ICE Unit	Data			VMI	P-10			VMI	P-29			VMI	P-30	
Time		SVE Tes	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of
			water)	/	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)
12:40am	NM	*73	8.8	NM	0.0	0.0	0.25	0.62	0.583	0.6	0.58	0.0	0.0	0.26	0.2	NR
1:40am	NM	*71	9.1	NM	0.0	0.0	0.32	0.48	0.689	0.7	0.70	0.0	0.0	0.38	0.3	NR
2:40am	NM	*69	9.5	NM	0.0	0.0	0.28	0.34	0.722	0.7	0.68	0.0	0.0	0.4	0.3	NR
3:40am	NM	*68	9.7	NM	0.0	0.0	0.28	0.32	0.63	0.6	0.66	0.0	0.0	0.28	0.2	NR
4:40am	NM	*68	9.8	NM	0.0	0.0	0.26	0.30	0.628	0.6	0.64	0.0	0.0	0.28	0.2	NR
5:40am	NM	*70	10.2	NM	0.0	0.0	0.30	0.36	0.712	0.7	0.70	0.0	0.0	0.36	0.3	NR
6:40am	NM	*69	10.3	NM	0.0	0.0	0.28	0.34	0.682	0.6	0.67	0.0	0.0	0.33	0.2	NR
7:40am	1,167	63	10.4	8,100	0.0	0.0	0.26	0.30	0.674	0.6	0.64	0.0	0.0	0.3	0.25	NR
8:40am	1,187	64	10.5	10,700	0.0	0.0	0.25	0.29	0.661	0.6	0.74	0.0	0.0	0.35	0.25	NR
9:40am	1,162	61	10.0	8,500	0.0	0.0	0.31	0.36	0.735	0.6	0.85	0.0	0.0	0.4	0.3	NR
10:40am	1,154	61	10.1	10,000	0.0	0.0	0.32	0.36	0.733	0.7	0.88	0.0	0.0	0.42	0.3	NR
11:40am	1,143	62	10.0	10,300	0.0	0.0	0.22	0.25	0.592	0.7	0.73	0.0	0.0	0.19	0.18	NR
12:40pm	1,120	62	10.8	10,000	0.0	0.0	0.17	0.22	0.684	0.6	0.82	0.0	0.0	0.38	0.4	NR
1:40pm	1,115	62	10.2	9,500	0.0	0.0	0.22	0.26	0.570	0.6	0.70	0.0	0.0	0.105	0.1	NR
2:40pm	1,130	62	10.8	8,100	0.0	0.0	0.28	0.30	0.658	0.7	0.80	0.0	0.0	0.28	0.23	NR
3:40pm	1,124	62	11.0	9,800	0.0	0.0	0.28	0.31	0.681	0.7	0.79	0.0	0.0	0.31	0.2	NR
4:40pm	1,128	62	11.2	9,100	0.0	0.0	0.23	0.27	0.601	0.6	0.75	0.0	0.0	0.22	0.2	NR
5:40pm	1,110	63	10.4	8,200	0.0	0.0	0.27	0.31	0.672	0.7	0.80	0.0	0.0	0.3	0.2	NR
6:40pm	1,106	62	10.5	8,000	0.0	0.0	0.27	0.31	0.652	0.6	0.81	0.0	0.0	0.28	0.2	NR
7:40pm	1,107	62	10.6	7,900	0.0	0.0	0.26	0.31	0.641	0.7	0.80	0.0	0.0	0.27	0.2	NR
8:40pm	1,095	63	10.6	9,300	0.0	0.0	0.25	0.30	0.655	0.7	0.80	0.0	0.0	0.28	0.2	NR
9:40pm	1,088	63	10.7	7,600	0.0	0.0	0.27	0.32	0.684	0.7	0.80	0.0	0.0	0.31	0.2	NR
10:40pm	1,094	63	10.8	7,400	0.0	0.0	0.27	0.32	0.678	0.6	0.80	0.0	0.0	0.31	0.2	NR
11:40pm	1,077	63	10.8	8,600	0.0	0.0	0.26	0.29	0.641	0.6	0.79	0.0	0.0	0.26	0.2	NR

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

NM - Not measured

NR - No response from instrumentation

Page 6 of 8 July2011

Vapor Concentrations were measured by an internal ICE unit PID
 Calculated from Anemometer Readings at Influent Hose

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY **ROXANA, ILLINOIS** March 19, 2011

		ICE Unit	Data			VMF	P-10			VMI	P-29			VMI	P-30	
Time		SVE Te	st Well: SV	E-2	5-5.5 feet	10-10.5 feet	20-20.5 feet	30-30.5 feet	11 feet	19 feet	28 feet	41 feet	10.5 feet	18 feet	27.5 feet	41 feet
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of
			water)	,	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)
12:40am	1,079	63	10.9	6,300	NR	NR	0.26	0.30	0.67	0.7	0.80	NR	NR	0.29	0.2	NR
1:40am	1,075	63	10.9	7,800	NR	NR	0.26	0.32	0.667	0.7	0.80	NR	NR	0.29	0.2	NR
2:40am	1,077	64	11.0	8,700	NR	NR	0.27	0.33	0.701	0.7	0.81	NR	NR	0.31	0.2	NR
3:40am	1,066	64	10.9	6,900	NR	NR	0.24	0.29	0.648	0.6	0.79	NR	NR	0.26	0.2	NR
4:40am	1,058	64	11.0	8,000	NR	NR	0.26	0.32	0.666	0.6	0.80	NR	NR	0.28	0.2	NR
5:40am	1,050	64	11.2	6,700	NR	NR	0.27	0.31	0.695	0.7	0.80	NR	NR	0.32	0.2	NR
6:40am	1,055	64	11.2	5,800	NR	NR	0.26	0.31	0.672	0.6	0.80	NR	NR	0.29	0.2	NR
7:40am	1,068	65	11.2	7,300	NR	NR	0.30	0.35	0.700	0.7	0.83	NR	NR	0.33	0.2	NR
8:40am	1,070	65	11.1	7,800	NR	NR	0.27	0.32	0.660	0.6	0.79	NR	NR	0.32	0.2	NR
9:40am	1,060	65	11.0	7,900	NR	NR	0.28	0.32	0.670	0.7	0.80	NR	NR	0.28	0.2	NR
10:40am	1,063	65	10.8	6,300	NR	NR	0.27	0.31	0.647	0.7	0.80	NR	NR	0.25	0.2	NR
11:40am	1,055	65	10.6	4,900	NR	NR	0.20	0.23	0.590	0.6	0.74	NR	NR	0.13	0.1	NR
12:40pm	1,058	64	10.4	6,700	NR	NR	0.20	0.22	0.578	0.6	0.72	NR	NR	0.14	0.1	NR
1:40pm	1,045	64	10.4	9,500	NR	NR	0.24	0.25	0.590	0.6	0.75	NR	NR	0.16	0.1	NR
2:40pm	1,041	64	10.4	8,100	NR	NR	0.24	0.27	0.587	0.6	0.70	NR	NR	0.17	0.1	NR
3:40pm	1,037	64	10.4	7,400	NR	NR	0.25	0.29	0.651	0.7	0.81	NR	NR	0.21	0.175	NR
4:40pm	1,042	64	10.5	6,700	NR	NR	0.25	0.30	0.670	0.7	0.79	NR	NR	0.25	0.2	NR
5:40pm	1,036	64	10.7	6,700	NR	NR	0.24	0.28	0.608	0.6	0.77	NR	NR	0.2	0.2	NR
6:40pm	1,038	64	10.8	8,900	NR	NR	0.19	0.23	0.568	0.5	0.72	NR	NR	0.11	0.1	NR
7:40pm	1,030	64	11.0	7,100	NR	NR	0.30	0.36	0.790	0.8	0.89	NR	NR	0.42	0.3	NR
8:40pm	1,034	64	11.0	7,600	NR	NR	0.24	0.28	1.125	0.8	0.80	NR	NR	0.32	0.3	NR
9:40pm	1,026	64	11.1	6,900	NR	NR	0.28	0.31	1.454	0.7	0.80	NR	NR	0.28	0.1	NR
10:40pm	1,035	64	11.0	6,100	NR	NR	0.28	0.14	1.552	0.5	0.62	NR	NR	0.0	0.0	NR
11:40pm	1,025	64	11.3	8,100	NR	NR	0.29	0.39	1.534	0.8	0.88	NR	NR	0.31	0.3	NR

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID NR - No response from instrumentation

Page 7 of 8 July 2011

TABLE 1 SVE PILOT TEST FIELD DATA - PUBLIC WORKS FACILITY ROXANA, ILLINOIS March 20, 2011

ICE Unit Data					VMP-10				VMP-29				VMP-30			
Time		SVE Tes	st Well: SV	E-2	5-5.5 feet	feet 10-10.5 feet 20-20.5 feet 30-30.5 feet			11 feet	11 feet		10.5 feet 18 feet 27.5 feet 41 fee			41 feet	
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of	(inches of
			water)	,	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)	water)
12:40am	1,032	64	11.1	6,700	NR	NR	0.29	0.36	0.994	0.9	0.86	NR	NR	0.3	0.3	NR
1:40am	1,024	64	11.0	6,900	NR	NR	0.26	0.28	0.483	0.6	0.78	NR	NR	0.2	0.18	NR
2:40am	1,028	64	11.1	5,900	NR	NR	0.28	0.36	1.065	0.7	0.84	NR	NR	0.3	0.26	NR
3:40am	1,023	64	11.2	6,400	NR	NR	0.26	0.32	1.161	0.7	0.79	NR	NR	0.2	0.22	NR
4:40am	1,020	64	11.1	4,300	NR	NR	0.26	0.26	0.68	0.7	0.75	NR	NR	0.2	0.16	NR
5:40am	1,016	64	11.1	6,600	NR	NR	0.27	0.34	0.789	0.8	0.84	NR	NR	0.2	0.26	NR
6:40am	1,025	64	11.1	6,600	NR	NR	0.26	0.30	0.733	0.7	0.80	NR	NR	0.2	0.2	NR

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

NR - No response from instrumentation

Page 8 of 8 July2011

TABLE 2 SVE PILOT TEST FIELD DATA - WRR ROXANA, ILLINOIS March 21, 2011

	ICE Unit Data					VMP-26				VMP-27				VMP-28			
Time	Time SVE Test Well: SVE-1		10 feet	20 feet	30 feet	38 feet	10 feet	20 feet	30 feet	38 feet	10 feet	20 feet	30 feet	37 feet			
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure												
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of												
			water)	,	water)												
10:20am	590	4	0.1	150,000	0.0	0.0	0.1	0.0	0.01	0.12	0.04	0.1	0.07	0.07	0.07	0.08	
10:22am	600	5	0.3	150,000	0.0	0.0	0.1	0.0	0.01	0.14	0.05	0.1	0.07	0.06	0.07	0.08	
10:25am	630	6	0.5	150,000	0.0	0.0	0.1	0.0	0.09	0.15	0.06	0.1	0.07	0.07	0.09	0.1	
10:30am	633	6	0.4	120,000	0.0	0.0	0.1	0.0	0.1	0.15	0.06	0.1	0.07	0.08	0.1	0.11	
10:35am	625	5	0.4	123,000	0.0	0.136	0.1	0.0	0.08	0.14	0.05	0.1	0.07	0.08	0.1	0.1	
10:50am	640	5	0.3	130,100	0.0	0.144	0.1	0.0	0.16	0.23	0.14	0.2	0.13	0.13	0.16	0.18	
11:05am	613	4	0.2	184,500	0.171	0.218	0.227	0.187	0.18	0.22	0.14	0.3	0.14	0.14	0.18	0.2	
11:20am	610	3	0.2	243,000	0.125	0.185	0.184	0.165	0.15	0.2	0.13	0.3	0.1	0.11	0.13	0.15	
11:35am	615	3	0.4	239,100	0.05	0.05	0.095	0.098	0.07	0.12	0.05	0.2	0.06	0.05	0.08	0.09	
11:50am	608	3	0.3	240,000	0.17	0.036	0.05	0.038	0.04	0.05	0.0	0.04	0.0	0.0	0.02	0.01	
12:05pm	616	3	0.2	175,500	0.034	0.072	0.068	0.055	0.04	0.08	0.0	0.03	0.01	0.03	0.04	0.04	
12:05pm	614	3	0.2	236,000	0.016	0.066	0.041	0.037	0.04	0.07	0.0	0.02	0.0	0.01	0.03	0.03	
12:20pm	611	3	0.1	229,000	0.037	0.011	0.014	0.025	0.0	0.0	0.0	0.05	0.0	0.0	0.0	0.0	
12:35pm	616	3	0.1	216,000	0.061	0.046	0.056	0.065	0.0	0.0	0.0	0.08	0.0	0.0	0.0	0.0	
1:05pm	614	3	0.0	222,000	0.149	0.16	0.213	0.207	0.0	0.0	0.0	0.21	0.0	0.0	0.0	0.0	
1:20pm	618	3	0.1	231,000	0.232	0.251	0.23	0.289	0.29	0.31	0.3	0.33	0.32	0.3	0.33	0.33	
2:20pm	610	0	0.3	328,000	0.47	0.513	0.516	0.578	0.57	0.58	0.57	0.62	0.52	0.54	0.6	0.6	
3:20pm	605	0	0.0	310,000	0.493	0.547	0.542	0.618	0.6	0.63	0.62	0.67	0.52	0.54	0.61	0.62	
4:20pm	610	0	0.0	336,000	0.537	0.6	0.602	0.686	0.65	0.67	0.67	0.73	0.56	0.58	0.65	0.66	
5:20pm	612	0	0.0	317,000	0.568	0.644	0.651	0.707	0.7	0.73	0.72	0.78	0.62	0.64	0.71	0.72	
6:20pm	630	0	0.1	392,000	0.54	0.608	0.613	0.677	0.66	0.69	0.68	0.74	0.55	0.58	0.66	0.66	

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

Page 1 of 5 July 2011

TABLE 2 SVE PILOT TEST FIELD DATA - WRR ROXANA, ILLINOIS March 22, 2011

	ICE Unit Data					VMP-26			VMP-27				VMP-28			
Time	Time SVE Test Well: SVE-1		10 feet	20 feet	30 feet	38 feet	10 feet	20 feet	30 feet	38 feet	10 feet	20 feet	30 feet	37 feet		
(min.)	Temp	Airflow	Pressure	Vapor Conc.	Pressure											
	(°F)	(cfm)	(inches of	(ppmv) ¹	(inches of											
			water)	,	water)											
9:05am	611	0	0.1	381,900	0.301	0.409	0.396	0.46	>0.25	0.47	0.4	0.1	>0.25	0.36	0.43	>0.25
9:07am	610	0	0.1	455,000	0.245	0.402	0.396	0.453	>0.25	0.48	0.4	0.1	>0.25	0.38	0.43	>0.25
9:10am	614	0	0.1	400,000	0.255	0.43	0.427	0.496	>0.25	0.47	0.3	0.1	>0.25	0.36	0.42	>0.25
9:15am	616	0	0.0	464,000	0.351	0.551	0.526	0.565	>0.25	0.58	0.5	0.6	>0.25	0.44	0.5	>0.25
9:20am	616	0	0.1	450,000	0.275	0.468	0.457	0.509	>0.25	0.54	0.5	1.3	>0.25	0.5	0.54	>0.25
9:35am	618	0	0.0	410,700	0.34	0.594	0.588	0.644	>0.25	0.64	0.5	1.3	>0.25	0.54	0.6	>0.25
9:50am	637	0	0.2	444,000	0.373	0.65	0.645	0.709	>0.25	0.7	0.6	0.8	>0.25	0.63	0.69	>0.25
10:05am	634	0	0.4	474,000	0.424	0.72	0.719	0.776	>0.25	0.77	0.7	0.8	>0.25	0.68	0.77	>0.25
10:20am	634	0	0.4	445,000	0.454	0.763	0.76	0.83	>0.25	0.81	0.8	0.8	>0.25	0.74	0.82	>0.25
10:35am	637	0	0.4	470,000	0.443	0.783	0.785	0.86	>0.25	0.82	0.8	0.9	>0.25	0.75	0.85	>0.25
10:50am	635	0	0.4	483,000	0.4	0.703	0.69	0.754	>0.25	0.74	0.7	0.9	>0.25	0.7	0.77	>0.25
11:05am	635	0	0.2	469,000	0.322	0.579	0.578	0.655	>0.25	0.67	0.6	0.9	>0.25	0.58	0.68	>0.25
11:20am	635	0	0.2	463,000	0.365	0.668	0.668	0.745	>0.25	0.74	0.7	0.8	>0.25	0.63	0.72	>0.25
11:35am	635	0	0.5	478,000	0.531	0.888	0.89	0.955	>0.25	0.92	0.9	1	>0.25	0.84	0.95	>0.25
11:50am	636	0	0.4	494,000	0.392	0.676	0.68	0.769	>0.25	0.77	0.7	0.9	>0.25	0.68	0.79	>0.25
12:05pm	636	0	0.2	471,000	0.298	0.559	0.567	0.649	>0.25	0.64	0.5	0.8	>0.25	0.56	0.67	>0.25
1:05pm	636	0	0.2		0.295	0.557	0.563	0.646	>0.25	0.87	0.8	0.9	>0.25	0.82	0.95	>0.25

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

¹ Vapor Concentrations were measured by an internal ICE unit PID

Page 2 of 5 July 2011

TABLE 2 SVE PILOT TEST FIELD DATA - WRR ROXANA, ILLINOIS March 22, 2011

	ICE Unit Data										
Time		SVE Te	est Well: P-	56							
(min.)	Temp	Airflow	Pressure	Vapor Conc.							
	(°F) (cfm)		(inches of	(ppmv) ¹							
			water)								
2:55pm	610	0.0	1.32	435,000							
2:57pm	644	3.0	8.1	280,000							
3:00pm	668	4.0	9.454	216,000							
3:05pm	693	6.0	79	134,000							
3:10pm	686	5.0	75.4	145,000							
3:25pm	688	4.0	75.1	216,000							
3:40pm	689	3.0	77.9	251,000							
Pilot Te	est Activ	<mark>/ities Paus</mark>	<mark>ed at 3:55 p</mark>	m for DTW							
		Gauging A	ttempts								
4:29pm	616	0.0	4.1	470,000							
4:31pm	649	2.0	13.8	338,000							
4:34pm	684	2.0	24.1	547,000							
4:39pm	669	0.0	14.7	462,000							
4:44pm	676	0.0	12.9	582,000							
4:59pm	675	2.0	15.1	558,000							
5:14pm	654	2.0	14.9	559,000							
5:29pm	655	0.0	14.3	560,000							

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

Page 3 of 5 July 2011

¹ Vapor Concentrations were measured by an internal ICE unit

TABLE 2 SVE PILOT TEST FIELD DATA - WRR ROXANA, ILLINOIS March 23, 2011

		ICE Unit	P60-12D	P60-12	P60-13		
Time		SVE Tes	st Well: P60)-11	P00-12D	P00-12	P00-13
(min.)	Temp (°F)	Airflow (cfm)	Pressure (inches of water)	Vapor Conc. (ppmv) ¹	Pressure (inches of water)	Pressure (inches of water)	Pressure (inches of water)
9:37am	570	0	0.9	200,900			
9:39am	580	0	2.5	226,000			
9:42am	584	7	5.1	60,900			
9:47am	707	6	4.8	171,000			
9:52am	699	7	4.6	191,000			
10:07am	700	8	4.5	154,000			
10:22am	695	8	4.6	152,500			
10:37am	690	8	4.5	137,200			
10:52am	690	8	4.5	149,000			
11:07am	690	8	4.4	145,000			
11:22am	690	8	4.2	147,000			
11:37am	685	8	4.1	147,000	0.16	0.01	
1:52am	685	8	4	152,000	0.12		
12:07pm	680	8	3.9	134,000		0.26	
12:22pm	683	8	3.9	170,000	0.09		
12:37pm	685	7	3.7	165,000		0.0	
1:37pm	650	5	3.1	217,000	0.0		0.0
2:37pm	645	5	3.0	224,000	0.0		0.0
3:37pm	640	3	3.5	379,000			

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

Page 4 of 5 July 2011

¹ Vapor Concentrations were measured by an internal ICE unit PID

TABLE 2 SVE PILOT TEST FIELD DATA - WRR ROXANA, ILLINOIS March 24, 2011

ICE Unit Data										
Time		SVE Tes	st Well: P60)-11						
(min.)	Temp	Airflow	Pressure	Vapor Conc.						
	(°F)	(cfm)	(inches of	(ppmv) ¹						
			water)							
10:55am	531	0	25.3	116,000						
10:57am	533	0	2.1	167,000						
11:00am	528	0	12	142,000						
11:05am	524	0	12.2	72,000						
11:10am	521	0	11.7	65,300						
11:25am	517	0	10.5	139,500						
11:40am	517	0	9.6	173,000						
11:55am	516	0	9	164,000						
12:10pm	514	0	8.8	132,000						
12:25pm	514	0	8.4	194,000						
12:40pm	513	0	15	144,000						
12:55pm	511	0	14.8	84,000						
1:10pm	508	0	14.4	197,000						
1:25pm	509	0	14.3	161,000						
1:40pm	510	0	14.0	200,000						
1:55pm	507	0	13.5	190,000						
2:10pm	508	0	13.1	180,000						
2:25pm	508	0	12.9	157,000						
2:40pm	505	0	12.5	95,000						
2:55pm	505	0	12.4	155,400						
3:10pm	506	0	12.7	189,000						
3:25pm	500	0	12.3	185,000						

Notes:

Indicates Negative Pressure (vacuum)
Indicates Positive Pressure

Page 5 of 5 July 2011

¹ Vapor Concentrations were measured by an internal ICE unit

TABLE 3 **ROXANA PILOT TEST STUDY** INTERNAL COMBUSTION ENGINE EMISSION AIR SAMPLE ANALYTICAL DATA

Sample	Sample	1,2,4-Tr	imethylbe	enzene	1,3,5-Tr	imethylb	enzene	1,3	-Butadie	ne	2,2,4-Tı	rimethylp	entane	2	-Butanon	е	2	-Propano	l	4-E	thyltolue	ne
Sample	Sample Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
10	Date	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals
AE#1	3/16/2011	<0.1	U		<0.1	U		0.093			< 0.096	U		<0.24	J		<0.2	U		<0.1	U	
AE#2	3/17/2011	< 0.042	U	UJ	<0.042	U	UJ	0.077		J	< 0.04	U	UJ	<0.1	J	UJ	<0.084	U	UJ	< 0.042	U	UJ
AE#3	3/18/2011	<0.099	U		<0.099	U		0.13			< 0.094	U		<0.24	U		<0.2	U		<0.099	U	
AE#4	3/19/2011	< 0.04	U		< 0.04	U		0.21			<0.038	U		< 0.097	U		<0.081	U		< 0.04	U	
AE#5	3/21/2011	0.025			<0.013	U		<0.006	U		0.38			0.068			<0.026	U		< 0.013	U	
AE#6	3/22/2011	< 0.042	U		<0.042	U		< 0.019	U		0.5			<0.1	U		<0.084	U		< 0.042	U	
AE#7	3/23/2011	<0.02	U		< 0.02	U		<0.0092	U		1.7			0.1			< 0.041	U		<0.02	U	
AE#8	3/24/2011	0.012			<0.0098	U		0.43			0.05			0.13			0.023			0.024		

Sample	Sample	4-Meth	yl-2-pent	anone		Acetone			Benzene		Bromod	dichlorom	nethane	Carl	bon disul	fide	Chl	lorobenze	ene	Ch	loroethar	ne
Sample	Sample Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
טו	Date	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals
AE#1	3/16/2011	<0.084	U		0.34			4.2			<0.14	U		<0.26	U		< 0.095	U		<0.22	U	
AE#2	3/17/2011	< 0.035	U	UJ	0.26		J	0.51		J	< 0.057	U	UJ	<0.11	U	UJ	< 0.039	U	UJ	<0.09	U	UJ
AE#3	3/18/2011	<0.083	U		0.3			0.23			<0.14	U		<0.25	U		< 0.093	U		<0.21	U	
AE#4	3/19/2011	< 0.034	U		<0.078	U		0.23			<0.055	U		<0.1	U		<0.038	U		<0.086	U	
AE#5	3/21/2011	<0.011	U		<0.026	U		1.9			<0.018	U		< 0.034	U		<0.012	U		<0.028	U	
AE#6	3/22/2011	< 0.035	U		<0.081	U		2.7			< 0.057	U		<0.1	U		< 0.039	U		< 0.09	U	
AE#7	3/23/2011	<0.017	U		<0.04	U		2.3			<0.028	U		< 0.052	U		<0.019	U		<0.044	U	
AE#8	3/24/2011	0.0094			0.69			1.8			<0.013	U		<0.025	U		< 0.0092	U		<0.021	U	

Sample	Sample	С	hloroforn	n	C	yclohexar	пе	Dichloro	difluoron	nethane	Dichloron	nethane (I chloride)	Methylene		Ethanol		Et	hylbenzei	ne		Heptane	
ID	Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
		(mg/m^3)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals
AE#1	3/16/2011	<0.1	U		< 0.071	U		<0.1	U		< 0.072	U		0.23			<0.089	U		<0.084	U	
AE#2	3/17/2011	< 0.042	U	UJ	< 0.029	U	UJ	<0.042	U	UJ	0.031		J	0.11		J	< 0.037	U	UJ	< 0.035	U	UJ
AE#3	3/18/2011	< 0.099	U		< 0.07	U		<0.1	U		< 0.07	U		<0.15	U		<0.088	U		<0.083	U	
AE#4	3/19/2011	< 0.04	U		<0.028	U		< 0.04	U		<0.028	U		0.086			< 0.036	U		< 0.034	U	
AE#5	3/21/2011	<0.013	U		0.04			<0.013	U		<0.0094	U		0.17			0.072			0.065		
AE#6	3/22/2011	< 0.042	U		0.06			<0.042	U		< 0.03	U		0.17			< 0.037	U		0.043		
AE#7	3/23/2011	<0.02	U		0.07			<0.021	U		<0.014	U		0.14			0.05			<0.017	U	
AE#8	3/24/2011	<0.0097	U		0.022			<0.0098	U		<0.0069	U		0.19			0.12			0.045		

July 2011

TABLE 3 **ROXANA PILOT TEST STUDY** INTERNAL COMBUSTION ENGINE EMISSION AIR SAMPLE ANALYTICAL DATA

Sample	Sample		Hexane		Isopropyl	benzene	(Cumene)	n	n,p-Xylen	е	n-Pr	opylbenz	ene		o-Xylenes			Styrene		Tetra	chloroetl	nene
Sample ID	Sample Date	Result (mg/m ³)	Lab Quals	URS Quals	Result (mg/m³)	Lab Quals	URS Quals	Result (mg/m ³)	Lab Quals	URS Quals	Result (mg/m ³)	Lab Quals	URS Quals	Result (mg/m ³)	Lab Quals	URS Quals	Result (mg/m ³)	Lab Quals	URS Quals	Result (mg/m ³)	Lab Quals	URS Quals
AE#1	3/16/2011	0.076			0.32			<0.089	U		<0.1	U		< 0.089	U		0.094			<0.14	U	
AE#2	3/17/2011	< 0.03	U	UJ	0.13		J	< 0.037	U	UJ	< 0.042	U	UJ	< 0.037	U	UJ	0.047		J	0.093		J
AE#3	3/18/2011	< 0.071	U		< 0.099	U		<0.088	U		<0.099	U		<0.088	U		<0.086	U		<0.14	U	
AE#4	3/19/2011	<0.029	U		< 0.04	U		< 0.036	U		<0.04	U		< 0.036	U		< 0.035	U		<0.056	U	
AE#5	3/21/2011	0.54			0.038			0.11			< 0.013	U		0.033			0.012			<0.018	U	
AE#6	3/22/2011	0.45			< 0.042	U		0.054			< 0.042	U		< 0.037	U		< 0.036	U		<0.058	U	
AE#7	3/23/2011	0.24			< 0.02	U		0.069			< 0.02	U		0.027			<0.018	U		<0.028	U	
AE#8	3/24/2011	0.1			<0.0098	U		0.15			<0.0098	U		0.045			0.051			<0.013	U	

Sample	Sample	Tetr	rahydrofu	ıran		Toluene		Trichlo	rofluoron	nethane
ID	Sample Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
ID	Date	(mg/m^3)	Quals	Quals	(mg/m ³)	Quals	Quals	(mg/m ³)	Quals	Quals
AE#1	3/16/2011	< 0.061	U		0.25			<0.12	U	
AE#2	3/17/2011	< 0.025	U	UJ	0.13		J	<0.048	U	UJ
AE#3	3/18/2011	< 0.06	U		0.11			<0.11	U	
AE#4	3/19/2011	<0.024	U		0.052			<0.046	U	
AE#5	3/21/2011	0.0089			0.48			<0.015	U	
AE#6	3/22/2011	< 0.025	U		0.37			<0.048	U	
AE#7	3/23/2011	0.014			0.55			<0.023	U	
AE#8	3/24/2011	0.21			0.63			<0.011	U	

July 2011

TABLE 4 **SOIL SAMPLE ANALYSIS RESULTS** ROXANA, IL

Location	Depth	Sample	1,2 Trimethy	2,4- Ibenz	ene	1,3 Trimethy	3,5- Ibenz	ene	4-Chlore	otolue	ene	Ace	tone		Ben	zene	
	•	Date	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)	Lab Qual	URS Qual	Result	Lab Qual	URS Qual
GP-14	12 - 13 ft	3/14/2011	< 0.01	U		< 0.01	U		< 0.01	U		0.0643		U	0.0025		
GP-14 GP-14	30.5 - 31.5 ft	3/14/2011	< 0.01	U		< 0.01	U		< 0.01	U		0.0043		U	0.0023		
GP-14 GP-14	39 - 40 ft	3/14/2011	0.12	J		0.0392	J		< 0.0003	U		< 0.7	U	U	0.0017		
GP-14 GP-15	11 - 12 ft	3/14/2011	< 0.12	U		< 0.28	U		< 0.7	U		< 0.7	U		< 0.028	U	
GP-15	19 - 20 ft	3/14/2011	3.17	J		1.76	J		< 13	U		< 13	U		< 1.3	U	
GP-15	27 - 28 ft	3/14/2011	1.4	J		0.401	J		< 3.6	U		< 3.6	U		< 0.36	U	
GP-15	27 - 28 ft	3/14/2011	0.861	J		0.401	J		< 1.5	U		< 1.5	U		< 0.36	U	
GP-15	37 - 38 ft	3/14/2011	0.527	J		0.271	J		< 2.8	U		< 2.8	U		< 0.13	U	
GP-15	37 - 38 ft	3/14/2011	0.327	J		0.0506	J		< 0.46	U		< 0.46	U		< 0.28	U	
GP-16	11 - 12 ft	3/17/2011	< 0.63	U		< 0.63	U		< 0.40	Ü		< 0.40	U		< 0.040	U	
GP-16	27 - 28 ft	3/16/2011	< 2	U		0.138	J		< 2	Ü		< 2	U		< 0.2	Ü	
GP-16	34 - 35 ft	3/16/2011	0.447	J		0.642	J		< 1.3	Ü		< 1.3	Ü		< 0.13	Ü	
GP-16	39 - 40 ft	3/16/2011	0.375	J		0.042	J		< 0.73	Ü		< 0.73	Ü		< 0.13	Ü	
GP-17	12 - 13 ft	3/15/2011	< 6.1	Ü		< 6.1	Ü		< 6.1	Ü		< 6.1	Ü		< 0.61	Ü	
GP-17	23 - 24 ft	3/15/2011	< 2.6	U		0.892	J		< 2.6	Ü		< 2.6	Ü		< 0.26	Ü	
GP-17	39 - 40 ft	3/15/2011	3.74	Ŭ		0.901	J		< 1.9	Ü		< 1.9	U		0.695	Ŭ	
GP-18	12 - 13 ft	3/16/2011	< 0.0052	U		< 0.0052	Ü		< 0.0052	Ü		< 0.0052	Ü		0.00044	J	
GP-18	29.5 - 30.5 ft	3/16/2011	< 2	Ü		< 2	Ü		< 2	Ü		< 2	Ü		< 0.2	Ü	
GP-18	39 - 40 ft	3/16/2011	0.0496	J		0.0457	J		< 0.64	Ü		< 0.64	Ü		2.42		
GP-19	12 - 13 ft	3/17/2011	< 0.0065	Ü		< 0.0065	Ü		< 0.0065	Ü		< 0.0065	Ü		0.0303		
GP-19	27 - 28 ft	3/17/2011	< 0.0065	Ü		< 0.0065	Ū		< 0.0065	Ū		0.0183	Ť	U	0.0856		
GP-19	39 - 40 ft	3/17/2011	< 2.2	Ü		< 2.2	Ü		< 2.2	Ū		< 2.2	U	_	15.6		
SVE-1	11 - 12 ft	3/4/2011	0.0522			0.0088			< 0.0071	Ū		< 0.0071	Ū		0.0114		
SVE-1	27 - 28 ft	3/4/2011	8.6			1.69			< 0.65	Ū		< 0.65	Ū		< 0.065	U	
SVE-1	53 - 54 ft	3/4/2011	64.1			16.3			< 3.1	Ū		< 3.1	Ū		2.8		
SVE-1	53 - 54 ft	3/4/2011	40.6			10.2			< 3	U		< 3	U		1.78		
SVE-2	11 - 12 ft	3/2/2011	< 0.0061	U		< 0.0061	U		0.00048	J		0.022		U	0.0016		
SVE-2	33 - 34 ft	3/2/2011	< 33	U		< 33	U		< 33	U		< 33	U		553		
SVE-2	43 - 44 ft	3/2/2011	< 23	U		< 23	U		< 23	U		< 23	U		1150		
VMP-26	11 - 12 ft	3/7/2011	37.8			6.82			< 1.2	U		< 1.2	U		< 0.12	U	
VMP-26	31 - 32 ft	3/7/2011	119			30.1			< 5.6	U		< 5.6	U		1.98		

Page 1 of 5 July 2011

TABLE 4 SOIL SAMPLE ANALYSIS RESULTS ROXANA, IL

							ZAAN										
Location	Depth	Sample	Bromor	netha	ne	Carbon	disulf	ide	Cyme Isopropy			Dichloro (Methylen			Ethylb	enzer	ne
	-	Date	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)	Lab Qual	URS Qual	Result (mg/kg)		URS Qual	Result (mg/kg)	Lab Qual	URS Qual
GP-14	12 - 13 ft	3/14/2011	< 0.004	U		< 0.01	U		< 0.01	U		< 0.004	U		0.0078		
GP-14	30.5 - 31.5 ft	3/14/2011	< 0.0025	U		< 0.0063	U		< 0.0063	U		< 0.0025	U		0.0068		
GP-14	39 - 40 ft	3/14/2011	< 0.28	U		< 0.7	U		< 0.7	U		0.191	J	U	0.254	J	
GP-15	11 - 12 ft	3/14/2011	< 0.11	U		< 0.28	U		< 0.28	U		0.102	J	U	< 0.11	U	
GP-15	19 - 20 ft	3/14/2011	< 5.2	U		< 13	U		2.72	J		3.97	J	U	< 5.2	U	
GP-15	27 - 28 ft	3/14/2011	< 1.5	J		< 3.6	U		0.991	J		1.22	J	U	0.376	J	
GP-15	27 - 28 ft	3/14/2011	< 0.6	U		< 1.5	U		0.718	J		< 0.6	U		0.0865	J	
GP-15	37 - 38 ft	3/14/2011	< 1.1	U		< 2.8	U		0.211	J		< 1.1	U		0.266	J	
GP-15	37 - 38 ft	3/14/2011	< 0.18	U		< 0.46	U		0.0795	J		< 0.18	U		< 0.18	U	
GP-16	11 - 12 ft	3/17/2011	< 0.25	U		< 0.63	U		< 0.63	U		0.238	J	U	< 0.25	U	
GP-16	27 - 28 ft	3/16/2011	< 0.81	U		< 2	U		< 2	U		< 0.81	U		< 0.81	U	
GP-16	34 - 35 ft	3/16/2011	< 0.51	U		< 1.3	U		< 1.3	U		0.496	J	U	0.176	J	
GP-16	39 - 40 ft	3/16/2011	< 0.29	U		< 0.73	U		< 0.73	U		0.334		U	0.0565	J	
GP-17	12 - 13 ft	3/15/2011	< 2.4	U		< 6.1	U		< 6.1	U		< 2.4	U		< 2.4	U	
GP-17	23 - 24 ft	3/15/2011	< 1	U		< 2.6	U		0.581	J		< 1	U		< 1	U	
GP-17	39 - 40 ft	3/15/2011	< 0.76	J		< 1.9	U		0.252	J		< 0.76	U		3.53		
GP-18	12 - 13 ft	3/16/2011	< 0.0021	U		< 0.0052	U		< 0.0052	U		< 0.0021	U		< 0.0021	U	
GP-18	29.5 - 30.5 ft	3/16/2011	< 0.78	U		< 2	U		0.68	J		0.49	J	U	< 0.78	U	
GP-18	39 - 40 ft	3/16/2011	< 0.26	U		< 0.64	U		< 0.64	U		0.215	J	U	0.13	J	
GP-19	12 - 13 ft	3/17/2011	0.0112			0.0025	J		< 0.0065	U		< 0.0026	U		0.0008	J	
GP-19	27 - 28 ft	3/17/2011	< 0.0026	J		< 0.0065	U		< 0.0065	U		< 0.0026	U		0.0031		
GP-19	39 - 40 ft	3/17/2011	< 0.89	J		< 2.2	U		< 2.2	U		0.796	J	U	< 0.89	U	
SVE-1	11 - 12 ft	3/4/2011	< 0.0029	J		0.002	J		< 0.0071	U		< 0.0029	U		0.0186		
SVE-1	27 - 28 ft	3/4/2011	< 0.26	J		< 0.65	U		0.227	J		0.295	В	U	1.48		
SVE-1	53 - 54 ft	3/4/2011	< 1.2	U		< 3.1	U		0.994	J		1.25	В	U	54.5		J/J
SVE-1	53 - 54 ft	3/4/2011	< 1.2	U		< 3	U		0.644	J		1.26	В		31.5		
SVE-2	11 - 12 ft	3/2/2011	< 0.0024	U		< 0.0061	U		< 0.0061	U		< 0.0024	U		0.0033		
SVE-2	33 - 34 ft	3/2/2011	< 13	U		< 33	U		< 33	U		< 13	U		< 13	U	
SVE-2	43 - 44 ft	3/2/2011	< 9.2	U		< 23	U		< 23	U		< 9.2	U		< 9.2	U	
VMP-26	11 - 12 ft	3/7/2011	< 0.47	U		< 1.2	U		0.727	J		0.552	В	U	3.71		
VMP-26	31 - 32 ft	3/7/2011	< 2.2	U		< 5.6	U		1.38	J		2.55	В	U	61.3		

Page 2 of 5 July 2011

TABLE 4 **SOIL SAMPLE ANALYSIS RESULTS** ROXANA, IL

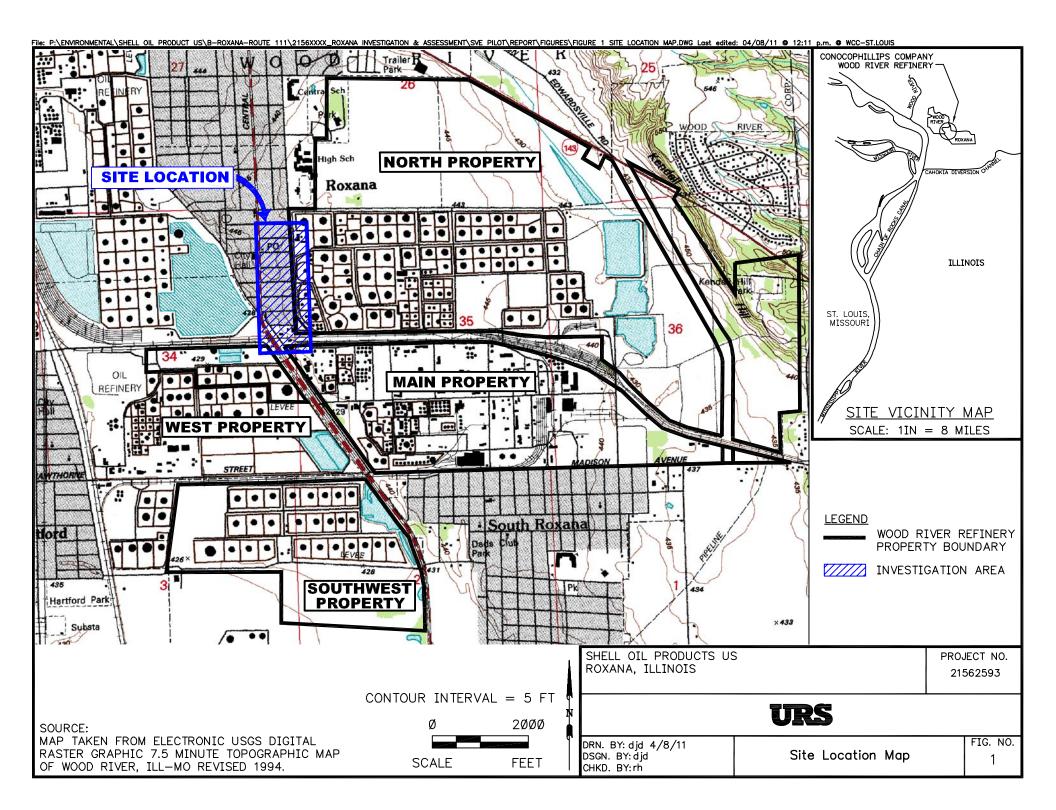
Location	Depth	Sample	Isopropy (Cun	lbenz nene)	ene	m,p-)	(ylene)	Methyl t Ether (_	n-Butyl	benze	ne	n-Propy	lbenz	ene
	•	Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
			(mg/kg)		Qual	(mg/kg)		Qual	(mg/kg)		Qual	(mg/kg)			(mg/kg)	Qual	Qual
GP-14	12 - 13 ft	3/14/2011	< 0.01	U		0.0016	J		< 0.004	U		< 0.01	U		< 0.01	U	
GP-14	30.5 - 31.5 ft	3/14/2011	< 0.0063	U		0.0013	J		< 0.0025	U		< 0.0063	U		< 0.0063	U	
GP-14	39 - 40 ft	3/14/2011	< 0.7	U		0.55			< 0.28	U		< 0.7	U		< 0.7	U	
GP-15	11 - 12 ft	3/14/2011	< 0.28	U		< 0.11	U		< 0.11	U		< 0.28	U		< 0.28	U	
GP-15	19 - 20 ft	3/14/2011	8.54	J	J	< 5.2	U		< 5.2	U		10.4	J		8.94	J	
GP-15	27 - 28 ft	3/14/2011	0.617	J	J	0.771	J		< 1.5	U		< 3.6	U		0.631	J	
GP-15	27 - 28 ft	3/14/2011	0.277	J		0.226	J		< 0.6	U		< 1.5	U		0.328	J	
GP-15	37 - 38 ft	3/14/2011	0.15	J	J	0.248	J		< 1.1	U		1.02	J		0.168	J	
GP-15	37 - 38 ft	3/14/2011	< 0.46	U		< 0.18	U		< 0.18	U		< 0.46	U		0.0302	J	
GP-16	11 - 12 ft	3/17/2011	< 0.63	U		< 0.25	U		< 0.25	U		< 0.63	U		< 0.63	U	
GP-16	27 - 28 ft	3/16/2011	1	J	J	< 0.81	U		< 0.81	U		2.17			3.11		
GP-16	34 - 35 ft	3/16/2011	0.507	J	J	0.0938	J		< 0.51	U		0.517	J		1.47		
GP-16	39 - 40 ft	3/16/2011	0.0854	J	J	0.0851	J		< 0.29	U		< 0.73	U		0.27	J	
GP-17	12 - 13 ft	3/15/2011	3.16	J	J	< 2.4	U		< 2.4	U		3.51	J		2.94	J	
GP-17	23 - 24 ft	3/15/2011	4		J	0.58	J		< 1	U		3.01			4.05		
GP-17	39 - 40 ft	3/15/2011	0.586	J	J	4.73			< 0.76	U		0.648	J		0.756	J	
GP-18	12 - 13 ft	3/16/2011	< 0.0052	U		< 0.0021	U		< 0.0021	U		< 0.0052	U		< 0.0052	U	
GP-18	29.5 - 30.5 ft	3/16/2011	< 2	U		< 0.78	U		< 0.78	U		2.1			< 2	U	
GP-18	39 - 40 ft	3/16/2011	0.0801	J	J	< 0.26	U		< 0.26	U		0.274	J		0.16	J	
GP-19	12 - 13 ft	3/17/2011	< 0.0065	U		0.0017	J		< 0.0026	U		< 0.0065	U		0.00087	J	
GP-19	27 - 28 ft	3/17/2011	0.0016	J		0.00088	J		< 0.0026	U		0.012			0.0017	J	
GP-19	39 - 40 ft	3/17/2011	0.206	J	J	< 0.89	U		< 0.89	U		0.807	J		0.145	J	
SVE-1	11 - 12 ft	3/4/2011	0.0068	J		0.0297			< 0.0029	U		0.0206			0.0165		
SVE-1	27 - 28 ft	3/4/2011	0.532	J		3.2			< 0.26	U		< 0.65	U		1.77		
SVE-1	53 - 54 ft	3/4/2011	5.55			126		J/J	< 1.2	U		< 3.1	U		13.7		
SVE-1	53 - 54 ft	3/4/2011	3.03			74.1			< 1.2	U		< 3	U		8.79		
SVE-2	11 - 12 ft	3/2/2011	< 0.0061	U		< 0.0024	U		< 0.0024	U		< 0.0061	U		< 0.0061	U	
SVE-2	33 - 34 ft	3/2/2011	< 33	U		< 13	U		< 13	U		< 33	U		< 33	U	
SVE-2	43 - 44 ft	3/2/2011	< 23	U		< 9.2	U		< 9.2	U		< 23	U		< 23	U	
VMP-26	11 - 12 ft	3/7/2011	2.05			9.88			< 0.47	U		< 1.2	U		5.63		
VMP-26	31 - 32 ft	3/7/2011	8.27			166			< 2.2	U		< 5.6	U		24.3		

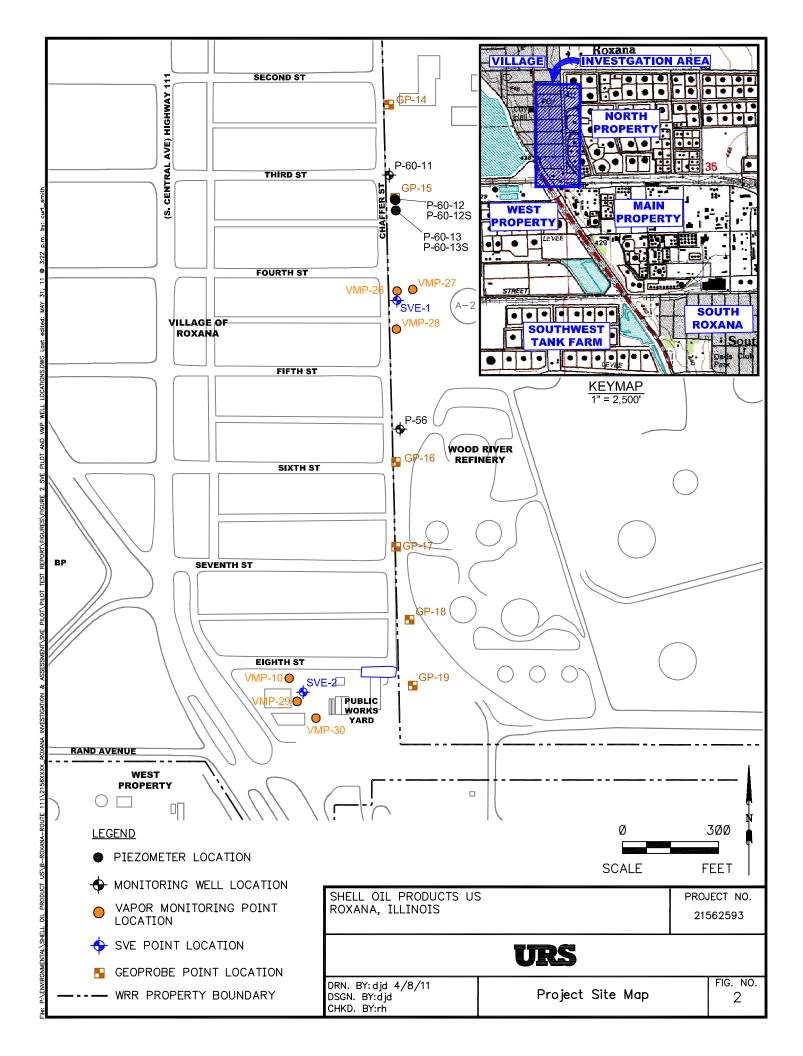
Page 3 of 5 July 2011

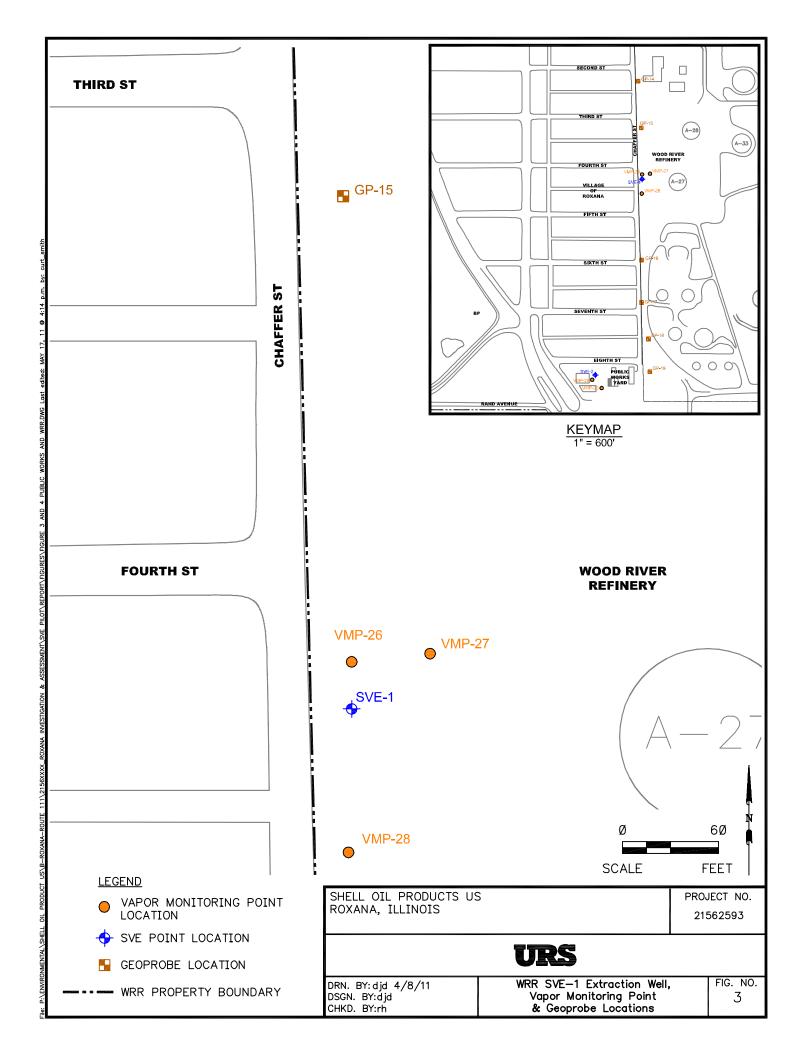
TABLE 4 **SOIL SAMPLE ANALYSIS RESULTS** ROXANA, IL

Location	Depth	Sample	о-Ху	lenes		sec-Buty	lbenz	ene	tert-Buty	lbenz	ene	Tolu	uene		TPH (>0	C28-C	40)
		Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
			(mg/kg)	Qual	Qual	(mg/kg)		Qual	(mg/kg)		Qual	(mg/kg)		Qual	(mg/kg)	Qual	Qual
GP-14	12 - 13 ft	3/14/2011	< 0.004	U		< 0.01	U		< 0.01	U		0.0076	J		< 18	U	
GP-14	30.5 - 31.5 ft	3/14/2011	< 0.0025	U		< 0.0063	U		< 0.0063	U		0.0065			< 18	U	
GP-14	39 - 40 ft	3/14/2011	0.201	J		< 0.7	U		< 0.7	U		0.0704	J		20.7	J	
GP-15	11 - 12 ft	3/14/2011	< 0.11	U		< 0.28	U		< 0.28	U		< 0.28	U		16.5	J	
GP-15	19 - 20 ft	3/14/2011	< 5.2	U		6.52	J		< 13	U		< 13	U		< 93	U	
GP-15	27 - 28 ft	3/14/2011	0.209	J		0.639	J		< 3.6	U		< 3.6	U		< 86	U	
GP-15	27 - 28 ft	3/14/2011	0.0788	J		0.424	J		< 1.5	U		< 1.5	U		< 93	U	
GP-15	37 - 38 ft	3/14/2011	< 1.1	U		< 2.8	U		< 2.8	U		< 2.8	U		< 17	U	
GP-15	37 - 38 ft	3/14/2011	< 0.18	U		0.0454	J		< 0.46	U		< 0.46	U		< 82	U	
GP-16	11 - 12 ft	3/17/2011	< 0.25	U		< 0.63	U		< 0.63	U		< 0.63	U		34.6		
GP-16	27 - 28 ft	3/16/2011	< 0.81	U		0.48	J		< 2	U		< 2	U		23.2		
GP-16	34 - 35 ft	3/16/2011	< 0.51	U		0.124	J		< 1.3	U		< 1.3	U		13.8	J	
GP-16	39 - 40 ft	3/16/2011	< 0.29	U		< 0.73	U		< 0.73	U		< 0.73	U		< 17	U	
GP-17	12 - 13 ft	3/15/2011	< 2.4	U		1.96	J		< 6.1	U		< 6.1	U		2300		
GP-17	23 - 24 ft	3/15/2011	< 1	U		2.97			< 2.6	U		< 2.6	U		654		
GP-17	39 - 40 ft	3/15/2011	0.698	J		0.207	J		< 1.9	U		< 1.9	U		36.6		
GP-18	12 - 13 ft	3/16/2011	< 0.0021	U		< 0.0052	U		< 0.0052	U		< 0.0052	U		< 20	U	
GP-18	29.5 - 30.5 ft	3/16/2011	< 0.78	U		0.899	J		< 2	U		< 2	U		86.8	J	
GP-18	39 - 40 ft	3/16/2011	< 0.26	U		0.0976	J		0.0368	J		< 0.64	U		< 18	U	
GP-19	12 - 13 ft	3/17/2011	< 0.0026	U		0.0018	J		< 0.0065	U		0.0036	J		< 19	U	
GP-19	27 - 28 ft	3/17/2011	< 0.0026	U		0.0025	J		0.0018	J		0.0029	J		< 17	U	
GP-19	39 - 40 ft	3/17/2011	< 0.89	U		0.377	J		0.339	J		< 2.2	U		< 17	U	
SVE-1	11 - 12 ft	3/4/2011	0.0016	J		0.0033	J		< 0.0071	U		0.008			< 19	U	
SVE-1	27 - 28 ft	3/4/2011	0.287			0.351	J		< 0.65	U		< 0.65	U		< 17	U	
SVE-1	53 - 54 ft	3/4/2011	50.7			1.58	J		0.321	J		16.3		J/J	< 18	U	
SVE-1	53 - 54 ft	3/4/2011	30.5			0.992	J		0.152	J		9.37			< 18	U	
SVE-2	11 - 12 ft	3/2/2011	< 0.0024	U		< 0.0061	U		< 0.0061	U		0.0044	J		< 17	U	
SVE-2	33 - 34 ft	3/2/2011	< 13	U		< 33	U		< 33	U		< 33	U		68.4		
SVE-2	43 - 44 ft	3/2/2011	< 9.2	U		< 23	U		< 23	U		< 23	U		27.4		
VMP-26	11 - 12 ft	3/7/2011	< 0.47	U		1.25			< 1.2	U		< 1.2	U		< 18	U	
VMP-26	31 - 32 ft	3/7/2011	54.7			2.47	J		< 5.6	U		6.78			< 19	U	

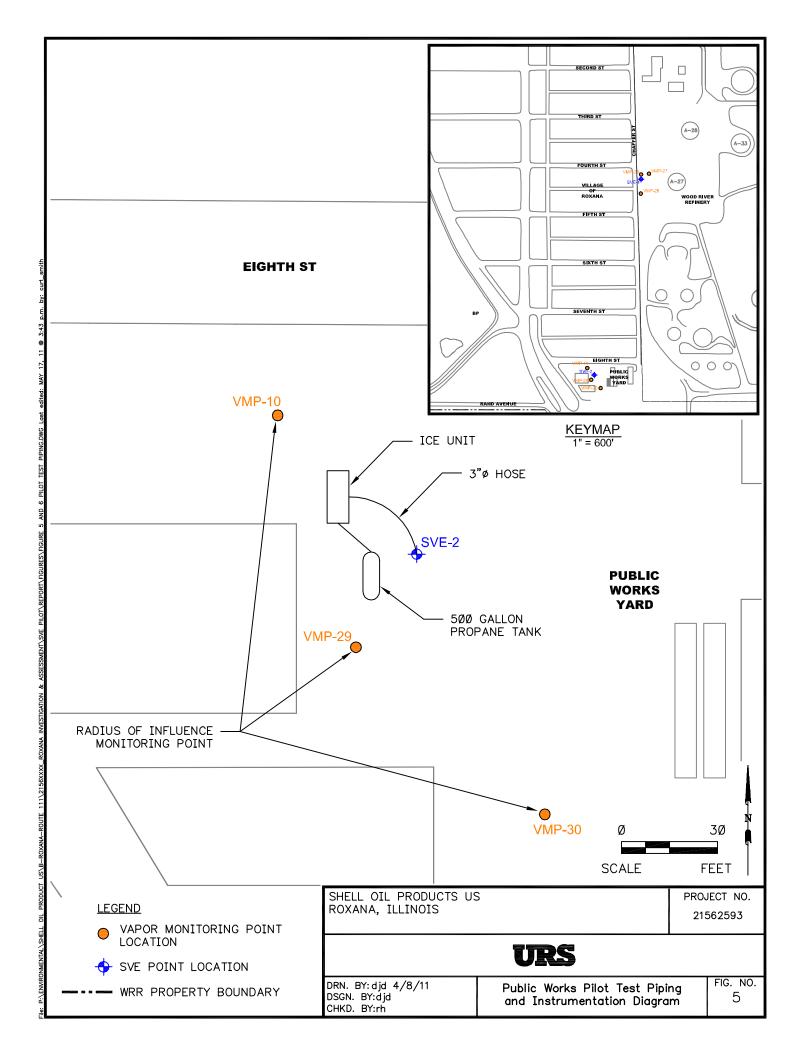
Page 4 of 5 July 2011

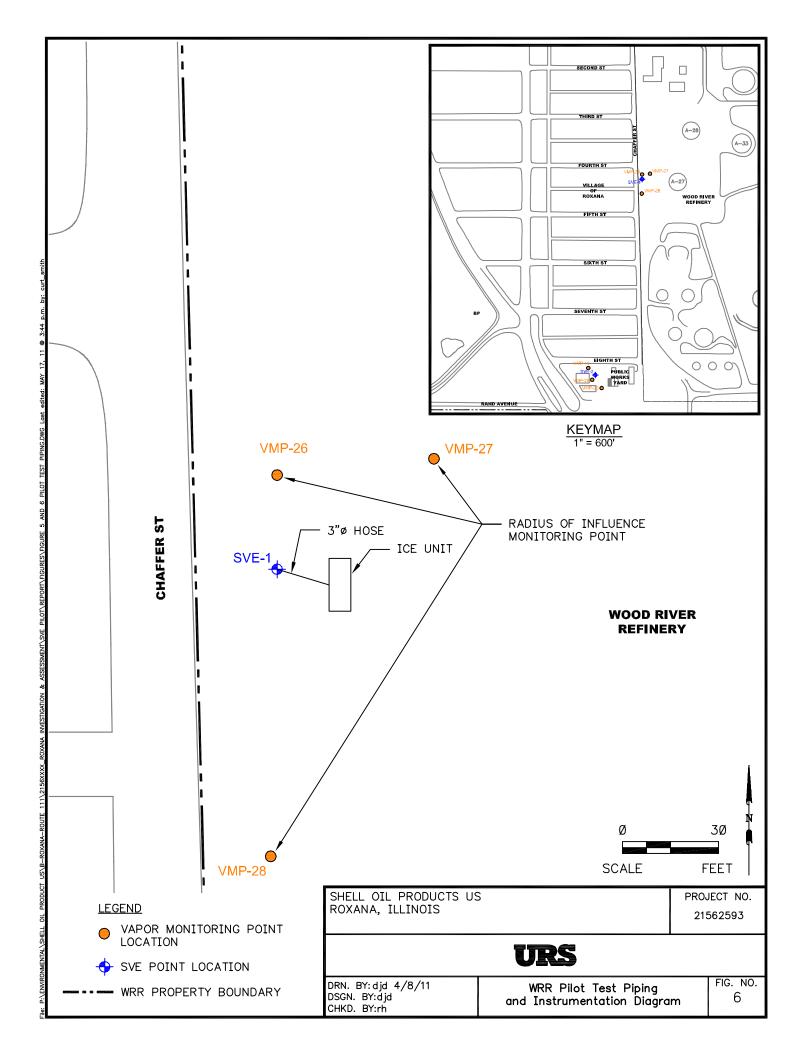

TABLE 4 SOIL SAMPLE ANALYSIS RESULTS ROXANA, IL


					_						
Location	Depth	Sample	ТРН (С	10-C2	8)	TPH-GR	0 (VC	DA)	Xylene	s (tota	al)
	2.0	Date	Result	Lab	URS	Result	Lab	URS	Result	Lab	URS
			(mg/kg)	Qual	Qual	(mg/kg)	Qual	Qual	(mg/kg)	Qual	Qual
GP-14	12 - 13 ft	3/14/2011	< 18	U		< 26	U		0.0016	J	
GP-14	30.5 - 31.5 ft	3/14/2011	< 18	U		< 23	U		0.0013	J	
GP-14	39 - 40 ft	3/14/2011	< 22	U		20.1			0.751		
GP-15	11 - 12 ft	3/14/2011	22.1			< 7.1	U		< 0.11	U	
GP-15	19 - 20 ft	3/14/2011	4830			2520			< 5.2	U	
GP-15	27 - 28 ft	3/14/2011	5400			728			0.98	J	
GP-15	27 - 28 ft	3/14/2011	4420			109		J/J	0.305	J	
GP-15	37 - 38 ft	3/14/2011	755		J/J	341		J/J	0.248	J	
GP-15	37 - 38 ft	3/14/2011	1730			22.8			< 0.18	U	
GP-16	11 - 12 ft	3/17/2011	60.9			< 13	U		< 0.25	U	
GP-16	27 - 28 ft	3/16/2011	76.8			298		J	< 0.81	U	
GP-16	34 - 35 ft	3/16/2011	16.7	J		145		J	0.0938	J	
GP-16	39 - 40 ft	3/16/2011	< 17	U		36.9		J	0.0851	J	
GP-17	12 - 13 ft	3/15/2011	8070			3910			< 2.4	U	
GP-17	23 - 24 ft	3/15/2011	2070			914			0.58	J	
GP-17	39 - 40 ft	3/15/2011	48.9			296			5.42		
GP-18	12 - 13 ft	3/16/2011	< 20	U		< 12	U		< 0.0021	U	
GP-18	29.5 - 30.5 ft	3/16/2011	2150			176			< 0.78	U	
GP-18	39 - 40 ft	3/16/2011	25.2			40			0.0413	J	
GP-19	12 - 13 ft	3/17/2011	< 19	U		< 7.1	U		0.0017	J	
GP-19	27 - 28 ft	3/17/2011	< 17	U		< 16	U		0.00088	J	
GP-19	39 - 40 ft	3/17/2011	< 17	U		55.6			< 0.89	U	
SVE-1	11 - 12 ft	3/4/2011	< 19	U		< 15	U		0.0312		
SVE-1	27 - 28 ft	3/4/2011	72.8			150			3.48		
SVE-1	53 - 54 ft	3/4/2011	35.5			1690		J/J	177		J/J
SVE-1	53 - 54 ft	3/4/2011	55.6			801			105		
SVE-2	11 - 12 ft	3/2/2011	< 17	U		< 15	U		< 0.0024	U	
SVE-2	33 - 34 ft	3/2/2011	24.6			36.9			< 13	U	
SVE-2	43 - 44 ft	3/2/2011	42			1390			< 9.2	U	
VMP-26	11 - 12 ft	3/7/2011	312			439			9.88		
VMP-26	31 - 32 ft	3/7/2011	492			1410			220		


Page 5 of 5 July 2011

FIGURES

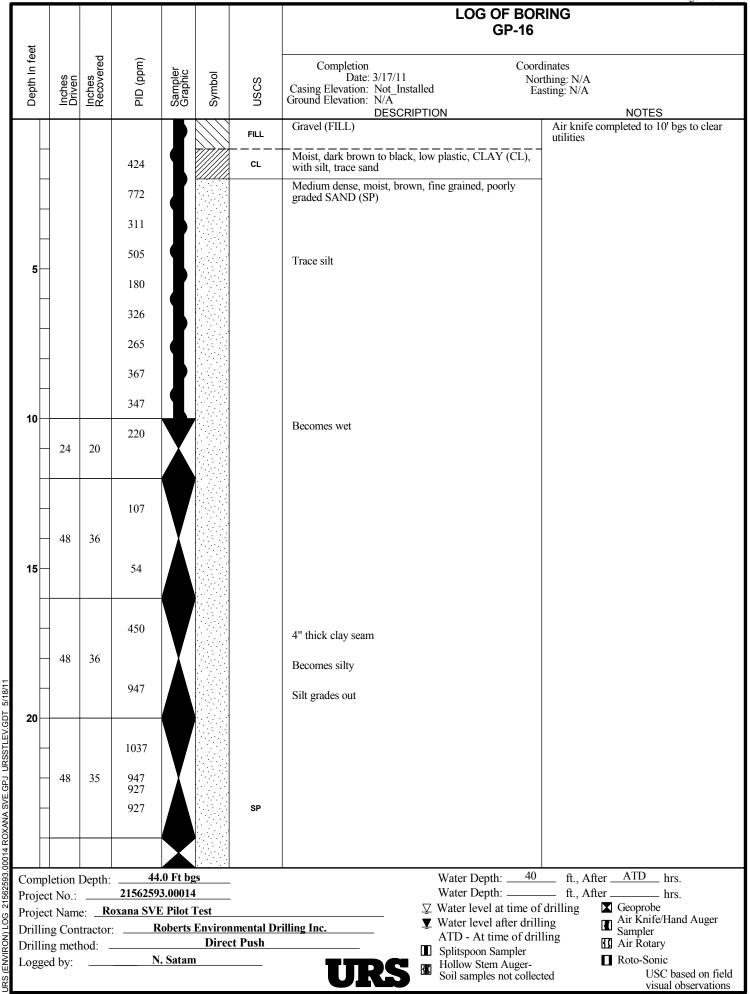




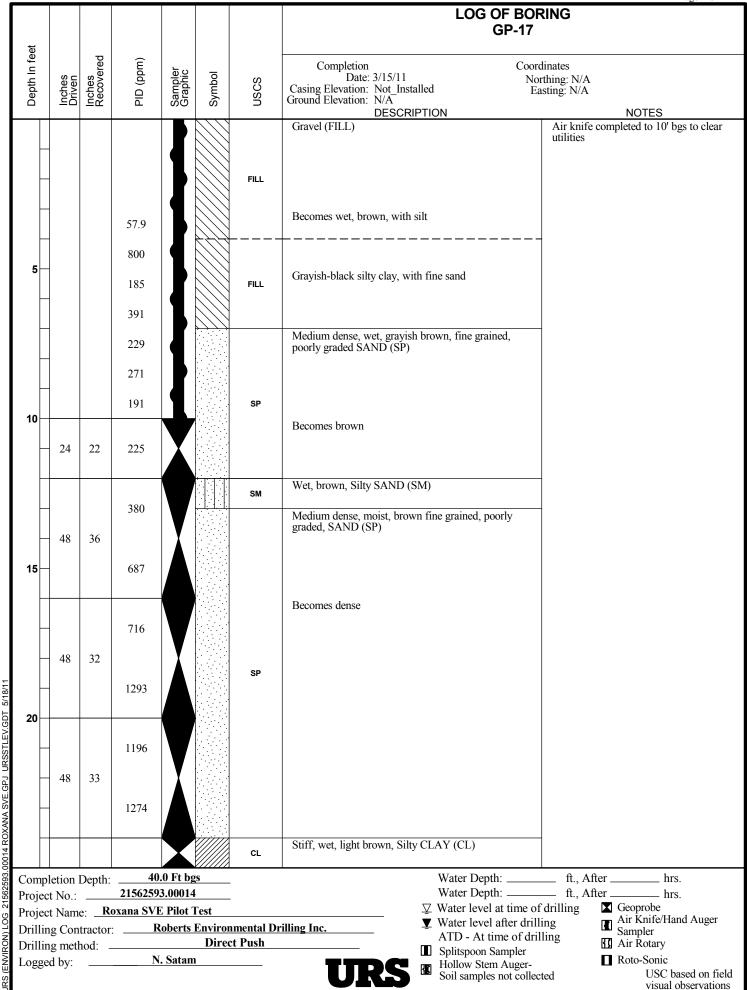
APPENDIXA

SVE Well and VMP Boring Logs/Well Construction Diagrams

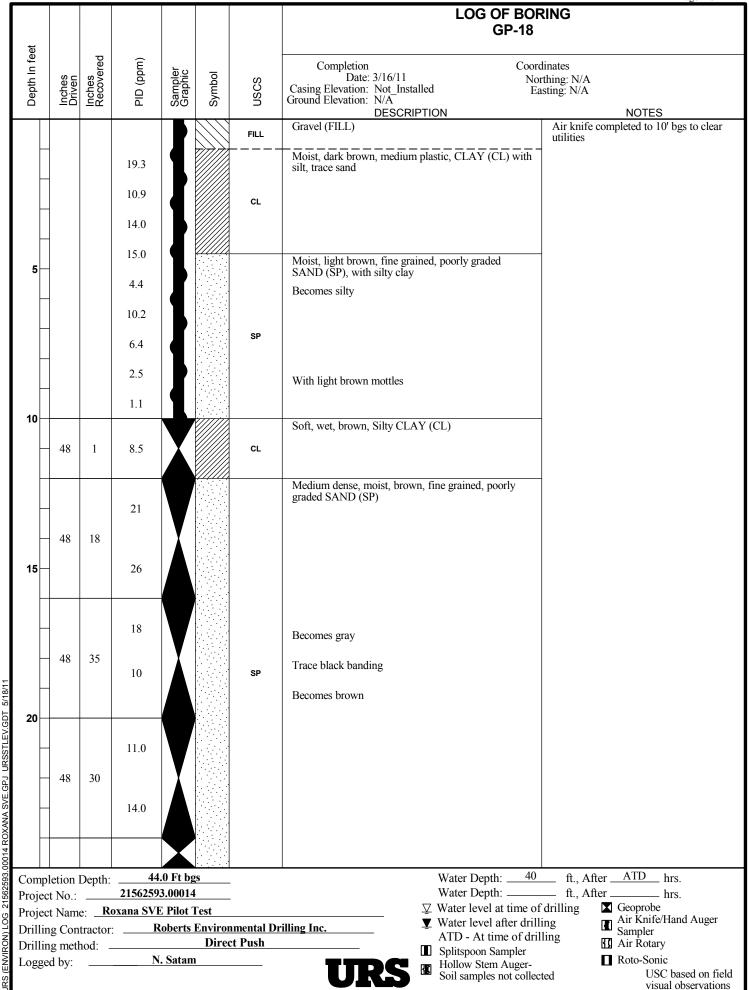
Boring Logs



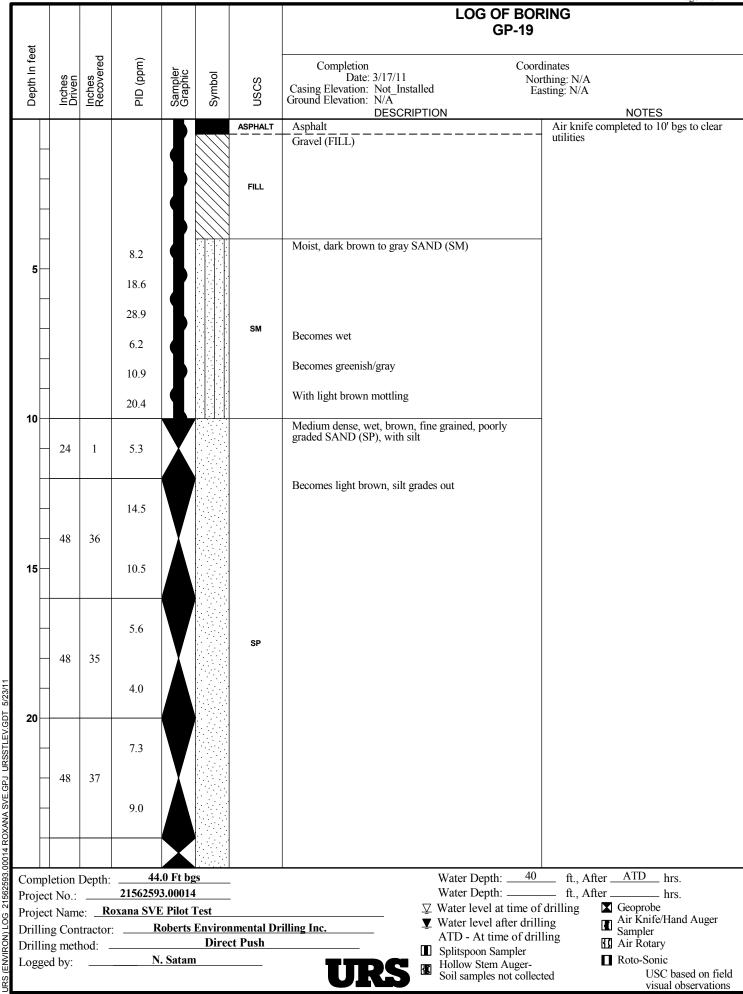
							LOG OF BO GP-14	
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Date: 3/14/11 N. Casing Elevation: Not_Installed F Ground Elevation: N/A	rdinates orthing: N/A casting: N/A
_						ASPHALT	DESCRIPTION Asphalt	NOTES Air knife completed to 10' bgs to clea
						FILL	Moist, brown, silt, with gravel (FILL)	utilities All killie completed to 10 bgs to clear
	1		0.0					1
	-		0.0				Moist, dark brown to gray, low plasticity SILT (ML)	
			0.0				with clay, trace sand	
			1.4					
			0.0				G	
5			0.0				Clay increases	
			0.0			ML		
			0.0				Becomes light brown, sandy silt with clay	
			0.0					
			0.4					
-			0.9					
10							Becomes with light tan sand, decreasing clay Stiff, moist, dark brown, Silty CLAY (CL),	
	24	24	0.7			CL		
	24	24	1.5 1.0			ML	Medium dense, moist, light brown, SILT (ML)	
							Medium dense, dry, light brown, fine grained, poorly	-
-			2.6				graded, SAND (SP)	
	48	38						
	48	30					Black banding	
15	1		2.4					
			1.7					
			1./					
	48	38				SP		
	-		1.4			.		
20								
			2.7				Becomes dense, moist, gray, banding grades out	
-	48	39		X				
			7.8					
			3.2				With banding	
Comp	oletion	Denth:	40	0.0 Ft bg	s_	_	Water Depth:	ft., After hrs.
Projec	et No.:		2156259	93.00014		-	Water Depth:	ft., After hrs.
Projec	et Nam	e: <u>R</u>	oxana SV	E Pilot T	Fest	montal D		
Drillir Drillir	ng Con ng metl	tractor hod: -	·1	xoperts .	Dire	nmental Dr et Push	ATD - At time of dr	illing Sampler Air Rotary
Logge	ed by:		N	N. Satam			Splitspoon Sampler Hollow Stem Auger-	■ Roto-Sonic
							Soil samples not colle	ected USC based on fi visual observation


								LOG OF BORING
_								GP-14
Depth In feet	-	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Coordinates Date: 3/14/11 Northing: N/A Casing Elevation: Not_Installed Easting: N/A Ground Elevation: N/A DESCRIPTION NOTES
				2.8	V			Same: Dense, moist, gray, fine grained SAND (SP), with black banding
		48	36					Becomes medium grained, banding grades out
	Н			2.6				
								Becomes very dense, fine grained
				2.2	V			
				2.2	V			Becomes dense
30		48	34		À			
				3.8				With banding
							SP	Becomes gray
				6.0	V		. 5P	
		48	48	7.3	Ţ			1" thick lense of coarse grained sand
35				9.8				
				7.0				
				7.2	V			
	Н	48	44		X			
	\blacksquare			24				Becomes dark gray
40	$\downarrow \downarrow$							Bottom of boring at 40' bgs
								Bottom of borning at 40 bgs
3/18/11	\blacksquare							
45 45	;							
STLEV								
URS								
VE.GP								
XANA S								
14 RO)								
URS (ENVIRON) LOG 21562593.00014 ROXANA SVE.GPJ URSSTLEV.GDT 5/18/11 GOT O. J.	nple	tion 1	Depth:	40	.0 Ft bg	gs	_	
Pro	ject	No.:		2156259	3.00014	ļ	-	Water Depth: ft., After hrs.
Proj Dril				oxana SVI ::R			nmental Dr	Water level after drilling Air Knife/Hand Auger
Dril	lling	g meth	nod:			Dire	ct Push	ATD - At time of diffining Air Rotary Splitspoon Sampler
S Tob	ged	by:		N	. Satan	1		Hollow Stem Auger- Soil samples not collected Roto-Sonic USC based on field
5								visual observations

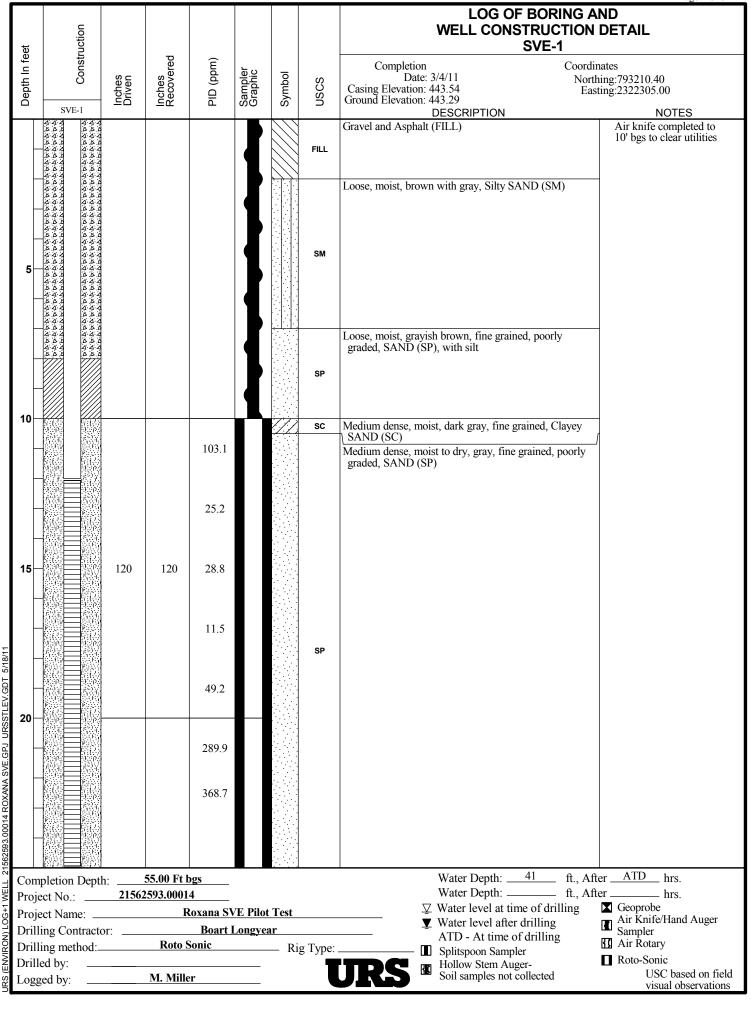
 :								OF BORING GP-15
Depth In feet	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Date: 3/14/11 Casing Elevation: Not_Installed Ground Elevation: N/A DESCRIPTION	Coordinates Northing: N/A Easting: N/A NOTES
				Б		FILL	Gravel (FILL)	Air knife completed to 10' bgs to clea
	1		0.0	1	777		Moist, dark brownish gray, Silty CLAY	utilities
	-		0.0					
			0.0	14				
			34.5					
			18.1	4			Moist, brown, poorly graded SAND (SP), wit	th trace
5			7.4			SP	silt	
			13.3	11			Becomes greenish gray	
			25.2					
			25.3	1				
			9.6					
10			24.9					
	24	14	21.5	X		SM	Medium dense, moist, brown, Silty SAND (S	M)
	48	38	4.5	V			Medium dense, moist, gray, fine grained, poo graded, SAND (SP) 5" black banding	rly
15			5.7					
			10.2	V				
20	48	30	678			SP		
	48	34	395				Becomes dense	
			428	4			Becomes loose	
	1		AC	0.0 Ft bg	· · · · · · · · · · · · · · · · · · ·			h. A A A A A A A A A A A A A A A A A A A
Projec	oletion let No.:		2156259	3.00014		- -	Water Dept	h: ft., After hrs. h: ft., After hrs.
Projec	et Nam	e: Ro	oxana SV	E Pilot T	<u>Fest</u>	nmental D	illing Inc ▼ Water level	
Drillir	ng metl	nod: -			Dire	ct Push		Air Rotary
Logge	ed by:		N	I. Satam	l		Hollow Sten Soil samples	n Auger- not collected Roto-Sonic USC based on f

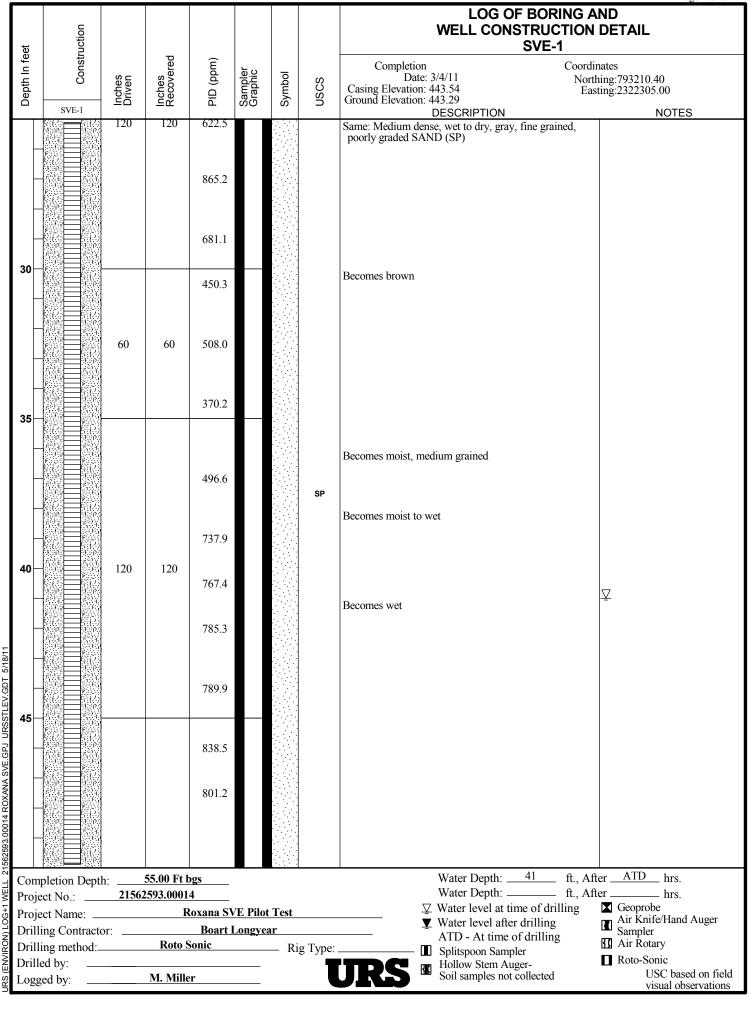

								LOG OF BOF GP-15	RING	
Depth In feet	Inches	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Date: 3/14/11 Casing Elevation: Not Installed Ground Elevation: N/A DESCRIPTI	d Ra	linates rthing: N/A sting: N/A	NOTES
	48	32	620	V			Same: Loose, moist, gray, fine graded, SAND (SP)			
	40	32	844	Å						
30	48	32	810	V						
			758							
	48	32	915	V		SP				
35			910							
	48	34	945	V						
40			140	A						
40							Bottom of boring at 40' bgs			
_										
_										
101 45										
URS (ENVIRON) LOG 21562593 00014 ROXANA SVE.GPJ URSSTLEV.GDT 5/18/11 Biold Global Glob										
GPJ URS										
(ANA SVE										
00014 RO										
Com Proje	pletion ect No.:	·	2156259		ļ	-		Water Depth:	ft., After	hrs.
Proje	ing Co	ntracto	<mark>koxana SVI</mark> r: <u> </u>	Roberts	Enviro	nmental Dr		Water level at time of Water level after drill	ing Ai	eoprobe ir Knife/Hand Auger ımpler
Drill Logg	ing me	thod:		. Satam	Dire	ct Push		ATD - At time of dril Splitspoon Sampler Hollow Stem Auger-	IIIIg	ir Rotary oto-Sonic
URS (E	. ,						URS ®	Soil samples not collec	ted	USC based on field visual observations

							LOG OF BORING GP-16
eet		9					
Depth In feet	les nes	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	SS	Completion Coordinates Date: 3/17/11 Northing: N/A Casing Elevation: Not Installed Easting: N/A
Dep	Inches	Red	l Gl	San Gra	Syn	nscs	Casing Elevation: Not Installed Easting: N/A Ground Elevation: N/A DESCRIPTION NOTES
	40	26	254	V			Same: Medium dense, moist, brown, fine grained SAND (SP), with black staining
	48	36		Y			
			930				
			1.10				
	1		140				
30	48	36	250				
			250				
			82				
	48	36	62				
35			1730			SP	
			1730				
			645	V			
_	48	35		Y			
-			110				
40							$ar{ar{\Sigma}}$
-	4		45	V			Becomes very dense, medium grained
-	48	34		Y			becomes very dense, meaning granted
_	_		160				
-							Bottom of boring at 44' bgs
45							Zonom of boning at 11 ogo
90 I LE v.							
באם האם							
A OVE							
Too	nletion	Depth	· 44	.0 Ft bg	<u>s</u>		Water Depth:40 ft., AfterATD hrs.
Proje	ect No.	·	2156259 Roxana SVI	3.00014	ļ	-	Water Depth: ft., After hrs.
Drill	ing Co	ntracto	r: <u>R</u>	oberts	Enviro	nmental Dr	water level after drilling ATD At time of drilling ATD At time of drilling Sampler ATD At time of drilling
	ing me		N	. Satam		ct Push	Splitspoon Sampler
O.K.							Hollow Stem Auger- Soil samples not collected Hollow Stem Auger- USC based on field visual observations

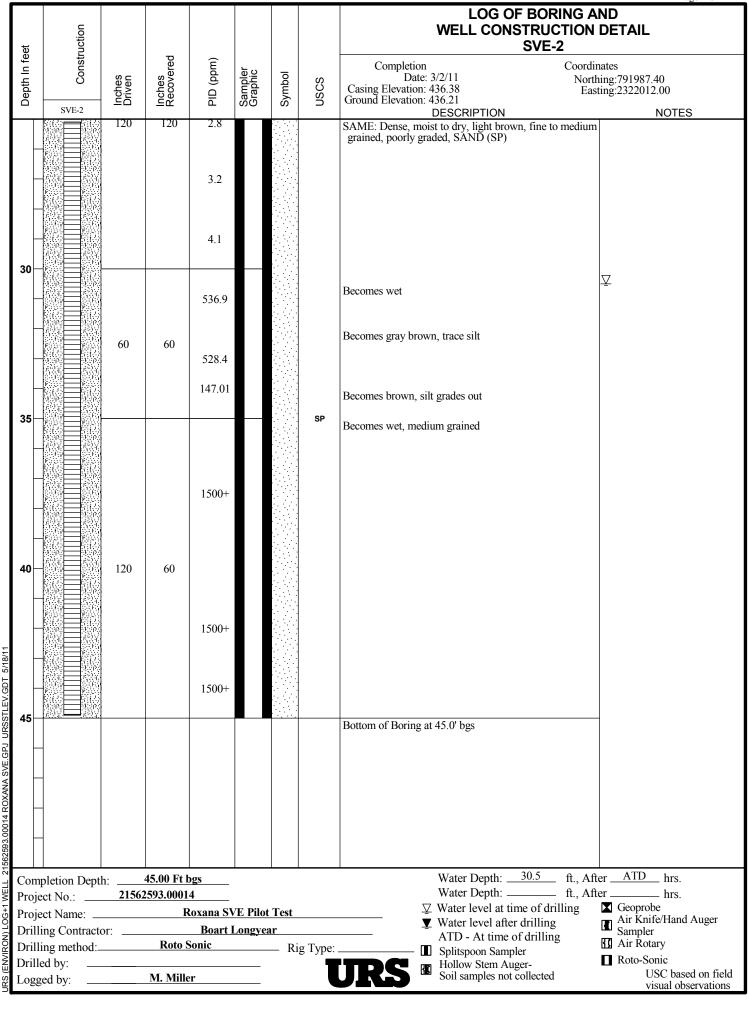


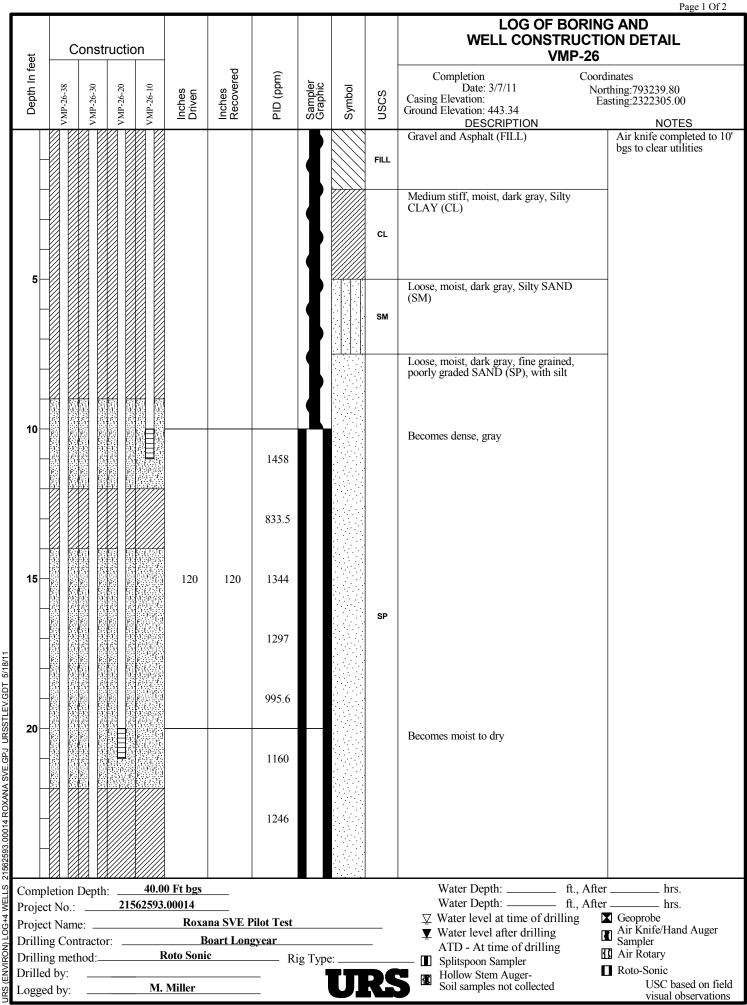
								LOG OF BORING GP-17
Depth In feet	-	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Coordinates Date: 3/15/11 Northing: N/A Casing Elevation: Not Installed Easting: N/A Ground Elevation: N/A DESCRIPTION NOTES
				16.5	V		CL	Same: Stiff, wet, light brown, Silty CLAY (CL)
		48	35	32	X	<i>[]]]]]]</i>		Medium dense, moist, light brown, fine grained, poorly graded SAND (SP) 1" Silt seam 1" Clay seam
30		48	36	5.9				
		40	30	5.7				
				3.5	V		SP	
35	5 —	48	36	4.0	Å			
		48	36	8.3				
		48	30	79	A			Becomes very dense, gray, with black banding
40						<u> </u>		Bottom of boring at 40' bgs
11/81/9 45	5							
URS (ENVIRON) LOG 21562593.00014 ROXANA SVE.GPJ URSSTLEV.GDT 5/18/11 GO LO								
ANA SVE.GPJ								
3.00014 ROX,								
Cor Pro		etion No.:	Depth:	40 2156259	.0 Ft bg 3.00014		-	Water Depth: ft., After hrs. Water Depth: ft., After hrs.
Pro	ject	Nam	e: <u>R</u>	oxana SVI			, 1 ==	Water level at time of drilling ▼ Water level after drilling ATD - At time of drilling ATD - At time of drilling Sampler
Dril				: <u>R</u>			nmental Dr ct Push	ATD - At time of drining Air Rotary
Log				N	. Satan			Splitspoon Sampler Hollow Stem Auger- Roto-Sonic
URS								Soil samples not collected USC based on field visual observations

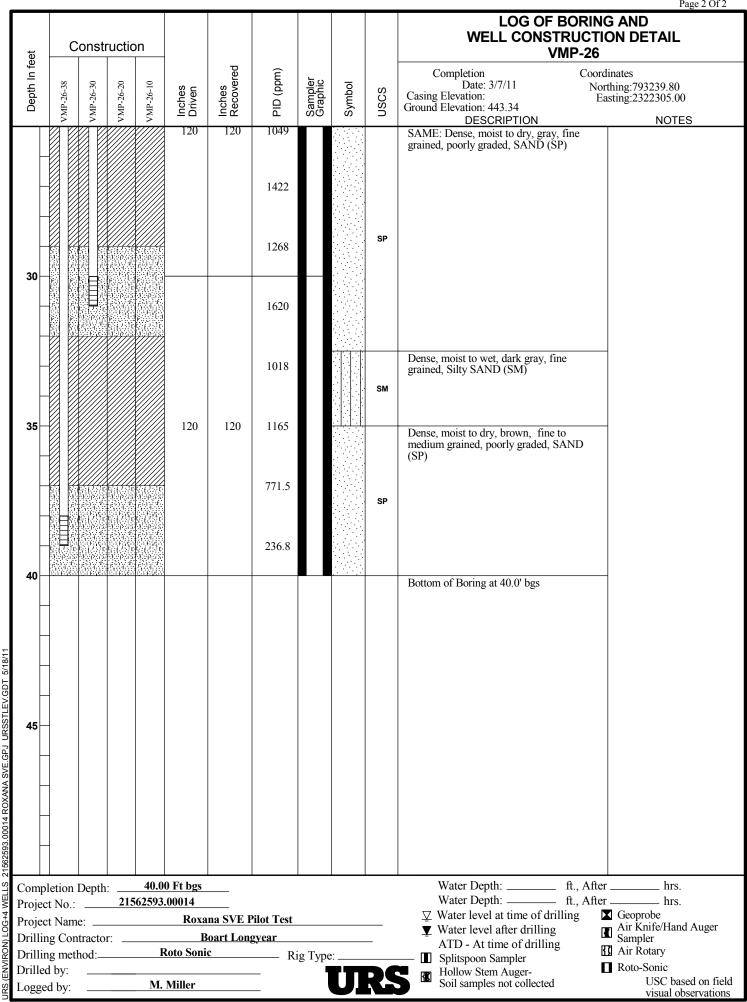

							LOG OF BORING
*							GP-18
Depth In feet	Inches	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Coordinates Date: 3/16/11 Northing: N/A Casing Elevation: Not_Installed Easting: N/A Ground Elevation: N/A DESCRIPTION NOTES
			18.2				Same: Medium dense, moist, brown, fine grained, poorly graded SAND (SP)
	48	32	25	X		SP	poorly graded of it is (or)
30	48	46	1450	V			Becomes gray
			46			CL	Soft, moist, gray, medium, plastic, CLAY (CL), with banding
	48	36	21	Y			Medium dense, moist, light brown, fine grained, poorly graded SAND (SP)
35			72				
	48	39	42	Y			Black banding
40			96			SP	$ar{ar{\Sigma}}$
	48	38	1450	Y			Becomes very dense, wet, black
8/11			3650				Becomes medium grained Bottom of boring at 44' bgs
URS (ENVIRON) LOG 21562593,00014 ROXANA SVE.GPJ URSSTLEV.GDT 5/18/11 Logical Action Control of the Control of							Solidar of College at 11 ogo
A SVE.GPJ UR							
.00014 ROXAN,							
Comp	oletion ct No.:		2156259	.0 Ft bg 3.00014		-	Water Depth: ft., AfterATD hrs. Water Depth: ft., After hrs.
Proje			oxana SVI	E Pilot	Гest	_	✓ Water level at time of drilling Geoprobe
Drilli	ng Con	tractor	:: <u>R</u>	Roberts	Enviro	<u>nmental Dr</u> ct Push	ATTI At time of drilling
Drilli	ng met ed by:		N	. Satan		ct r usn	Splitspoon Sampler
I LUES	ca by.						Hollow Stem Auger-Soil samples not collected Hollow Stem Auger-Soil Soil samples not collected USC based on field visual observations

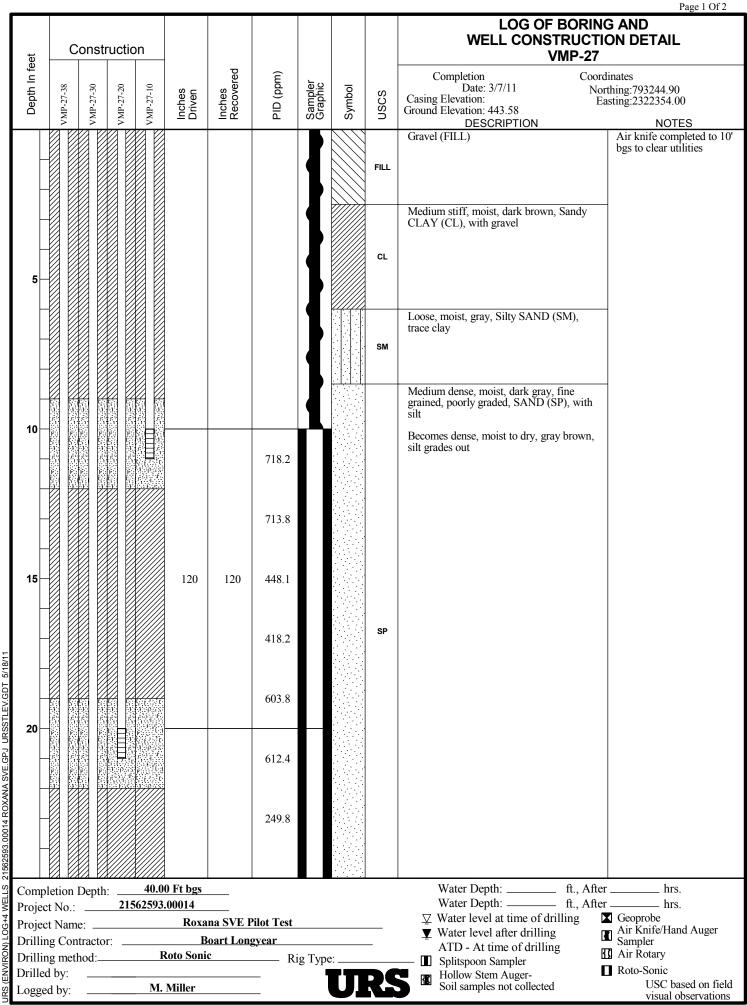

1 age 1 O1 2

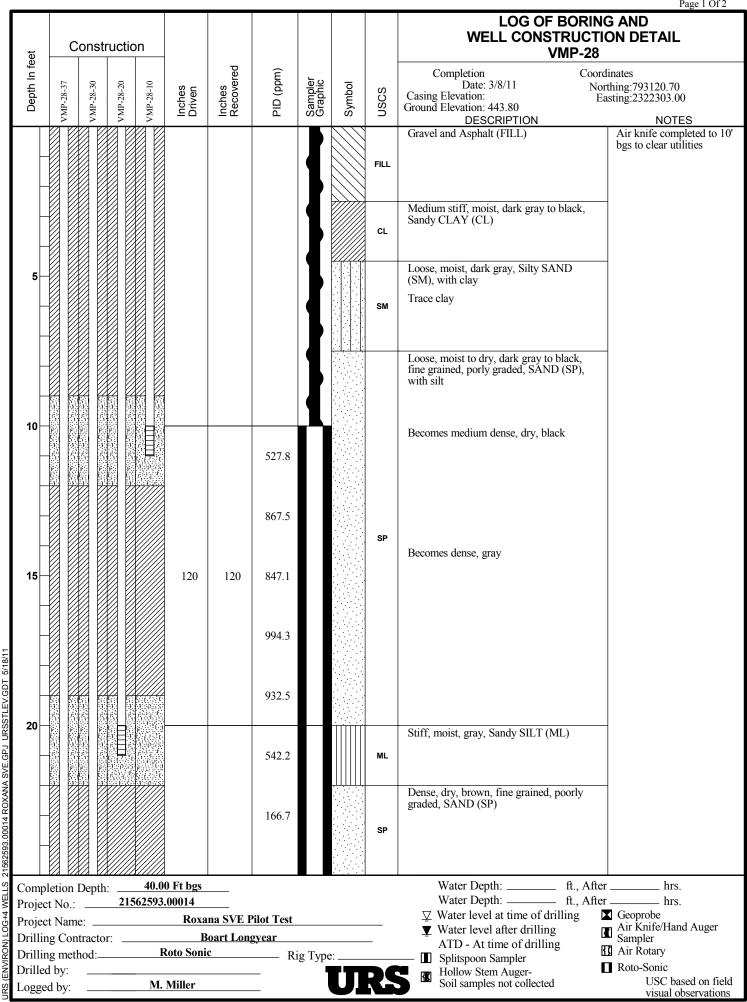
1 agt 2 O1 2

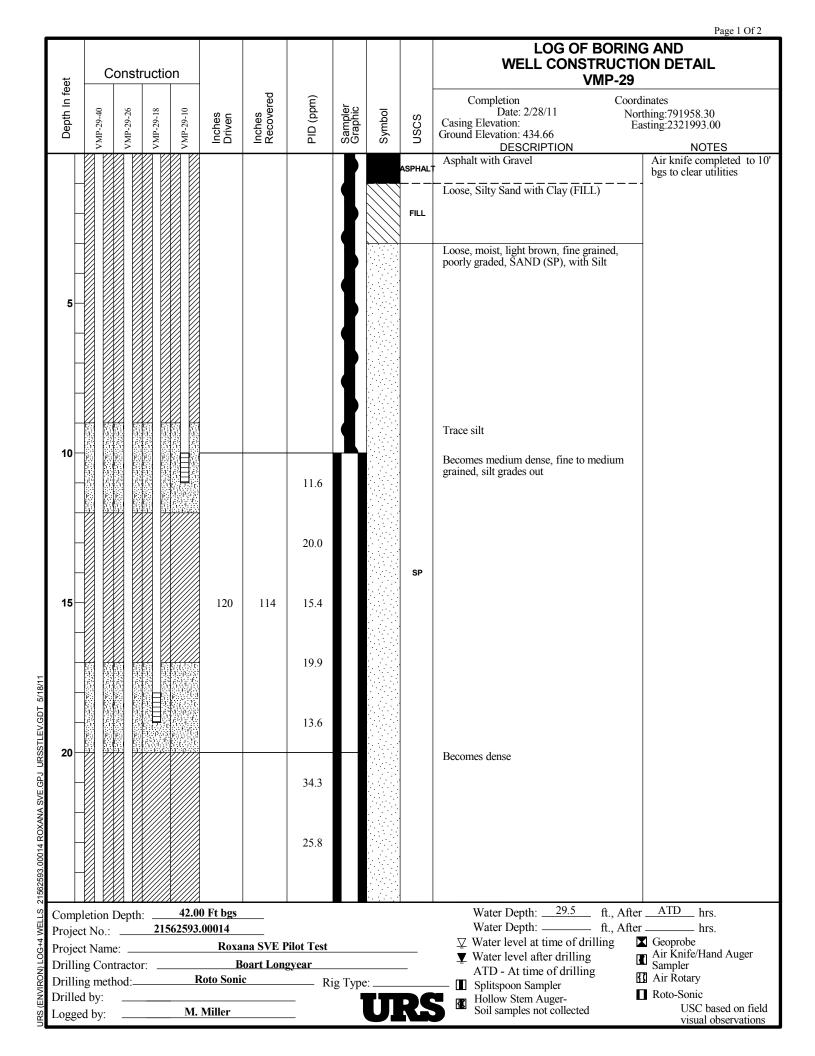

							LOG OF BORING GP-19
Depth In feet	Inches	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Coordinates Date: 3/17/11 Northing: N/A Casing Elevation: Not Installed Easting: N/A Ground Elevation: N/A DESCRIPTION NOTES
	48	34	15	V			Same: Medium dense, wet, brown, fine grained, poorly graded Silty SAND (SP)
		31	33	Å			
30	48	33	14	V			
		33	34				
	48	34	4.2	V			
35		3.	4.6	A		SP	
	48	34	3.2	V			
40		3.	6.4	A			$ar{ar{arphi}}$
	48	36	1475				Becomes very dense, medium grained
		30	1650	A			Black staining
URS (ENVIRON) LOG 21562593 00014 ROXANA SVE GPJ URSSTLEVGDT 5/23/11 Biold Global Growth RoxANA SVE GPJ URSSTLEV GDT 5/23/11 Biolog Global Growth RoxANA SVE GPJ URSSTLEV GDT 5/23/11							Bottom of boring at 44' bgs
RSSTLEV.							
E.GPJ UF							
OXANA SV							
.00014 RC							
Com Proje	pletion ect No.:		2156259		ı	-	Water Depth: ft., AfterATD hrs. Water Depth: ft., After hrs. ✓ Water level at time of drilling ✓ Geoprobe
Proje	ing Cor	ntracto	r: R	oberts	Enviro	nmental Dr	water level after drilling ATD At time of drilling ATD At time of drilling ATD At time of drilling
Drill Logg	ing met ged by:		N	. Satam		ct Push	Splitspoon Sampler Hollow Stem Auger- Roto-Sonic
URS							Soil samples not collected USC based on field visual observations



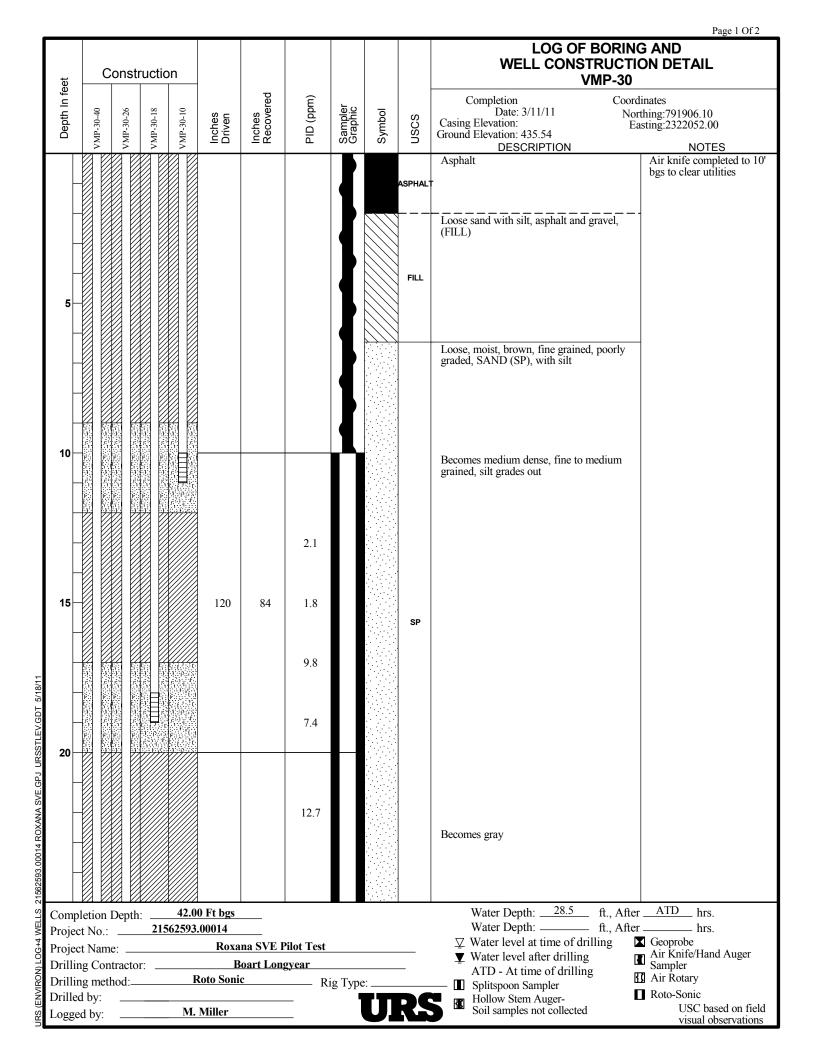

et	Construction							LOG OF BORING AND WELL CONSTRUCTION DETAIL SVE-1
Depth In feet	SVE-1	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	nscs	Completion Coordinates Date: 3/4/11 Northing:793210.40 Casing Elevation: 443.54 Easting:2322305.00 Ground Elevation: 443.29
		120	120	856.4 820.0 775.3			SP	SAME: Medium dense, wet, brown, medium grained, poorly graded, SAND (SP).
60								Bottom of boring at 55.0' bgs
65 — — — — — — — — — — — — — — — — — — —								
Projection Projection Projection Projection Projection Prillippin Projection Prillippin Prillippin Projection Prillippin	pletion Deptlect No.: ect Name: ing Contractor ing method:_ ed by: ged by:	21562 or:	Roto S	4 Roxana SV Boart I	Longyea	ır	g Туре: .	

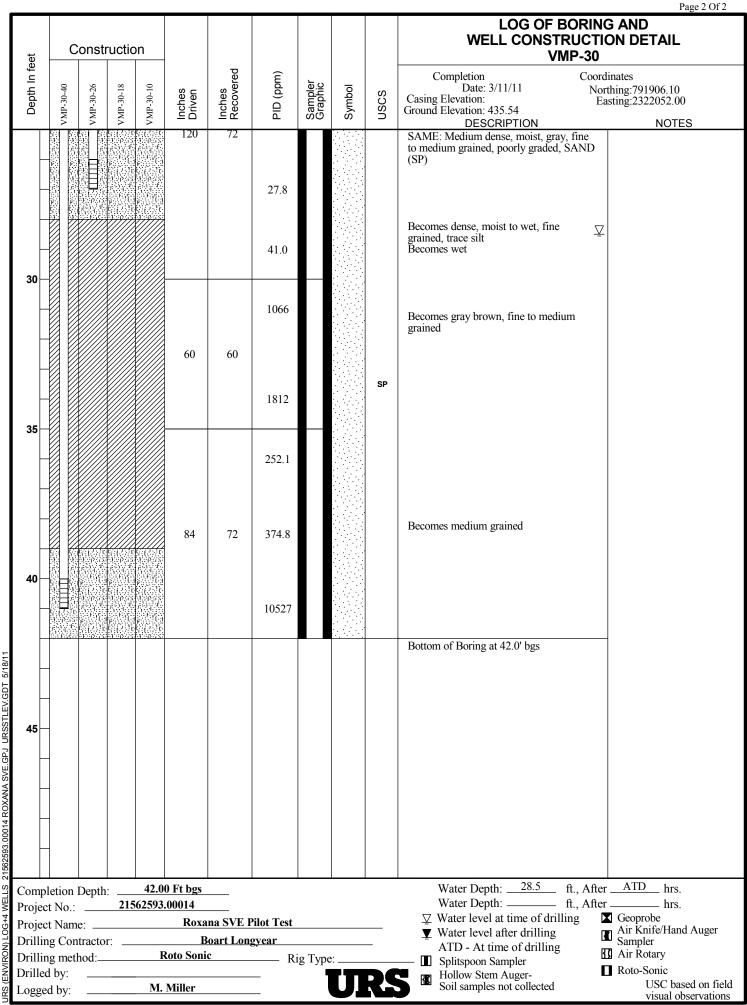

*	ıction							LOG OF BORING AI WELL CONSTRUCTION SVE-2	
Depth In feet	Construction	Inches Driven	Inches Recovered	PID (ppm)	Sampler Graphic	Symbol	SOSN	Completion Coordin Date: 3/2/11 North Casing Elevation: 436.38 East Ground Elevation: 436.21 DESCRIPTION	ing:791987.40 ing:2322012.00 NOTES
	444					77 77 77 7 77 77 7 77 77 77	TOPSOIL	Topsoil	Air knife completed to 10' bgs to clear utilities
	44444 44444 44444 44444 44444					***	FILL	Silty clay, trace roots (FILL)	202 41441
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							Loose, moist, brown, Silty SAND (SM)	
	44444 44444 44444 44444						SM		
5								Loose, moist, brown, fine grained, poorly graded, SAND (SP), with silt	
10					1				
				0.8				Becomes dense, moist to dry, light brown, fine to medium grained, silt grades out	
				1.8					
15		120	120	2.4			SP		
.		-20		۵. ۲					
				2.5					
20				2.8					
				3.8					
				3.6					
	pletion Depth:		45.00 Ft b					Water Depth: ft., After Water Depth: ft., After Depth:	
	ect No.: ect Name:			4 oxana SV	<u>E Pi</u> lot	Test		∇ Water level at time of drilling	
Drilli	ing Contractor	r:		Boart I	ongyea	r		▼ Water level after drilling	Air Knife/Hand Auger Sampler
	ing method:		Roto S	onic		– Ri	g Type:	Splitspoon Sampler	☐ Air Rotary ☐ Roto-Sonic
Logg	ed by: ged by:		M. Mille	r			Ţ	Hollow Stem Auger- Soil samples not collected	USC based on field visual observations
									visuai oosei vatiotis


Page 2 Of 2



	_											Page 2 Of 2
												LOG OF BORING AND
		<u> </u>	oneti	ructio	าท							WELL CONSTRUCTION DETAIL
et	-	<u> </u>	orioti	Tuction	111							VMP-27
Depth In feet							Inches Recovered	Ξ				Completion Coordinates
oth	5	-38	7-30	7-20	VMP-27-10	es	es	PID (ppm)	Sampler Graphic	Symbol	δί	Date: 3/7/11 Northing:793244.90 Casing Elevation: Easting:2322354.00
Dek	6	V MP-2/-38	VMP-27-30	VMP-27-20	Æ-2	Inches Driven	nch ?ec	<u></u> €	Sam Srap	l y	nscs	Casing Elevation: Easting:2322354.00 Ground Elevation: 443.58
	1	>	// //	\$	5				0,0			DESCRIPTION NOTES
				\ ////	X////	120	120	202.4				SAME: Dense, moist to dry, gray brown, fine grained, poorly graded, SAND (SP)
	-				<i>}////</i>							into graniou, poorty gradou, or true (or)
				<i>\\\\\</i>	<i>X/////</i>							
	-19							181.3				
	\square											
					X ////			100.0				
								198.0			SP	
30					1888							
			H									
	- 樹							94.5				
			/////	1////	1////							
					<i>}////</i>			06.7				
				<i>\////</i>				96.7			CL*	Dense, moist to wet, dark gray, fine
	Ø				<i>X/////</i>						SM	grained Silty SAND (SM)
				<i>}////</i>	<i>}////</i>							Dense, moist to dry, brown, fine to medium grained, poorly graded, SAND
35						120	120	204.3				(SP)
				<i>}////</i>	<i>}////</i>							
				<i>\\\\\</i>								
					<i>}////</i>			105 5				
			1.01.6					187.6			SP	
	48	3 8						390.4				D · · ·
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										Becomes moist
40	(B)	qes	deskiri.	1405/68 1405/68	MWW.							Bottom of boring at 40' bgs
												Someth of coring at 10 ogs
	1											
_												
/18/1	4											
20												
V.G.D	4											
45	+											
APS (ENVIRON) LOG-44 WELLS 219625933.00014 ROXANA SVE.GPJ URSSTLEV.GDT 5/18/11 Complete Drillie Drillie Complete Comple												
i i	1											
A SV												
XAX												
전 전	4											
0001												
393.0	+											
1562												
S Com	امدا	Op. 1)on41-		40 0	0 Ft bgs	<u> </u>	I			1	Water Depth: ft., After hrs.
Draia	netti et Ni	on I	Jeptn	i:		.00014						Water Depth: ft., After hrs.
> Droic					302373		na SVE I	Pilot Test				✓ Water level at time of drilling Geoprobe
Drill:	ui IN na C	ame	racto	r·		D	oart Lon					▼ Water level after drilling Air Knife/Hand Auger
	ng C	JUII) neth	nacio nad·	1	Ę	Roto Soni		gyear —— Ri				AID - At time of timing III Aim Determ
Drille Drille	ng n	nett nett	iou.—			COLO SOIII	-	—— Кі				— III Spiitspoon Sampier
Logge	-					Miller				ij	R	Soil samples not collected USC based on field
E Luggi	Juυ	у.	-		.,,,,,			_	,			visual observations


Page 1 Of 2



	_										Page 2 Of 2
											LOG OF BORING AND
		Consti	ructio	n							WELL CONSTRUCTION DETAIL
Depth In feet						_					VMP-28
<u>=</u>	_			0		Inches Recovered	(mc	μo	_		Completion Coordinates Date: 3/8/11 Northing:793120.70
bth	28-3	28-3(28-20	28-10	hes /en	nes	PID (ppm)	nple	oqu	CS	Casing Elevation: Fasting 2322303 00
ă	VMP-28-37	VMP-28-30	VMP-28-20	VMP-28-10	Inches Driven	Inch Rec	₽B	Sampler Graphic	Symbol	nscs	Ground Elevation: 443.80
				> /////	120	120	224.9				DESCRIPTION NOTES Same: Dense, dry, brown, fine grained,
					120	120					poorly graded, SAND (SP)
	10 10										
	10 10						304.6				
										SP	
							181.1				
				10 LC / 15 12 P / 15 12 P / 15			101.1				Becomes moist, trace silt
30											
			ir (25) N. P. S.							SM	Dense, moist, gray, fine grained, Silty
							832.6				SAND (SM), with black banding Dense, dry, brown, fine to medium
											grained, poorly graded, SAND (SP)
							568.7				
							300.7				
	-1912										
35	-1912				120	120	195.2				
										SP	
							270.0				
		格技术	Miles Company Deposits				270.0				
			1. P. S	reteres Lepton							
							241.3				Becomes moist
	· 院(23)0		Milesia Markas								
40	Jako Wildt	a a so y sto	k je ko yroku	geografia.							Bottom of Boring at 40.0' bgs
											3
	1										
_											
	4										
2											
	+										
45	1										
5	4										
5											
-	-										
8											
	1										
8						<u></u>					
Comp	letion	Depth	:		0 Ft bgs						Water Depth: ft., After hrs.
Projec	roject No.: 21562593.00014 Water Depth: ft., After hrs.										
	et Nam					na SVE F	Pilot Test				∇ Water level at time of drilling ✓ Water level ofter drilling Air Knife/Hand Auger Air Knife/Hand Auger
Drilli	ng Cor	ntracto	r:		В	oart Lon					▼ Water level after drilling ATD - At time of drilling
Drilli	ng met	hod:_		F	<u>Roto Soni</u>	c	Ri	д Турс	e:		ATD - At time of driffing Air Rotary Air Rotary
Drille	d by:						_	•			Hollow Stem Auger-
Logge	ed by:			<u>M.</u>	Miller				U		Soil samples not collected USC based on field visual observations

	_										Page 2 Of 2
											LOG OF BORING AND
		onst	ructio	n							WELL CONSTRUCTION DETAIL
Depth In feet						_					VMP-29
=		9		0		ered	(mc	μO	_		Completion Coordinates Date: 2/28/11 Northing:791958.30
bth	29-4(29-20	29-18	29-10	nes /en	nes Sove	PID (ppm)	mple iphi	Symbol	nscs	Casing Elevation: Fasting 2321993 00
ے ا	VMP-29-40	VMP-29-26	VMP-29-18	VMP-29-10	Inches Driven	Inches Recovered		Sampler Graphic	Syr	NS	Ground Elevation: 434.66
\vdash		> 	> 56(3)75	> 546/45	120	120	28.7		12 12 14		DESCRIPTION NOTES SAME: Dense, moist, light brown, fine to
			A PAR		120	120	20.7				medium grained, poorly graded, SAND
											(SP)
			in park				160				
							16.0				Becomes moist to wet
							16.9				
											$oxed{ar{ar{ar{ abelia}}}}$
30	-1912										Becomes wet, gray, fine grained
							86.7				
											Becomes brown, fine to medium grained
					60	60	122.02				
					60	60	133.03				
										SP	
							547.1			O.	
							317.1				
35											December and distributions and december 1
											Becomes gray, medium grained, trace coarse sand
I ⊢							10548				
					0.4	0.4	15000				
					84	84	15000+				
		· · · · · · · · · · · · · · · · · · ·	lia(A, di A, ββ, os	権(表) 対策(の)							
40											
							10098				
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)										
I +	elingen	30000	ar park	100000							Bottom of Boring at 42.0' bgs
-											Bottom of Boring at 12.0 ogs
5											
3 45 –											
	4										
i l											
_	-										
3											
	1										
60.											
667											
3											
Comp	letion	Depth	:		0 Ft bgs						Water Depth: <u>29.5</u> ft., After <u>ATD</u> hrs.
Projec	Project No.: 21562593.00014 Water Depth: ft., After hrs.										
Projec						na SVE I	Pilot Test				∑ Water level at time of drilling ☐ Water level at time of drilling ☐ Water level at time of drilling ☐ Air Knife/Hand Auger
	water level after drilling										
Drillin	Orilling method: Roto Sonic Rig Type: Splitspoon Sampler At time of driffing Air Rotary										
Drille	d by:						_	, Jr			Hollow Stem Auger-
Logge	ed by:		_	М.	Miller		_		U.		Soil samples not collected USC based on field visual observations

APPENDIXA

SVE Well and VMP Boring Logs/Well Construction Diagrams

Well Construction Diagrams

SVE Well Installation Details Flush Mount Monitoring Well Construction Diagram

55.0

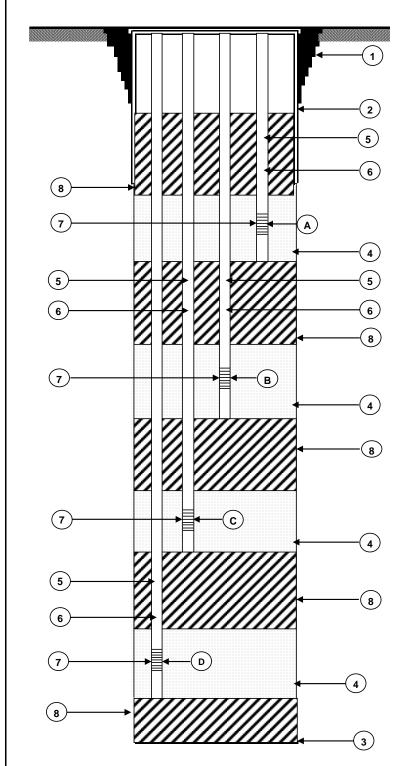
388.54

Project:	Roxana SVE Pilot Test			Well ID:	SVE-1
Project Location:	Roxana, Illinois	Date Started:	3/4/2011		
Well Location:	Roxana, Illinois	Date Completed:	3/4/2011	Boring ID:	NA
Drilling Contractor:	Boart Longyear	Time Seal Set:	1505	Northing:	793210.421
Driller:		Type of Rig:		Easting:	2322305.418
Consulting Firm:	URS Corporation	Drilling Method:	Roto Sonic	Elevation Datum:	443.54
Geologist:	M. Miller	Completion Zone:	Main Stratum		

Depths (ft bgs) Elevations (ft) 44<u>3.54</u> Ground Elevation: Depth of Riser Below Ground: 0.25 ft bgs Top of Riser Pipe: 0.25 443.29 ID/Type of Surface Casing: 12" Flush Mount Type of Surface Seal: Concrete 435.<u>54</u> Bottom of Surface Seal: 8.0 Boring Diameter Groundwater (after completion): 7.0 in 40.66 402.88 Type of Riser Pipe: Sch. 40 PVC Riser Diameter: 4.0 in 11.75 ft Riser Length: __ Type of Backfill: Bentonite/Cement Grout 43<u>5.54</u> Top of Seal: 8.0 Type of Seal: Bentonite Chips Top of Filter Pack 10.0 433.54 431.54 Top of Screen 12.0 Type of Filter Pack: #10 Red Flint Filter Sand Type of Screen: Sch. 40 PVC Screen Diameter 4.0 in Screen Slot Size: 0.010 in 42.8 ft Screen Length: Bottom of Screen: 54.83 388.71 Bottom of Blank Casing: 388.54 55.0 Backfill/Seal Below Well: 55.0 388.54 Type of Backfill/Seal Below Well: NA

Bottom of Boring:

SVE Well Installation Details Flush Mount Monitoring Well Construction Diagram



Project:	Roxana SVE Pilot Test			Well ID:	SVE-2
Project Location:	Roxana, Illinois	Date Started:	3/2/201	1	
Well Location:	Roxana, Illinois	Date Completed:	3/2/201	1 Boring ID:	NA
Drilling Contractor:	Boart Longyear	Time Seal Set:	122	0 Northing:	791987.449
Driller:		Type of Rig:		Easting:	2322012.145
Consulting Firm:	URS Corporation	Drilling Method:	Roto Sonic	Elevation Datum:	436.38
Geologist:	M. Miller	Completion Zone:	Main Stratum		

Depths (ft bgs) Elevations (ft) Ground Elevation: 436.38 Depth of Riser Below Ground: Top of Riser Pipe: 0.17 436.21 ID/Type of Surface Casing: 12" Flush Mount Type of Surface Seal: Concrete Bottom of Surface Seal: 428.38 8.0 Boring Diameter Groundwater (after completion): 7.0 in 30.50 402.88 Type of Riser Pipe: Sch. 40 PVC Riser Diameter: 4.0 in 11.84 ft Riser Length: __ Type of Backfill: Bentonite/Cement Grout 42<u>8.38</u> Top of Seal: 8.0 Type of Seal: Bentonite Chips Top of Filter Pack 10.0 426.38 Top of Screen 12.0 424.38 Type of Filter Pack: #10 Red Flint Filter Sand Type of Screen: Sch. 40 PVC Screen Diameter 4.0 in Screen Slot Size: 0.010 in 32.8 ft Screen Length: 391.55 Bottom of Screen: 44.83 Bottom of Blank Casing: 45.0 391.38 Backfill/Seal Below Well: 45.0 391.38 Type of Backfill/Seal Below Well: NA Bottom of Boring: 45.0 391.38

GROUND	SURFACE ELEVATION (FEET)	443.34	JOB NUMBER	21562593	
TOP OF IN	NER WELL CASING ELEVATION	NA	BORING NUMBER	VMP-26	
DATUM	1988 USGS		INSTALLATION DATE	3/7/2011	
•			_		

LOCATION Roxana, Illinois

VAPOR MONITORING PORT INSTALLATION DETAILS

SCREEN	DEPTH TO BOTTOM OF SAND (FEET*)	DEPTH TO TOP OF SAND (FEET*)	DEPTH TO BOTTOM OF SCREEN (FEET*)	DEPTH TO TOP OF SCREEN (FEET*)	LENGTH OF SCREEN (FEET)	DIAMETER OF SCREEN (INCHES)	SLOT SIZE (INCHES)
A	12.0	9.0	11.0	10.0	1.0	0.5	0.010
В	22.0	19.0	21.0	20.0	1.0	0.5	0.010
С	32.0	29.0	31.0	30.0	1.0	0.5	0.010
D	40.0	37.0	39.0	38.0	1.0	0.5	0.010

1	CONCRETE CAP?	YES	NO	(CIRCLE ONE)
---	---------------	-----	----	--------------

2 BOREHOLE DIAMETER 6 INCHES

3 TOTAL DEPTH OF BOREHOLE 40.0 FEET*

#10 Red Flint
TYPE OF PACK AROUND SCREEN Filter Sand

5 RISER MATERIAL Sch. 40 PVC

6 RISER DIAMETER 0.5 INCHES

7 SCREEN MATERIAL Sch. 40 PVC

8 TYPE OF SEAL Bentonite Chips

* (DEPTH FROM GROUND SURFACE)

GROUND	SURFACE ELEVATION (FEET)	443.58	JOB NUMBER	21562593	
TOP OF IN	INER WELL CASING ELEVATION	NA	BORING NUMBER	VMP-27	
DATUM	1988 USGS		INSTALLATION DATE	3/7/2011	
·-					

VAPOR MONITORING PORT INSTALLATION DETAILS

SCREEN	DEPTH TO BOTTOM OF SAND (FEET*)	DEPTH TO TOP OF SAND (FEET*)	DEPTH TO BOTTOM OF SCREEN (FEET*)	DEPTH TO TOP OF SCREEN (FEET*)	LENGTH OF SCREEN (FEET)	DIAMETER OF SCREEN (INCHES)	SLOT SIZE (INCHES)
A	12.0	9.0	11.0	10.0	1.0	0.5	0.010
В	22.0	19.0	21.0	20.0	1.0	0.5	0.010
С	32.0	29.0	31.0	30.0	1.0	0.5	0.010
D	40.0	37.0	39.0	38.0	1.0	0.5	0.010

CONCRETE CAP	YES NO	(CIRCLE ONE)
--------------	--------	--------------

2 BOREHOLE DIAMETER 6 INCHES

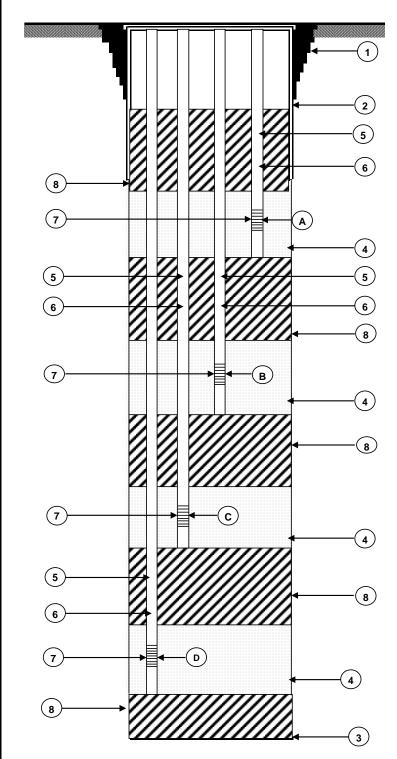
3 TOTAL DEPTH OF BOREHOLE 40.0 FEET*

#10 Red Flint
TYPE OF PACK AROUND SCREEN Filter Sand

5 RISER MATERIAL Sch. 40 PVC

6 RISER DIAMETER 0.5 INCHES

7 SCREEN MATERIAL Sch. 40 PVC


8 TYPE OF SEAL Bentonite Chips

* (DEPTH FROM GROUND SURFACE)

GROUND	SURFACE ELEVATION (FEET)	443.80	JOB NUMBER	21562593	
TOP OF IN	INER WELL CASING ELEVATION	NA	BORING NUMBER	VMP-28	
DATUM	1988 USGS		INSTALLATION DATE	3/8/2011	
•			_		

LOCATION Roxana, Illinois

VAPOR MONITORING PORT INSTALLATION DETAILS

SCREEN	DEPTH TO BOTTOM OF SAND (FEET*)	DEPTH TO TOP OF SAND (FEET*)	DEPTH TO BOTTOM OF SCREEN (FEET*)	DEPTH TO TOP OF SCREEN (FEET*)	LENGTH OF SCREEN (FEET)	DIAMETER OF SCREEN (INCHES)	SLOT SIZE (INCHES)
A	12.0	9.0	11.0	10.0	1.0	0.5	0.010
В	22.0	19.0	21.0	20.0	1.0	0.5	0.010
С	32.0	29.0	31.0	30.0	1.0	0.5	0.010
D	40.0	36.0	38.0	37.0	1.0	0.5	0.010

1	CONCRETE CAP?	YES	NO	(CIRCLE ONE)
---	---------------	-----	----	--------------

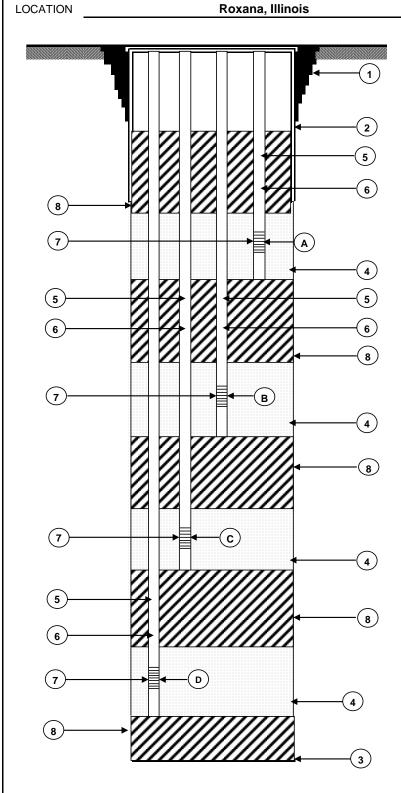
2 BOREHOLE DIAMETER 6 INCHES

3 TOTAL DEPTH OF BOREHOLE 40.0 FEET*

#10 Red Flint
TYPE OF PACK AROUND SCREEN Filter Sand

5 RISER MATERIAL Sch. 40 PVC

6 RISER DIAMETER 0.5 INCHES


7 SCREEN MATERIAL Sch. 40 PVC

8 TYPE OF SEAL Bentonite Chips

* (DEPTH FROM GROUND SURFACE)

GROUND	SURFACE ELEVATION (FEET)	434.66	JOB NUMBER	21562593	
TOP OF IN	NER WELL CASING ELEVATION	NA	BORING NUMBER	VMP-29	
DATUM _	1988 USGS		INSTALLATION DATE	3/1/2011	

VAPOR MONITORING PORT INSTALLATION DETAILS

SCREEN	DEPTH TO BOTTOM OF SAND (FEET*)	DEPTH TO TOP OF SAND (FEET*)	DEPTH TO BOTTOM OF SCREEN (FEET*)	DEPTH TO TOP OF SCREEN (FEET*)	LENGTH OF SCREEN (FEET)	DIAMETER OF SCREEN (INCHES)	SLOT SIZE (INCHES)
A	12.0	9.0	11.0	10.0	1.0	0.5	0.010
В	20.0	17.0	19.0	18.0	1.0	0.5	0.010
С	28.0	25.0	27.0	26.0	1.0	0.5	0.010
D	42.0	39.0	41.0	40.0	1.0	0.5	0.010

1	CONCRETE CAP?	YES	NO	(CIRCLE ONE)
---	---------------	-----	----	--------------

2 BOREHOLE DIAMETER 6 INCHES

3 TOTAL DEPTH OF BOREHOLE 42.0 FEET*

#10 Red Flint
TYPE OF PACK AROUND SCREEN Filter Sand

5 RISER MATERIAL Sch. 40 PVC

6 RISER DIAMETER 0.5 INCHES


7 SCREEN MATERIAL Sch. 40 PVC

8 TYPE OF SEAL Bentonite Chips

* (DEPTH FROM GROUND SURFACE)

GROUND	SURFACE ELEVATION (FEET)	435.54	JOB NUMBER	21562593	
TOP OF IN	NER WELL CASING ELEVATION	NA	BORING NUMBER	VMP-30	
DATUM _	1988 USGS		INSTALLATION DATE	3/1/2011	

VAPOR MONITORING PORT INSTALLATION DETAILS

SCREEN	DEPTH TO BOTTOM OF SAND (FEET*)	DEPTH TO TOP OF SAND (FEET*)	DEPTH TO BOTTOM OF SCREEN (FEET*)	DEPTH TO TOP OF SCREEN (FEET*)	LENGTH OF SCREEN (FEET)	DIAMETER OF SCREEN (INCHES)	SLOT SIZE (INCHES)
A	12.0	9.0	11.0	10.0	1.0	0.5	0.010
В	20.0	17.0	19.0	18.0	1.0	0.5	0.010
С	28.0	25.0	27.0	26.0	1.0	0.5	0.010
D	42.0	39.0	41.0	40.0	1.0	0.5	0.010

1	CONCRETE CAP?	YES	NO	(CIRCLE ONE)
---	---------------	-----	----	--------------

2 BOREHOLE DIAMETER 6 INCHES

3 TOTAL DEPTH OF BOREHOLE 42.0 FEET*

4 TYPE OF PACK AROUND SCREEN

#10 Red Flint Filter Sand

5 RISER MATERIAL Sch. 40 PVC

6 RISER DIAMETER 0.5 INCHES

7 SCREEN MATERIAL Sch. 40 PVC

8 TYPE OF SEAL Bentonite Chips

* (DEPTH FROM GROUND SURFACE)

Client Name:

Shell Oil Products US

Site Location:

Roxana, IL

Project No.

21562593

Photo No.

Date: 3/24/11

Description:

ICE Unit –
Illustrating control
panel and muffler
system for
additional noise
reduction due to
close proximity to
residential areas.

Client Name:

Shell Oil Products US

Site Location:

Roxana, IL

Project No.

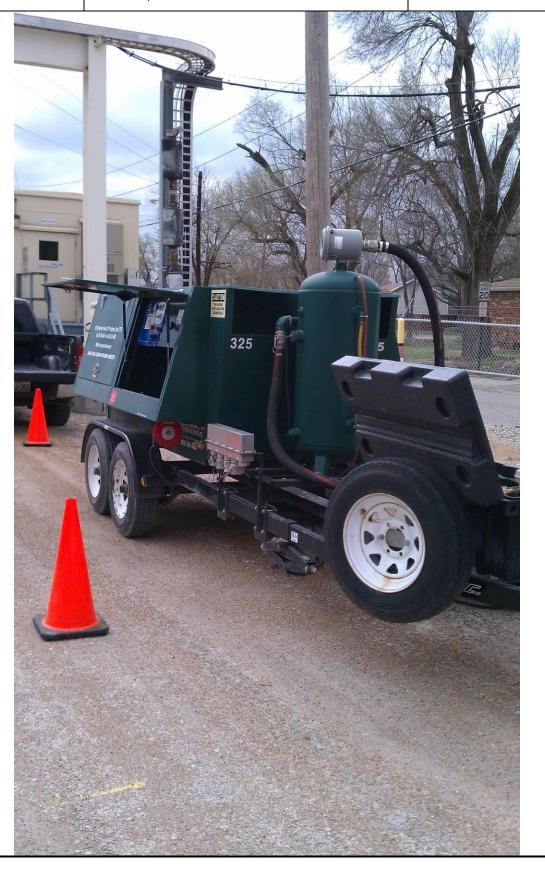

21562593

Photo No.

Date: 3/24/11

Description:

ICE Unit – Illustrating residual water knock out tank.

Client Name:

Shell Oil Products US

Site Location:

Roxana, IL

Project No.

21562593

Photo No.

Date: 3/24/11

Description:

Extraction well apparatus – illustrating vacuum hose attachment and vacuum/pressure gauge attached to well head port.

Client Name:

Shell Oil Products US

Site Location:

Roxana, IL

Project No.

21562593

Photo No.

Date: 3/24/11

Description:

ICE Unit –
Illustrating portable propane tanks for supplemental fuel and vacuum hose connected to extraction well.

Roxana SVE Pilot Data Review

Laboratory SDG: 1103438

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Tony Sedlacek

Date Reviewed: 4/1/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
AE #1	AE #2
AE #3	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that all samples were diluted due to high levels of non-target anlaytes. Sample AE #2 was leaking during sample analysis and had to be re-pressurized; professional judgment was used to qualify results from this sample. This issue is addressed further in the appropriate section below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?

Yes, professional judgment was used to qualify sample AE #2 due to leakage during sample analysis and the subsequent need to re-pressurize the stainless steel canister.

Sample ID	Parameter	Analyte	Qualification	Comment
AE #2	TO-15	TO-15 detects/non-	J/UJ	Professional
		detects		Judgment

3/29/2011

Mr. Steve Shroff URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana SVE Pilot Project #: 21562593.00014

Workorder #: 1103438

Dear Mr. Steve Shroff

The following report includes the data for the above referenced project for sample(s) received on 3/19/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jacquelyn Luta at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jacquelyn Luta

Project Manager

WORK ORDER #: 1103438

Work Order Summary

CLIENT: Mr. Steve Shroff BILL TO: Accounts Payable Austin

URS Corporation

URS Corporation 1001 Highlands Plaza Dr. West P.O. BOX 203970

Suite 300

St. Louis, MO 63110

PHONE: 314-429-0100 **P.O.** #

FAX: PROJECT # 21562593.00014 Roxana SVE Pilot

DATE RECEIVED: 03/19/2011 **CONTACT:** Jacquelyn Luta **DATE COMPLETED:** 03/29/2011

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AE #1	Modified TO-15	0.6 "Hg	15 psi
02A	AE #2	Modified TO-15	1.6 "Hg	15 psi
03A	AE #3	Modified TO-15	0.0 "Hg	15 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

03/29/11 DATE:

Austin, TX 78720-1088

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder# 1103438

Three 1 Liter Summa Canister samples were received on March 19, 2011. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on all of the samples due to the presence of high level non-target species.

The Summa canister for sample AE #2 was leaking during analysis and had to be re-pressurized. The client was notified and the analysis proceeded. Reported analyte concentrations are considered to be estimated.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: AE #1 Lab ID#: 1103438-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	21	42	46	93
Ethanol	82	120	160	230
Acetone	82	140	200	340
Hexane	21	22	73	76
Benzene	21	1300	66	4200
Toluene	21	67	78	250
Styrene	21	22	88	94
Cumene	21	65	100	320

Client Sample ID: AE #2 Lab ID#: 1103438-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	8.6	35	19	77
Ethanol	34	57	64	110
Acetone	34	110	81	260
Methylene Chloride	8.6	9.0	30	31
Benzene	8.6	160	27	510
Toluene	8.6	35	32	130
Tetrachloroethene	8.6	14	58	93
Styrene	8.6	11	36	47
Cumene	8.6	27	42	130

Client Sample ID: AE #3

Lab ID#: 1103438-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	20	61	45	130
Acetone	81	120	190	300
Benzene	20	73	64	230
Toluene	20	29	76	110

Client Sample ID: AE #1 Lab ID#: 1103438-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032130 Date of Collection: 3/16/11 4:45:00 PM
Dil. Factor: 41.2 Date of Analysis: 3/22/11 04:49 PM

DII. Factor:	41.2	Date of Analysis: 3/22/11 04:49 PM			
0	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	21	Not Detected	100	Not Detected	
Freon 114	21	Not Detected	140	Not Detected	
Chloromethane	82	Not Detected	170	Not Detected	
Vinyl Chloride	21	Not Detected	53	Not Detected	
1,3-Butadiene	21	42	46	93	
Bromomethane	21	Not Detected	80	Not Detected	
Chloroethane	82	Not Detected	220	Not Detected	
Freon 11	21	Not Detected	120	Not Detected	
Ethanol	82	120	160	230	
Freon 113	21	Not Detected	160	Not Detected	
1,1-Dichloroethene	21	Not Detected	82	Not Detected	
Acetone	82	140	200	340	
2-Propanol	82	Not Detected	200	Not Detected	
Carbon Disulfide	82	Not Detected	260	Not Detected	
3-Chloropropene	82	Not Detected	260	Not Detected	
Methylene Chloride	21	Not Detected	72	Not Detected	
Methyl tert-butyl ether	21	Not Detected	74	Not Detected	
trans-1,2-Dichloroethene	21	Not Detected	82	Not Detected	
Hexane	21	22	73	76	
1,1-Dichloroethane	21	Not Detected	83	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	82	Not Detected	240	Not Detected	
cis-1,2-Dichloroethene	21	Not Detected	82	Not Detected	
Tetrahydrofuran	21	Not Detected	61	Not Detected	
Chloroform	21	Not Detected	100	Not Detected	
1,1,1-Trichloroethane	21	Not Detected	110	Not Detected	
Cyclohexane	21	Not Detected	71	Not Detected	
Carbon Tetrachloride	21	Not Detected	130	Not Detected	
2,2,4-Trimethylpentane	21	Not Detected	96	Not Detected	
Benzene	21	1300	66	4200	
1,2-Dichloroethane	21	Not Detected	83	Not Detected	
Heptane	21	Not Detected	84	Not Detected	
Trichloroethene	21	Not Detected	110	Not Detected	
1,2-Dichloropropane	21	Not Detected	95	Not Detected	
1,4-Dioxane	82	Not Detected	300	Not Detected	
Bromodichloromethane	21	Not Detected	140	Not Detected	
cis-1,3-Dichloropropene	21	Not Detected	93	Not Detected	
4-Methyl-2-pentanone	21	Not Detected	84	Not Detected	
Toluene	21	67	78	250	
trans-1,3-Dichloropropene	21	Not Detected	93	Not Detected	
	21	Not Detected	110	Not Detected	
	21	Not Detected	140	Not Detected	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene	21	Not Detected	110	Not Dete	

Client Sample ID: AE #1 Lab ID#: 1103438-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 6032130
 Date of Collection: 3/16/11 4:45:00 PM

 Dil. Factor:
 41.2
 Date of Analysis: 3/22/11 04:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	82	Not Detected	340	Not Detected
Dibromochloromethane	21	Not Detected	180	Not Detected
1,2-Dibromoethane (EDB)	21	Not Detected	160	Not Detected
Chlorobenzene	21	Not Detected	95	Not Detected
Ethyl Benzene	21	Not Detected	89	Not Detected
m,p-Xylene	21	Not Detected	89	Not Detected
o-Xylene	21	Not Detected	89	Not Detected
Styrene	21	22	88	94
Bromoform	21	Not Detected	210	Not Detected
Cumene	21	65	100	320
1,1,2,2-Tetrachloroethane	21	Not Detected	140	Not Detected
Propylbenzene	21	Not Detected	100	Not Detected
4-Ethyltoluene	21	Not Detected	100	Not Detected
1,3,5-Trimethylbenzene	21	Not Detected	100	Not Detected
1,2,4-Trimethylbenzene	21	Not Detected	100	Not Detected
1,3-Dichlorobenzene	21	Not Detected	120	Not Detected
1,4-Dichlorobenzene	21	Not Detected	120	Not Detected
alpha-Chlorotoluene	21	Not Detected	110	Not Detected
1,2-Dichlorobenzene	21	Not Detected	120	Not Detected
1,2,4-Trichlorobenzene	82	Not Detected	610	Not Detected
Hexachlorobutadiene	82	Not Detected	880	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: AE #2 Lab ID#: 1103438-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032317 Date of Collection: 3/17/11 4:45:00 PM
Dil. Factor: 17.1 Date of Analysis: 3/23/11 04:26 PM

DII. Factor:	17.1	Date of Analysis: 3/23/11 04:26 PM			
0	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	8.6	Not Detected	42	Not Detected	
Freon 114	8.6	Not Detected	60	Not Detected	
Chloromethane	34	Not Detected	71	Not Detected	
Vinyl Chloride	8.6	Not Detected	22	Not Detected	
1,3-Butadiene	8.6	35	19	77	
Bromomethane	8.6	Not Detected	33	Not Detected	
Chloroethane	34	Not Detected	90	Not Detected	
Freon 11	8.6	Not Detected	48	Not Detected	
Ethanol	34	57	64	110	
Freon 113	8.6	Not Detected	66	Not Detected	
1,1-Dichloroethene	8.6	Not Detected	34	Not Detected	
Acetone	34	110	81	260	
2-Propanol	34	Not Detected	84	Not Detected	
Carbon Disulfide	34	Not Detected	110	Not Detected	
3-Chloropropene	34	Not Detected	110	Not Detected	
Methylene Chloride	8.6	9.0	30	31	
Methyl tert-butyl ether	8.6	Not Detected	31	Not Detected	
trans-1,2-Dichloroethene	8.6	Not Detected	34	Not Detected	
Hexane	8.6	Not Detected	30	Not Detected	
1,1-Dichloroethane	8.6	Not Detected	35	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	34	Not Detected	100	Not Detected	
cis-1,2-Dichloroethene	8.6	Not Detected	34	Not Detected	
Tetrahydrofuran	8.6	Not Detected	25	Not Detected	
Chloroform	8.6	Not Detected	42	Not Detected	
1,1,1-Trichloroethane	8.6	Not Detected	47	Not Detected	
Cyclohexane	8.6	Not Detected	29	Not Detected	
Carbon Tetrachloride	8.6	Not Detected	54	Not Detected	
2,2,4-Trimethylpentane	8.6	Not Detected	40	Not Detected	
Benzene	8.6	160	27	510	
1,2-Dichloroethane	8.6	Not Detected	35	Not Detected	
Heptane	8.6	Not Detected	35	Not Detected	
Trichloroethene	8.6	Not Detected	46	Not Detected	
1,2-Dichloropropane	8.6	Not Detected	40	Not Detected	
1,4-Dioxane	34	Not Detected	120	Not Detected	
Bromodichloromethane	8.6	Not Detected	57	Not Detected	
cis-1,3-Dichloropropene	8.6	Not Detected	39	Not Detected	
4-Methyl-2-pentanone	8.6	Not Detected	35	Not Detected	
Toluene	8.6	35	32	130	
trans-1,3-Dichloropropene	8.6	Not Detected	39	Not Detected	
1,1,2-Trichloroethane	8.6	Not Detected	47	Not Detected	
Tetrachloroethene	8.6	14	58	93	

Client Sample ID: AE #2 Lab ID#: 1103438-02A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p032317
 Date of Collection: 3/17/11 4:45:00 PM

 Dil. Factor:
 17.1
 Date of Analysis: 3/23/11 04:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	34	Not Detected	140	Not Detected
Dibromochloromethane	8.6	Not Detected	73	Not Detected
1,2-Dibromoethane (EDB)	8.6	Not Detected	66	Not Detected
Chlorobenzene	8.6	Not Detected	39	Not Detected
Ethyl Benzene	8.6	Not Detected	37	Not Detected
m,p-Xylene	8.6	Not Detected	37	Not Detected
o-Xylene	8.6	Not Detected	37	Not Detected
Styrene	8.6	11	36	47
Bromoform	8.6	Not Detected	88	Not Detected
Cumene	8.6	27	42	130
1,1,2,2-Tetrachloroethane	8.6	Not Detected	59	Not Detected
Propylbenzene	8.6	Not Detected	42	Not Detected
4-Ethyltoluene	8.6	Not Detected	42	Not Detected
1,3,5-Trimethylbenzene	8.6	Not Detected	42	Not Detected
1,2,4-Trimethylbenzene	8.6	Not Detected	42	Not Detected
1,3-Dichlorobenzene	8.6	Not Detected	51	Not Detected
1,4-Dichlorobenzene	8.6	Not Detected	51	Not Detected
alpha-Chlorotoluene	8.6	Not Detected	44	Not Detected
1,2-Dichlorobenzene	8.6	Not Detected	51	Not Detected
1,2,4-Trichlorobenzene	34	Not Detected	250	Not Detected
Hexachlorobutadiene	34	Not Detected	360	Not Detected

Container Type: 1 Liter Summa Canister

•		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	103	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: AE #3 Lab ID#: 1103438-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032318 Date of Collection: 3/18/11 4:45:00 PM
Dil. Factor: 40.4 Date of Analysis: 3/23/11 05:04 PM

ni. Factor:	40.4	Date of Analysis: 3/23/11 05:04 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	20	Not Detected	100	Not Detected	
Freon 114	20	Not Detected	140	Not Detected	
Chloromethane	81	Not Detected	170	Not Detected	
Vinyl Chloride	20	Not Detected	52	Not Detected	
1,3-Butadiene	20	61	45	130	
Bromomethane	20	Not Detected	78	Not Detected	
Chloroethane	81	Not Detected	210	Not Detected	
Freon 11	20	Not Detected	110	Not Detected	
Ethanol	81	Not Detected	150	Not Detected	
Freon 113	20	Not Detected	150	Not Detected	
1,1-Dichloroethene	20	Not Detected	80	Not Detected	
Acetone	81	120	190	300	
2-Propanol	81	Not Detected	200	Not Detected	
Carbon Disulfide	81	Not Detected	250	Not Detected	
3-Chloropropene	81	Not Detected	250	Not Detected	
Methylene Chloride	20	Not Detected	70	Not Detected	
Methyl tert-butyl ether	20	Not Detected	73	Not Detected	
trans-1,2-Dichloroethene	20	Not Detected	80	Not Detected	
Hexane	20	Not Detected	71	Not Detected	
1,1-Dichloroethane	20	Not Detected	82	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	81	Not Detected	240	Not Detected	
cis-1,2-Dichloroethene	20	Not Detected	80	Not Detected	
Tetrahydrofuran	20	Not Detected	60	Not Detected	
Chloroform	20	Not Detected	99	Not Detected	
1,1,1-Trichloroethane	20	Not Detected	110	Not Detected	
Cyclohexane	20	Not Detected	70	Not Detected	
Carbon Tetrachloride	20	Not Detected	130	Not Detected	
2,2,4-Trimethylpentane	20	Not Detected	94	Not Detected	
Benzene	20	73	64	230	
1,2-Dichloroethane	20	Not Detected	82	Not Detected	
Heptane	20	Not Detected	83	Not Detected	
Trichloroethene	20	Not Detected	110	Not Detected	
1,2-Dichloropropane	20	Not Detected	93	Not Detected	
1,4-Dioxane	81	Not Detected	290	Not Detected	
Bromodichloromethane	20	Not Detected	140	Not Detected	
cis-1,3-Dichloropropene	20	Not Detected	92	Not Detected	
4-Methyl-2-pentanone	20	Not Detected	83	Not Detected	
Toluene	20	29	76	110	
trans-1,3-Dichloropropene	20	Not Detected	92	Not Detected	
1,1,2-Trichloroethane	20	Not Detected	110	Not Detected	
Tetrachloroethene	20	Not Detected	140	Not Detected	

Client Sample ID: AE #3 Lab ID#: 1103438-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p032318
 Date of Collection: 3/18/11 4:45:00 PM

 Dil. Factor:
 40.4
 Date of Analysis: 3/23/11 05:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	81	Not Detected	330	Not Detected
Dibromochloromethane	20	Not Detected	170	Not Detected
1,2-Dibromoethane (EDB)	20	Not Detected	160	Not Detected
Chlorobenzene	20	Not Detected	93	Not Detected
Ethyl Benzene	20	Not Detected	88	Not Detected
m,p-Xylene	20	Not Detected	88	Not Detected
o-Xylene	20	Not Detected	88	Not Detected
Styrene	20	Not Detected	86	Not Detected
Bromoform	20	Not Detected	210	Not Detected
Cumene	20	Not Detected	99	Not Detected
1,1,2,2-Tetrachloroethane	20	Not Detected	140	Not Detected
Propylbenzene	20	Not Detected	99	Not Detected
4-Ethyltoluene	20	Not Detected	99	Not Detected
1,3,5-Trimethylbenzene	20	Not Detected	99	Not Detected
1,2,4-Trimethylbenzene	20	Not Detected	99	Not Detected
1,3-Dichlorobenzene	20	Not Detected	120	Not Detected
1,4-Dichlorobenzene	20	Not Detected	120	Not Detected
alpha-Chlorotoluene	20	Not Detected	100	Not Detected
1,2-Dichlorobenzene	20	Not Detected	120	Not Detected
1,2,4-Trichlorobenzene	81	Not Detected	600	Not Detected
Hexachlorobutadiene	81	Not Detected	860	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1103438-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032110 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 09:32 PM

Dil. Factor:	1.00	Date of Analysis: 3/21/11 09:32 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1103438-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032110 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 09:32 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	119	70-130	
4-Bromofluorobenzene	88	70-130	

Client Sample ID: Lab Blank Lab ID#: 1103438-04B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032311 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 12:56 PM

Dil. Factor:	1.00	Date of Analysis: 3/23/11 12:56 PM		/11 12:56 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1103438-04B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032311 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 12:56 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: CCV Lab ID#: 1103438-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 05:35 PM

Compound	%Recovery
Freon 12	125
Freon 114	113
Chloromethane	110
Vinyl Chloride	101
1,3-Butadiene	96
Bromomethane	96
Chloroethane	101
Freon 11	129
Ethanol	98
Freon 113	110
1,1-Dichloroethene	105
Acetone	101
2-Propanol	116
Carbon Disulfide	103
3-Chloropropene	106
Methylene Chloride	106
Methyl tert-butyl ether	112
trans-1,2-Dichloroethene	100
Hexane	99
1,1-Dichloroethane	109
2-Butanone (Methyl Ethyl Ketone)	108
cis-1,2-Dichloroethene	109
Tetrahydrofuran	101
Chloroform	117
1,1,1-Trichloroethane	120
Cyclohexane	105
Carbon Tetrachloride	123
2,2,4-Trimethylpentane	106
Benzene	111
1,2-Dichloroethane	130
Heptane	110
Trichloroethene	112
1,2-Dichloropropane	111
1,4-Dioxane	113
Bromodichloromethane	122
cis-1,3-Dichloropropene	119
4-Methyl-2-pentanone	120
Toluene	118
trans-1,3-Dichloropropene	108
1,1,2-Trichloroethane	115
Tetrachloroethene	108

Client Sample ID: CCV Lab ID#: 1103438-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 05:35 PM

Compound	%Recovery
2-Hexanone	122
Dibromochloromethane	118
1,2-Dibromoethane (EDB)	115
Chlorobenzene	114
Ethyl Benzene	114
m,p-Xylene	114
o-Xylene	113
Styrene	118
Bromoform	119
Cumene	113
1,1,2,2-Tetrachloroethane	120
Propylbenzene	116
4-Ethyltoluene	125
1,3,5-Trimethylbenzene	104
1,2,4-Trimethylbenzene	106
1,3-Dichlorobenzene	109
1,4-Dichlorobenzene	104
alpha-Chlorotoluene	120
1,2-Dichlorobenzene	104
1,2,4-Trichlorobenzene	100
Hexachlorobutadiene	98

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV Lab ID#: 1103438-05B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032305 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 09:52 AM

Compound	%Recovery
Freon 12	105
Freon 114	103
Chloromethane	101
Vinyl Chloride	98
1,3-Butadiene	89
Bromomethane	96
Chloroethane	106
Freon 11	105
Ethanol	96
Freon 113	107
1,1-Dichloroethene	98
Acetone	102
2-Propanol	106
Carbon Disulfide	99
3-Chloropropene	100
Methylene Chloride	103
Methyl tert-butyl ether	101
trans-1,2-Dichloroethene	101
Hexane	101
1,1-Dichloroethane	102
2-Butanone (Methyl Ethyl Ketone)	101
cis-1,2-Dichloroethene	98
Tetrahydrofuran	103
Chloroform	102
1,1,1-Trichloroethane	104
Cyclohexane	96
Carbon Tetrachloride	107
2,2,4-Trimethylpentane	103
Benzene	100
1,2-Dichloroethane	109
Heptane	103
Trichloroethene	109
1,2-Dichloropropane	105
1,4-Dioxane	104
Bromodichloromethane	107
cis-1,3-Dichloropropene	107
4-Methyl-2-pentanone	102
Toluene	100
trans-1,3-Dichloropropene	104
1,1,2-Trichloroethane	98
Tetrachloroethene	104

Client Sample ID: CCV Lab ID#: 1103438-05B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032305 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 09:52 AM

Compound	%Recovery
2-Hexanone	98
Dibromochloromethane	105
1,2-Dibromoethane (EDB)	99
Chlorobenzene	100
Ethyl Benzene	97
m,p-Xylene	94
o-Xylene	95
Styrene	100
Bromoform	111
Cumene	97
1,1,2,2-Tetrachloroethane	95
Propylbenzene	95
4-Ethyltoluene	98
1,3,5-Trimethylbenzene	95
1,2,4-Trimethylbenzene	94
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	102
alpha-Chlorotoluene	98
1,2-Dichlorobenzene	101
1,2,4-Trichlorobenzene	110
Hexachlorobutadiene	114

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCS Lab ID#: 1103438-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 06:11 PM

Compound	%Recovery
Freon 12	122
Freon 114	108
Chloromethane	116
Vinyl Chloride	99
1,3-Butadiene	97
Bromomethane	89
Chloroethane	98
Freon 11	127
Ethanol	93
Freon 113	108
1,1-Dichloroethene	105
Acetone	94
2-Propanol	112
Carbon Disulfide	122
3-Chloropropene	113
Methylene Chloride	106
Methyl tert-butyl ether	111
trans-1,2-Dichloroethene	113
Hexane	96
1,1-Dichloroethane	109
2-Butanone (Methyl Ethyl Ketone)	106
cis-1,2-Dichloroethene	104
Tetrahydrofuran	92
Chloroform	113
1,1,1-Trichloroethane	118
Cyclohexane	102
Carbon Tetrachloride	120
2,2,4-Trimethylpentane	100
Benzene	112
1,2-Dichloroethane	128
Heptane	107
Trichloroethene	110
1,2-Dichloropropane	110
1,4-Dioxane	108
Bromodichloromethane	120
cis-1,3-Dichloropropene	112
4-Methyl-2-pentanone	114
Toluene	113
trans-1,3-Dichloropropene	110
1,1,2-Trichloroethane	112
Tetrachloroethene	104

Client Sample ID: LCS Lab ID#: 1103438-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 06:11 PM

Compound	%Recovery
2-Hexanone	110
Dibromochloromethane	113
1,2-Dibromoethane (EDB)	113
Chlorobenzene	110
Ethyl Benzene	110
m,p-Xylene	111
o-Xylene	110
Styrene	115
Bromoform	111
Cumene	110
1,1,2,2-Tetrachloroethane	118
Propylbenzene	113
4-Ethyltoluene	114
1,3,5-Trimethylbenzene	100
1,2,4-Trimethylbenzene	102
1,3-Dichlorobenzene	104
1,4-Dichlorobenzene	99
alpha-Chlorotoluene	114
1,2-Dichlorobenzene	99
1,2,4-Trichlorobenzene	85
Hexachlorobutadiene	89

		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: LCSD Lab ID#: 1103438-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 06:37 PM

Compound	%Recovery
Freon 12	122
Freon 114	108
Chloromethane	108
Vinyl Chloride	104
1,3-Butadiene	94
Bromomethane	87
Chloroethane	102
Freon 11	125
Ethanol	94
Freon 113	107
1,1-Dichloroethene	106
Acetone	98
2-Propanol	111
Carbon Disulfide	121
3-Chloropropene	124
Methylene Chloride	106
Methyl tert-butyl ether	110
trans-1,2-Dichloroethene	107
Hexane	93
1,1-Dichloroethane	107
2-Butanone (Methyl Ethyl Ketone)	104
cis-1,2-Dichloroethene	101
Tetrahydrofuran	92
Chloroform	114
1,1,1-Trichloroethane	117
Cyclohexane	100
Carbon Tetrachloride	119
2,2,4-Trimethylpentane	99
Benzene	109
1,2-Dichloroethane	122
Heptane	109
Trichloroethene	108
1,2-Dichloropropane	109
1,4-Dioxane	106
Bromodichloromethane	120
cis-1,3-Dichloropropene	112
4-Methyl-2-pentanone	112
Toluene	114
trans-1,3-Dichloropropene	112
1,1,2-Trichloroethane	112
Tetrachloroethene	107

Client Sample ID: LCSD Lab ID#: 1103438-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 6032104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/21/11 06:37 PM

Compound	%Recovery
2-Hexanone	113
Dibromochloromethane	113
1,2-Dibromoethane (EDB)	112
Chlorobenzene	112
Ethyl Benzene	110
m,p-Xylene	110
o-Xylene	112
Styrene	117
Bromoform	114
Cumene	110
1,1,2,2-Tetrachloroethane	118
Propylbenzene	115
4-Ethyltoluene	106
1,3,5-Trimethylbenzene	110
1,2,4-Trimethylbenzene	102
1,3-Dichlorobenzene	106
1,4-Dichlorobenzene	101
alpha-Chlorotoluene	115
1,2-Dichlorobenzene	101
1,2,4-Trichlorobenzene	91
Hexachlorobutadiene	92

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: LCS Lab ID#: 1103438-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032306 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 10:23 AM

Compound	%Recovery
Freon 12	104
Freon 114	101
Chloromethane	110
Vinyl Chloride	100
1,3-Butadiene	87
Bromomethane	96
Chloroethane	104
Freon 11	107
Ethanol	96
Freon 113	108
1,1-Dichloroethene	106
Acetone	97
2-Propanol	105
Carbon Disulfide	120
3-Chloropropene	112
Methylene Chloride	101
Methyl tert-butyl ether	101
rans-1,2-Dichloroethene	110
Hexane	100
1,1-Dichloroethane	100
2-Butanone (Methyl Ethyl Ketone)	100
cis-1,2-Dichloroethene	97
Tetrahydrofuran	99
Chloroform	102
1,1,1-Trichloroethane	105
Cyclohexane	97
Carbon Tetrachloride	107
2,2,4-Trimethylpentane	102
Benzene	103
1,2-Dichloroethane	110
Heptane	103
Trichloroethene	111
1,2-Dichloropropane	104
1,4-Dioxane	102
Bromodichloromethane	107
cis-1,3-Dichloropropene	107
4-Methyl-2-pentanone	102
Toluene	102
trans-1,3-Dichloropropene	105
1,1,2-Trichloroethane	100
Tetrachloroethene	106

Client Sample ID: LCS Lab ID#: 1103438-06B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032306 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 10:23 AM

Compound	%Recovery
2-Hexanone	98
Dibromochloromethane	106
1,2-Dibromoethane (EDB)	104
Chlorobenzene	102
Ethyl Benzene	100
m,p-Xylene	100
o-Xylene	100
Styrene	102
Bromoform	110
Cumene	101
1,1,2,2-Tetrachloroethane	100
Propylbenzene	100
4-Ethyltoluene	99
1,3,5-Trimethylbenzene	98
1,2,4-Trimethylbenzene	95
1,3-Dichlorobenzene	105
1,4-Dichlorobenzene	104
alpha-Chlorotoluene	98
1,2-Dichlorobenzene	106
1,2,4-Trichlorobenzene	112
Hexachlorobutadiene	118

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCSD Lab ID#: 1103438-06BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032307 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 10:41 AM

Compound	%Recovery
Freon 12	104
Freon 114	100
Chloromethane	107
Vinyl Chloride	98
1,3-Butadiene	88
Bromomethane	93
Chloroethane	100
Freon 11	105
Ethanol	100
Freon 113	105
1,1-Dichloroethene	100
Acetone	93
2-Propanol	103
Carbon Disulfide	117
3-Chloropropene	106
Methylene Chloride	100
Methyl tert-butyl ether	101
trans-1,2-Dichloroethene	112
Hexane	99
1,1-Dichloroethane	101
2-Butanone (Methyl Ethyl Ketone)	96
cis-1,2-Dichloroethene	95
Tetrahydrofuran	96
Chloroform	101
1,1,1-Trichloroethane	103
Cyclohexane	95
Carbon Tetrachloride	107
2,2,4-Trimethylpentane	101
Benzene	100
1,2-Dichloroethane	108
Heptane	100
Trichloroethene	108
1,2-Dichloropropane	103
1,4-Dioxane	98
Bromodichloromethane	105
cis-1,3-Dichloropropene	104
4-Methyl-2-pentanone	101
Toluene	99
trans-1,3-Dichloropropene	102
1,1,2-Trichloroethane	99
Tetrachloroethene	103

Client Sample ID: LCSD Lab ID#: 1103438-06BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p032307 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/23/11 10:41 AM

Compound	%Recovery
2-Hexanone	97
Dibromochloromethane	103
1,2-Dibromoethane (EDB)	102
Chlorobenzene	101
Ethyl Benzene	98
m,p-Xylene	98
o-Xylene	97
Styrene	100
Bromoform	108
Cumene	100
1,1,2,2-Tetrachloroethane	98
Propylbenzene	98
4-Ethyltoluene	96
1,3,5-Trimethylbenzene	96
1,2,4-Trimethylbenzene	94
1,3-Dichlorobenzene	102
1,4-Dichlorobenzene	103
alpha-Chlorotoluene	96
1,2-Dichlorobenzene	105
1,2,4-Trichlorobenzene	108
Hexachlorobutadiene	113

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	106	70-130	

Keinquis		Relinquis		4 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2						<u></u>	3	OF	A TNO				DELIVERABLES:	П 5-	IJ STAI	TELEPHONE: 314-429-0100	Air Tox	1001 H	URS C	Lab Ve	Pro	Pro	Air.	
Reinquisned by: (Signature)		Relinquished by: (Signature)								AE #3	AE #2	AE #1					ABLES:	☐ LA - RWQCB REPORT FORMAT	REDARD (14 DAY	9-0100	ics, LTD 18	IIGHLANDS	URS CORPORATION	Lab Vendor#	ject # 21	ject Nam	Air Toxics LTD	
		The same												Field S			☐ LEVEL 1	RT FORMAT	TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY) 15 DAYS		0 Blue Ravin	PLAZA DRIN	N N		Project # 21562593.00014	e: Roxa		
		and the second s							/				•	Field Sample Identification			☑ LEVEL 2		\YS): ☐ 5 DAYS	514	Air Toxics, LTD 180 Blue Ravine Road, Suite B, Folsom, CA 95630-4719	1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300; ST. LOUIS, MO 63110			0014	Project Name: Roxana SVE Pilot		
		:												ntification				UST AGENCY:		314-429-0462	e B, Folsom,	UITE 300; S				Pilot		
																	□ LEVEL 3	įCY	☐ 3 DAYS		CA 95630-	T. LOUIS, M						
						7				3/1	3/1	3/1	DATE	g			☑ LEVEL 4		□ 2 DAYS		4719	C 63110		SHELL PIPELINE	□ MOTI	ENV. SERVICES		
			_		1	ali Ali				3/18/11 1645	3/17/11 1645	3/16/11 1645	E TIME	SAMPLING			il 4)AYS	Steve				PIPELINE	☐ MOTTVA SD&CM			
Received b	{	Received b				/	10							<u></u>	□ EDD P	□ STATI	OTHER (SPECIFY)		☐ 24 HOURS	Bill to Combact € MAIL: Steven_Shroff@URSCorp.com			Logode	OTHER	CONSULTANT	Mon	Please Check Appropriate Box:	-
Received by: (Signature)		Received by, (Signature) FEDEX Received by: (Signature)				page distribution of the state				2545	2676	3019		Canister Number	☐ EDD NOT NEEDED ☑ RECEIPT VERIFICATION REQUESTED	SHELL CONTRACT RATE APPLIES STATE REIMBURSEMENT RATE A	PECIFY)		g.	RSCorp.com				25	ULTANT	MOTIVA RETAIL	eck Appro	<u>0</u>
	2	×				1				-29	-29	-29	fnitial		ON REQUESTED	SHELL CONTRACT RATE APPLIES			RESULTS								priate Bo	rodu
										0	<u>ئ</u>	0	Final	Conister Pressure∕Vacuum		ES.			RESULTS NEEDED ON WEEKEND						□ tnaes	☐ SHELL RETAIL	*	cts Ch
													Receipt	ssure/Vacuur					EKEND				10			Ш.		ain Of
	3									×	×	×	Final (psi) TO							RICH HART	Elizabeth Kunkel, URS, St. Louis sampler name(s) Print:	OF DELIVERABLE T	SITE ADDRESS; Street and City 900 SOUTH CENTRAL AVE ROXANA				Print Bill To Contact Name:	Shell Oil Products Chain Of Custody
																				~	inkel, URS,	O Name, Company,	Street and City CENTRAL A			St	To Contac	
																					St. Louis	Office Location):	VE ROXAI		PO #	Steve Shroff	: Name:	Record
										-											31,							
-								<u> </u>	_ Leve	- Kepo		- 14 d		Sp	□ Rush	☑ Normal	⊒	Turn ,	R		314-743-4179	HONE NO:	State 1L	3		ဖ		
Date:	S I	PR CV Par							- Level IV ECVP	- Repolitiesuits between WIDE and RE	- - -	14 day hold time		Specify			Time:	Turn Around	REQUESTED ANALYSIS					4 0		7 2	INCIDENT # (ENV SERVICES)	
	119/4	18/10							U	Detweer		ne	ADDI		Pressuriz	.	Pressurized by:	Lab Use Only	ANALYSIS		Elizabeth K		GLOBAL ID NO.:	0	SAP#	1 6	# (ENV SE	
radio falso distribution										MULan	1		ADDITIONAL NOTES:		Pressurization Gas:		ed by:	Vinc			Kunke @URSCorp		ann aladadal ada	1		6 4 0	RVICES	
Time:	0930	1800		,						2	2		OTES:								Corp.com			7,00	0			
	2	ē			-										2						Roxana SVE Pilot	CONSULTANT PROJECT NAME#:				3/18/11	CHECK IF NO INCIDENT # APPLIES	
															Ŧ						/E Pilot	ECT NAME#:			<u>.</u>		AppLIES	三 7,

S MA

05/2/06 Revisio

Roxana SVE Pilot Data Review

Laboratory SDG: 1104017

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Tony Sedlacek

Date Reviewed: 5/18/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification
Influent PT/PW

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that sample Influent PT/PW was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, TO-15 LCS/LCSD and CCV recoveries were outside evaluation criteria for chloromethane. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
1104017- 04A/AA	TO-15	Chloromethane	169/148	13	70-130/25

Analytical data which were reported as non-detect and associated with LCS/LCSD recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with LCS/LCSD recoveries above evaluation criteria; therefore, no qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?

No, however, the CCV recovery for chloromethane was above evaluation criteria.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
1104017-03A	TO-15	Chloromethane	156	70-130

Analytical data which were reported as non-detect and associated with CCV recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with CCV recoveries above evaluation criteria; therefore, no qualification of data was required.

4/5/2011

Mr. Steve Shroff URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana SVE Pilot Project #: 21562593.00014

Workorder #: 1104017

Dear Mr. Steve Shroff

The following report includes the data for the above referenced project for sample(s) received on 4/1/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jacquelyn Luta at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jacquelyn Luta

Project Manager

WORK ORDER #: 1104017

Work Order Summary

CLIENT: Mr. Steve Shroff BILL TO: Accounts Payable Austin

URS Corporation

1001 Highlands Plaza Dr. West P.O. BOX 203970 Austin, TX 78720-1088

Suite 300

St. Louis, MO 63110

PHONE: 314-429-0100 **P.O.** #

FAX: PROJECT # 21562593.00014 Roxana SVE Pilot

DATE RECEIVED: 04/01/2011 **CONTACT:** Jacquelyn Luta **DATE COMPLETED:** 04/05/2011

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	Influent PT/PW	Modified TO-15	0.4 "Hg	15 psi
02A	Lab Blank	Modified TO-15	NA	NA
03A	CCV	Modified TO-15	NA	NA
04A	LCS	Modified TO-15	NA	NA
04AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

04/05/11 DATE:

URS Corporation

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder# 1104017

One 1 Liter Summa Canister sample was received on April 01, 2011. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on sample Influent PT/PW due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: Influent PT/PW

Lab ID#: 1104017-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	41	140	97	340
Hexane	10	25	36	89
Cyclohexane	10	31	35	110
2,2,4-Trimethylpentane	10	330	48	1500
Benzene	10	3700	33	12000

Client Sample ID: Influent PT/PW Lab ID#: 1104017-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040409 Date of Collection: 3/19/11 11:40:00 AM Dil. Factor: 20.5 Date of Analysis: 4/4/11 02:06 PM

DII. Factor:	20.5	Date	Date of Analysis: 4/4/11 02:06 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)			
Freon 12	10	Not Detected	51	Not Detected			
Freon 114	10	Not Detected	72	Not Detected			
Chloromethane	41	Not Detected	85	Not Detected			
Vinyl Chloride	10	Not Detected	26	Not Detected			
1,3-Butadiene	10	Not Detected	23	Not Detected			
Bromomethane	10	Not Detected	40	Not Detected			
Chloroethane	41	Not Detected	110	Not Detected			
Freon 11	10	Not Detected	58	Not Detected			
Ethanol	41	Not Detected	77	Not Detected			
Freon 113	10	Not Detected	78	Not Detected			
1,1-Dichloroethene	10	Not Detected	41	Not Detected			
Acetone	41	140	97	340			
2-Propanol	41	Not Detected	100	Not Detected			
Carbon Disulfide	41	Not Detected	130	Not Detected			
3-Chloropropene	41	Not Detected	130	Not Detected			
Methylene Chloride	10	Not Detected	36	Not Detected			
Methyl tert-butyl ether	10	Not Detected	37	Not Detected			
trans-1,2-Dichloroethene	10	Not Detected	41	Not Detected			
Hexane	10	25	36	89			
1,1-Dichloroethane	10	Not Detected	41	Not Detected			
2-Butanone (Methyl Ethyl Ketone)	41	Not Detected	120	Not Detected			
cis-1,2-Dichloroethene	10	Not Detected	41	Not Detected			
Tetrahydrofuran	10	Not Detected	30	Not Detected			
Chloroform	10	Not Detected	50	Not Detected			
1,1,1-Trichloroethane	10	Not Detected	56	Not Detected			
Cyclohexane	10	31	35	110			
Carbon Tetrachloride	10	Not Detected	64	Not Detected			
2,2,4-Trimethylpentane	10	330	48	1500			
Benzene	10	3700	33	12000			
1,2-Dichloroethane	10	Not Detected	41	Not Detected			
Heptane	10	Not Detected	42	Not Detected			
Trichloroethene	10	Not Detected	55	Not Detected			
1,2-Dichloropropane	10	Not Detected	47	Not Detected			
1,4-Dioxane	41	Not Detected	150	Not Detected			
Bromodichloromethane	10	Not Detected	69	Not Detected			
cis-1,3-Dichloropropene	10	Not Detected	46	Not Detected			
4-Methyl-2-pentanone	10	Not Detected	42	Not Detected			
Toluene	10	Not Detected	39	Not Detected			
trans-1,3-Dichloropropene	10	Not Detected	46	Not Detected			
1,1,2-Trichloroethane	10	Not Detected	56	Not Detected			
Tetrachloroethene	10	Not Detected	70	Not Detected			

Client Sample ID: Influent PT/PW Lab ID#: 1104017-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 3040409
 Date of Collection: 3/19/11 11:40:00 AM

 Dil. Factor:
 20.5
 Date of Analysis: 4/4/11 02:06 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	41	Not Detected	170	Not Detected
Dibromochloromethane	10	Not Detected	87	Not Detected
1,2-Dibromoethane (EDB)	10	Not Detected	79	Not Detected
Chlorobenzene	10	Not Detected	47	Not Detected
Ethyl Benzene	10	Not Detected	44	Not Detected
m,p-Xylene	10	Not Detected	44	Not Detected
o-Xylene	10	Not Detected	44	Not Detected
Styrene	10	Not Detected	44	Not Detected
Bromoform	10	Not Detected	100	Not Detected
Cumene	10	Not Detected	50	Not Detected
1,1,2,2-Tetrachloroethane	10	Not Detected	70	Not Detected
Propylbenzene	10	Not Detected	50	Not Detected
4-Ethyltoluene	10	Not Detected	50	Not Detected
1,3,5-Trimethylbenzene	10	Not Detected	50	Not Detected
1,2,4-Trimethylbenzene	10	Not Detected	50	Not Detected
1,3-Dichlorobenzene	10	Not Detected	62	Not Detected
1,4-Dichlorobenzene	10	Not Detected	62	Not Detected
alpha-Chlorotoluene	10	Not Detected	53	Not Detected
1,2-Dichlorobenzene	10	Not Detected	62	Not Detected
1,2,4-Trichlorobenzene	41	Not Detected	300	Not Detected
Hexachlorobutadiene	41	Not Detected	440	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: Lab Blank Lab ID#: 1104017-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040407 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 11:14 AM

Dil. Factor:	1.00	Date of Analysis: 4/4/11 11:14 AM		11 11:14 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1104017-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040407 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 11:14 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	113	70-130	

Client Sample ID: CCV Lab ID#: 1104017-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 08:59 AM

Compound	%Recovery
Freon 12	92
Freon 114	95
Chloromethane	156 Q
Vinyl Chloride	111
1,3-Butadiene	86
Bromomethane	89
Chloroethane	91
Freon 11	88
Ethanol	91
Freon 113	90
1,1-Dichloroethene	89
Acetone	89
2-Propanol	87
Carbon Disulfide	91
3-Chloropropene	87
Methylene Chloride	92
Methyl tert-butyl ether	80
trans-1,2-Dichloroethene	87
Hexane	88
1,1-Dichloroethane	87
2-Butanone (Methyl Ethyl Ketone)	87
cis-1,2-Dichloroethene	90
Tetrahydrofuran	91
Chloroform	90
1,1,1-Trichloroethane	84
Cyclohexane	87
Carbon Tetrachloride	91
2,2,4-Trimethylpentane	87
Benzene	92
1,2-Dichloroethane	91
Heptane	88
Trichloroethene	90
1,2-Dichloropropane	84
1,4-Dioxane	89
Bromodichloromethane	91
cis-1,3-Dichloropropene	91
4-Methyl-2-pentanone	82
Toluene	90
trans-1,3-Dichloropropene	93
1,1,2-Trichloroethane	92
Tetrachloroethene	101

Client Sample ID: CCV Lab ID#: 1104017-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 08:59 AM

Compound	%Recovery
2-Hexanone	90
Dibromochloromethane	96
1,2-Dibromoethane (EDB)	95
Chlorobenzene	95
Ethyl Benzene	96
m,p-Xylene	91
o-Xylene	89
Styrene	93
Bromoform	101
Cumene	96
1,1,2,2-Tetrachloroethane	91
Propylbenzene	94
4-Ethyltoluene	94
1,3,5-Trimethylbenzene	98
1,2,4-Trimethylbenzene	95
1,3-Dichlorobenzene	97
1,4-Dichlorobenzene	102
alpha-Chlorotoluene	88
1,2-Dichlorobenzene	97
1,2,4-Trichlorobenzene	102
Hexachlorobutadiene	102

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	118	70-130	

Client Sample ID: LCS Lab ID#: 1104017-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 09:54 AM

Compound	%Recovery
Freon 12	99
Freon 114	103
Chloromethane	169 Q
Vinyl Chloride	103
1,3-Butadiene	91
Bromomethane	92
Chloroethane	94
Freon 11	95
Ethanol	91
Freon 113	98
1,1-Dichloroethene	101
Acetone	94
2-Propanol	95
Carbon Disulfide	118
3-Chloropropene	108
Methylene Chloride	97
Methyl tert-butyl ether	90
trans-1,2-Dichloroethene	103
Hexane	95
1,1-Dichloroethane	90
2-Butanone (Methyl Ethyl Ketone)	93
cis-1,2-Dichloroethene	94
Tetrahydrofuran	92
Chloroform	97
1,1,1-Trichloroethane	93
Cyclohexane	96
Carbon Tetrachloride	101
2,2,4-Trimethylpentane	95
Benzene	92
1,2-Dichloroethane	89
Heptane	90
Trichloroethene	91
1,2-Dichloropropane	86
1,4-Dioxane	90
Bromodichloromethane	91
cis-1,3-Dichloropropene	90
4-Methyl-2-pentanone	82
Toluene	92
trans-1,3-Dichloropropene	88
1,1,2-Trichloroethane	92
Tetrachloroethene	100

Client Sample ID: LCS Lab ID#: 1104017-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 09:54 AM

Compound	%Recovery
2-Hexanone	84
Dibromochloromethane	90
1,2-Dibromoethane (EDB)	92
Chlorobenzene	93
Ethyl Benzene	92
m,p-Xylene	93
o-Xylene	92
Styrene	94
Bromoform	97
Cumene	98
1,1,2,2-Tetrachloroethane	93
Propylbenzene	96
4-Ethyltoluene	92
1,3,5-Trimethylbenzene	99
1,2,4-Trimethylbenzene	96
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	103
alpha-Chlorotoluene	89
1,2-Dichlorobenzene	103
1,2,4-Trichlorobenzene	102
Hexachlorobutadiene	100

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	98	70-130	
4-Bromofluorobenzene	113	70-130	

Client Sample ID: LCSD Lab ID#: 1104017-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040405 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 10:14 AM

Compound	%Recovery
Freon 12	94
Freon 114	99
Chloromethane	148 Q
Vinyl Chloride	104
1,3-Butadiene	88
Bromomethane	91
Chloroethane	85
Freon 11	90
Ethanol	90
Freon 113	94
1,1-Dichloroethene	99
Acetone	91
2-Propanol	91
Carbon Disulfide	113
3-Chloropropene	106
Methylene Chloride	92
Methyl tert-butyl ether	85
trans-1,2-Dichloroethene	101
Hexane	90
1,1-Dichloroethane	88
2-Butanone (Methyl Ethyl Ketone)	88
cis-1,2-Dichloroethene	91
Tetrahydrofuran	90
Chloroform	92
1,1,1-Trichloroethane	87
Cyclohexane	90
Carbon Tetrachloride	95
2,2,4-Trimethylpentane	86
Benzene	93
1,2-Dichloroethane	90
Heptane	90
Trichloroethene	91
1,2-Dichloropropane	86
1,4-Dioxane	85
Bromodichloromethane	90
cis-1,3-Dichloropropene	90
4-Methyl-2-pentanone	81
Toluene	91
trans-1,3-Dichloropropene	91
1,1,2-Trichloroethane	90
Tetrachloroethene	100

Client Sample ID: LCSD Lab ID#: 1104017-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3040405 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/4/11 10:14 AM

Compound	%Recovery
2-Hexanone	86
Dibromochloromethane	91
1,2-Dibromoethane (EDB)	94
Chlorobenzene	94
Ethyl Benzene	92
m,p-Xylene	92
o-Xylene	89
Styrene	94
Bromoform	98
Cumene	97
1,1,2,2-Tetrachloroethane	93
Propylbenzene	94
4-Ethyltoluene	89
1,3,5-Trimethylbenzene	94
1,2,4-Trimethylbenzene	94
1,3-Dichlorobenzene	96
1,4-Dichlorobenzene	99
alpha-Chlorotoluene	84
1,2-Dichlorobenzene	98
1,2,4-Trichlorobenzene	96
Hexachlorobutadiene	99

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	112	70-130

05/2/06 Revision								1	
								•	•
Date: Time:				,	Received by: (Signature)			i(e)	Relinquished by: (Signature)
	9 BO	=	APP I	<u> </u>	K. McKerce			į	1
Date: Time:					FEDEX Received by, (Signature)			1	Relinquimed by (Signa)
					Received by: (Signature)		AND THE PROPERTY OF THE PROPER	1	Relinquished by: (Signatus
					/				
						~ /			
				1	James .	(:		
				1					
- Results needed by 5pm (CDT) 04/05/11									
- Level IV ECVP							/		
- Report results between MDL and RL									
- 14 day hold time	×			-29 0	2687	3/19/11 1140		Influent PT/PW	Din Influen
ADDITIONAL NOTES:	Mod	Final (psi)	Receipt	Initial Final	Calliste Mullines	DATE TIME		Fleid Sallible Identification	LABUSE ONLY
Specify	itied		Conister Pressure/Vacuum	Conister F		SAMPLING			
□Normal Date: Date: Pressurization Gas: Ny He	TO-15	TO 45		S APPLIES	SHELL CONTRACT RATE APPLIES STATE REIMBURSEMENT RATE APPLIES EID NOT NEEDED ACCEPT VERIFICATION REQUESTED				
Time: Pressurized by:					OTHER (SPECIFY)	ALEVET 4	LE/EL 3	נכלים ביז אמלאים בי	DELIVERABLES.
Turn Around Lab Use Drift							JUST AGENCY:		☐ - RWQCB REPORT FORMAT
REQUESTED ANALYSIS			WEEKEND	RESULTS NEEDED ON WEEKEND	24 HOURS RES	a þars	ЗФАҮЅ	URMAROUND TIME (CALENDAR DAYS): 5 ANDARD (14 DAY) 5 DAYS	TURNAROUND TIM
					Steven Shroff@URSCorp.com	Steven. Shroff	3-0462	314-429-0462	TELEPHONE: 314-429-0100
514-743-9179 Elizaben Kulikaliwonscolptoni	Elizabeth Kunkel, UKS, St. Louis SAMPLER NAME(S) (Print):	SAMPLER NAME(S					Folsom, CA 95630-4719	Laboratory Address Air Toxics, LTD 180 Blue Ravine Road, Suite B, Folsom, CA 95630-4719	Air Toxics, LTD 1
	Copyright Company, Come cocascing	EDI DELIVERABLE					E 300; ST. LOUIS, MO 63110	ADDRESS: 1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300; ST. LOUIS, MO 63110	1001 HIGHLAND
L	900 SOUTH CENTRAL AVE ROXANA	900 SOUTH			LOG CODE	K sh		ION	URS CORPORATION
4 0 0 6 1					OTHER	SHELL PIPELINE	S		Lab Vendor#
SAP#	# 0d		ĒS	LUBES	CONSULTANT	MOTIVA SDRCM		Project # 21562593,00014	Project # 2
9 7 2 1 6 6 4 0 DATE: 3/31011	Print Bill To Contact Name: Steve Shroff	Print Bill	SHELL RETAIL	\Box	Please Check Appropriate Box	ANV. SERVICES Plea		LTD. ne: Roxana SVE Pilo	Air Toxics LTD. Project Name: Ro
	ustouy iteeoru	Cust		[OHER OF LICE	K			

Roxana SVE Pilot Data Review

Laboratory SDG: 1103537

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Tony Sedlacek

Date Reviewed: 4/13/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	Sample Identification
AE #4	AE #5
AE #6	AE #7

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that samples AE #4, AE #6, and AE #7 were diluted due to high levels of non-target analytes. Sample AE #5 was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, TO-15 LCS/LCSD and CCV recoveries were outside evaluation criteria for chloromethane. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blank?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
1103537- 07A/AA	TO-15	Chloromethane	132/131	1	70-130/25

Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with LCS/LCSD recoveries above evaluation criteria; therefore, no qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?

No, however, the CCV recovery for chloromethane was above evaluation criteria.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
1103537-06A	TO-15	Chloromethane	131	70-130

Analytical data which were reported as non-detect and associated with CCV recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with CCV recoveries above evaluation criteria; therefore, no qualification of data was required.

3/31/2011

Mr. Steve Shroff URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana SVE Pilot

Project #:

Workorder #: 1103537

Dear Mr. Steve Shroff

The following report includes the data for the above referenced project for sample(s) received on 3/24/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jacquelyn Luta at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jacquelyn Luta

Project Manager

WORK ORDER #: 1103537

Work Order Summary

CLIENT: Mr. Steve Shroff BILL TO: Accounts Payable Austin

URS Corporation

1001 Highlands Plaza Dr. West P.O. BOX 203970

Suite 300

St. Louis, MO 63110

PHONE: 314-429-0100 **P.O.** #

FAX: PROJECT # Roxana SVE Pilot

DATE RECEIVED: 03/24/2011 **CONTACT:** Jacquelyn Luta **DATE COMPLETED:** 03/31/2011

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AE#4	Modified TO-15	0.5 "Hg	15 psi
02A	AE#5	Modified TO-15	2.0 "Hg	15 psi
03A	AE#6	Modified TO-15	1.5 "Hg	15 psi
04A	AE#7	Modified TO-15	1.0 "Hg	15 psi
05A	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Linda d. Fruman

DATE: <u>03/31/11</u>

URS Corporation

Austin, TX 78720-1088

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP - AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder# 1103537

Four 1 Liter Summa Canister samples were received on March 24, 2011. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on samples AE#4, AE#6 and AE#7 due to the presence of high level non-target species.

Dilution was performed on sample AE#5 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: AE#4 Lab ID#: 1103537-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,3-Butadiene	8.2	97	18	210	
Ethanol	33	45	62	86	
Benzene	8.2	73	26	230	
Toluene	8.2	14	31	52	

Client Sample ID: AE#5 Lab ID#: 1103537-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	11	90	20	170
Hexane	2.7	150	9.5	540
2-Butanone (Methyl Ethyl Ketone)	11	23	32	68
Tetrahydrofuran	2.7	3.0	8.0	8.9
Cyclohexane	2.7	12	9.3	40
2,2,4-Trimethylpentane	2.7	82	13	380
Benzene	2.7	600	8.6	1900
Heptane	2.7	16	11	65
Toluene	2.7	130	10	480
Ethyl Benzene	2.7	16	12	72
m,p-Xylene	2.7	26	12	110
o-Xylene	2.7	7.6	12	33
Styrene	2.7	2.7	12	12
Cumene	2.7	7.7	13	38
1,2,4-Trimethylbenzene	2.7	5.2	13	25

Client Sample ID: AE#6

Lab ID#: 1103537-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	34	93	64	170
Hexane	8.5	130	30	450

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: AE#6

Lab ID#: 1103537-03A				
Cyclohexane	8.5	18	29	60
2,2,4-Trimethylpentane	8.5	110	40	500
Benzene	8.5	860	27	2700
Heptane	8.5	10	35	43
Toluene	8.5	98	32	370
m.p-Xvlene	 8.5	12	37	54

Client Sample ID: AE#7 Lab ID#: 1103537-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	17	77	32	140
Hexane	4.2	67	15	240
2-Butanone (Methyl Ethyl Ketone)	17	35	49	100
Tetrahydrofuran	4.2	4.8	12	14
Cyclohexane	4.2	20	14	70
2,2,4-Trimethylpentane	4.2	360	20	1700
Benzene	4.2	720	13	2300
Toluene	4.2	150	16	550
Ethyl Benzene	4.2	11	18	50
m,p-Xylene	4.2	16	18	69
o-Xylene	4.2	6.2	18	27

Client Sample ID: AE#4 Lab ID#: 1103537-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033014
 Date of Collection: 3/19/11 4:45:00 PM

 Dil. Factor:
 16.4
 Date of Analysis: 3/30/11 04:59 PM

Dil. Factor:	16.4	Date	of Analysis: 3/30	/11 04:59 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	8.2	Not Detected	40	Not Detected
Freon 114	8.2	Not Detected	57	Not Detected
Chloromethane	33	Not Detected	68	Not Detected
Vinyl Chloride	8.2	Not Detected	21	Not Detected
1,3-Butadiene	8.2	97	18	210
Bromomethane	8.2	Not Detected	32	Not Detected
Chloroethane	33	Not Detected	86	Not Detected
Freon 11	8.2	Not Detected	46	Not Detected
Ethanol	33	45	62	86
Freon 113	8.2	Not Detected	63	Not Detected
1,1-Dichloroethene	8.2	Not Detected	32	Not Detected
Acetone	33	Not Detected	78	Not Detected
2-Propanol	33	Not Detected	81	Not Detected
Carbon Disulfide	33	Not Detected	100	Not Detected
3-Chloropropene	33	Not Detected	100	Not Detected
Methylene Chloride	8.2	Not Detected	28	Not Detected
Methyl tert-butyl ether	8.2	Not Detected	30	Not Detected
trans-1,2-Dichloroethene	8.2	Not Detected	32	Not Detected
Hexane	8.2	Not Detected	29	Not Detected
1,1-Dichloroethane	8.2	Not Detected	33	Not Detected
2-Butanone (Methyl Ethyl Ketone)	33	Not Detected	97	Not Detected
cis-1,2-Dichloroethene	8.2	Not Detected	32	Not Detected
Tetrahydrofuran	8.2	Not Detected	24	Not Detected
Chloroform	8.2	Not Detected	40	Not Detected
1,1,1-Trichloroethane	8.2	Not Detected	45	Not Detected
Cyclohexane	8.2	Not Detected	28	Not Detected
Carbon Tetrachloride	8.2	Not Detected	52	Not Detected
2,2,4-Trimethylpentane	8.2	Not Detected	38	Not Detected
Benzene	8.2	73	26	230
1,2-Dichloroethane	8.2	Not Detected	33	Not Detected
Heptane	8.2	Not Detected	34	Not Detected
Trichloroethene	8.2	Not Detected	44	Not Detected
1,2-Dichloropropane	8.2	Not Detected	38	Not Detected
1,4-Dioxane	33	Not Detected	120	Not Detected
Bromodichloromethane	8.2	Not Detected	55	Not Detected
cis-1,3-Dichloropropene	8.2	Not Detected	37	Not Detected
4-Methyl-2-pentanone	8.2	Not Detected	34	Not Detected
Toluene	8.2	14	31	52
trans-1,3-Dichloropropene	8.2	Not Detected	37	Not Detected
1,1,2-Trichloroethane	8.2	Not Detected	45	Not Detected
Tetrachloroethene	8.2	Not Detected	56	Not Detected

Client Sample ID: AE#4 Lab ID#: 1103537-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033014
 Date of Collection: 3/19/11 4:45:00 PM

 Dil. Factor:
 16.4
 Date of Analysis: 3/30/11 04:59 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	33	Not Detected	130	Not Detected
Dibromochloromethane	8.2	Not Detected	70	Not Detected
1,2-Dibromoethane (EDB)	8.2	Not Detected	63	Not Detected
Chlorobenzene	8.2	Not Detected	38	Not Detected
Ethyl Benzene	8.2	Not Detected	36	Not Detected
m,p-Xylene	8.2	Not Detected	36	Not Detected
o-Xylene	8.2	Not Detected	36	Not Detected
Styrene	8.2	Not Detected	35	Not Detected
Bromoform	8.2	Not Detected	85	Not Detected
Cumene	8.2	Not Detected	40	Not Detected
1,1,2,2-Tetrachloroethane	8.2	Not Detected	56	Not Detected
Propylbenzene	8.2	Not Detected	40	Not Detected
4-Ethyltoluene	8.2	Not Detected	40	Not Detected
1,3,5-Trimethylbenzene	8.2	Not Detected	40	Not Detected
1,2,4-Trimethylbenzene	8.2	Not Detected	40	Not Detected
1,3-Dichlorobenzene	8.2	Not Detected	49	Not Detected
1,4-Dichlorobenzene	8.2	Not Detected	49	Not Detected
alpha-Chlorotoluene	8.2	Not Detected	42	Not Detected
1,2-Dichlorobenzene	8.2	Not Detected	49	Not Detected
1,2,4-Trichlorobenzene	33	Not Detected	240	Not Detected
Hexachlorobutadiene	33	Not Detected	350	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	84	70-130

Client Sample ID: AE#5 Lab ID#: 1103537-02A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033013
 Date of Collection: 3/21/11 5:45:00 PM

 Dil. Factor:
 5.40
 Date of Analysis: 3/30/11 04:16 PM

DII. Factor:	5.40	Date	e of Analysis: 3/30	/11 U4:16 PW
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	2.7	Not Detected	13	Not Detected
Freon 114	2.7	Not Detected	19	Not Detected
Chloromethane	11	Not Detected	22	Not Detected
Vinyl Chloride	2.7	Not Detected	6.9	Not Detected
1,3-Butadiene	2.7	Not Detected	6.0	Not Detected
Bromomethane	2.7	Not Detected	10	Not Detected
Chloroethane	11	Not Detected	28	Not Detected
Freon 11	2.7	Not Detected	15	Not Detected
Ethanol	11	90	20	170
Freon 113	2.7	Not Detected	21	Not Detected
1,1-Dichloroethene	2.7	Not Detected	11	Not Detected
Acetone	11	Not Detected	26	Not Detected
2-Propanol	11	Not Detected	26	Not Detected
Carbon Disulfide	11	Not Detected	34	Not Detected
3-Chloropropene	11	Not Detected	34	Not Detected
Methylene Chloride	2.7	Not Detected	9.4	Not Detected
Methyl tert-butyl ether	2.7	Not Detected	9.7	Not Detected
trans-1,2-Dichloroethene	2.7	Not Detected	11	Not Detected
Hexane	2.7	150	9.5	540
1,1-Dichloroethane	2.7	Not Detected	11	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	23	32	68
cis-1,2-Dichloroethene	2.7	Not Detected	11	Not Detected
Tetrahydrofuran	2.7	3.0	8.0	8.9
Chloroform	2.7	Not Detected	13	Not Detected
1,1,1-Trichloroethane	2.7	Not Detected	15	Not Detected
Cyclohexane	2.7	12	9.3	40
Carbon Tetrachloride	2.7	Not Detected	17	Not Detected
2,2,4-Trimethylpentane	2.7	82	13	380
Benzene	2.7	600	8.6	1900
1,2-Dichloroethane	2.7	Not Detected	11	Not Detected
Heptane	2.7	16	11	65
Trichloroethene	2.7	Not Detected	14	Not Detected
1,2-Dichloropropane	2.7	Not Detected	12	Not Detected
1,4-Dioxane	11	Not Detected	39	Not Detected
Bromodichloromethane	2.7	Not Detected	18	Not Detected
cis-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
4-Methyl-2-pentanone	2.7	Not Detected	11	Not Detected
Toluene	2.7	130	10	480
trans-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
1,1,2-Trichloroethane	2.7	Not Detected	15	Not Detected
Tetrachloroethene	2.7	Not Detected	18	Not Detected

Client Sample ID: AE#5 Lab ID#: 1103537-02A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033013
 Date of Collection: 3/21/11 5:45:00 PM

 Dil. Factor:
 5.40
 Date of Analysis: 3/30/11 04:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	11	Not Detected	44	Not Detected
Dibromochloromethane	2.7	Not Detected	23	Not Detected
1,2-Dibromoethane (EDB)	2.7	Not Detected	21	Not Detected
Chlorobenzene	2.7	Not Detected	12	Not Detected
Ethyl Benzene	2.7	16	12	72
m,p-Xylene	2.7	26	12	110
o-Xylene	2.7	7.6	12	33
Styrene	2.7	2.7	12	12
Bromoform	2.7	Not Detected	28	Not Detected
Cumene	2.7	7.7	13	38
1,1,2,2-Tetrachloroethane	2.7	Not Detected	18	Not Detected
Propylbenzene	2.7	Not Detected	13	Not Detected
4-Ethyltoluene	2.7	Not Detected	13	Not Detected
1,3,5-Trimethylbenzene	2.7	Not Detected	13	Not Detected
1,2,4-Trimethylbenzene	2.7	5.2	13	25
1,3-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,4-Dichlorobenzene	2.7	Not Detected	16	Not Detected
alpha-Chlorotoluene	2.7	Not Detected	14	Not Detected
1,2-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,2,4-Trichlorobenzene	11	Not Detected	80	Not Detected
Hexachlorobutadiene	11	Not Detected	120	Not Detected

Container Type: 1 Liter Summa Canister

••		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	111	70-130	
4-Bromofluorobenzene	88	70-130	

Client Sample ID: AE#6 Lab ID#: 1103537-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033015
 Date of Collection: 3/22/11 5:05:00 PM

 Dil. Factor:
 17.0
 Date of Analysis: 3/30/11 05:40 PM

Dil. Factor:	17.0	Date of Analysis: 3/30/11 05:40 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	8.5	Not Detected	42	Not Detected
Freon 114	8.5	Not Detected	59	Not Detected
Chloromethane	34	Not Detected	70	Not Detected
Vinyl Chloride	8.5	Not Detected	22	Not Detected
1,3-Butadiene	8.5	Not Detected	19	Not Detected
Bromomethane	8.5	Not Detected	33	Not Detected
Chloroethane	34	Not Detected	90	Not Detected
Freon 11	8.5	Not Detected	48	Not Detected
Ethanol	34	93	64	170
Freon 113	8.5	Not Detected	65	Not Detected
1,1-Dichloroethene	8.5	Not Detected	34	Not Detected
Acetone	34	Not Detected	81	Not Detected
2-Propanol	34	Not Detected	84	Not Detected
Carbon Disulfide	34	Not Detected	100	Not Detected
3-Chloropropene	34	Not Detected	110	Not Detected
Methylene Chloride	8.5	Not Detected	30	Not Detected
Methyl tert-butyl ether	8.5	Not Detected	31	Not Detected
trans-1,2-Dichloroethene	8.5	Not Detected	34	Not Detected
Hexane	8.5	130	30	450
1,1-Dichloroethane	8.5	Not Detected	34	Not Detected
2-Butanone (Methyl Ethyl Ketone)	34	Not Detected	100	Not Detected
cis-1,2-Dichloroethene	8.5	Not Detected	34	Not Detected
Tetrahydrofuran	8.5	Not Detected	25	Not Detected
Chloroform	8.5	Not Detected	42	Not Detected
1,1,1-Trichloroethane	8.5	Not Detected	46	Not Detected
Cyclohexane	8.5	18	29	60
Carbon Tetrachloride	8.5	Not Detected	53	Not Detected
2,2,4-Trimethylpentane	8.5	110	40	500
Benzene	8.5	860	27	2700
1,2-Dichloroethane	8.5	Not Detected	34	Not Detected
Heptane	8.5	10	35	43
Trichloroethene	8.5	Not Detected	46	Not Detected
1,2-Dichloropropane	8.5	Not Detected	39	Not Detected
1,4-Dioxane	34	Not Detected	120	Not Detected
Bromodichloromethane	8.5	Not Detected	57	Not Detected
cis-1,3-Dichloropropene	8.5	Not Detected	38	Not Detected
4-Methyl-2-pentanone	8.5	Not Detected	35	Not Detected
Toluene	8.5	98	32	370
trans-1,3-Dichloropropene	8.5	Not Detected	38	Not Detected
1,1,2-Trichloroethane	8.5	Not Detected	46	Not Detected
Tetrachloroethene	8.5	Not Detected	58	Not Detected

Client Sample ID: AE#6 Lab ID#: 1103537-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033015
 Date of Collection: 3/22/11 5:05:00 PM

 Dil. Factor:
 17.0
 Date of Analysis: 3/30/11 05:40 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	34	Not Detected	140	Not Detected
Dibromochloromethane	8.5	Not Detected	72	Not Detected
1,2-Dibromoethane (EDB)	8.5	Not Detected	65	Not Detected
Chlorobenzene	8.5	Not Detected	39	Not Detected
Ethyl Benzene	8.5	Not Detected	37	Not Detected
m,p-Xylene	8.5	12	37	54
o-Xylene	8.5	Not Detected	37	Not Detected
Styrene	8.5	Not Detected	36	Not Detected
Bromoform	8.5	Not Detected	88	Not Detected
Cumene	8.5	Not Detected	42	Not Detected
1,1,2,2-Tetrachloroethane	8.5	Not Detected	58	Not Detected
Propylbenzene	8.5	Not Detected	42	Not Detected
4-Ethyltoluene	8.5	Not Detected	42	Not Detected
1,3,5-Trimethylbenzene	8.5	Not Detected	42	Not Detected
1,2,4-Trimethylbenzene	8.5	Not Detected	42	Not Detected
1,3-Dichlorobenzene	8.5	Not Detected	51	Not Detected
1,4-Dichlorobenzene	8.5	Not Detected	51	Not Detected
alpha-Chlorotoluene	8.5	Not Detected	44	Not Detected
1,2-Dichlorobenzene	8.5	Not Detected	51	Not Detected
1,2,4-Trichlorobenzene	34	Not Detected	250	Not Detected
Hexachlorobutadiene	34	Not Detected	360	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	86	70-130	

Client Sample ID: AE#7 Lab ID#: 1103537-04A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033016
 Date of Collection: 3/23/11 4:55:00 PM

 Dil. Factor:
 8.36
 Date of Analysis: 3/30/11 06:24 PM

DII. Factor:	8.36	Date of Analysis: 3/30/11 06:24 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	4.2	Not Detected	21	Not Detected
Freon 114	4.2	Not Detected	29	Not Detected
Chloromethane	17	Not Detected	34	Not Detected
Vinyl Chloride	4.2	Not Detected	11	Not Detected
1,3-Butadiene	4.2	Not Detected	9.2	Not Detected
Bromomethane	4.2	Not Detected	16	Not Detected
Chloroethane	17	Not Detected	44	Not Detected
Freon 11	4.2	Not Detected	23	Not Detected
Ethanol	17	77	32	140
Freon 113	4.2	Not Detected	32	Not Detected
1,1-Dichloroethene	4.2	Not Detected	16	Not Detected
Acetone	17	Not Detected	40	Not Detected
2-Propanol	17	Not Detected	41	Not Detected
Carbon Disulfide	17	Not Detected	52	Not Detected
3-Chloropropene	17	Not Detected	52	Not Detected
Methylene Chloride	4.2	Not Detected	14	Not Detected
Methyl tert-butyl ether	4.2	Not Detected	15	Not Detected
trans-1,2-Dichloroethene	4.2	Not Detected	16	Not Detected
Hexane	4.2	67	15	240
1,1-Dichloroethane	4.2	Not Detected	17	Not Detected
2-Butanone (Methyl Ethyl Ketone)	17	35	49	100
cis-1,2-Dichloroethene	4.2	Not Detected	16	Not Detected
Tetrahydrofuran	4.2	4.8	12	14
Chloroform	4.2	Not Detected	20	Not Detected
1,1,1-Trichloroethane	4.2	Not Detected	23	Not Detected
Cyclohexane	4.2	20	14	70
Carbon Tetrachloride	4.2	Not Detected	26	Not Detected
2,2,4-Trimethylpentane	4.2	360	20	1700
Benzene	4.2	720	13	2300
1,2-Dichloroethane	4.2	Not Detected	17	Not Detected
Heptane	4.2	Not Detected	17	Not Detected
Trichloroethene	4.2	Not Detected	22	Not Detected
1,2-Dichloropropane	4.2	Not Detected	19	Not Detected
1,4-Dioxane	17	Not Detected	60	Not Detected
Bromodichloromethane	4.2	Not Detected	28	Not Detected
cis-1,3-Dichloropropene	4.2	Not Detected	19	Not Detected
4-Methyl-2-pentanone	4.2	Not Detected	17	Not Detected
Toluene	4.2	150	16	550
trans-1,3-Dichloropropene	4.2	Not Detected	19	Not Detected
1,1,2-Trichloroethane	4.2	Not Detected	23	Not Detected
Tetrachloroethene	4.2	Not Detected	28	Not Detected

Client Sample ID: AE#7 Lab ID#: 1103537-04A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 2033016
 Date of Collection: 3/23/11 4:55:00 PM

 Dil. Factor:
 8.36
 Date of Analysis: 3/30/11 06:24 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	17	Not Detected	68	Not Detected
Dibromochloromethane	4.2	Not Detected	36	Not Detected
1,2-Dibromoethane (EDB)	4.2	Not Detected	32	Not Detected
Chlorobenzene	4.2	Not Detected	19	Not Detected
Ethyl Benzene	4.2	11	18	50
m,p-Xylene	4.2	16	18	69
o-Xylene	4.2	6.2	18	27
Styrene	4.2	Not Detected	18	Not Detected
Bromoform	4.2	Not Detected	43	Not Detected
Cumene	4.2	Not Detected	20	Not Detected
1,1,2,2-Tetrachloroethane	4.2	Not Detected	29	Not Detected
Propylbenzene	4.2	Not Detected	20	Not Detected
4-Ethyltoluene	4.2	Not Detected	20	Not Detected
1,3,5-Trimethylbenzene	4.2	Not Detected	20	Not Detected
1,2,4-Trimethylbenzene	4.2	Not Detected	20	Not Detected
1,3-Dichlorobenzene	4.2	Not Detected	25	Not Detected
1,4-Dichlorobenzene	4.2	Not Detected	25	Not Detected
alpha-Chlorotoluene	4.2	Not Detected	22	Not Detected
1,2-Dichlorobenzene	4.2	Not Detected	25	Not Detected
1,2,4-Trichlorobenzene	17	Not Detected	120	Not Detected
Hexachlorobutadiene	17	Not Detected	180	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: Lab Blank Lab ID#: 1103537-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033008 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 11:45 AM

DII. Factor:	1.00 Date of Analysis: 3/30/11 11:45 AM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1103537-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033008 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 11:45 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	84	70-130	

Client Sample ID: CCV Lab ID#: 1103537-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 09:44 AM

Compound	%Recovery
Freon 12	119
Freon 114	98
Chloromethane	131 Q
Vinyl Chloride	128
1,3-Butadiene	110
Bromomethane	116
Chloroethane	125
Freon 11	98
Ethanol	130
Freon 113	94
1,1-Dichloroethene	101
Acetone	118
2-Propanol	115
Carbon Disulfide	104
3-Chloropropene	108
Methylene Chloride	104
Methyl tert-butyl ether	80
trans-1,2-Dichloroethene	98
Hexane	118
1,1-Dichloroethane	103
2-Butanone (Methyl Ethyl Ketone)	103
cis-1,2-Dichloroethene	95
Tetrahydrofuran	114
Chloroform	101
1,1,1-Trichloroethane	98
Cyclohexane	100
Carbon Tetrachloride	105
2,2,4-Trimethylpentane	119
Benzene	97
1,2-Dichloroethane	102
Heptane	114
Trichloroethene	96
1,2-Dichloropropane	103
1,4-Dioxane	98
Bromodichloromethane	102
cis-1,3-Dichloropropene	98
4-Methyl-2-pentanone	120
Toluene	98
trans-1,3-Dichloropropene	100
1,1,2-Trichloroethane	98
Tetrachloroethene	96

Client Sample ID: CCV Lab ID#: 1103537-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 09:44 AM

Compound	%Recovery
2-Hexanone	114
Dibromochloromethane	106
1,2-Dibromoethane (EDB)	102
Chlorobenzene	99
Ethyl Benzene	94
m,p-Xylene	89
o-Xylene	93
Styrene	92
Bromoform	105
Cumene	95
1,1,2,2-Tetrachloroethane	106
Propylbenzene	95
4-Ethyltoluene	91
1,3,5-Trimethylbenzene	84
1,2,4-Trimethylbenzene	84
1,3-Dichlorobenzene	86
1,4-Dichlorobenzene	85
alpha-Chlorotoluene	97
1,2-Dichlorobenzene	87
1,2,4-Trichlorobenzene	75
Hexachlorobutadiene	77

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	109	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: LCS Lab ID#: 1103537-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:21 AM

Compound	%Recovery
Freon 12	110
Freon 114	103
Chloromethane	132 Q
Vinyl Chloride	121
1,3-Butadiene	115
Bromomethane	109
Chloroethane	120
Freon 11	102
Ethanol	124
Freon 113	97
1,1-Dichloroethene	112
Acetone	122
2-Propanol	124
Carbon Disulfide	130
3-Chloropropene	123
Methylene Chloride	104
Methyl tert-butyl ether	82
trans-1,2-Dichloroethene	114
Hexane	111
1,1-Dichloroethane	106
2-Butanone (Methyl Ethyl Ketone)	106
cis-1,2-Dichloroethene	102
Tetrahydrofuran	113
Chloroform	106
1,1,1-Trichloroethane	99
Cyclohexane	98
Carbon Tetrachloride	105
2,2,4-Trimethylpentane	112
Benzene	99
1,2-Dichloroethane	109
Heptane	112
Trichloroethene	99
1,2-Dichloropropane	106
1,4-Dioxane	99
Bromodichloromethane	108
cis-1,3-Dichloropropene	101
4-Methyl-2-pentanone	114
Toluene	98
trans-1,3-Dichloropropene	102
1,1,2-Trichloroethane	101
Tetrachloroethene	94

Client Sample ID: LCS Lab ID#: 1103537-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:21 AM

Compound	%Recovery
2-Hexanone	111
Dibromochloromethane	106
1,2-Dibromoethane (EDB)	105
Chlorobenzene	100
Ethyl Benzene	95
m,p-Xylene	95
o-Xylene	96
Styrene	96
Bromoform	104
Cumene	100
1,1,2,2-Tetrachloroethane	107
Propylbenzene	103
4-Ethyltoluene	97
1,3,5-Trimethylbenzene	92
1,2,4-Trimethylbenzene	90
1,3-Dichlorobenzene	93
1,4-Dichlorobenzene	91
alpha-Chlorotoluene	97
1,2-Dichlorobenzene	92
1,2,4-Trichlorobenzene	83
Hexachlorobutadiene	83

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	110	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCSD Lab ID#: 1103537-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033007 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:58 AM

Compound	%Recovery
Freon 12	107
Freon 114	102
Chloromethane	131 Q
Vinyl Chloride	119
1,3-Butadiene	113
Bromomethane	107
Chloroethane	119
Freon 11	100
Ethanol	120
Freon 113	94
1,1-Dichloroethene	110
Acetone	120
2-Propanol	122
Carbon Disulfide	129
3-Chloropropene	118
Methylene Chloride	103
Methyl tert-butyl ether	81
trans-1,2-Dichloroethene	111
Hexane	109
1,1-Dichloroethane	104
2-Butanone (Methyl Ethyl Ketone)	104
cis-1,2-Dichloroethene	99
Tetrahydrofuran	111
Chloroform	104
1,1,1-Trichloroethane	97
Cyclohexane	97
Carbon Tetrachloride	102
2,2,4-Trimethylpentane	109
Benzene	98
1,2-Dichloroethane	108
Heptane	112
Trichloroethene	98
1,2-Dichloropropane	106
1,4-Dioxane	100
Bromodichloromethane	108
cis-1,3-Dichloropropene	100
4-Methyl-2-pentanone	113
Toluene	97
trans-1,3-Dichloropropene	102
1,1,2-Trichloroethane	101
Tetrachloroethene	94

Client Sample ID: LCSD Lab ID#: 1103537-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 2033007 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:58 AM

Compound	%Recovery
2-Hexanone	112
Dibromochloromethane	106
1,2-Dibromoethane (EDB)	105
Chlorobenzene	101
Ethyl Benzene	94
m,p-Xylene	92
o-Xylene	96
Styrene	92
Bromoform	104
Cumene	97
1,1,2,2-Tetrachloroethane	108
Propylbenzene	98
4-Ethyltoluene	92
1,3,5-Trimethylbenzene	88
1,2,4-Trimethylbenzene	84
1,3-Dichlorobenzene	90
1,4-Dichlorobenzene	87
alpha-Chlorotoluene	94
1,2-Dichlorobenzene	90
1,2,4-Trichlorobenzene	78
Hexachlorobutadiene	79

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	94	70-130

Air T-Oxices LTD. Project Name: Rozana SVE Filed:	Time	Date:			0760		3/24/11	走へ		1	Received by (Signature)						Relinquished by; (Signature)	Relinquish
Set Title	Time	Date								ĒΧ	Received by: (Signature) FED Received by: (Signature)		WHEN THE PROPERTY OF THE PROPE		4		hed by: (Signature)	Relinquish
SETTOL American Setto																		
SELTID. Content Cont																		
SETTD.																		
SETTD.																		
SELTD.																		
SELTD.		!							\dashv	- 2	01.90	1655	3/23/7					C
SETED		- Level IV ECVE				× ×			+	-2	781	1 1705	3/22/1					\S
SETTD.	between MDL and RL	- Report results				×			+-	-2	1362	1 1745	3/21/1					034
Table Plot	me	- 14 day hold tin				×				-2	3730	1 1645	3/19/1					O.
Print Edit To Contact Name: Print Edit To Contact Name:	ADDITIONAL NOTES:					то	1	-	\vdash		Onthoto manipo	TIME	DATE	arci	ipie ideliciic	Tield Gal		ONL Y
Please Check Appropriate Box:		Specify				-15		ressure/Vacus	Conister P		Canister Numbe	LING	SAME	ation	nalo Identific	Field Car		
Coloration Col	urization Gas:								PLIES	RATE APPLIES MENT RATE API TION REQUEST	SHELL CONTRACT F STATE REIMBURSEI DEDD NOT NEEDED RECEIPT VERIFICAT							
Print Bill To Contact Name: Prin	Pressurized by:		·····								OTHER (SPECIFY)		☑ LEVEL 4	☐ LEVEL 3	☑LEVEL 2	□ LEVEL 1		DELIVER
Processe Check Appropriate Box: Print Bill To Contact Name: Steve Strott	Lab Use Only													ot agency:	sn 🖸	T FORMAT	- RWQCB REPOR	- ਆ 🗀
SETTD.	ANALYSIS	REQUESTED A						WEEKEND	TS NEEDED ON	RESUL	24 HOURS		☐ 2 DAYS	☐ 3 DAYS	5 DAYS	CALENDAR DAYS	\ROUND TIME (I NDARD (14 DAY)	TURNA STAN
Please Check Appropriate Box: Print Bril To Contact Name: Sieve Shroff 9 7 2 1 6 6 4 0 DATE 03/23/11 OTIVA SERVICES OTHER OTHER OTHER OTHER NOTION OTHER						RT	RICH HA			an and	E-MAIL hroff@URSCorp.co	Steven S		462	314-429-0		9-0100	1E_EP+ON 314-429
Please Check Appropriate Box: Print Bill To Contact Name: Sleve Shroft # (ENV SERVICES); Check If No Incident Name:			314-7	lis	RS, St. Loi	Junkel, U	Elizabeth K						4719	olsom, CA 95630-	Road, Suite B, Fo	Blue Ravine F	ics, LTD 180	Air Toxi
TD. Please Check Appropriate Box: Print Bill To Contact Name: INCIDENT # (ENV SERVICES): CHECK IF NO INCIDENT ROXAINA SVE Pilot Cenv. SERVICES CHOCK Appropriate Box: Sieve Shroff Sieve			PHONE	Sorr).	spany, Office Loca	TO (Name, Cor.	EDF DELIVERABLE						0 63110	300; ST. LOUIS, M	WEST - SUITE	LAZA DRIVE	GHLANDS F	1001 H
SELTD. Please Check Appropriate Box: Print Bitl To Contact Name:	AL D.NO.	State L		ROXANA	L AVE F	CENTRA	900 SOUTH				LOG CODE					Ž	ORPORATIO	URS CO
Please Check Appropriate Box: Print Bill To Contact Name: INCIDENT # (ENV SERVICES): □ CHECK IF NO INCIDENT # (ENV SERV	6 1 1 PAGE:	4									OTHER		SHELL PIPE				ndor#	Lab Vei
NCIDENT # (ENV SERVICES): □ GHECK IF NO INCIDENT # (ENV SERVICES): □ GHECK IF					РО			BES			CONSULTANT	&CM	☐ MOTIVA SE		014	62593.00	ject # 215	Proj
Disass Charly Armyritista Boy.		9 7 2		roff	Steve Sh	0		ELL RETAIL	_:		☐ MOTIVA RETAIL		ENV. SERV		a SVE Pilot	e: Roxan	ject Name	Proj.
	CHECK III NO THOM	INC IDENT			took Non		Daint Bill		AU	Analata D	Charles (7	7	> .

Roxana SVE Pilot Data Review

Laboratory SDG: 1103591

Data Reviewer: Elizabeth Kunkel

Peer Reviewer: Tony Sedlacek

Date Reviewed: 5/13/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Sample Identification	
AE #8	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that sample AE #8 was diluted due to high levels of target analytes. Although not indicated in the laboratory case narrative, TO-15 LCSD and CCV recoveries were outside evaluation criteria for chloromethane. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS/LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/ RPD Criteria
1103591- 04A/AA	TO-15	Chloromethane	130/ 135	4	70-130/25

Analytical data which were reported as non-detect and associated with the LCSD recovery above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with LCSD recovery above evaluation criteria; therefore, no qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

MS/MSD samples are not applicable for vapor samples, due to the inability to spike the samples.

8.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

9.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?

No, however, the CCV recovery listed in the table below was above evaluation criteria.

CCV ID	Parameter	Analyte	CCV Recovery	CCV Criteria
1103537-06A	TO-15	Chloromethane	143	70-130

Analytical data which were reported as non-detect and associated with CCV recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Chloromethane was non-detect in samples associated with CCV recoveries above evaluation criteria; therefore, no qualification of data was required.

4/1/2011

Mr. Steve Shroff URS Corporation 1001 Highlands Plaza Dr. West Suite 300 St. Louis MO 63110

Project Name: Roxana SVE Pilot Project #: 21562593.00014

Workorder #: 1103591

Dear Mr. Steve Shroff

The following report includes the data for the above referenced project for sample(s) received on 3/26/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jacquelyn Luta at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jacquelyn Luta

Project Manager

WORK ORDER #: 1103591

Work Order Summary

CLIENT: Mr. Steve Shroff BILL TO: Accounts Payable Austin **URS** Corporation

URS Corporation

1001 Highlands Plaza Dr. West P.O. BOX 203970 Austin, TX 78720-1088

Suite 300

St. Louis, MO 63110

PHONE: 314-429-0100 **P.O.** #

FAX: PROJECT # 21562593.00014 Roxana SVE Pilot

03/26/2011 DATE RECEIVED: **CONTACT:** Jacquelyn Luta **DATE COMPLETED:** 03/31/2011

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AE#8	Modified TO-15	0.2psi	15 psi
02A	Lab Blank	Modified TO-15	NA	NA
03A	CCV	Modified TO-15	NA	NA
04A	LCS	Modified TO-15	NA	NA
04AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

04/01/11 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder# 1103591

One 1 Liter Summa Canister sample was received on March 28, 2011. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A dilution was performed on sample AE#8 due to the presence of high level target species.

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: AE#8
Lab ID#: 1103591-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	2.0	190	4.4	430
Ethanol	8.0	100	15	190
Acetone	8.0	290	19	690
2-Propanol	8.0	9.3	20	23
Hexane	2.0	29	7.0	100
2-Butanone (Methyl Ethyl Ketone)	8.0	43	23	130
Tetrahydrofuran	2.0	72	5.9	210
Cyclohexane	2.0	6.4	6.8	22
2,2,4-Trimethylpentane	2.0	11	9.3	50
Benzene	2.0	580	6.4	1800
Heptane	2.0	11	8.2	45
4-Methyl-2-pentanone	2.0	2.3	8.2	9.4
Toluene	2.0	170	7.5	630
Ethyl Benzene	2.0	29	8.6	120
m,p-Xylene	2.0	35	8.6	150
o-Xylene	2.0	10	8.6	45
Styrene	2.0	12	8.5	51
4-Ethyltoluene	2.0	4.9	9.8	24
1,2,4-Trimethylbenzene	2.0	2.4	9.8	12

Client Sample ID: AE#8 Lab ID#: 1103591-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 3033016
 Date of Collection: 3/24/11 3:15:00 PM

 Dil. Factor:
 3.98
 Date of Analysis: 3/30/11 04:17 PM

Dil. Factor:	3.98	Date	e of Analysis: 3/30	/11 U4:17 PW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.0	Not Detected	9.8	Not Detected
Freon 114	2.0	Not Detected	14	Not Detected
Chloromethane	8.0	Not Detected	16	Not Detected
Vinyl Chloride	2.0	Not Detected	5.1	Not Detected
1,3-Butadiene	2.0	190	4.4	430
Bromomethane	2.0	Not Detected	7.7	Not Detected
Chloroethane	8.0	Not Detected	21	Not Detected
Freon 11	2.0	Not Detected	11	Not Detected
Ethanol	8.0	100	15	190
Freon 113	2.0	Not Detected	15	Not Detected
1,1-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Acetone	8.0	290	19	690
2-Propanol	8.0	9.3	20	23
Carbon Disulfide	8.0	Not Detected	25	Not Detected
3-Chloropropene	8.0	Not Detected	25	Not Detected
Methylene Chloride	2.0	Not Detected	6.9	Not Detected
Methyl tert-butyl ether	2.0	Not Detected	7.2	Not Detected
trans-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Hexane	2.0	29	7.0	100
1,1-Dichloroethane	2.0	Not Detected	8.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	8.0	43	23	130
cis-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Tetrahydrofuran	2.0	72	5.9	210
Chloroform	2.0	Not Detected	9.7	Not Detected
1,1,1-Trichloroethane	2.0	Not Detected	11	Not Detected
Cyclohexane	2.0	6.4	6.8	22
Carbon Tetrachloride	2.0	Not Detected	12	Not Detected
2,2,4-Trimethylpentane	2.0	11	9.3	50
Benzene	2.0	580	6.4	1800
1,2-Dichloroethane	2.0	Not Detected	8.0	Not Detected
Heptane	2.0	11	8.2	45
Trichloroethene	2.0	Not Detected	11	Not Detected
1,2-Dichloropropane	2.0	Not Detected	9.2	Not Detected
1,4-Dioxane	8.0	Not Detected	29	Not Detected
Bromodichloromethane	2.0	Not Detected	13	Not Detected
cis-1,3-Dichloropropene	2.0	Not Detected	9.0	Not Detected
4-Methyl-2-pentanone	2.0	2.3	8.2	9.4
Toluene	2.0	170	7.5	630
trans-1,3-Dichloropropene	2.0	Not Detected	9.0	Not Detected
1,1,2-Trichloroethane	2.0	Not Detected	11	Not Detected
Tetrachloroethene	2.0	Not Detected	13	Not Detected

Client Sample ID: AE#8 Lab ID#: 1103591-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 3033016
 Date of Collection: 3/24/11 3:15:00 PM

 Dil. Factor:
 3.98
 Date of Analysis: 3/30/11 04:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	8.0	Not Detected	33	Not Detected
Dibromochloromethane	2.0	Not Detected	17	Not Detected
1,2-Dibromoethane (EDB)	2.0	Not Detected	15	Not Detected
Chlorobenzene	2.0	Not Detected	9.2	Not Detected
Ethyl Benzene	2.0	29	8.6	120
m,p-Xylene	2.0	35	8.6	150
o-Xylene	2.0	10	8.6	45
Styrene	2.0	12	8.5	51
Bromoform	2.0	Not Detected	20	Not Detected
Cumene	2.0	Not Detected	9.8	Not Detected
1,1,2,2-Tetrachloroethane	2.0	Not Detected	14	Not Detected
Propylbenzene	2.0	Not Detected	9.8	Not Detected
4-Ethyltoluene	2.0	4.9	9.8	24
1,3,5-Trimethylbenzene	2.0	Not Detected	9.8	Not Detected
1,2,4-Trimethylbenzene	2.0	2.4	9.8	12
1,3-Dichlorobenzene	2.0	Not Detected	12	Not Detected
1,4-Dichlorobenzene	2.0	Not Detected	12	Not Detected
alpha-Chlorotoluene	2.0	Not Detected	10	Not Detected
1,2-Dichlorobenzene	2.0	Not Detected	12	Not Detected
1,2,4-Trichlorobenzene	8.0	Not Detected	59	Not Detected
Hexachlorobutadiene	8.0	Not Detected	85	Not Detected

Container Type: 1 Liter Summa Canister

••		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1103591-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033013 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 02:08 PM

				/11 U2:U8 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1103591-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033013 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 02:08 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: CCV Lab ID#: 1103591-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 09:39 AM

Compound	%Recovery
Freon 12	97
Freon 114	98
Chloromethane	143 Q
Vinyl Chloride	111
1,3-Butadiene	98
Bromomethane	97
Chloroethane	105
Freon 11	96
Ethanol	99
Freon 113	92
1,1-Dichloroethene	97
Acetone	99
2-Propanol	94
Carbon Disulfide	98
3-Chloropropene	98
Methylene Chloride	99
Methyl tert-butyl ether	87
trans-1,2-Dichloroethene	95
Hexane	97
1,1-Dichloroethane	97
2-Butanone (Methyl Ethyl Ketone)	95
cis-1,2-Dichloroethene	93
Tetrahydrofuran	98
Chloroform	96
1,1,1-Trichloroethane	88
Cyclohexane	94
Carbon Tetrachloride	96
2,2,4-Trimethylpentane	94
Benzene	96
1,2-Dichloroethane	93
Heptane	94
Trichloroethene	91
1,2-Dichloropropane	90
1,4-Dioxane	92
Bromodichloromethane	93
cis-1,3-Dichloropropene	89
4-Methyl-2-pentanone	87
Toluene	94
trans-1,3-Dichloropropene	96
1,1,2-Trichloroethane	97
Tetrachloroethene	98

Client Sample ID: CCV Lab ID#: 1103591-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033004 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 09:39 AM

Compound	%Recovery
2-Hexanone	102
Dibromochloromethane	97
1,2-Dibromoethane (EDB)	98
Chlorobenzene	97
Ethyl Benzene	97
m,p-Xylene	95
o-Xylene	93
Styrene	98
Bromoform	93
Cumene	100
1,1,2,2-Tetrachloroethane	93
Propylbenzene	97
4-Ethyltoluene	98
1,3,5-Trimethylbenzene	100
1,2,4-Trimethylbenzene	98
1,3-Dichlorobenzene	93
1,4-Dichlorobenzene	98
alpha-Chlorotoluene	84
1,2-Dichlorobenzene	96
1,2,4-Trichlorobenzene	92
Hexachlorobutadiene	87

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCS Lab ID#: 1103591-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:15 AM

Compound	%Recovery
Freon 12	95
Freon 114	92
Chloromethane	130
Vinyl Chloride	119
1,3-Butadiene	92
Bromomethane	91
Chloroethane	99
Freon 11	89
Ethanol	90
Freon 113	86
1,1-Dichloroethene	97
Acetone	90
2-Propanol	89
Carbon Disulfide	114
3-Chloropropene	105
Methylene Chloride	93
Methyl tert-butyl ether	85
trans-1,2-Dichloroethene	101
Hexane	91
1,1-Dichloroethane	93
2-Butanone (Methyl Ethyl Ketone)	89
cis-1,2-Dichloroethene	89
Tetrahydrofuran	89
Chloroform	92
1,1,1-Trichloroethane	84
Cyclohexane	88
Carbon Tetrachloride	90
2,2,4-Trimethylpentane	87
Benzene	89
1,2-Dichloroethane	86
Heptane	86
Trichloroethene	86
1,2-Dichloropropane	87
1,4-Dioxane	83
Bromodichloromethane	87
cis-1,3-Dichloropropene	85
4-Methyl-2-pentanone	80
Toluene	84
trans-1,3-Dichloropropene	92
1,1,2-Trichloroethane	91
Tetrachloroethene	89

Client Sample ID: LCS Lab ID#: 1103591-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033005 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:15 AM

Compound	%Recovery
2-Hexanone	90
Dibromochloromethane	90
1,2-Dibromoethane (EDB)	92
Chlorobenzene	92
Ethyl Benzene	90
m,p-Xylene	91
o-Xylene	86
Styrene	92
Bromoform	88
Cumene	94
1,1,2,2-Tetrachloroethane	87
Propylbenzene	91
4-Ethyltoluene	86
1,3,5-Trimethylbenzene	93
1,2,4-Trimethylbenzene	89
1,3-Dichlorobenzene	88
1,4-Dichlorobenzene	91
alpha-Chlorotoluene	79
1,2-Dichlorobenzene	88
1,2,4-Trichlorobenzene	83
Hexachlorobutadiene	77

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCSD Lab ID#: 1103591-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:33 AM

Compound	%Recovery
Freon 12	102
Freon 114	98
Chloromethane	135 Q
Vinyl Chloride	110
1,3-Butadiene	95
Bromomethane	95
Chloroethane	107
Freon 11	94
Ethanol	95
Freon 113	95
1,1-Dichloroethene	102
Acetone	96
2-Propanol	94
Carbon Disulfide	118
3-Chloropropene	110
Methylene Chloride	96
Methyl tert-butyl ether	90
rans-1,2-Dichloroethene	103
Hexane	96
1,1-Dichloroethane	96
2-Butanone (Methyl Ethyl Ketone)	93
cis-1,2-Dichloroethene	92
Tetrahydrofuran	93
Chloroform	95
1,1,1-Trichloroethane	89
Cyclohexane	94
Carbon Tetrachloride	98
2,2,4-Trimethylpentane	97
Benzene	91
1,2-Dichloroethane	86
Heptane	86
Frichloroethene	88
1,2-Dichloropropane	87
1,4-Dioxane	85
Bromodichloromethane	88
cis-1,3-Dichloropropene	85
4-Methyl-2-pentanone	82
Foluene	88
rans-1,3-Dichloropropene	88
1,1,2-Trichloroethane	91
Tetrachloroethene	89

Client Sample ID: LCSD Lab ID#: 1103591-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3033006 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/30/11 10:33 AM

Compound	%Recovery
2-Hexanone	92
Dibromochloromethane	93
1,2-Dibromoethane (EDB)	91
Chlorobenzene	91
Ethyl Benzene	93
m,p-Xylene	92
o-Xylene	90
Styrene	93
Bromoform	85
Cumene	98
1,1,2,2-Tetrachloroethane	91
Propylbenzene	95
4-Ethyltoluene	89
1,3,5-Trimethylbenzene	97
1,2,4-Trimethylbenzene	92
1,3-Dichlorobenzene	91
1,4-Dichlorobenzene	95
alpha-Chlorotoluene	80
1,2-Dichlorobenzene	93
1,2,4-Trichlorobenzene	90
Hexachlorobutadiene	81

Q = Exceeds Quality Control limits.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	106	70-130

Received by, (Signature)	Received by (Signature)	Manuscrittina essistance (m							CIT AE #6 3/24/11 1515 3667 -29	DATE TIME Initial	Field Sample Identification SAMPLING Canistar Number Continue Cont	☑ RECEIPT VERIFICATION REQUESTED	STATE REMBURSEMENT RATE APPLIES ☐ EDD NOT NEEDED		Z LEVEL		TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY) 1 S DAYS 1 D DAYS 1 D DAYS 1 D A HOURS 1 RESULTS NEEDED ON WEEKEND	#ELEPIONE PAY BIT Comman LIMIT: 1910 Comman LIMIT:	s, LTD 180 Blue Ravine Road, Suite B, Folsom, CA 95630-4719	1001 HIGHLANDS PLAZA DRIVE WEST - SUITE 300; ST. LOUIS, MO 63110	RATION	SAMPLING COMPANY.		NOTTVA SDRCM CONSULTANT	Air TOXICS LTD. Project Name: Roxana SVE Pilot □ Brv. SERVICES □ □ DROTAN RETAIL □ Project Name: Roxana SVE Pilot □ Brv. SERVICES □ □ DROTAN RETAIL □ DROTAN	
	5. Wutt her ATC 3/26			14	A CONTRACTOR OF THE PARTY OF TH				0 ×	Final Receipt (psi)	Conister Pressure/Vacuum						DED ON WEEKEND	RICH HART	Elizabeth Ku SAMPLER NANE(S)	ETH DELIVERABLE	900 SOUTH	CITE ADDRESS: Street and Chy		T unere	Print Bill	s Chain Of Cust
	/11 0925				And the second s						-15							रा	Elizabeth Kunkel, URS, St. Louis SAMPLER NAME(S) (Print):	TO (Name, Company, Office Location):	900 SOUTH CENTRAL AVE ROXANA	Street and Chy	PO #	Steve Shroff	Print Bill To Contact Name:	ody Record
Date:	Date:	Date:				- Level IV ECVP	- Report results to]	- 14 day hold time		Specify		□ Normal		Time:		REQUESTED ANALYSIS		314-743-4179		F 1	3 4 0 (9 7 2	INCIDENT #	
Time	Time	135// Time					- Report results between WIDL and RL		Ф	ADDITIONAL NOTES:		Pressurization Gas:	Date:	1000 m 12 m 20 m	Description for	ah Jisa Ontir	NALYSIS		Elizabeth Kunkel@URSCorp.com	S-HALL:		0 6 1	SAP #	6 4 0	ENV SERVICES)	
37-		/300								S:		Z							com Roxana SVE Pilot	CONSULTANT PROJECT NAME#:			PAGE:1 of1_	DATE: 03/25/11	CHECK IF NO INCIDENT # APPLIES	

No. of the second secon

/2/06 Revision